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Abstract. Let B be a smooth projective curve and let π : X → B be a smooth integral
model of a geometrically integral Fano variety over K(B). Geometric Manin’s Conjecture
predicts the structure of the irreducible components M ⊂ Sec(X/B) which parametrize non-
relatively free sections of sufficiently large anticanonical degree. Over the complex numbers,
we prove that for any such component M the sections come from morphisms f : Y → X
such that the generic fiber of Y has Fujita invariant ≥ 1. Furthermore, we prove that there
is a bounded family of morphisms f which together account for all such components M .
These results verify the first part of Batyrev’s heuristics for Geometric Manin’s Conjecture
over C. Our result has ramifications for Manin’s Conjecture over global function fields: if we
start with a Fano fibration over a number field and reduce mod p, we obtain upper bounds
of the desired form by first letting the prime go to infinity, then the height.
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1. Introduction

Since Mori’s groundbreaking work in [Mor79] and [Mor82] the moduli space of curves
has played a central role in the analysis of Fano varieties. The irreducible components of
the moduli space that parametrize free curves – that is, curves for which the restriction of
the tangent bundle is sufficiently positive – are generically smooth and have other desirable
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geometric properties. By contrast, the irreducible components that only parametrize non-
free curves frequently exhibit pathological behavior. Our goal is to classify these “non-free
components” for Fano varieties over C.

We show that the non-free components that parametrize curves of sufficiently large degree
must come from morphisms which increase the Fujita invariant. We call such morphisms “ac-
cumulating maps”; their geometry is strongly constrained by the Minimal Model Program.
Furthermore, we show that all non-free components can be accounted for by a bounded
family of accumulating maps. The analogous statements are still true for the moduli space
of sections of a C-Fano fibration over a curve and we will work in this more general setting
for the rest of the paper.

Our approach to this problem is motivated by arithmetic geometry. In [Bat88] Batyrev
developed a heuristic argument for Manin’s Conjecture over a global function field based on
some assumptions about the geometry of the space of curves on an Fq-Fano variety. Experts
anticipated that some aspects of these heuristics should hold for curves over geometric fields
([Man95], [Bou09], [Bou11]) and due to many groundbreaking advances this expectation has
been validated for some particular examples ([Pey04], [Bou09], [Bou12], [CLL16], [Bil23]).

Geometric Manin’s Conjecture adapts Batyrev’s assumptions into a precise set of con-
jectures about the structure of the moduli space of sections on a k-Fano fibration over a
curve for arbitrary fields k. Our work completely resolves the first prediction of Geometric
Manin’s Conjecture for a C-Fano fibration over a curve: non-free components come from
accumulating maps. Our results provide evidence for Batyrev’s heuristics in characteristic p,
and in some circumstances we can deduce an arithmetic statement: if we start with a Fano
fibration over a number field and reduce mod p, we obtain upper bounds on the counting
function in Manin’s Conjecture by first letting the prime go to infinity, then the height.

1.1. Fano fibrations. Let B be a smooth irreducible projective curve over a field k and let
η denote its generic point. A Fano fibration over B is a flat k-morphism π : X → B from a
smooth projective variety X whose generic fiber Xη is a geometrically integral Fano variety
over K(B). We will denote by Sec(X/B) the moduli space of sections of π.
The following definition identifies the analogue of a free curve in the setting of fibrations.

Definition 1.1. A section C of π : X → B is relatively free if TX/B|C is globally generated
and H1(C, TX/B|C) = 0.

1.2. Geometric Manin’s Conjecture. Geometric Manin’s Conjecture is based on an influ-
ential heuristic for Manin’s Conjecture developed by Baytrev ([Bat88]). The main invariant
in Batyrev’s heuristic is the Fujita invariant.

Definition 1.2. Let X be a smooth projective variety over a field of characteristic 0 and let
L be a big and nef Q-Cartier divisor on X. The Fujita invariant of (X,L) is

a(X,L) = min{t ∈ R | KX + tL is pseudo-effective }.
If L is nef but not big, we formally set a(X,L) = ∞. If X is singular, choose a resolution
of singularities ϕ : X ′ → X and define a(X,L) to be a(X ′, ϕ∗L). (The choice of resolution
does not affect the value by [HTT15, Proposition 2.7].)

Geometric Manin’s Conjecture (based on [Bou09], [EVW16], [LT19a], and [LST22]) pre-
dicts that sections of Fano fibrations over any ground field are governed by two key principles:

2



• (Exceptional set) “Pathological” families of sections are controlled by the Fujita in-
variant.
• (Stability) “Non-pathological” families of sections exhibit homological or motivic
stability as the degree increases.

Our main theorems establish a precise version of the first principle over the complex num-
bers: the Fujita invariant controls the failure of relative freeness. In accordance with the
asymptotic nature of Manin’s Conjecture, our results apply to any family of sufficiently large
degree.

1.3. Main results. Suppose π : X → B is a Fano fibration over C. Our first main result,
Theorem 1.3, shows that every non-relatively free section of sufficiently large degree comes
from an accumulating map which does not decrease the Fujita invariant along the generic
fiber. This verifies a conjecture of [LST22] and generalizes earlier results for del Pezzo surface
fibrations ([LT24], [LT22]) to fibrations of arbitrary dimension using completely different
techniques.

Theorem 1.3 has two cases which correspond to the two ways in which a section C could
fail to be relatively free. First, the deformations of C could fail to dominate X , in which case
the sections sweep out a subvariety Y ⊊ X . Second, the deformations of C could dominate X
but TX/B|C could have a low degree quotient. In the latter case we expect C to deform more
in some directions than in others so that there is a subvariety of X swept out by the “most
positive” deformations of C. In fact, there is an algebraic foliation on a generically finite
cover of X such that most deformations of C are tangent to the foliation; our subvariety is
swept out by the images of the leaves meeting C. In both cases Theorem 1.3 shows that the
relevant subvariety must have a large Fujita invariant along the generic fiber.

Theorem 1.3. Let π : X → B be a Fano fibration. There is a constant ξ = ξ(π) with
the following properties. Let M be an irreducible component of Sec(X/B) parametrizing a
family of non-relatively free sections C which satisfy −KX/B · C ≥ ξ. Let Uν denote the
normalization of the universal family over M and let ev : Uν → X denote the evaluation
map. Then either:

(1) ev is not dominant. Then the subvariety Y swept out by the sections parametrized by
M satisfies

a(Yη,−KX/B|Yη) ≥ a(Xη,−KX/B|Xη).

(2) ev is dominant. Letting f : Y → X denote the finite part of the Stein factorization
of ev, we have

a(Yη,−f ∗KX/B|Yη) = a(Xη,−KX/B|Xη).

Furthermore, there is a dominant rational map ϕ : Y 99K Z over B with connected
fibers such that the dimension of Z is at least 2 and the following properties hold. Let
C ′ denote a general section of Y → B parametrized by M and let W ′ ⊂ Y denote the
unique irreducible component of the closure of ϕ−1(ϕ(C ′)) which maps dominantly to
ϕ(C ′). There is a resolution ψ :W →W ′ such that the locus where ψ−1 is well-defined
intersects C ′ and ψ has the following properties.
(a) We have a(Wη,−ψ∗f ∗KX/B|Wη) = a(Xη,−KX/B|Xη).
(b) The Iitaka dimension of KWη − a(Wη,−ψ∗f ∗KX/B|Wη)ψ

∗f ∗KX/B|Wη is 0.
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(c) The general deformation of the strict transform of C ′ in W is relatively free in
W.

(d) There is a constant T = T (π) depending only on π, but not M , such that the
sublocus of M parametrizing deformations of the strict transform of C ′ in W
has codimension at most T in M .

Remark 1.4. Suppose X is a Fano variety and we are studying irreducible components
of Mor(B,X). Any family of non-free curves on X leads to a family of non-relatively free
sections of π : X×B → B and thus Theorem 1.3 gives a classification result for such families.
However, it is natural to ask whether non-free curves can be described using generically finite
maps f : Y → X instead of generically finite maps f : Y → X × B. The answer is “yes,”
but due to length constraints we will give the details in a supplementary paper ([LRT23]).

Theorem 1.3 has two key consequences. First, the Fujita invariant can be computed using
tools from the Minimal Model Program and thus Theorem 1.3 gives a practical way to classify
families of non-relatively free sections.

Example 1.5. In Example 12.1 we analyze the moduli spaces Sec(X/B) when π : X → B
is a cubic hypersurface fibration and B is a curve of arbitrary genus. When dim(Xη) ≥ 5, we
show that the “exceptional set” is empty so that every component of Sec(X/B) of sufficiently
high degree will generically parametrize relatively free sections. For dimension 4 a similar
analysis allows us to describe the families of non-relatively free sections of large degree.

Second, [Bir21] imposes strong finiteness constraints on Fujita invariants and Theorem 1.3
allows us to deduce finiteness results for families of non-relatively free sections. Recall that
Theorem 1.3 shows that families of non-relatively free sections come from maps f : Y → X
such that the Fujita invariant of Yη is at least a(Xη,−KX/B|Xη) = 1. If we pass to an algebraic

closure K(B) then the set of maps fη : Yη → Xη such that a(Yη,−f ∗
ηKXη

) ≥ 1 satisfy certain
types of boundedness (see e.g. [LST22, Theorem 1.7]). However, the analogous boundedness

statements over K(B) are no longer true since a map over K(B) can correspond to infinite
families of twists over K(B).
In Section 8 we systematically study the set of twists of the map fη : Yη → Xη. Theorem

1.15 shows that amongst all the twists only a bounded subfamily carry a family of sections
which is dense in an irreducible component of Sec(X/B). In this way, we conclude that all
non-relatively free sections will come from a bounded family of accumulating maps f : Y →
X .

Theorem 1.6. Let π : X → B be a Fano fibration.

(1) There is a proper closed subset R ⊊ X such that if M ⊂ Sec(X/B) is an irre-
ducible component parametrizing a non-dominant family of sections then the sections
parametrized by M are contained in R.

(2) There is a constant ξ = ξ(π), a proper closed subset V ⊂ X , and a bounded family
of smooth projective B-varieties Ys, s ∈ S equipped with B-morphisms fs : Ys → X
satisfying:
(a) dim(Ys) < dim(X ) and fs is generically finite onto its image;
(b) a(Ys,η,−f ∗

sKX/B|Ys,η) = a(Xη,−KX/B|Xη) and the Iitaka dimension of KYs,η −
f ∗
sKX/B|Ys,η is 0;
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(c) if M ⊂ Sec(X/B) is an irreducible component that generically parametrizes
non-relatively free sections C with −KX/B · C ≥ ξ then for a general section C
parametrized by M we have either
(i) C ⊂ V, or
(ii) for some fs : Ys → X in our family there is a relatively free section C ′ of
Ys/B such that C = fs(C

′).

Remark 1.7. Theorem 1.6 establishes geometric analogues of various conjectures about the
exceptional set in Manin’s Conjecture. For example, suppose that B is a smooth projective
Fq-curve and π : X → B is a Fano fibration equipped with an adelic metrization on the
relative canonical bundle. Weak Manin’s Conjecture predicts that there exist a constant C >
0 and a closed subset R ⊂ X such that for any ϵ > 0 the number of sections meeting X\R
of height at most d is bounded above by Cqd(1+ϵ). Using the heuristic estimate #M(Fq) ≈
qdimM , this means that R should contain all sections parametrized by a family M such
that dim(M)/expdim(M) ≥ 1+ ϵ (with perhaps finitely many exceptions). Theorem 1.6.(1)
shows that over C there exists a closed set R with this property.

1.4. A geometric application. Suppose M is an irreducible component of Sec(X/B) and
let N ⊂M denote the sublocus parametrizing sections C such that TX/B|C is not generically
globally generated. One would like to find a lower bound on the codimension of N . This
problem has been previously studied when X is a smooth Fano variety andM ⊂ Mor(P1, X),
in which case N ⊂M is simply the non-free locus. For example, [BS23, Theorem 1.2] shows
that when X is a smooth hypersurface whose dimension is much larger than the degree and
M is an irreducible component of Mor(P1, X) then the codimension of N ⊂M grows linearly
in the anticanonical degree of the curves parametrized by M .
We prove the first general statement for arbitrary Fano fibrations: the codimension of the

non-generically-globally-generated locus grows linearly in the degree unless there is a clear
geometric reason why it cannot.

Theorem 1.8. Let π : X → B be a Fano fibration. There is a linear function Q(d) whose
leading coefficient is a positive number depending only on dim(X ) such that the following
property holds.

Suppose that M is an irreducible component of Sec(X/B) parametrizing a family of sec-
tions C which satisfy −KX/B · C = d. Let N ⊂M be a subvariety parametrizing sections C
such that TX/B|C is not generically globally generated. Then either

(1) the codimension of N in M is at least sup{⌊Q(d)⌋, 0}, or
(2) the sections parametrized by N sweep out a subvariety Y ⊊ X satisfying

a(Yη,−KX/B|Yη) ≥ a(Xη,−KX/B|Xη).

In Example 12.2 we will show that the codimension of the non-generically-globally-generated
locus can be constant as the degree increases, demonstrating that case (2) of Theorem 1.8
must be included.

Remark 1.9. Over C, Theorem 1.8 shows that families of sections such that TX/B|C is
not generically globally generated are either contained in the exceptional locus or they have
large codimension in a component of Sec(X/B). Assuming the analogous statement over a
global function field, we can expect such sections to make a negligible contribution to the
counting function for Manin’s Conjecture. Thus Theorem 1.8 supports the novel formulation
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of Manin’s Conjecture due to [Pey17] which only counts rational points which are “free” in
a suitable sense.

1.5. An arithmetic application. Our results can be applied to prove an upper bound of
Manin type over a global function field. Let F be a number field and let B be a smooth
projective curve over F . Let S be a finite set of places of F including all archimedean places
and let oF,S be the ring of S-integers in F .

Let π : X → B be a Fano fibration defined over F . After perhaps enlarging S, we can find
an integral model π̃ : X → B of π over oF,S such that X and B are smooth over oF,S. Let
R ⊂ X be the Zariski closure of the union of the loci swept out by non-dominant families of
sections in Sec(X/B). Theorem 1.6.(1) implies that the base change of R to C is contained
in a proper closed subset, so in particular R itself is a proper closed subset. We consider the
flat closure R ⊂ X of R.
Let v be a non-archimedean place of F not contained in S and consider the reduction

πv : Xv → Bv at v which is defined over a finite field kv. Let Rv be the reduction of R at v
and let Sec(Xv/Bv, Rv)≤d be the open subset of Sec(Xv/Bv) parametrizing sections C ̸⊂ Rv

of anticanonical height ≤ d. Then we consider the following counting function:

N(Xv \Rv,−KXv/Bv , d) = #Sec(Xv/Bv, Rv)≤d(kv).

Weak Manin’s Conjecture over K(Bv) predicts that for any ϵ > 0 we have

N(Xv \Rv,−KXv/Bv , d) = o(qd(1+ϵ)v ),

as d → ∞ where qv = #kv. The following approximation of this conjecture was suggested
to us by Jordan Ellenberg and Melanie Matchett Wood:

Theorem 1.10. Let F, S, π̃ : X → B be as above. Then assuming dϵ > dimXη, we have

N(Xv \Rv,−KXv/Bv , d)

q
d(1+ϵ)
v

→ 0

as v →∞.

