EXERCISES FOR CHAPTER II.3

1. Properties of schemes

Exercise 1.1. A generic point ξ of a scheme X is a point such that $\overline{\xi} = X$.

- (1) Prove that if X is an irreducible scheme then X has a unique generic point.
- (2) Show that if X is an integral scheme, then show that for any open affine $\operatorname{Spec}(R) \subset X$ the fraction field $\operatorname{Frac}(R)$ coincides with the residue field at the generic point of X.

The term "generic point" evokes the fact that there are many features of schemes which, if they hold at ξ , will then hold for some non-empty open subset of $\overline{\xi}$.

Exercise 1.2. Exercise II.3.8

Exercise 1.3. Let X be a (non-empty) locally Noetherian scheme. Show that X is integral if and only if X is connected and every stalk $\mathcal{O}_{X,p}$ is an integral domain. (Thus in some sense the property of being an integral domain is "almost", but not quite, a stalk local property.)

- **Exercise 1.4.** (1) Prove that for a locally Noetherian scheme X reducedness is an open property: if a point $p \in X$ is reduced, then p admits an open neighborhood that is reduced. (Hint: think about the primary decomposition of the nilradical of a Noetherian ring.)
 - (2) Unfortunately reducedness is not an open property in general. Prove this by analyzing the spec of the ring

$$\mathbb{C}[x, y_1, y_2, y_3, \ldots]/(y_1^2, (x-1)y_1, y_2^2, (x-2)y_2, y_3^2, (x-3)y_3, \ldots).$$

2. Finiteness properties, open and closed embeddings

Exercise 2.1. Prove carefully that:

- (1) A scheme X is quasicompact if and only if it admits a finite cover by open affines.
- (2) A scheme X is quasiseparated if and only if there exists a cover by open affines $\{U_i\}$ and furthermore each $U_i \cap U_j$ admits a finite cover by open affines.
- (3) A scheme X is qcqs if and only if it admits a finite cover by open affines $\{U_i\}$ and furthermore each $U_i \cap U_j$ admits a finite cover by open affines.

Exercise 2.2. Suppose that S is a $\mathbb{Z}_{\geq 0}$ -graded ring that is finitely generated over S_0 . Prove that $\operatorname{Proj}(R)$ is qcqs.

Exercise 2.3. Exercise II.2.16 (basically: prove the QCQS lemma)

Exercise 2.4. Let $i: U \to X$ be an open embedding of schemes. Suppose $f: Z \to X$ is any morphism of schemes such that $f(Z) \subset U$ set-theoretically. Prove that f admits a unique factoring through i.

3. Products

Exercise 3.1. Let X, Y, Z be schemes with morphisms $f: X \to Z$, $g: Y \to Z$. Suppose that $W \subset Z$ is an open subset. Suppose $U \subset f^{-1}(W)$ and $V \subset g^{-1}(W)$ are open subshemes. Show that if $U \times_W V$ exists in the category of schemes, then $U \times_Z V$ does as well and is isomorphic to it. Use this fact to finish the construction of the product.

Exercise 3.2. Let $f: X \to Z$ be a morphism. Suppose that $i: Y \to Z$ is an open embedding. Prove that the projection map $X \times_Z Y \to X$ is an open embedding with image homeomorphic to $f^{-1}(Y)$.

Exercise 3.3. Let $f: X \to Z$ be a morphism. Suppose that $i: Y \to Z$ is a closed embedding. Prove that the projection map $X \times_Z Y \to X$ is a closed embedding with image homeomorphic to $f^{-1}(Y)$.

Exercise 3.4. Let $f: X \to Z$ be a morphism of affine schemes. Prove carefully that the diagonal $\Delta_{X/Z}: X \to X \times_Z X$ is a closed embedding.

Exercise 3.5. Exercise II.3.9