This result fits into the recent trend of taking hard arithmetic questions that are asymp-
totic in a different parameter and making them more accessible by first letting v go to ∞.
This technique has been explored in the contexts of Malle’s Conjecture and Cohen-Lenstra
heuristics over global function fields; see e.g. [Ach06, EVW16, FLR22, PW21, LWZB19,
ETW17].

1.6. Stability and restriction. The proof of our main results requires a number of state-
ments which are interesting in their own right. We highlight one such result here concerning
the behavior of vector bundles under restrictions. We will need the notions of slope stability
and Harder-Narasimhan filtrations of torsion-free sheaves with respect to nef curve classes
as developed by [CP11].

Suppose E is a torsion-free sheaf andM is an irreducible component of Sec(X/B) parametriz-
ing a dominant family of sections. We would like to understand the Harder-Narasimhan
filtration of E|C for a general section C parametrized by M . Intuitively, we can hope that
the stability of the restricted bundle depends on the global stability properties of E with
respect to the class [C].

In Section 6 we prove that when E is a torsion-free sheaf on X that is semistable with
respect to the numerical class [C] of a flat family of curves then E|C is “almost” semistable.
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This result should be compared against the Mehta-Ramanthan theorem for complete in-
tersection curves: although the conclusion is a little weaker, the result applies to a much
broader class of curves than just complete intersection curves. The following statement is a
special case designed for families of non-relatively free sections.

Theorem 1.11. Let π : X → B be a flat morphism with connected fibers from a smooth
projective variety X to a smooth projective curve B and let E be a torsion-free sheaf on X .
Let M be an irreducible component of Sec(X/B) and let Uν denote the normalization of the
universal family over M . Suppose that

(1) the evaluation map ev : Uν → X is dominant with connected fibers and
(2) for some open subset M◦

red ⊂ Mred the restriction of ev to the preimage of M◦
red is

flat.

For a general curve C parametrized by M , write

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fr = E|C
for the Harder-Narasimhan filtration of E|C.
Suppose that E is [C]-semistable. Then for every index i we have

|µ(E|C)− µ(Fi/Fi−1)| ≤ (g(B) dim(X )− g(B) + 1)2 rk(E).

Note that no Fano assumption is necessary in Theorem 1.11. Under some weak positivity
assumptions on the normal bundle of C, the constant occurring in Theorem 1.11 can be
dramatically improved.

Remark 1.12. We emphasize that the conditions (1) and (2) in Theorem 1.11 are both
necessary and exhaustive. If these conditions do not hold, then the evaluation map over M
factors rationally through a generically finite morphism f : Y → X such that the analogous
conditions do hold on Y . (For example, we can let f be a flattening of the finite part of the
Stein factorization of the evaluation map.) Then Theorem 1.11 shows that the restricted
bundle is controlled by the stability of f ∗E on Y and not the stability of E on X .

1.7. Strategy. Our strategy for the proof of Theorem 1.3 relies on several tools: the theory
of foliations and slope stability, the MMP, and local-to-global principles over function fields of
complex curves. We outline the proof of Theorem 1.3.(2) where M parametrizes a dominant
family of non-relatively free sections on X . For simplicity we assume that ev : Uν → X has
connected fibers so that the Stein factorization Y of ev is equal to X .

Since by hypothesis C is not relatively free, we see that TX/B|C must have a low slope
quotient. Applying Theorem 1.11 to a birational model flattening the family, we can “lift”
this quotient to all of X . The result is a foliation F ⊂ TX of large slope and the pioneering
results of [CP19] show that F is induced by a rational map ϕ. We carry out this construction
in Section 7.

It then remains to verify the desired properties of ϕ. The most difficult is the computation
of the Fujita invariant as in Theorem 1.3.(2).(b). By appealing to Birkar’s recent boundedness
results in the Minimal Model Program, we prove the following general criterion for computing
the Fujita invariant in Section 9.

Theorem 1.13. Let π : X → B be a Fano fibration. Fix a positive rational number a and
a positive integer T . There is some constant ξ = ξ(π, a, T ) with the following property.
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Suppose that ψ : Y → B is a flat morphism with connected fibers from a smooth projective
variety Y and f : Y → X is a B-morphism that is generically finite onto its image. Suppose
that N is an irreducible component of Sec(Y/B) parametrizing a dominant family of sections
on Y and let M denote the irreducible component of Sec(X/B) containing f∗N .
Assume that the sections C parametrized by N satisfy −f ∗KX/B · C ≥ ξ and that

dim(N) ≥ a · dim(M)− T.
Then

a(Yη,−f ∗KX/B|Yη) ≥ a.

Remark 1.14. We prove statements analogous to Theorem 1.13 in the more general setting
of pairs (X , L) where X is a smooth projective variety admitting a flat morphism with
connected fibers π : X → B and L is a generically relatively big and semiample Cartier
divisor on X .

Returning to the setting of Theorem 1.3.(2), we prove Theorem 1.3.(2).(b) by combining
Theorem 1.13 with Theorem 1.3.(2).(d).

We next outline the proof of Theorem 1.6.(2). Suppose we have a dominant generically
finite morphism fη : Yη → Xη. As discussed earlier, the key is to understand how the set
of twists fη interacts with the behavior of sections on an integral model. We systematically
analyze this relationship in Section 8; in particular, we prove the following statement that
undergirds Theorem 1.6.

Theorem 1.15. Let π : X → B be a Fano fibration. Let Y be a normal projective vari-
ety equipped with a flat morphism with connected fibers ψ : Y → B and with a dominant
generically finite B-morphism f : Y → X .

Suppose that Ỹ is a B-variety which is smooth and projective and f̃ : Ỹ → X is a

dominant generically finite morphism such that f̃η : Ỹη → Xη is birational to a twist of

fη. Fix a positive integer T and suppose that there exists an irreducible component Ñ ⊂
Sec(Ỹ/B) parametrizing a dominant family of sections on Ỹ such that the pushforward of Ñ
has codimension at most T in a component of Sec(X/B).

Then there exist constants d = d(Y/X ) and n = n(Y/X , T ) and a finite Galois morphism
B′ → B of degree at most d with at most n branch points such that the base changes of fη
and f̃η to K(B′) are birationally equivalent.

This result implies that the set of Ỹ satisfying the conditions of Theorem 1.15 is birationally
bounded. We prove this boundedness by constructing a parameter space of twists which is
of finite type over the Hurwitz stack parametrizing finite covers B′ → B.

1.8. History. Ever since the seminal results due to Mori and his coauthors ([Mor79], [Mor82],
[MM86]) the moduli space of curves has played a prominent role in the study of Fano vari-
eties. The notion of free rational curves goes back to pioneering work by Kollár–Miyaoka–
Mori ([KMM92], [Kol96]) on rational connectedness of Fano varieties. Since then there have
been many breakthroughs in the description of the moduli spaces Mor(B,X) for Fano va-
rieties X, most notably when B = P1. One particularly influential example is the analysis
of rational curves on Fano hypersurfaces pioneered by [HRS04] and subsequently developed
by [CS09], [BK13], and [RY19]. ([BV17], [BS23] provide a different approach to this prob-
lem using an idea from analytic number theory.) Another important class of examples is the
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moduli spaces of curves on various homogeneous spaces ([Tho98], [KP01], [Bou16]). However
for a long time it was unclear what structure to expect for arbitrary Fano varieties.

The situation was clarified by the introduction of ideas from arithmetic geometry. Manin’s
Conjecture is a conjectural asymptotic formula for the counting function of rational points
on Fano varieties formulated and refined in [FMT89], [BM90], [Pey95], [BT98], and [LST22].
In [Pey17] Peyre proposed another version of Manin’s Conjecture using the notion of freeness
of rational points which is inspired by the concept of free rational curves. A motivic version
of Manin’s Conjecture has been established for toric varieties in [Bou09] and for equivari-
ant compactifications of vector groups in [CLL16] and [Bil23]. In Manin’s Conjecture, it
is important to exclude the contribution to the counting function from “exceptional sets”
where rational points accumulate too quickly. The relationship between exceptional sets and
Fujita invariants was developed in [HTT15], [LTT18], [HJ17], [LT17], [Sen21], [LST22], and
[LT19b]. These developments culminated in the main theorem of [LST22] proving that the
contribution to the exceptional set coming from maps f : Y → X such that Y has larger a
and b invariants will be contained in a thin set of rational points. This result is a source of our
main theorem (Theorem 1.6) showing that pathological components come from a bounded
family.

In his influential notes ([Bat88]) Batyrev gave a heuristic for the global function field ver-
sion of Manin’s Conjecture. Over time the principles underlying Batyrev’s heuristic were
made into precise conjectures and extended to arbitrary ground fields. First, building upon
ideas of Peyre [Bou09] proposed a motivic version of Manin’s Conjecture over arbitrary
ground fields. Building upon earlier work on homological stability by [Seg79], [CJS94], and
many others, [EVW16] highlighted the connection between homological stability and ra-
tional point counts via the Grothendieck-Lefschetz trace formula. Second, based on the
analysis of the exceptional set described earlier, [LT19a] predicted the geometry underlying
“pathological” families of rational curves on Fano varieties and obtained a first prototype
result of Theorem 1.3 in this setting. Further works leveraged this intuition to study rational
curves for Fano varieties of dimension ≤ 3 and for sections of del Pezzo fibrations ([Cas04],
[Tes09], [LT19a], [LT21], [LT24], [LT22], [BLRT22], [MTiB20], [ST22], and [BJ22]). Higher
dimensional cases also have been explored previously in the case of hypersurfaces and homo-
geneous spaces as mentioned above and more recently in [Oka22]. This series of work is one
of instances for the geometrization of arithmetic conjectures which has been pioneered by
many authors, e.g., [GHS03], [dJS03], [GHMS05], [HT06], [Xu12a], [Xu12b], [Tia15], [Tia17],
[TZ18], [TZ19], [SX20], and [STZ22].

Together, the two principles in Batyrev’s heuristic (stated in Section 1.2) are known as
Geometric Manin’s Conjecture. Geometric Manin’s Conjecture unifies many disparate ex-
amples and clarifies the conjectural structure of Mor(B,X) for arbitrary Fano varieties.
Theorems 1.3 and 1.6 are the first statements in Geometric Manin’s Conjecture which have
been proved for arbitrary Fano fibrations over curves of arbitrary genus. This answers a
question implicitly raised by Batyrev in his heuristics ([Bat88]).
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2. Background

Throughout all our schemes will be assumed to be separated and every connected com-
ponent will have finite type over the base ring (which is usually C or the function field of a
complex curve). Recall that in this situation the normalization of a scheme X is isomorphic
to the normalization of Xred. A variety is a separated integral scheme of finite type over the
base field. Given a coherent sheaf F on a variety V , we denote by Ftors the torsion subsheaf
and by Ftf the quotient of F by its torsion subsheaf.

Given a dominant generically finite morphism of projective varieties f : Y → X, we
denote by Aut(Y/X) the automorphism group of Y over X and by Bir(Y/X) the birational
automorphism group of Y over X.

Definition 2.1. Suppose we have a dominant morphism of varieties f : U → V such that
the general fiber of f is geometrically irreducible. Suppose that T ⊂ V is a subvariety
that meets the open locus over which f has geometrically irreducible fibers. Then f−1(T )
has a unique irreducible component which dominates T under f . We call this the “main
component” of f−1(T ).

When X is a projective variety, we will let N1(X)R denote the space of R-Cartier divisors
up to numerical equivalence. In this finite-dimensional vector space we have the pseudo-

effective cone Eff
1
(X) and the nef cone Nef1(X). Dually, we will let N1(X)R denote the

space of R-1-cycles up to numerical equivalence. Inside N1(X)R we have the pseudo-effective
cone Eff1(X) and the nef cone Nef1(X). Given a curve C, we will denote its numerical class
by [C].

We also use the standard definitions and techniques from the Minimal Model Program.
See [KM98] and [BCHM10] for more details.

Definition 2.2. Let f : X → Y be a projective morphism of varieties and let L be a
Q-Cartier divisor on X. For a property P of Q-Cartier divisors (such as ample, big, nef,
semiample, etc.), we say that L is generically relatively P if the restriction of L to the generic
fiber of f satisfies P .

2.1. Convex geometry. If V is a finite dimensional R-vector space, we will say that a
subset C ⊂ V is a (closed convex) polyhedron if it is a finite intersection of closed affine half
spaces, i.e.

C =
t⋂
i=1

{v ∈ V |ℓi(v) ≤ ci}

10



where the ℓi are non-zero linear functions on V and ci ∈ R. If V carries a rational structure
– that is, we identify V = VQ ⊗Q R for some Q-vector space VQ – then we say that C is
rational polyhedral if every ci is in Q and every ℓi is induced by a Q-linear function on VQ.
Suppose that C is a (closed, convex, salient, full-dimensional) cone in a finite dimension

vector space V . Given an element ℓ ∈ V ∨, we denote by Cℓ≥0 the intersection of C with the
half-space {v ∈ V |ℓ(v) ≥ 0}. Similarly, Cℓ=0 denotes the intersection with the hyperplane
ℓ∨.

We will need the following result of [HW07]:

Theorem 2.3 ([HW07, Theorem 1.1.(a)]). Let V be a finite dimensional R-vector space
equipped with a full-rank discrete lattice Λ. Let S be a subset of Λ. Suppose C is a rational
polyhedral cone in V and Q is a compact subset of V (in the metric topology) such that
S ⊂ Q+ C. Then there is a finite set of elements {si}ri=1 in S such that every element of S
can be written as si + c for some c ∈ C ∩ Λ.

2.2. Vector bundles on curves. Let B be a smooth projective curve and let E be a vector
bundle of rank r on B. Write the Harder-Narasimhan filtration of E as

0 = F0 ⊂ F1 ⊂ F2 ⊂ . . . ⊂ Fk = E .
We denote by µmax(E) the maximal slope of any torsion-free subsheaf, i.e., µmax(E) =
µ(F1). We denote by µmin(E) the minimal slope of any torsion-free quotient, i.e., µmin(E) =
µ(E/Fk−1). Note that by the mediant inequality for every index 1 < i ≤ k we have

(2.1) µ(Fi) =
c1(Fi−1) + c1(Fi/Fi−1)

rk(Fi−1) + rk(Fi/Fi−1)
< µ(Fi−1).

Lemma 2.4. Let f : Y → S be a smooth projective morphism of varieties with relative
dimension 1. Suppose that E is a locally free sheaf on Y . Then µmin(E|Ys) is a lower-
semicontinuous function on S.

Proof. By [HL97, Theorem 2.3.2] there is a dense open set U ⊂ S and a torsion-free sheaf F
on YU such that (E/F)|Yt is the minimal slope quotient of E|Yt for the fiber Yt over any point
t ∈ U . Arguing by Noetherian induction, it suffices to show that if s denotes an arbitrary
point of S then µmin(E|Ys) ≤ µmin(E|Yt). By projectivity of the Quot scheme, for any point
s ∈ S there is a surjection E|Ys → Qs where Qs has the same degree and rank as (E/F)|Yt .
In particular µ(Qs,tf ) ≤ µ((E/F)|Yt) finishing the proof. □

Definition 2.5. We say that a coherent sheaf E on a smooth projective curve B is generically
globally generated if the evaluation map

H0(B, E)⊗OB → E
is surjective at the generic point of B.

Lemma 2.6. Let B be a smooth projective curve. Suppose that E is a generically globally
generated vector bundle on B. Then µmin(E) ≥ 0.

Proof. Since the evaluation map on global sections has torsion cokernel, we have

µ(E) ≥ µ(H0(B, E)⊗OB) = 0.

Denote the Harder-Narasimhan filtration of E by

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fk = E .
11



Since F1 is the maximal destabilizing subsheaf, we see that

µ(F1) ≥ µ(E) ≥ 0.

Since E is generically globally generated, its quotient E/F1 is also generically globally gener-
ated, and we conclude by induction on the length k of the Harder-Narasimhan filtration. □

2.2.1. Cohomology bounds. We next recall some bounds on the cohomology groups of semistable
and generically globally generated vector bundles.

Lemma 2.7. Let E denote a semistable vector bundle on a smooth projective curve B.
Suppose that µ(E) > (2g(B)− 2). Then H1(B, E) = 0.

Proof. By Serre duality it suffices to show that H0(B, E∨ ⊗ ωB) = 0. Since E is semistable,
E∨⊗ωB is as well. Since µ(E∨⊗ωB) < 0 there are no non-zero morphisms OB → E∨⊗ωB. □

Corollary 2.8. Let E denote a vector bundle on the smooth projective curve B. Define
d = (2g(B)− 2)− µmin(E). Then:

(1) For any line bundle L of degree > d we have that H1(B, E ⊗ L) = 0.
(2) For any line bundle T of degree > d+ 1 we have that E ⊗ T is globally generated.

Proof. Write the Harder-Narasimhan filtration of E as

0 = F0 ⊂ F1 ⊂ F2 ⊂ . . . ⊂ Fk = E .
(1) Since the slopes µ(Fi/Fi−1) are strictly decreasing in i we have µ(Fi/Fi−1 ⊗ L) >

2g(B)− 2 for every index i = 1, 2, . . . , k. Thus for i in this range we have H1(B,Fi/Fi−1 ⊗
L) = 0 by Lemma 2.7. Using the exact sequences

H1(B,Fi−1 ⊗ L)→ H1(B,Fi ⊗ L)→ H1(B,Fi/Fi−1 ⊗ L)→ 0

and arguing by induction on i we see that H1(B, E ⊗ L) = 0.
(2) follows immediately from (1) and the LES sequence of cohomology associated to the

inclusion
E ⊗ T ⊗OB(−p) ↪→ E ⊗ T

where p is any closed point of B. □

Lemma 2.9. Let B be a smooth projective curve of genus g. Suppose that E is a generically
globally generated bundle on C. Then

(1) h0(C, E) ≤ deg(E) + rk(E).
(2) h1(C, E) ≤ g(B) rk(E).

Proof. Write 0 = F0 ⊂ F1 ⊂ . . . ⊂ Fk = E for the Harder-Narasimhan filtration of E . Since
E is generically globally generated, Lemma 2.6 shows that every successive quotient Fi/Fi−1

has degree ≥ 0.
If 0 ≤ µ(Fi/Fi−1) ≤ 2g(B)−2, Clifford’s Theorem for semistable bundles as in [BPGN97,

Theorem 2.1] shows that

h0(B,Fi/Fi−1) ≤
1

2
deg(Fi/Fi−1) + rk(Fi/Fi−1)

and that

h1(B,Fi/Fi−1) = h0(B,Fi/Fi−1)− χ(Fi/Fi−1) ≤
−1
2

deg(Fi/Fi−1) + g(B) rk(Fi/Fi−1).

12



On the other hand, if 2g(B)− 2 < µ(Fi/Fi−1) then h
1(B,Fi/Fi−1) = 0 and

h0(B,Fi/Fi−1) = deg(Fi/Fi−1) + rk(Fi/Fi−1)(1− g(B))

by Lemma 2.7 and Riemann-Roch. Since

h0(B, E) ≤
s∑
i=1

h0(B,Fi/Fi−1) and h1(B, E) ≤
s∑
i=1

h1(B,Fi/Fi−1)

we obtain the desired statement using the additivity of deg and rk in exact sequences. □

2.3. Slope stability for smooth projective varieties. The notion of slope stability with
respect to movable curve classes was developed by [CP11], [GKP14], [GKP16].

Definition 2.10. Let X be a smooth projective variety and let α ∈ Nef1(X ). For any
torsion-free sheaf E on X, we define

µα(E) =
c1(E) · α
rk(E)

.

We say that E is α-semistable if for every non-zero torsion-free subsheaf F ⊂ E we have
µα(F) ≤ µα(E).

Every torsion free sheaf admits a maximal destabilizing subsheaf with respect to this slope
function. Thus we get a theory of α-Harder-Narasimhan filtrations for torsion-free sheaves
on X. The following definition captures the slopes of the pieces of the Harder-Narasimhan
filtration.

Definition 2.11. Let X be a smooth projective variety and let α ∈ Nef1(X ). Suppose that
E is a torsion-free sheaf of rank r. Write

0 = F0 ⊂ F1 ⊂ F2 ⊂ . . . ⊂ Fk = E

for the α-Harder-Narasimhan filtration of E . The slope panel SPα(E) is the r-tuple of rational
numbers obtained by combining for every index i the list of rk(Fi/Fi−1) copies of µα(Fi/Fi−1)
(arranged in non-increasing order):

SPα(E) = (µα(F1/F0), . . .︸ ︷︷ ︸
rk(F1/F0) copies

, µα(F2/F1), . . .︸ ︷︷ ︸
rk(F2/F1) copies

, . . . , µα(Fk/Fk−1), . . .︸ ︷︷ ︸
rk(Fk/Fk−1) copies

)

We denote by µmaxα (E) the maximal slope of any torsion-free subsheaf, i.e., µmaxα (E) =
µα(F1). We denote by µminα (E) the minimal slope of any torsion-free quotient, i.e., µminα (E) =
µα(E/Fk−1).

When discussing slope panels in the case when X is a curve, we will always let α be an
ample class of degree 1 and thus we will simply write SP(E).

Variations of the next result have been proved many times in the literature.

Theorem 2.12 ([Pan15, Proposition 1.3.32]). Let X be a smooth projective variety and let
α ∈ Nef1(X) be a nef curve class. Denote the α-Harder-Narasimhan filtration of TX by

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fk = TX .

Then every term Fi such that µminα (Fi) > 0 defines a foliation on X.
13



Suppose that f : X 99K Y is a rational map from a smooth projective variety X to a
normal projective variety Y . Let U be the open locus where f is defined. There is a unique
foliation on X whose restriction to U is the saturation in TU of the kernel of TU → f ∗TY . We
call this the foliation induced by f . Note that if f ′ : X 99K Y ′ is a rational map birationally
equivalent to f then f and f ′ induce the same foliation.

2.4. Fujita invariant. Recall from Definition 1.2 that if X is a smooth projective variety
over a field of characteristic 0 and L is a big and nef Q-Cartier divisor on X then

a(X,L) = min{t ∈ R | KX + tL ∈ Eff
1
(X)}.

By [BDPP13] the Fujita invariant will be positive if and only ifX is geometrically uniruled.
We will rely on the following boundedness result.

Theorem 2.13 ([DC17, Theorem 1.2], [HL20, Theorem 1.3]). Fix a positive integer n and
fix ϵ > 0. As we vary X over all smooth projective varieties of dimension n defined over a
field of characteristic 0 and vary L over all big and nef Cartier divisors on X, there are only
finitely many possible values of a(X,L) in the range (ϵ,∞).

The Fujita invariant is most useful for analyzing pairs satisfying an additional assumption.

Definition 2.14. Let X be a smooth projective variety and let L be a big and nef Q-divisor
on X. We say that (X,L) is adjoint rigid if KX + a(X,L)L has Iitaka dimension 0. If X
is singular and L is a big and nef Q-Cartier divisor, we say that (X,L) is adjoint rigid if
(X ′, ϕ∗L) is adjoint rigid for some resolution of singularities ϕ : X ′ → X. This definition
does not depend on the choice of resolution.

2.5. Boundedness and the Fujita invariant. In this section we recall some results of
[LST22]. Our first construction shows that the family of subvarieties of X which are adjoint
rigid and have the same Fujita invariant as X is bounded.

Construction 2.15. Let k be a field of characteristic 0. Let X be a geometrically uniruled
geometrically integral smooth projective k-variety and let L be a big and nef Q-Cartier
divisor on X. By [LST22, Theorem 4.19] there exist a proper closed subset V , finitely
many projective varieties Wi ⊂ Hilb(X), proper families pi : Ui → Wi where Ui is a smooth
birational model of the universal family U ′

i → Wi, and dominant generically finite morphisms
si : Ui → X such that

• over k, a general fiber of pi,k : Ui,k → Wi,k is an integral uniruled projective variety
which is mapped birationally by si,k onto the subvariety of Xk parametrized by the
corresponding point of Hilb(Xk);
• a general fiber Z of pi is a smooth projective variety satisfying a(Z, s∗iL|Z) = a(X,L)
and is adjoint rigid with respect to s∗iL|Z ; and
• for every subvariety Y ⊂ X not contained in B+(L) which satisfies a(Y, L|Y ) ≥
a(X,L) and which is adjoint rigid with respect to L, either Y is contained in V or
there is some index i and a smooth fiber of pi that is mapped birationally to Y under
the map si.

In fact more is true: the next result shows that the morphisms f : Y → X such that Y
is adjoint rigid and has the same Fujita invariant as X also form a bounded family up to
twisting.
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Theorem 2.16. Let k be a field of characteristic 0. Let X be a geometrically uniruled
geometrically integral smooth projective k-variety and let L be a big and nef Q-Cartier divisor
on X. Denote by {pi : Ui → Wi} the finite set of families equipped with maps si : Ui → X
and by V the closed subset of Construction 2.15. There is a closed set R ⊂ X and a finite
set of smooth projective varieties Yi,j equipped with dominant morphisms ri,j : Yi,j → Ti,j
with connected fibers and dominant morphisms hi,j : Yi,j → Ui forming commuting diagrams

Yi,j
hi,j //

ri,j

��

Ui

pi

��
Ti,j ti,j

// Wi

that satisfy the following properties:

(1) each map hi,j is generically finite and fi,j = si ◦ hi,j is not birational;
(2) ti,j is a finite Galois cover and Ti,j is normal;
(3) Bir(Yi,j/Ui) = Aut(Yi,j/Ui);
(4) every twist Y σ

i,j of Yi,j over Ui admits a morphism rσi,j : Y
σ
i,j → T σi,j which is a twist of

ri,j;
(5) we have a(Yi,j, f

∗
i,jL) = a(X,L);

(6) suppose that Y is a geometrically integral smooth projective variety and that f : Y →
X is a morphism that is generically finite onto its image but not birational such that
a(Y, f ∗L) ≥ a(X,L). Suppose furthermore that y ∈ Y (k) satisfies f(y) ̸⊂ R. Then:
(a) there are indices i, j and a twist hσi,j : Y σ

i,j → Ui of hi,j such that f(y) ∈
si(h

σ
i,j(Y

σ
i,j(k))), and

(b) if (Y, f ∗L) is adjoint rigid then furthermore f factors rationally through hσi,j and
f maps Y birationally to a fiber of rσi,j.

Proof. Consider the families pi : Ui → Wi. By applying [LST22, Lemma 7.3] there exists
a Zariski open subset W ◦

i such that each map U◦
i → W ◦

i is a good family in the sense of
[LST22, Definition 8.2].

We may then apply [LST22, Lemma 8.3] to each Ui equipped with s∗iL. The result is
a closed set Di ⊂ Ui and a finite set of smooth projective varieties Yi,j equipped with
morphisms ri,j : Yi,j → Ti,j, hi,j : Yi,j → Ui, and ti,j : Ti,j → Wi that have the following
properties. First, since ri,j is constructed as the Stein factorization of Yi,j → Ui → Wi we
see that every twist Y σ

i,j of Yi,j over Ui admits a morphism rσi,j that is a twist of ri,j. Second,
suppose that q : Y → Ui is a generically finite morphism such that a(Y, q∗s∗iL) = a(X,L)
and a general fiber of the Iitaka fibration for KY +a(Y, q

∗s∗iL)q
∗s∗iL maps generically finitely

onto a general fiber of Ui → Wi. Suppose furthermore that y ∈ Y (k) is a rational point such
that q(y) is not contained in Di. Then there is some index j and a twist hσi,j : Y σ

i,j → Ui
such that q(y) is in hσi,j(Y

σ
i,j(k)). Furthermore every general fiber of the canonical fibration

for KY + a(Y, q∗s∗iL)q
∗s∗iL is birational to a fiber of rσi,j.

By [LST22, Theorem 4.18] there is a proper closed subset V ′ ⊂ X which is the union of
all subvarieties Y satisfying a(Y, L|Y ) > a(X,L). We let R be the union of V and V ′ with
∪isi(Di). We also enlarge R by adding the images of singular fibers of ri,j.
We verify each property. (1), (2), (3) follow from [LST22, Lemma 8.3]. We have already

verified (4). (5) follows from [LST22, Lemma 8.3 (i) and (ii)].
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Now we verify (6). Suppose f : Y → X is as in the statement. By assumption f(Y ) ̸⊂ V ′.
In particular this implies that a(Y, f ∗L) = a(f(Y ), L|f(Y )) = a(X,L). Let F be the closure of
a general fiber of the canonical fibration for KY + a(Y, f ∗L)f ∗L so that (F, f ∗L|F ) is adjoint
rigid. Then by [LST22, Lemma 4.9] we see that (f(F ), L|f(F )) is also adjoint rigid and thus
is birational to a fiber of some map pi : Ui → Wi. This induces a rational map T 99K Hilb(X)
where T is the base of the canonical fibration of KY + a(Y, f ∗L)f ∗L. Since Ui is birational
to the universal family over Wi, we also obtain a rational map Y 99K Ui. Since the desired
statement only depends on the birational equivalence class of f : Y → X (and not the choice
of birational model of Y ), after blowing up Y we may suppose that Y admits a morphism to
Ui such that the general fiber of the canonical fibration on Y maps generically finitely onto
a fiber of the map Ui → Wi. Then the desired containment of rational points follows from
[LST22, Lemma 8.3 (vi)] as described above. When (Y, f ∗L) is adjoint rigid, the factoring
statement also follows from [LST22, Lemma 8.3 (vi)]. □

3. Sections of good fibrations

Definition 3.1. We say that a morphism π : Z → B is a good fibration if:

(1) Z is a smooth projective variety,
(2) B is a smooth projective curve, and
(3) π is flat and has connected fibers.

Suppose that π : Z → B is a good fibration. We let Sec(Z/B) denote the open subset
of the Hilbert scheme parametrizing sections of π. If M ⊂ Sec(Z/B) is an irreducible
component, the expected dimension of M is

χ(TZ/B|C) = −KZ/B · C + (dimZ − 1)(1− g(B))

where C is any section parametrized by M . The expected dimension is a lower bound for
the dimension of M . An upper bound is

dimH0(B, TZ/B|C) = −KZ/B · C + (dimZ − 1)(1− g(B)) + dimH1(B, TZ/B|C).
One of the basic facts about sections of a good fibration is the Northcott property, which

in our setting should be interpreted in the following way.

Corollary 3.2 ([LT22, Lemma 2.2]). Let π : Z → B be a good fibration and let L be a
generically relatively ample Q-Cartier divisor on Z. If we fix a constant Q, then there are
only finitely many components of Sec(Z/B) parametrizing sections C satisfying L · C ≤ Q.

3.1. Relatively free sections and general points. Suppose π : Z → B is a good fi-
bration. Fix points q1, . . . , qm ∈ Z which are contained in different fibers of π. We let
Sec(Z/B, q1, . . . , qm) denote the sublocus of Sec(Z/B) parametrizing sections containing the
points q1, . . . , qm. In particular, if M ⊂ Sec(Z/B, q1, . . . , qm) is an irreducible component
then the expected dimension of M is

χ(TZ/B|C(−q1 − . . .− qm)) = −KZ/B · C + (dimZ − 1)(1− g(B))−m(dim(Z)− 1)

where C is any section parametrized by M . The expected dimension is a lower bound for
the dimension of M . An upper bound is

dimH0(B, TZ/B|C(−q1 − . . .− qm)) = −KZ/B · C + (dimZ − 1)(1− g(B))−m(dim(Z)− 1)

+ dimH1(C, TZ/B|C(−q1 − . . .− qm)).
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The following result describes how the normal bundle of a section C controls the number of
general points contained in deformations of C.

Proposition 3.3 ([LT22] Proposition 3.3). Let π : Z → B be a good fibration. Fix points
q1, . . . , qm of Z contained in different fibers of π. Let M denote an irreducible component of
Sec(Z/B, q1, . . . , qm) and suppose that the sections parametrized by M dominate Z. Then
for a general section C parametrized by M and for a general point p ∈ B we have that
H0(C, TZ/B|C(−q1 − . . .− qm))→ TZ/B|C |p is surjective.

Conversely, suppose we fix a section C. Suppose that q1, . . . , qm are distinct points of
C such that H1(C, TZ/B|C(−q1 − . . . − qm)) = 0. Let M ⊂ Sec(Z/B, q1, . . . , qm) denote
the unique irreducible component containing C. If for a general point p ∈ C we have that
H0(C, TZ/B|C(−q1 − . . . − qm)) → TZ/B|C |p is surjective, then M parametrizes a dominant
family of sections on Z.
Corollary 3.4. Let π : Z → B be a good fibration. Suppose that M is an irreducible
component of Sec(Z/B) parametrizing a dominant family of sections. Letting C denote a
general section parametrized by M , we have

−KZ/B · C + (dimZ − 1)(1− g(B)) ≤ dim(M) ≤ −KZ/B · C + dimZ − 1.

Proof. By Proposition 3.3 the bundle TZ/B|C is generically globally generated. Thus we have
h1(C, TZ/B|C) ≤ g(B)(dim(Z)− 1) by Lemma 2.9. The desired statement follows. □

Recall that a section C is relatively free if H1(C, TZ/B|C) = 0 and TZ/B|C is globally
generated. Proposition 3.3 shows that any relatively free section deforms in a dominant
family on Z. It is easiest to work with relatively free sections when we impose further
conditions on the positivity of the terms of the Harder-Narasimhan filtration of TZ/B|C .
Definition 3.5. Let π : Z → B be a good fibration. We say that a section C is HN-free if

µmin(TZ/B|C) ≥ 2g(B).

The following result summarizes the key properties of HN-free sections.

Lemma 3.6. Let π : Z → B be a good fibration. Suppose that C is a HN-free section of π.
Then:

(1) H1(C, TZ/B|C) = 0 and for any closed point p ∈ B we have H1(C, TZ/B|C(−p)) = 0.
(2) TZ/B|C is globally generated.
(3) C is relatively free.
(4) Let b = µmin(TZ/B|C). Then deformations of C can pass through at least ⌊b⌋−2g(B)+

1 general points of Z.
Proof. (1) and (2) follow from Corollary 2.8 and (3) follows from (1) and (2). To see (4) we
apply Corollary 2.8 to see that for any points q1, . . . , qm on C the twist TZ/B|C(−q1−. . .−qm)
is globally generated and has vanishing H1 so long as m ≤ b−2g(B). The desired statement
follows from Proposition 3.3. □

The next proposition shows that sections through sufficiently many general points must
be HN-free.

Proposition 3.7. Let π : Z → B be a good fibration. Let M be an irreducible component of
Sec(Z/B). Suppose that the sections parametrized by M pass through ≥ 2g(B) + 1 general
points of Z. Then the general section parametrized by M is HN-free.
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Proof. If we fix a general section C parametrized by M and a set of 2g(B) general points

{qi}2g(B)
i=1 on C then Proposition 3.3 shows that TZ/B|C(−q1 − . . . − q2g(B)) is generically

globally generated. Lemma 2.6 shows that

µmin(TZ/B|C(−q1 − . . .− q2g(B))) ≥ 0

and we conclude that µmin(TZ/B|C) ≥ 2g(B). □

We will also need to know the following avoidance property of HN-free sections.

Lemma 3.8. Let π : Z → B be a good fibration. Suppose that C is a HN-free section of
π. Then for any codimension 2 closed subset W ⊂ Z there is a deformation of C which is
HN-free and avoids W.

Proof. Assume for a contradiction that every deformation of C meets with W . Then there
exists p ∈ W such that a general deformation of C containing p is HN-free and the dimension
of the family parametrizing such deformations is greater than or equal to −KZ/B · C +
(dimZ − 1)(1 − g(B)) − dimW . Note that this is larger than the expected dimension
−KZ/B · C − (dimZ − 1)g(B) for the parameter space of sections through p. But this
contradicts with Lemma 3.6 which shows that H1(C, TZ/B|C(−p)) = 0. □

4. Batyrev’s heuristic

This section is devoted to an in-depth examination of Batyrev’s heuristic and its refor-
mulation into a set of precise conjectures which we call Geometric Manin’s Conjecture. In
Section 4.1 we outline Batyrev’s heuristic as described in [Bat88] and [Tsc09]. We have tried
to capture the spirit of the heuristic rather than exactly replicating earlier work.

Section 4.2 reviews the statement of Manin’s Conjecture over a number field. It details
some proposals to “correct” the original formulation of the conjecture.

Section 4.3 explains how the various assumptions in Batyrev’s heuristic can be replaced
by precise mathematical statements. As described in the introduction, there are roughly two
parts to Geometric Manin’s Conjecture for a Fano fibration π : X → B: the classification of
components of Sec(X/B) and a homological or motivic stability for the “good” components.
For classification results, we present a fairly complete outline of what to expect. For stability
results, we currently do not have enough examples to present a precise conjecture.

4.1. Batyrev’s heuristic. Throughout this section we fix a smooth projective curve B over
Fq and a Fano fibration π : X → B. Our goal is to describe a heuristic for counting the
number of K(B)-points on the generic fiber Xη of bounded anticanonical height. Recall that
a K(B)-point of Xη is the same as a section of π, so we can equivalently count sections of
π of bounded anticanonical degree. Our strategy is to first identify the possible numerical
classes α ∈ N1(X )Z representing sections of π and then to count Fq-points on the irreducible
components of Sec(X/B) which have class α.

Definition 4.1. Let d be an integer. We define the “naive” counting function

Nnaive(X ,−KX/B, d) = #{sections C of π such that −KX/B · C ≤ d}.
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4.1.1. Identifying numerical classes of sections. Our first task is to identify the possible
numerical classes of sections. In certain advantageous geometric situations – for example,
when X admits a transitive group action – every section will deform to dominate X and
thus will have nef numerical class. This property gives our first heuristic assumption:

Batyrev’s heuristic 1. Every section of π : X → B is nef.

To give structure to the set of sections, we start with a few reminders about the behavior
of sections over an algebraically closed ground field. If we start from a section, we can glue
on some free rational curves in fibers of π and smooth the resulting comb to obtain a new
section of higher degree. Conversely, starting from a high degree section, we can break it into
the union of a lower degree section and some π-vertical trees of rational curves. Combining
these operations, we can hope that the numerical classes of sections have a structure which
is “captured” by free π-vertical curves.

Recall that we have an inclusion N1(Xη) ↪→ N1(X ) dual to the restriction map on Cartier
divisors. This map takes Nef1(Xη) into Nef1(X ), and in fact one can show (see Lemma 5.2)
that Nef1(Xη) is exactly the same as the intersection of Nef1(X ) with the subspace

V = {α ∈ N1(X )|F · α = 0},
where F is a general fiber of π. On the other hand, all classes of sections are contained in
the affine translate

A = {α ∈ N1(X )|F · α = 1}.
According to the discussion above, we might expect to understand the numerical classes
of sections via the “gluing and breaking” structure by translating Nef1(Xη) into A. For
example, we might hope that a translate of Nef1(Xη) into A coincides with the set of classes
of nef sections. Our next assumption posits that this simplest possible relationship holds:

Batyrev’s heuristic 2. There is a translation from V to A that defines a bijection be-
tween Nef1(Xη)Z and all numerical classes of sections. We let α0 denote the numerical class
corresponding to the translation of the origin.

In summary, our assumptions lead to a convenient way of identifying all numerical classes
of sections: they are in bijection with the lattice points contained in the polyhedral cone
Nef1(Xη).

4.1.2. Counting points. Our second task is to count the number of Fq-points on the irre-
ducible components M of Sec(X/B) which parametrize sections of a given numerical class.
We will organize this count using the Grothendieck-Lefschetz formula. Recall that the this
formula expresses the number of Fq-points of M as an alternating sum of the traces of the
Frobenius action on the étale cohomology groups with compact supports for M .

The (dominant) exponential term in Manin’s Conjecture arises from the dimension of
M . Indeed, the trace of the Frobenius action on the top cohomology is always given by
qdimM and all other terms will have lower order in q. To ensure the top order term has the
expected behavior, we need to assume that every irreducible componentM has the expected
dimension:

Batyrev’s heuristic 3. Every irreducible component M of Sec(X/B) has the expected
dimension:

dim(M) = −KX/B · C + (dimX − 1)(1− g(B)),
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where C is a section parametrized by M .

The (subdominant) polynomial term in Manin’s Conjecture arises from the number of
irreducible components of Sec(X/B) representing each fixed numerical class. Of course,
there might be many such irreducible components representing a give numerical class, or
none at all. Again we will assume that this relationship is as simple as possible.

Batyrev’s heuristic 4. Each numerical class in A corresponding to Nef1(Xη)Z (according
to the bijection in Batyrev’s heuristic 2) is represented by a unique irreducible component
of Sec(X/B).

Finally, we assume that the lower degree cohomology groups do not affect the asymptotic
growth rate:

Batyrev’s heuristic 5. To compute the asymptotics of Nnaive(X ,−KX/B, d) we may use
the approximation |M(Fq)| ≈ qdimM .

Together our assumptions imply that the asymptotics of Nnaive(X ,−KX/B, d) are identical
to the asymptotics of the function

(4.1) Q(X ,−KX/B, d) = q(dimX−1)(1−g(B))
∑

α∈Nef1(Xη)Z
−KX/B ·α≤d

q−KX/B ·α.

This sum of exponentials over lattice points can be analyzed directly using a combinatorial
argument, or using zeta function techniques. To understand the asymptotic of this counting
function, we introduces the following constant:

Definition 4.2. Let π : X → B be a Fano fibration and let L be a Q-divisor on X such that
L|Xη is big and nef. Let N1(Xη)Z be the Néron-Severi lattice. We define the face associated
to L|Xη as

F(Xη, L|Xη) := Nef1(Xη) ∩ {α ∈ N1(Xη) | (a(Xη, L|Xη)L|Xη +KXη) · α = 0}.

This is an extremal face of the rational polyhedral cone Nef1(Xη). Let VL|Xη
be the subspace

of N1(Xη) spanned by F(Xη, L|Xη). We consider the lattice Λ ⊂ VL|Xη
generated by integral

curve classes in VL|Xη
and we assign VL|Xη

the Lebesgue measure such that the fundamental
domain for Λ has volume 1. We define the α-constant as

α(Xη, L|Xη) = dimVL|Xη
· vol({α ∈ VL|Xη

|L|Xη .α ≤ 1}).

We also define the index of (Xη, L|Xη) to be

r(Xη, L|Xη) = min{L|Xη .α |α ∈ N1(Xη)Z ∩ VL|Xη
, L|Xη .α > 0}.

With these constants, we have the following proposition:

Proposition 4.3. We have

Q(X ,−KX/B,−KX/B.α0 + dr(Xη))

∼d→∞
α(Xη,−KXη)q

−KX/B .α0+(dimX−1)(1−g(B))

1− q−r(Xη ,−KXη )
qdr(Xη ,−KXη )(dr(Xη,−KXη))

ρ(Xη)−1.
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Proof. Let P (d) be the Ehrhart quasi-polynomial for the compact rational convex set

Nef1(Xη) ∩ {α ∈ N1(Xη) | −KXη · α = 1}.
This is a quasi-polynomial of degree ρ(Xη)−1 and the top coefficient is given by α(Xη,−KXη).
(See for example [BR15, Exercise 3.34].) Then the function Q(X ,−KX/B,−KX/B.α0 +
dr(Xη,−KXη)) can be written as

∞∑
d=0

q−KX/B .α0+dr(Xη ,−KXη )+(dimX−1)(1−g(B))P (dr(Xη,−KXη)).

After dividing this function by qdr(Xη ,−KXη )(dr(Xη,−KXη))
ρ(Xη)−1 and letting d → ∞, the

above expression converges to

α(Xη,−KXη)q
−KX/B .α0+(dimX−1)(1−g(B))

(
∞∑
d=0

q−dr(Xη ,−KXη )

)
.

Thus our assertion follows. □

Remark 4.4. One can formulate a similar counting question with respect to an arbitrary
polarization. Let π : X → B be a Fano fibration and let L be a divisor on X whose restriction
to Xη is big and nef. We then define the “naive” counting function

Nnaive(X , L, d) = #{sections C of π such that L · C ≤ d}.
Repeating the argument above leads to an asymptotic heuristic

N(X , L,−KX/B.α0 + dr(Xη), L|Xη))

∼d→∞
α(Xη, L|Xη)q

−KX/B .α0+(dimX−1)(1−g(B))

1− q−a(Xη ,L|Xη )r(Xη ,L|Xη )
qda(Xη ,L|Xη )r(Xη ,L|Xη )(dr(Xη, L|Xη))

b(K(B),Xη ,L|Xη )−1

where

• a(Xη, L|Xη) denotes the Fujita invariant, and
• b(K(B),Xη, L|Xη) is the b-invariant defined by

b(K(B),Xη, L|Xη) = dimVL|Xη
.

The geometric version of Manin’s Conjecture for non-canonically-polarized varieties has a
number of subtleties about how best to formulate it; we will not discuss this case further
here.

Unfortunately none of the simplifying assumptions used in Batyrev’s heuristic are valid in
general. In Section 4.3 we will address these assumptions one-by-one and explain conjectural
replacements. An additional advantage is that these replacements make sense over other
ground fields besides Fq.

4.2. Manin’s Conjecture over number fields. The original version of Manin’s Conjec-
ture predicts an asymptotic formula for the counting function of rational points of bounded
height on a smooth geometrically integral Fano variety defined over a number field κ. Let X
be a smooth projective geometrically integral Fano variety over κ with an adelically metrized
Q-divisor L = (L, {∥ · ∥v}). (See [CLT10] for the definition of adelic metrics.) Then one can
associate the height function

HL : X(κ)→ R≥0
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to a triple (κ,X,L). Moreover when L is ample, the set of rational points of height ≤ T is
finite, so for any subset Q ⊂ X(κ), we define the counting function

N(Q,L, T ) = {x ∈ Q |HL(x) ≤ T}.
Manin’s Conjecture predicts the asymptotic growth rate of N(Q,L, T ) for an appropriate
choice of Q.
From the beginning of the study of Manin’s Conjecture, it has been recognized that one

cannot take Q = X(F ) because rational points can be accumulating along subvarieties.
Thus it is important to introduce an exceptional set and exclude the contribution of this
exceptional set from the counting function. Originally it was expected that one can choose
an exceptional set that is contained in a proper closed subset ([BM90]). However there
are several counterexamples to this expectation; the first was found in [BT96] and more
recent examples have been identified in [LR19, BHB20]. Peyre was the first to suggest that
exceptional set in Manin’s Conjecture should be a thin set ([Pey03]). Here is its definition:

Definition 4.5. Let κ be a field of characteristic 0 and X be a variety defined over κ. We
say a morphism f : Y → X from a variety Y is a thin map if it is generically finite to the
image and there is no rational section of f from X.
A thin set is any subset of a finite union⋃

i

fi(Yi(κ)) ⊂ X(κ)

where fi : Yi → X is a thin map.

The thin set version of Manin’s Conjecture has been formulated in a series of works by
many authors ([FMT89], [BM90], [Pey95], [BT98], [Pey03], [Pey17], and [LST22]).

Conjecture 4.6 (Batyrev–Manin–Peyre–Tschinkel). Let κ be a number field and X be a
smooth Fano variety defined over κ. Let L = (L, {∥ · ∥v}) be an adelically metrized big
and nef Q-divisor on X. Suppose that X(κ) is not a thin set. Then there exists a thin set
Z ⊂ X(κ) such that we have

N(X(κ) \ Z,L, T ) ∼ c(κ,L, Z)T a(X,L)(log T )b(κ,X,L)−1,

as T → ∞. Here b(κ,X, L) is the b-invariant defined in Remark 4.4. The leading constant
c(κ,L, Z) is Peyre’s constant introduced in [Pey95] and [BT98].

Here the set Z is called the exceptional set. There have been several proposals about how
to identify the exceptional set ([Pey03], [Pey17], and [LST22]). We will focus on the approach
developed in the series of works [HTT15, LTT18, HJ17, LT17, LT19a, Sen21, LST22, LT19b]
using birational geometry.

In [LST22], Akash Kumar Sengupta and the second and third authors propose a conjec-
tural description of the exceptional set in Manin’s Conjecture. Suppose there is a generically
finite morphism f : Y → X such that the (a, b) invariants of Y are larger in the lexicographic
order than the corresponding invariants onX. According to Remark 4.4, the expected growth
rate of points on Y is higher than that on X. Thus the image f(Y (κ)) must be removed
from X(κ) if we are to have any hope of achieving the expected growth rate. By taking
into account all such morphisms f : Y → X, we obtain the exceptional set of [LST22]. Us-
ing results from higher dimensional algebraic geometry such as the minimal model program
([BCHM10]) and the boundedness of singular Fano varieties ([Bir21]), [LST22] shows that
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there are a finite set of such maps f whose twists account for all such contributions, and in
particular, that the proposed set is always a thin set.

To give a precise description of the proposed exceptional set, we first must introduce
several definitions:

Definition 4.7. Let κ be a field of characteristic 0. Let X be a smooth Fano variety defined
over κ. Let f : Y → X be a thin map from a smooth projective variety Y defined over κ.

We say f is an accumulating map if a(Y,−f ∗KX) ≥ a(X,−KX) = 1.
We say f is a breaking thin map if we have an inequality

(a(X,−KX), b(κ,X,−KX)) ≤ (a(Y,−f ∗KX), b(κ, Y,−f ∗KX)),

in the lexicographic order and furthermore if the equality holds then either

• dimY < dimX;
• dimY = dimX and κ(−f ∗KX +KY ) > 0;
• dimY = dimX, κ(−f ∗KX +KY ) = 0, and f is geometrically non-Galois, or;
• dimY = dimX, κ(−f ∗KX +KY ) = 0, and f is geometrically Galois and face con-
tracting in the sense of [LST22, Definition 4.26].

A version of the conjectural exceptional set Z constructed in [LST22, Section 5] is the
following: in the settings of Conjecture 4.6, let f : Y → X run over all breaking thin maps
and we define

Z =
⋃
f

f(Y (κ)).

As explained above, [LST22, Theorem 5.7] showed that this is indeed a thin set.

Remark 4.8. The above exceptional set is potentially slightly bigger than the one con-
structed in [LST22, Section 5]. The difference is that when f is a geometrically non-Galois
cover, here we do not impose the face-contracting condition. The above exceptional set is
still a thin set because of [LT17, Proposition 8.2]. We do not know whether the two sets
coincide in general.

4.3. Geometric Manin’s Conjecture. Let us come back to the original situation. Let π :
X → B be a Fano fibration over a smooth projective curve B defined over the ground field κ.
In this section we discuss Geometric Manin’s Conjecture, which is given by using refinements
of the assumptions of Batyrev’s heuristic to predict various properties of components of
Sec(X/B).

For the sake of consistency, we will work exclusively over an algebraically closed field κ
of characteristic 0 in this section. While one can hope for a similar structural framework in
characteristic p, we currently do not have enough evidence to support the extension of these
conjectures and results.

4.3.1. The exceptional set in Geometric Manin’s Conjecture. We first discuss the exceptional
set in the context of Geometric Manin’s Conjecture. We will give two slightly different (but
closely related) definitions of what it means for an irreducible component M ⊂ Sec(X/B)
to be “exceptional”.

We first define the notion of an accumulating component. Loosely speaking, we say that
M is an accumulating component if there exists a family of accumulating maps that accounts
for most of the sections parametrized by M .
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Definition 4.9. Let κ be an algebraically closed field of characteristic 0 and let π : X → B
be a Fano fibration over a smooth projective curve B defined over κ. Let M ⊂ Sec(X/B)
be an irreducible component of Sec(X/B).
We say M is an accumulating component if the following holds.

(1) We have a smooth projective B-morphism π : Y → S × B with a B-morphism
f : Y→ X representing a family of B-morphisms Ys → X parametrized by s ∈ S.

(2) For every fiberYs → B over a closed point s ∈ S, the induced map fη|Ys,η : Ys,η → Xη
is an accumulating map, i.e. it is generically finite to the image and a(Ys,η,−f ∗KXη) ≥
a(Xη,−KXη).

(3) There is a component N ⊂ SecS(Y/B) of the relative space of sections over S (i.e. a
family of sections contained in the fibers Ys → B) such that f induces a dominant
map f∗ : N →M .

The second definition comes from the proposed exceptional set in [LST22]. Inspired by
Definition 4.7, we first introduce an auxiliary definition:

Definition 4.10. Let κ be a field of characteristic 0. Let X be a smooth Fano variety
defined over κ. Let f : Y → X be a thin map from a smooth projective variety Y defined
over κ.

We say f is an a-cover if f is dominant and we have a(Y,−f ∗KX) = a(X,−KX).
We say f is an exceptional map if f satisfies one of the following conditions:

• f is a non-dominant accumulating map;
• f is an a-cover and κ(−f ∗KX +KY ) > 0;
• f is an a-cover with κ(−f ∗KX +KY ) = 0 that is a geometrically non-Galois, or;
• f is an a-cover κ(−f ∗KX+KY ) = 0 that is geometrically Galois and face-contracting
in the sense of [LST22, Definition 4.26].

(Note that there is no restriction on the b-invariant in this definition. If we impose a condition
on the b-invariant we recover the exact analogue of Definition 4.7.)

With these notations, we introduce the following classification of components of Sec(X/B):

Definition 4.11. Let κ be an algebraically closed field of characteristic 0 and let π : X → B
be a Fano fibration over a smooth projective curve B defined over κ. Let M ⊂ Sec(X/B)
be a component.

We say M is an exceptional component if there exists a B-morphism f : Y → X from
a smooth projective B-variety Y and a dominant component N ⊂ Sec(Y/B) on Y such
that the base change fη : Yη → Xη is an exceptional map and f induces a dominant map
f∗ : N →M .
We say M is a Manin component if M is not an exceptional component.

We separate out these two definitions because they are useful in different contexts. Accu-
mulating components (Definition 4.9) are useful for geometry; indeed, this notion implicitly
appears in the main theorems recorded in the introduction. However, it is not sensitive
enough for counting problems – for example, it does not distinguish between components
which are “asymptotically negligible”, components which must be thrown away, and com-
ponents which must be counted. Exceptional components (Definition 4.11) are suitable for
counting problems but have a weaker link to the geometry.

24



Remark 4.12. While thus far we have focused on irreducible components of Sec(X/B),
to obtain the closest analogue to the arithmetic situation one should also remove certain
subloci of the Manin components M ⊂ Sec(X/B) and it is important to identify exactly
which subloci should be removed. Note that if we remove subloci which have low codimension
they could feasibly affect the leading constant in the asymptotic growth rate. Thus they must
be handled correctly to obtain the expected value of Peyre’s constant. Here are two possible
approaches:

(1) As in [LST22], whenever f : Y → X induces an exceptional map fη : Yη → Xη we
can remove all subloci of the form f∗(N) for irreducible components N ⊂ Sec(Y/B)
(regardless of whether or not N dominates M).

(2) As in [Pey17], we could remove the sublocus of M parametrizing curves that are not
“sufficiently free”. For example, we could simply remove the non-free locus of M .

In fact, Theorem 1.8 suggests that the two approaches are equivalent: if we discount the
contributions of the exceptional locus (as in (1)), then the codimension of what is left of
the non-free locus increases linearly in the degree and thus will drop out of the asymptotic
calculations (as in (2)). We will not further address this subtle issue here.

4.3.2. Classifying non-nef sections. Suppose π : X → B is a Fano fibration. As in the
previous section, our first step is to describe the possible numerical classes of sections. As
above, we let V denote the subspace of N1(X ) consisting of numerical classes which have
intersection 0 against a general fiber F , and A its affine translate of classes with intersection
1 against F .
In contradistinction to Batyrev’s heuristic 1, many Fano fibrations admit non-nef sections.

However, according to the philosophy of Manin’s Conjecture we can expect all non-dominant
families of sections to be contained in the exceptional set, at least if the degree is sufficiently
large. This issue is addressed in Geometric Manin’s Conjecture 1.

Geometric Manin’s Conjecture 1. Let π : X → B be a Fano fibration. The components
M ⊂ Sec(X/B) which parametrize non-nef sections satisfy the following properties:

(1) There is a Zariski-closed proper subset Y ⊊ X such that every non-nef section C of
π is contained in Y .

(2) All but finitely many such irreducible components are accumulating.

Over a field of characteristic zero, Geometric Manin’s Conjecture 1 is established by The-
orem 1.6.(1) and its proof.

4.3.3. Structure of nef sections. Our next task is to understanding the possible numerical
classes of nef sections, i.e. Nef1(X ) ∩ A. Unfortunately Nef1(X ) ∩ A can be much more
complicated than Nef1(Xη). (For example this intersection need not be polyhedral, see
Example 5.9.)

Guiding Conjecture 2 shows that we obtain better behavior if we restrict our attention to
the convex hull of the Z-classes Nef1(X )Z ∩ A. In particular the “infinite” part of this set
does indeed come from Nef1(Xη).

Geometric Manin’s Conjecture 2. Let π : X → B be a Fano fibration. Let P denote
the convex hull in N1(X ) of all nef classes in A. Then P is a rational polyhedron whose
recession cone is Nef1(Xη).
In particular, the lattice points PZ are contained in a finite union of translates of Nef1(Xη)Z.
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Over a field of characteristic zero, this is exactly Corollary 5.8.

4.3.4. Dimension. The next step is to “count points” on these irreducible components. Of
course, we must explain what we mean by “counting points” when our ground field is not
finite. If we want a coarse interpretation, we can simply try to measure the dimensions and
numbers of the irreducible components M ⊂ Sec(X/B) parametrizing sections with a given
numerical class.

Note that Batyrev’s heristic 3 is not true – a family of sections need not have the expected
dimension. However, we can expect all Manin components to have the expected dimension.

Geometric Manin’s Conjecture 3. Let π : X → B be a Fano fibration over an alge-
braically closed field κ of characteristic 0. Every Manin componentM of Sec(X/B) in α+P
will generically parametrize relatively free sections. In particular, such components M have
the expected dimension.

Over C, Theorem 1.3 shows that any component of Sec(X/B) only parametrizing non-free
sections is an accumulating component.

4.3.5. Manin components with fixed numerical class. After identifying the set of possible nu-
merical classes and the dimension of the corresponding moduli spaces, we next need to ad-
dress how many irreducible components of Sec(X/B) represent each numerical class. There
are two issues. First, which nef numerical classes in A are actually represented by sections?
Recall that for any given section we can construct more by gluing on π-vertical free curves
in a fiber F and smoothing. If we only care about the asymptotic behavior, the key question
is whether every coset of N1(F )Z inside of AZ can be represented by a section. We expect
the answer to be yes, and in particular, that any “sufficiently positive” nef class in A is
represented by a section.

Second, what is the maximal number of irreducible components of Sec(X/B) which rep-
resent a fixed nef numerical class? This number can be unbounded if we allow exceptional
components, so we restrict our attention to the Manin components. Again, we expect that
when the class of the section is “sufficiently positive” the number of irreducible Manin com-
ponents of a given class will exhibit systematic behavior.

The following conjecture subsumes both expectations:

Geometric Manin’s Conjecture 4. Let π : X → B be a Fano fibration over an alge-
braically closed field κ of characteristic 0. Let P denote the convex hull in N1(X ) of all
Nef1(X ) ∩ A. There is some “sufficiently positive” α ∈ Nef1(Xη) such that every algebraic
equivalence class of curves whose numerical class lies in α + P is represented by a unique
Manin component.

Note that the translate α+P will “asymptotically contain 100%” of the lattice points in P ,
so considering such a translate should suffice for the purposes of estimating the asymptotics
in Manin’s Conjecture. Guiding Conjecture 4 has been established for del Pezzo surface
fibrations in [LT22]. Due to the numerous classification results for rational curves on Fano
varieties, the conjecture has also been verified for many fibrations of the form X × P1 →
P1; one notable recent example is [BJ22] which establishes Guiding Conjecture 4 for Fano
threefolds.
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Remark 4.13. Note that it is algebraic equivalence and not numerical equivalence which
appears in Geometric Manin’s Conjecture 4. Thus the conjecture implicitly relies on an
understanding of the relationship between these two equivalence notions. We will briefly
discuss this relationship over the ground field C. Recall that the Griffiths group of a smooth
projective variety measures the difference between algebraic and homological equivalence: it
is the quotient of the group of homologically trivial 1-cycles by the group of algebraically
trivial 1-cycles.

The underlying theoretical framework depends on two questions raised by Voisin. Suppose
X is a smooth projective Fano variety. Then:

(1) Is the Griffiths group of 1-cycles on X trivial?
(2) Does the Integral Hodge Conjecture hold for 1-cycles on X?

There are no known counterexample to either question. Since a Fano fibration over a curve
has a similar “motive” to a Fano variety, we can optimistically hope that both questions
have affirmative answers for Fano fibrations X . (This is true when X has dimension ≤ 3 by
[BS83] and [Voi06] respectively.)

Assuming that both questions above have an affirmative answer for Fano fibrations, we find
that the number of algebraic equivalence classes of curves representing a single numerical
curve class is the same as |H2(X ,Z)tors|. Since H2,0(X ) = 0 by [Voi03, Theorem 10.17],
Poincaré duality implies that

|H2(X,Z)tors| = |H3(X,Z)tors| = |Br(X )|.

We conclude that (under our assumption) there are |Br(X )| different algebraic equivalence
classes representing a single numerical class. (Note that in this context it is Br(X ) and not
Br(Xη) that controls the number of irreducible components; see [LT24, Example 8.6].)

Remark 4.14. There is another question hidden in Geometric Manin’s Conjecture 4: are
the extremal rays of the nef cone of a Fano variety generated by free rational curves? Only
in this situation can we hope to use the gluing structure to obtain the tightest link between
the structure of nef classes in Nef1(Xη) and the existence of sections of π.

The existence of free curves representing extremal rays is roughly equivalent to the ex-
istence of free rational curves in the smooth locus of a log Fano variety. This well-known
question has been answered for complex surfaces in [KM99] but remains open in general.

4.3.6. Stability. Finally, we turn to the problem of counting points on the Manin components
M ⊂ Sec(X/B). (As discussed in Remark 4.12 we may want to remove additional subloci of
M , but we will not address this subtlety here.) There are two ways to make sense of “point
counts” on M over an arbitrary ground field.
The first option is to study the class ofM in the Grothendieck ring K0(Vark). This option

was pioneered in [Bou09] and [CLL16] and has seen recent development in the papers, e.g.,
[Bil23, BB23]. LetMk denote the localization of K0(Vark) along the multiplicative system
generated by L and 1 − La as we vary a ∈ N. Loosely speaking, we expect the classes of
the irreducible components M inMk to “stabilize” as the degree increases to infinity. For
example, one might hope that the sequence of renormalized classes L−dim(M)[M ] converges in
one of the topologies discussed in [BDH22]; alternatively, one could ask for the convergence
of an associated zeta function. The correct formulation of this principle is currently a topic
of ongoing research.
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The second option is to study the cohomology groups of the moduli spaces M . The first
steps in this direction predate Manin’s Conjecture. In his influential paper [Seg79], Segal
proved that for any Riemann surface B the cohomology groups of the the pointed moduli
spaces Mor∗(B,Pn)d of degree d morphisms stabilize as d→∞ to the cohomology groups of
the pointed topological mapping spaces Map∗(B,Pn). Segal’s results were later extended to
other Fano varieties besides projective space (e.g., [Kir86, Gue95]). Despite some remarkable
progress, a complete picture is still out of reach.

In their work on Hurwitz schemes, Ellenberg and Venkatesh suggested that homological
stability can be used as a tool to verify Manin’s Conjecture over global function fields.
Suppose that one had a stability result for the étale cohomology groups of the moduli
space of sections of a Fano fibration in characteristic p. [EVW16, ETW17, EL23] use the
Grothendieck-Lefschetz formula to show that if the “stable range” of cohomology increases
linearly in the degree (and the Frobenius actions are the same), then number of points on
the corresponding irreducible components satisfies a nice asymptotic formula.

In summary, we have a vague principle:

Geometric Manin’s Conjecture 5. Manin components of Sec(X/B) exhibit motivic or
homological stability as the degree increases.

5. Numerical properties of sections

In this section we prove several fundamental properties about the numerical classes of
sections of Fano fibrations, culminating in a polyhedrality statement (Theorem 5.7). While
we do not use Theorem 5.7 in later sections, some of the steps in the proof will be used
again later, particularly the Cone Theorem (Theorem 5.4) and the existence of good models
of Fano fibrations (Lemma 5.5).

5.1. Numerical equivalence on Fano fibrations. Suppose π : X → B is a Fano fibration.
In this section we give some reminders about the basic properties of numerical equivalence
and the cone of nef curves on X .

Lemma 5.1. Let π : X → B be a Fano fibration. Then for every smooth fiber F the space
N1(F )R has the same dimension. Furthermore, if L is a Q-Cartier divisor on X then the
following are equivalent:

(1) L|F is ample for some smooth Fano fiber F .
(2) L|F is ample for all smooth Fano fibers F .
(3) L|Xη is ample.

The analogous statement is true for nefness, for bigness, and for pseudo-effectiveness.

Proof. It follows from [Kol96, IV.3.5 Corollary] that every smooth fiber is rationally con-
nected. Then our first assertion follows from standard Hodge theory. The equivalence of
the three conditions for ampleness and nefness follows from [Wís09, Theorem 1]. For the
equivalence of the three conditions for bigness and pseudo-effectiveness, see the paragraph
before [dFH11, Theorem 6.8]. □

We have a restriction map N1(X )R → N1(Xη)R which is surjective (since any Weil divisor
on Xη can be extended to a Weil divisor on X ) and the kernel consists of all π-vertical divisors.
Dually, we have an injective map N1(Xη)R → N1(X )R. Henceforth we will not distinguish
between N1(Xη) and its image under this inclusion. Note that N1(Xη)R is precisely the
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subspace of N1(X )R consisting of classes α that satisfy E · α = 0 for every π-vertical divisor
E.

Lemma 5.2. Let π : X → B be a Fano fibration. Let V be the codimension 1 subspace
of N1(X ) consisting of classes with vanishing intersection against a general fiber F . Then
Nef1(X ) ∩ V = Nef1(Xη).

Proof. The containment ⊃ is clear. Conversely, suppose that α is a nef class contained in V .
Since F ·α = 0, it is also true that E ·α = 0 for every π-vertical divisor E. Thus α ∈ N1(Xη).
Note that the restriction map N1(X )→ N1(Xη) induces a surjection from the effective cone
of divisors on X to the effective cone of divisors on Xη. Since π is a Fano fibration, the
pseudo-effective cone and effective cone for Xη coincide. Altogether we obtain a surjection

Eff
1
(X )→ Eff

1
(Xη). We conclude that α must be a nef class on Xη. □

5.2. The Cone Theorem for nef curves. We will also need the following version of
the Cone Theorem for nef curves. This theorem was proved by [Ara10] conditional on the
Borisov-Alexeev-Borisov Conjecture which has subsequently been proved in [Bir21].

Theorem 5.3 ([Ara10]). Let X be a normal Q-factorial projective variety and let ∆ be
an effective Q-Cartier divisor on X such that (X,∆) is ϵ-lc. There is a constant ζ =
ζ(dim(X), ϵ) such that

Eff1(X )KX+∆≥0 +Nef1(X ) = Eff1(X )KX+∆≥0 +
∑
i

R≥0[Ci]

where {Ci} is a countable collection of curves which satisfy 0 < −(KX + ∆) · Ci ≤ ζ. If ∆
is big, then the set {Ci} is finite.

For Fano fibrations, the Cone Theorem for nef curves allows us to isolate the behavior of
vertical curves:

Theorem 5.4. Let π : X → B be a flat morphism from a normal Q-factorial projective
variety X to a smooth projective curve B. Suppose that ∆ is an effective Q-Cartier divisor
on X such that ∆ is π-relatively big and (X ,∆) is ϵ-lc. Let F denote a general fiber of π.
There is a positive integer m = m(dim(X ), ϵ) such that we have an equality

Eff1(X )KX+∆+mF≥0 +Nef1(X ) = Eff1(X )KX+∆+mF≥0 +
∑
i

R≥0[Ci]

where {Ci} is a finite set of π-vertical moving curves which satisfy 0 < −(KX+∆+mF )·Ci ≤
m.

Proof. Since ∆ is effective and π-relatively big, we see that ∆ + δF is big for any δ > 0.
By choosing δ sufficiently small we may ensure that δ < 1 and that (X ,∆ + δF ) is ϵ/2-lc.
Applying Theorem 5.3 there is a constant ζ = ζ(dim(X ), ϵ) such that

Eff1(X )KX+∆+δF≥0 +Nef1(X ) = Eff1(X )KX+∆+δF≥0 +
∑
j

[Cj]

where the Cj are a finite set of movable curves satisfying 0 ≤ −(KX ′ + ∆ + δF ) · Ci ≤ ζ.
Choose a positive integer m > ζ + 1. Then (KX + ∆ +mF ) · Cj > 0 for every one of our
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movable curves Cj that dominates B under π. Thus we have

Eff1(X )KX+∆+δF≥0 +Nef1(X ) = Eff1(X )KX+∆+mF≥0 +
∑
i

R≥0[Ci]

where now the Ci are π-vertical and still satisfy 0 ≤ −(KX ′ +∆+mF ) · Ci ≤ ζ < m. □

In particular, when π is a Fano fibration then Lemma 5.2 gives an equality

Eff1(X )KX+H+mF≥0 +Nef1(X ) = Eff1(X )KX+H+mF≥0 +Nef1(Xη).

5.3. Classes of nef sections. We will need more specific information about the classes of
nef sections.

Lemma 5.5. Let π : X → B be a Fano fibration. Then there is a morphism π′ : X ′ → B
satisfying the following conditions:

(1) X ′ is a normal projective variety with Q-factorial singularities,
(2) π′ is birationally equivalent to π and the generic fibers of π and π′ are isomorphic,
(3) there is an effective Q-Cartier divisor D′ on X ′ such that (X ′, D′) is klt and D′ is

relatively Q-linearly equivalent to −KX ′/B,
(4) −KX ′/B is π-relatively big and nef.

Proof. We construct π′ in two steps. First, we claim that there is a morphism π̃ : X̃ → B
satisfying conditions (1)-(3). To achieve this, choose an effective Q-divisor D on X such
that D|Xη ∼Q −KXη , the coefficients of D are in (0, 1), and the restriction to the generic
fiber has SNC support. Let πW : W → B be a log resolution of (X , Supp(D)) that is an
isomorphism along the generic fiber of π and let DW be the strict transform of D. We now
run the relative (W , DW)-MMP over B with scaling. Since the restriction of KW+DW to the
generic fiber is numerically trivial, we see that the outcome of the MMP will be a birational

model ϕ :W 99K X̃ such that KX̃ + ϕ∗DW ∼Q,B 0. For convenience we define D̃ := ϕ∗DW .

We next run the MMP one more time for X̃ . Choose a rational ϵ > 0 sufficiently small

so that (X̃ , (1 + ϵ)D̃) is klt. Run the MMP with scaling for this pair. Since the restriction

of D̃ to the generic fiber of π is ample, we see that the outcome of the MMP is a birational

map ψ : X̃ 99K X ′ such that KX ′ +(1+ ϵ)ψ∗D̃ is relatively big and nef. But by construction

KX ′ + (1 + ϵ)ψ∗D̃ is relatively Q-linearly equivalent to −ϵKX ′ . Thus X ′ equipped with the

divisor D′ := ψ∗D̃ satisfies all the desired conditions. □

We are now prepared to prove the main structural results for sections of a Fano fibration.

Theorem 5.6. Let π : X → B be a Fano fibration and let F be a general fiber of π. Let
A ⊂ N1(X ) be the affine plane consisting of all numerical classes α which satisfy α · F = 1.
Then there is a compact subset T ⊂ A such that Nef1(X )∩A is contained in T +Nef1(Xη).

Proof. Let π′ : X ′ → B be a birational model of π as in Lemma 5.5. We first prove the
analogous statement for X ′. We will let A′ ⊂ N1(X ′) denote the affine subspace consisting
of numerical classes with intersection 1 against a fiber.

By relative Wilson’s Theorem (see e.g. [LT17, Theorem 3.2]) there is an effective divisor
E such that (X ′, E) is klt and −(KX ′ + E) is π-relatively ample. Choose a small ample
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Q-Cartier divisor H so that (X ′, E +H) is still klt and −(KX ′ +E +H) is still π-relatively
ample. Applying Theorem 5.4 there is a constant m such that

Nef1(X ′) + Eff1(X ′)KX′+E+H+mF≥0 = Eff1(X ′)KX′+E+H+mF≥0 +
∑
i

[Ci]

where the Ci are a finite set of π-vertical movable curves satisfying 0 < −(KX ′+E+H)·Ci ≤
m.

Let T ′ denote the intersection of the cone Eff1(X ′)KX′+E+H+mF≥0 with A
′. Since −(KX ′ +

E) is π-relatively ample, there is an integer k such that −(KX ′+E+H)+kF is ample. Then
the intersection of a class in T ′ against−(KX ′+E+H)+kF is bounded by k+m. This implies
that T ′ is compact. Furthermore by construction it is clear that Nef1(X ′)∩A′ ⊂ T ′+

∑
i[Ci].

We now pass the desired statement to X using a birational argument. Consider a diagram
of B-morphisms

W
g

~~

g′

!!
X X ′

where W is smooth projective and g and g′ are birational maps which are isomorphisms
along the generic fiber. We next prove thatW satisfies the desired statement. Let E1, . . . , Er
denote the divisors contracted by the map g′ : W → X ′. Consider the induced linear map
g′∗ : N1(W)→ N1(X ′). We let TW denote the subset of g′−1

∗ (T ′) consisting of those classes α
satisfying 0 ≤ Ei · α ≤ 1 for every i. By construction TW is a compact subset of N1(W).
We claim that

Nef1(W) ∩ AW ⊂ TW +Nef1(Wη).

Indeed, note that every π-vertical moving curve Ci on X ′ is the image of some π-vertical
moving curve Ti on W . Thus for every element of β ∈ Nef1(W) ∩ AW there is some sum
γ =

∑
ti[Ti] such that ρ∗(β)− ρ∗γ ∈ T ′. Equivalently, β − γ ∈ g′−1

∗ (T ′). But since each Ei
is π-vertical, we know that 0 ≤ β · Ei ≤ 1 for every i. Since γ has vanishing intersection
against every Ei, we see that in fact β − γ ∈ TW .

Finally, we set T = g∗TW . Since the map g∗ : Nef1(W) → Nef1(X ) is surjective and g is
an isomorphism along the generic fibers, we obtain the desired statement for X . □

Theorem 5.7. Let π : X → B be a Fano fibration. Let A denote the affine plane consisting
of numerical classes with intersection 1 against a general fiber F . There is a finite set of nef
classes β1, . . . , βs ∈ A ∩N1(X)Z such that every class in A ∩ Nef1(X )Z has the form βi + γ
for some index i and for some γ ∈ Nef1(Xη) ∩N1(X )Z.

Proof. Let AZ denote the intersection A ∩ N1(X )Z. Since A is a translate of a rational
subspace of N1(X ) and contains a curve class, there is an isomorphism between AZ and
ZdimA. Choosing such an identification gives A the structure of a vector space and AZ the
structure of a lattice in this vector space. Up to translation Nef1(Xη) can be identified with
a rational polyhedral cone inside the vector space A. By Theorem 5.6 there is a compact set
T ⊂ A such that

A ∩ Nef1(X )Z ⊂ T +Nef1(Xη).
The desired statement then follows from [HW07, Theorem 1.1.(a)]. □
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Corollary 5.8. Let π : X → B be a Fano fibration. Let P denote the convex hull of all
integral nef curve classes α ∈ N1(X )Z satisfying F · α = 1 for a general fiber F of π. Then
P is a rational polyhedron whose recession cone is isomorphic to Nef1(Xη).

There is an important subtlety: in the setting of Theorem 5.7 and Corollary 5.8, it is not
necessarily true that the intersection A∩Nef1(X ) is a polyhedron. This is demonstrated by
the following example.

Example 5.9. Let X be the blow-up of P2 at nine very general points. If we let F1 denote
the blow-up of P2 at a point and consider the intermediate blow-up X → F1 → P2, the
projective bundle map F1 → P1 also gives X the structure of a Fano fibration π : X → P1.

Let A be the affine subspace of curve classes α such that F · α = 1 for a general fiber F
of π. We claim that A ∩ Nef1(X ) is not polyhedral. Indeed, Nef1(X ) has countably many
extremal rays not contained in N1(Xη). By taking the intersection of these rays with A we
obtain a countable number of points which are extremal in A ∩ Nef1(X ).

6. Grauert-Mulich

For a good fibration π : Z → B the deformation theory of a section C is controlled by
the Harder-Narasimhan filtration of the restriction TZ/B|C . In this section, we show that
(under certain hypotheses) the Harder-Narasimhan filtration of TZ/B|C is “approximately”
the restriction of the [C]-Harder-Narasimhan filtration of TZ/B. Due to the similarity to the
Grauert-Mulich theorem ([GM75]) describing the restriction of semistable bundles to lines
in Pn, we will refer to such statements as “Grauert-Mulich” results. The material in this
section is motivated by [PRT20, Section 3] and by [OSS80, Chapter II, Section 2].

Suppose that Z is a smooth projective variety and W is a variety parametrizing a family
of maps s : C → Z. Let E be a torsion-free sheaf on Z and let F be a term in the relative
Harder-Narasimhan filtration of E pulled back to the universal family over an open subset
of W . We would like to determine when F is the pullback of a sheaf FZ from Z. In this
case we can expect FZ to be a term in the Harder-Narasimhan filtration of E with respect
to the numerical class of the curves s∗C.

In Section 6.1 we prove a general criterion for determining when a torsion-free sheaf on
a variety is isomorphic to a pullback. We apply this result in Section 6.2 to show that our
ability to descend F to Z is controlled by the comparison between several invariants of the
normal sheaf of s and the “gaps” in slope between F and adjacent terms of the relative
Harder-Narasimhan filtration. Finally, in Section 6.3 we show that for sections of a good
fibration π : Z → B these invariants of the normal sheaf are bounded by functions of dim(Z)
and g(B).

6.1. Descending sheaves. The first step is to develop a criterion for identifying when a
sheaf is pulled back from the base of a morphism.

Lemma 6.1. Suppose we have morphisms f : U → V , g : U → G satisfying the following
properties:

(1) U, V,G are smooth varieties.
(2) f is dominant.
(3) Every fiber of f is contracted to a point by g.
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Then there is some open set V ◦ ⊂ V such that g|f−1(V ◦) factors through f |f−1(V ◦).

Proof. Consider the induced map (f, g) : U → V × G and let Γ denote the closure of the
image. Note that Γ is still irreducible. For a general point v ∈ V there is a unique point in
(f, g)(U)∩π−1

1 (v). Taking closures, we see that the general fiber of Γ→ V is set-theoretically
a single point. Since we are in characteristic 0, by generic smoothness we see that the general
fiber is scheme-theoretically a single point. We deduce that Γ → V is birational. If we let
V ◦ denote an open subset where Γ → V is an isomorphism, then the desired statement
follows. □

Recall that for a coherent sheaf F on a variety we denote by Ftors the torsion subsheaf
and by Ftf the quotient of F by its torsion subsheaf.

Lemma 6.2 (Descent Lemma). Let U and Z be smooth varieties with a dominant flat
morphism ev : U → Z such that the general fiber of ev is connected. Let E be a locally free
sheaf on Z. Suppose that ev∗E → Q is a surjection onto a locally free sheaf and let S denote
the kernel. If

Hom(Hom(Q,S), (ΩU/Z)tf ) = 0

then there is a subsheaf SZ ⊂ E such that ev∗SZ = S as subsheaves of ev∗E.

Proof. Note that the surjection ev∗E → Q corresponds to a map ϕ : U → G(E , k) = G,
where k is the rank of Q and G(E , k) is the relative Grassmannian of rank k quotients. The
map ϕ is a map of Z-schemes. We first show that after replacing U by an open subset the
map ϕ factors through ev : U → Z. The map ϕ induces a map

(dϕ)∗ : ϕ∗ΩG/Z → ΩU/Z .

Since ϕ∗ΩG/Z = Hom(Q,S), our assumption implies that (dϕ)∗ is the 0 map on the com-
plement of the support of the torsion subsheaf of ΩU/Z . We denote this open subset by

Ũ .
Fix a general point z ∈ Z and consider the map of fibers Ũz → Gz. Using compatibility

of cotangent bundles with base change, we see that ϕ|∗Ũz
ΩGz → ΩŨz

must be 0. Dually, the

map TŨz
→ ϕ|∗Ũz

TGz is zero, and thus if we precompose by the the locally closed embedding

(Ũz,red)smooth → Ũz,red → Ũz the induced map on tangent sheaves still vanishes. By generic

smoothness, it follows that ϕ must contract (Ũz,red)smooth to a point; taking closures, it

also contracts each fiber Ũz to a point. There is an open subset Z◦ ⊂ Z with preimage

Ũ◦ = ev−1(Z◦) ∩ Ũ such that ev|Ũ◦ has connected fibers. By Lemma 6.1, after possibly

shrinking Z◦ and Ũ◦ we can ensure that ϕ|Ũ◦ factors through ev|Ũ◦ . Hence, S|U◦ must be
the pullback of a locally free sheaf R ⊂ E|Z◦ on Z◦.

Let SZ denote the unique torsion-free saturated subsheaf of E whose restriction to Z◦ is
R. Since ev is flat, ev∗SZ is a torsion-free saturated subsheaf of ev∗E whose restriction to
U◦ agrees with S|U◦ . This implies that ev∗SZ = S. □

6.2. Slope computations. The key to using the descent lemma is to understand homo-
morphisms into ΩU/Z . When U is a family of curves mapping to Z, we will control the
existence of such homomorphisms using slope calculations. The next step is to show that in
this situation the slope of ΩU/Z is controlled by Lazarsfeld bundles.
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Definition 6.3. Let Y be a variety and E be a globally generated vector bundle on Y . The
Lazarsfeld bundle ME is the kernel of the evaluation map OY ⊗H0(Y, E)→ E .

Given a morphism s : C → Z, we will denote by Ns the normal sheaf of s, i.e. the cokernel
of TC → s∗TZ . We will also letMg,0(Z) denote the Kontsevich moduli stack of maps from
genus g curves to Z.

Lemma 6.4. Let Z be a smooth projective variety, let W be a variety equipped with a
generically finite morphism W →Mg,0(Z) and let p : UW → W be the universal family over
W equipped with the evaluation map evW : UW → Z. Suppose that a general fiber of p is
smooth and irreducible and that evW is dominant.

Let C denote a general fiber of UW → W equipped with the induced morphism s : C → Z.
Let t be the length of the torsion part of Ns, let G be the subsheaf of (Ns)tf generated by global
sections, and let V be the tangent space to W at s. Let q be the dimension of the cokernel
of the composition

V → TMg,0(Z),s
= H0(C,Ns)→ H0(C, (Ns)tf ).

Then

µmax((ΩUW /Z |C)tf ) ≤ (q + 1)µmax(M∨
G ) + t.

Proof. Since the conclusion only involves a general curve, we may shrinkW and thus assume
that W is smooth. After perhaps shrinking W further we may assume that p is smooth, and
thus UW is a smooth variety. We denote by h the map (p, evW ) : UW → W × Z.
Fix s : C → Z as in the statement of the lemma. Let K1 denote the kernel of s

∗ΩZ → ΩC

and let K2 denote the kernel of h∗ΩW×Z → ΩUW
. Note that K1 is isomorphic to the dual of

(Ns)tf . We claim that the following diagram has exact rows and columns:

0

��

0

��

Odim(W )
C

= //

��

Odim(W )
C

��
0 // K2|C //

��

h∗ΩW×Z |C //

��

Ωim
UW
|C //

��

0

0 // K1
// s∗ΩZ

//

��

Ωim
C

//

��

0

0 0

where Ωim
UW

is the image of h∗ΩW×Z → ΩUW
and Ωim

C is the image of s∗ΩZ → ΩC . The
bottom row is exact by definition and the middle row is the restriction of an exact sequence
to a general fiber of p and thus remains exact. The middle column is exact since C is vertical
for the map p : UW → W . By comparing the rightmost column against the middle it is clear

that Ωim
UW
|C maps surjectively onto Ωim

C and that the kernel contains p∗ΩW |C ∼= Odim(W )
C . On

the other hand the kernel must be contained in the kernel of ΩUW
|C → ΩC which is also
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isomorphic to p∗ΩW |C . So the rightmost column is exact. Finally, by the nine lemma we
deduce that K2|C ∼= K1.
Let K3 denote the kernel of the map p∗ΩW → ΩUW/Z

and let Ωim
UW/Z

denote the image of

this map. We can make a further comparison via the following diagram.

0

��

0

��
s∗ΩZ

= //

��

s∗ΩZ

��
0 // K2|C //

��

h∗ΩW×Z |C //

��

Ωim
UW
|C //

��

0

0 // K3|C // p∗ΩW |C //

��

Ωim
UW/Z
|C //

��

0

0 0

We claim that the rows and columns are exact. Since C is general, an exact sequence of
torsion-free sheaves on UW will remain exact upon restriction. Thus it suffices to show
that the rightmost column is exact. Since the map evW : UW → Z is dominant, the map
ev∗WΩZ → ΩUW

is generically injective. Since ΩZ is locally free the map must be injective.
Restricting to the curve C, we see that s∗ΩZ → ΩUW

|C is injective and it is clear that its
image is contained in Ωim

UW
|C . This shows the rightmost column is left-exact. Furthermore,

we see that the composed map h∗ΩW×Z → p∗ΩW → Ωim
UW/Z

is surjective, showing that the

map Ωim
UW
→ Ωim

UW/Z
is also surjective. Finally, the exact sequence

0→ ev∗WΩZ → ΩUW
→ ΩUW /Z → 0

implies that
0→ s∗ΩZ → ΩUW

|C → ΩUW /Z |C → 0

is exact. Thus the rightmost column must be exact at the middle. By the nine-lemma, we
conclude that K3|C ∼= K2|C ∼= K1.
Recall that V denotes the tangent space to W at s. Let ζ denote the composition

V → H0(C,Ns)→ H0(C, (Ns)tf ).

Then the map K1
∼= K3|C → p∗ΩW |C is the dual of the composition

V ⊗OC
ζ−→ H0(C, (Ns)tf )⊗OC → (Ns)tf .

Let G denote the subsheaf of (Ns)tf that is generated by its global sections, so we have an
exact sequence of locally free sheaves

0→MG → H0(C, (Ns)tf )⊗OC → G → 0.

Since C deforms in a dominant family, Ns is generically globally generated and thus the
inclusion G → (Ns)tf is generically surjective. Taking duals, we see that G∨ is the saturation
of K1 inside of H0(C, (Ns)tf )

∨ ⊗OC . In other words, if we let S denote the cokernel of the
map K1 → H0(C, (Ns)tf )

∨ ⊗OC then the torsion free part of S is isomorphic to M∨
G .
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Consider the following diagram of short exact sequences

0 // K1
//

=

��

H0(C, (Ns)tf )
∨ ⊗OC //

ζ∨

��

S //

h
��

0

0 // K1
// p∗ΩW |C // Ωim

UW /Z |C // 0

By the snake lemma we obtain an exact sequence

0→ O⊕q
C → S → Ωim

UW /Z |C → O⊕e
C → 0

where q, e are respectively the dimensions of the cokernel and kernel of ζ.
Recall that Stf ∼= M∨

G and note that the torsion part of S injects into the torsion part

of Ωim
UW /Z |C . We will denote by R the saturation of O⊕q

C in M∨
G so that we obtain an exact

sequence

0→ R→M∨
G → (Ωim

UW /Z |C)tf → O⊕e
C → 0

Let F denote the maximal destabilizing subsheaf of (Ωim
UW /Z |C)tf , let F ′ = F ∩ im(M∨

G ), and

let Q denote the preimage of F ′ in M∨
G . Our next goal is to prove an upper bound on µ(F).

First suppose that µ(F) > 0. Then the image of F in O⊕e
C is 0 and so F = F ′. This means

we have an exact sequence

0→ R→ Q→ F → 0

and thus

µ(F) = deg(Q)− deg(R)
rk(Q)− rk(R)

≤ deg(Q)
rk(Q)− q

≤ (q + 1)µ(Q)

where the final line follows from the elementary inequality 1
b−a ≤

a+1
b

when b − 1 ≥ a ≥ 0.

Thus in this case we see that µmax(Ωim
UW /Z |C) ≤ (q + 1)µmax(M∨

G ). If µ(F) ≤ 0, then the

same inequality still holds: the right-hand side is a non-negative number sinceM∨
G is globally

generated.
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Consider the following diagram

0 0 0

0 // Ωim
C

//

OO

ΩC
//

OO

T //

OO

0

0 // s∗ΩZ
//

OO

ΩUW
|C //

OO

ΩUW /Z |C //

OO

0

0 // K3|C //

OO

p∗ΩW |C //

OO

Ωim
UW /Z |C //

OO

0

0

OO

0

OO

0

OO

where Ωim
C is the image and T is the cokernel of s∗ΩZ → ΩC . Every row and column is exact

except possibly the rightmost column, thus by nine-lemma we see the rightmost column is
also exact. We have

len(T ) = len(cok(Ωim
C → ΩC)) = len(cok(TC → T satC )) = t

where T satC is the saturation of TC in s∗TZ . It follows that

µmax((ΩUW /Z |C)tf ) ≤ µmax((Ωim
UW /Z |C)tf ) + t

≤ (q + 1)µmax(M∨
G ) + t.

□

By combining this analysis with the descent theorem, we obtain:

Theorem 6.5. Let Z be a smooth projective variety. Let W be a variety equipped with a
generically finite morphism W →Mg,0(Z) and let p : UW → W denote the universal family
over W with evaluation map evW : UW → Z. Assume that a general map parametrized
by W has smooth irreducible domain, that evW is dominant, that the general fiber of the
composition of the normalization map for UW with evW is connected, and that a general fiber
of p is contained in the locus where evW is flat.
Suppose that E is a torsion-free sheaf on Z that is semistable with respect to a general

curve s : C → Z parametrized by W . Write

0 = F0 ⊂ F1 ⊂ F2 ⊂ . . . ⊂ Fk = s∗E

for the Harder-Narasimhan filtration of s∗E. Let t be the length of the torsion part of Ns, let
G be the subsheaf of (Ns)tf generated by global sections, and let V be the tangent space to W
at s. Let q be the dimension of the cokernel of the composition

V → TMg,0(Z),s
= H0(C,Ns)→ H0(C, (Ns)tf ).

Then for every index 1 ≤ i ≤ k − 1 we have

µ(Fi/Fi−1)− µ(Fi+1/Fi) ≤ (q + 1)µmax(M∨
G ) + t.
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Note that by the flatness assumption we may ensure that the image of a general map s
parametrized by W will avoid any codimension 2 locus on Z. In particular this implies that
s∗E will be a locally free sheaf.

Proof. Since we are assuming that the general fiber of the composition of the normalization
map for UW with evW is connected, if we replaceW by a smaller open subset then the general
fiber of the evaluation map will still have connected fibers. Thus to prove the statement,
we may replace W by a smaller open subset. (For ease of notation we continue to call the
smaller subset W and its p-preimage by UW .) Thus we may suppose that W and UW are
smooth and that evW |UW

is flat. After possibly shrinking W further, by [HL97, Theorem
2.3.2] we may suppose that for every index 1 ≤ i ≤ k − 1 there is a torsion-free sheaf
Si ⊂ ev∗WE obtained from the relative Harder-Narasimhan filtration of ev∗WE over W such
that Si|C ∼= Fi for every fiber C over W . Since torsion-free sheaves are locally free on the
complement of a codimension 2 subset, after perhaps shrinking W again we may suppose
that each Si is locally free.

Suppose for a contradiction that there is an index i such that

µ(Fi/Fi−1)− µ(Fi+1/Fi) > (q + 1)µmax(M∨
G ) + t.

If there were a non-zero homomorphism Hom(ev∗WE/Si,Si)→ (ΩUW /Z)tf , then its restriction
to a general fiber C of p would yield a map that is non-zero on the generic point of C, and
thus would induce a non-zero map Hom(ev∗WE/Si|C ,Si|C)→ ((ΩUW /Z)|C)tf . But then

µmin(Hom(ev∗WE/Si|C ,Si|C)) = µmin(Si|C)− µmax(ev∗WE/Si|C)
> (q + 1)µmax(M∨

G ) + t

≥ µmax((ΩUW /Z |C)tf )
where the last inequality follows from Lemma 6.4. We conclude that there is no non-zero
homomorphism Hom(ev∗WE/Si,Si)→ (ΩUW /Z)tf . By Lemma 6.2, we see that there is a sheaf
SZ on Z such that ev∗WSZ = Si. But such a sheaf would destabilize E : we have

µ[s∗C](SZ) = µ(Si|C) > µ(ev∗WE|C) = µ[s∗C](E)
where the equalities follow from the flatness of the evaluation map and the inequality follows
from (2.1). This gives a contradiction and we conclude the desired inequalities for every
i. □

It will be helpful to have a version of the previous theorem that holds for non-semistable
sheaves as well. The next theorem controls the difference between the Harder-Narasimhan
filtration of E|C and the restriction to C of the [C]-Harder-Narasimhan filtration of E . It is
a formal consequence of Theorem 6.5.

Corollary 6.6. Let Z be a smooth projective variety and let E be a torsion free sheaf on Z of
rank r. Let W be a variety equipped with a generically finite morphism W →Mg,0(Z) and
let p : UW → W denote the universal family over W with evaluation map evW : UW → Z.
Assume that a general map parametrized by W has smooth irreducible domain, that evW is
dominant, that the general fiber of the composition of the normalization map for UW with
evW is connected, and that a general fiber of p is contained in the locus where evW is flat.
Let C denote a general fiber of UW → W equipped with the induced morphism s : C → Z.

Let t be the length of the torsion part of Ns, let G be the subsheaf of (Ns)tf generated by global
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sections, and let V be the tangent space to W at s. Let q be the dimension of the cokernel
of the composition

V → TMg,0(Z),s
= H0(C,Ns)→ H0(C, (Ns)tf ).

Let ∥ − ∥ denote the sup norm on Q⊕r. Then we have

∥ SPZ,[C](E)− SPC(s
∗E)∥ ≤ 1

2

(
(q + 1)µmax(M∨

G ) + t
)
rk(E).

Proof. Set δ = (q + 1)µmax(M∨
G ) + t. Given two r-tuples of real numbers a•, b•, we write

a• ≥ b• if for every index i = 1, 2, . . . , r we have ai ≥ bi.
Write 0 = F0 ⊂ F1 ⊂ . . . ⊂ Fk = E for the [C]-Harder-Narasimhan filtration of E . We

prove this statement by induction on the length k. We start with the base case k = 1. By
Theorem 6.5 the slopes of successive quotients of the Harder-Narasimhan filtration of s∗E
differ by at most δ. We conclude the desired statement by Lemma 6.7 (where the pairs (ai, bi)
record the degrees and ranks of the various successive quotients in the Harder-Narasimhan
filtration of s∗E).
For the induction step, write 0 = G0 ⊂ G1 ⊂ . . . ⊂ Gt = s∗E for the Harder-Narasimhan

filtration of s∗E . For convenience we define three tuples:

• c• = (c1, c2, . . . , cr) to be SPC(s
∗E).

• g• = (g1, g2, . . . , gr) defined as follows: we start with the tuple SPC(s
∗Fk−1) (of length

rk(Fk−1)) and then replace every entry that is below µ[C](E/Fk−1) +
δ
2
rk(E) by this

number. We then append entries equal to µ[C](E/Fk−1) +
δ
2
rk(E) to the end so that

g• has length equal to rk(E).
• h• = (h1, h2, . . . , hr) defined as follows: we start with the tuple SPC(s

∗(E/F1)) (of
length rk(E/F1)) and then replace every entry that is above µ[C](F1) − δ

2
rk(E) by

this number. We then insert entries equal to µ[C](F1) − δ
2
rk(E) at the beginning so

that h• has length equal to rk(E).
Since C is a general member of a flat family every term Fi is locally free along C. Thus we
have an exact sequence

0→ s∗Fk−1 → s∗E → s∗(E/Fk−1)→ 0.

Fix an index 1 ≤ j ≤ t and suppose that µmin(Gj) > µ[C](E/Fk−1) +
δ
2
rk(E). By the base

case of our result we see that µmin(Gj) > µmax(s∗(E/Fk−1)) so that Gj ⊂ s∗Fk−1. Thus we
have g• ≥ c•.

Similarly, consider the exact sequence

0→ s∗F1 → s∗E → s∗(E/F1)→ 0.

Fix an index 1 ≤ j ≤ t and suppose that µmax(s∗E/Gj) < µ[C](F1) − δ
2
rk(E). By the base

case of our result we see that µmax(s∗E/Gj) < µmin(s∗F1) so that there can be no non-zero
homomorphism from s∗F1 to s∗E/Gj. We conclude that s∗F1 ⊂ Gj and thus s∗E/Gj is a
quotient of s∗(E/F1). Thus we have c• ≥ h•.
Altogether, suppose we define

• q+• to be SPZ,C(E) + ( δ
2
rk(E), δ

2
rk(E), . . . , δ

2
rk(E)).

• q−• to be SPZ,C(E)− ( δ
2
rk(E), δ

2
rk(E), . . . , δ

2
rk(E)).
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The induction assumption for Fk−1 shows that q+• ≥ g• and the induction assumption for
E/F1 shows that h• ≥ q−• . By the argument above we conclude that

q+• ≥ g• ≥ c• ≥ h• ≥ q−•

yielding the desired result. □

Lemma 6.7. Let {(ai, bi)}ki=1 be pairs of integers with bi > 0 such that the fractions ai
bi

are
nonincreasing as i gets larger. Let m denote the mediant of fractions ai

bi
and let δ denote the

maximum of the successive differences ai
bi
− ai+1

bi+1
. Then for every i we have∣∣∣∣aibi −m

∣∣∣∣ ≤ δ

2

r∑
i=1

bi.

Proof. It suffices to prove the inequality for the extremal fractions a1
b1
, ak
bk
. Replacing each

ai by −ai, we see that the latter case is implied by the former. So it suffices to prove the
statement for a1

b1
. Since a1

b1
− ai

bi
≤ (i− 1)δ, we have

k∑
i=1

(a1bi − aib1) ≤
k∑
i=1

b1biδ(i− 1)

≤ b1δ

(
k∑
i=1

bi

(
i−1∑
j=1

bj

))

=
b1δ

2

(∑
i ̸=j

bibj

)

≤ b1δ

2

(
k∑
i=1

bi

)2

Dividing by b1

(∑k
i=1 bi

)
gives us the result. □

6.3. Genus and dimension bounds. Note that the Hilbert scheme of sections admits an
embedding into the stackMg,0(Z). To apply Corollary 6.6 to moduli spaces of sections one
needs to be able to bound the quantities q, t, and µmax(M∨

G ) appearing in the statement. We
will show how to bound these quantities for sections of a good fibration π : Z → B using the
genus of B and the dimension of Z. Note that since sections are always smooth the quantity
t = 0.
We first discuss the slope of Lazarsfeld bundles. These can be bounded using only the

genus of B using the following result of Butler.

Theorem 6.8 ([But94]). Let E be a globally generated locally free sheaf on a curve C of
genus g and let ME be its Lazarsfeld bundle.

(1) If µmin(E) ≥ 2g then µmin(ME) ≥ −2.
(2) If µmin(E) < 2g then µmin(ME) ≥ −2g rk(E)− 2.

Proof. Statement (1) follows from [But94, 1.3 Corollary] except when C is a rational curve.
When C is rational ME is a direct sum of O(−1)’s (see for example [PRT20, Lemma 3.10])
and thus the statement still holds.
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For statement (2), first suppose that µmax(E) ≥ 2g. Let F denote the maximal destabi-
lizing subsheaf of E . Our degree assumption implies that F is globally generated and that
h1(C,F) = 0. By the nine lemma we obtain an exact sequence

0→MF →ME →ME/F → 0.

This implies that µmin(ME) ≥ min{µmin(MF), µ
min(ME/F)}. By (1) the first quantity is at

least −2. Arguing by induction on the rank we reduce to the case when µmax(E) < 2g.
When µmax(E) < 2g, [But94, 1.5 Proposition] proves a statement stronger than (2) except

in two cases. The first is when g = 1. In this case, since ME is a subsheaf of H0(C, E)⊗OC
every subsheaf of ME has non-positive slope. Since deg(ME) = − deg(E), we conclude that
every quotient of ME has degree at least − deg(E), which implies that it has slope at least
− deg(E). Since we are in the case where deg(E)/ rk(E) < 2 we conclude µmin(ME) ≥
−2 rk(E). The second is when g ≥ 2 and E has a trivial summand. Write E = E ′ ⊕ O⊕k

C .
Note thatME =ME ′ . Since we still have µmax(E ′) < 2g we can apply [But94, 1.5 Proposition]
to E ′ to obtain the desired lower bound. □

Next we discuss the quantity q.

Lemma 6.9. Let π : Z → B be a good fibration. Suppose that M ⊂ Sec(Z/B) is an
irreducible component parametrizing a dominant family of sections on Z and let W =Mred.
For a general section C parametrized by M let V ⊂ H0(B, TZ/B|C) denote the tangent space
to W at C. Then the codimension of V in H0(B, TZ/B|C) is at most g(B)(dim(Z)− 1).

Proof. We have h0(B, TZ/B|C)−dim(V ) ≤ h0(B, TZ/B|C)−dim(M) and Corollary 3.4 shows
that this latter quantity is bounded above by g(B)(dim(Z)− 1). □

Putting these results together, we obtain a version of the Grauert-Mulich theorem for
sections.

Theorem 6.10. Let π : Z → B be a good fibration and let E be a torsion-free sheaf on
Z. Let M be an irreducible component of Sec(Z/B) parameterizing a dominant family of
sections of π and let p : Uν → Mred be the normalization of the universal family over Mred

with evaluation map ev : Uν → Z. Assume that ev has connected fibers.
Let C be a general section parametrized by M . Then:

(1) Suppose there is an open subset M◦
red ⊂ Mred such that if we define Uν,◦ = p−1M◦

red

then ev|Uν,◦ is flat. Then we have

∥ SPZ,[C](E)− SPC(E|C)∥ ≤ (g(B) dim(Z)− g(B) + 1)2 rk(E)
where ∥ − ∥ denotes the sup norm on Q⊕r.

(2) Suppose that the general curve C is HN-free. Then we have

∥ SPZ,[C](E)− SPC(E|C)∥ ≤ rk(E)
where ∥ − ∥ denotes the sup norm on Q⊕r.

Proof. (1) Theorem 6.8 shows that µmax(M∨
G ) ≤ 2g(B)(dim(Z)− 1) + 2. By Lemma 6.9 we

have q ≤ g(B)(dim(Z)− 1). We then apply Corollary 6.6 with t = 0.
(2) When C is HN-free thenM is generically smooth and TZ/B|C′ is globally generated for

a general deformation C ′ of C. Furthermore, there is an open subset of M over which the
evaluation map is smooth and thus flat. Theorem 6.8 shows that µmax(M∨

G ) ≤ 2. We then
apply Corollary 6.6 with q = t = 0. □
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7. Sections through general points

Suppose that π : Z → B is a good fibration and M is an irreducible component of
Sec(Z/B) parametrizing a dominant family of sections. Let C be a general section parametrized
by M . By Proposition 3.3 we can identify a lower bound on the slopes in the Harder-
Narasimhan filtration of TZ/B|C by computing how many general points of Z we can impose
on the sections parametrized by M .

Even when C has very large anticanonical degree, deformations of C do not need to
go through many general points of Z. In this section we construct a dominant family of
subvarieties Y ⊂ Z such that deformations of C go through many general points in Y .
Results of this type were used earlier in [She12], [LT24], and [LT22].

Here is the idea behind the construction. Suppose thatM parametrizes a family of sections
C which have large degree but do not go through many points of Z. This implies that the
Harder-Narasimhan filtration of TZ/B|C has a large gap in the slopes between two consecutive
terms Gk ⊂ Gk+1 for some index k. When M satisfies the conditions of Corollary 6.6, we
can deduce that there is a foliation F on X that restricts to Gk. Appealing to the results
developed in the sequence of papers [BM16], [KSCT07], [CP19], the foliation is induced by
a rational map ϕ : Z 99K W . We can expect that there will be many deformations of C
in directions tangent to the fibers of ϕ. In particular, deformations of C should go through
many general points of the main component Y of ϕ−1(ϕ(C)).

7.1. General points and foliations. We will need the following construction describ-
ing the relationship between foliations and relative tangent bundles which is adapted from
[KSCT07, Remark 19].

Construction 7.1. Let π : Z → B be a good fibration. Suppose that F is a foliation on
Z that is contained in the relative tangent bundle TZ/B. Assume that F is induced by a
rational map ϕ : Z 99K W that has connected fibers. Note that ϕ must be a rational map
over B and we may assume that W is a projective B-variety.

Suppose that C is a section of π that is contained in the regular locus of F and goes
through a general point of Z. Since C is transversal to F , the Frobenius theorem shows that
there is an irreducible analytic submanifold W ⊂ Z containing C such that the fibers of π|W
are smooth analytic manifolds which are open subsets of the leaves of ϕ with the property
NC/W

∼= F|C .
Let Y denote the main component of ϕ−1(ϕ(C)) (that is, the unique irreducible component

that dominates ϕ(C) under ϕ) and let Y ′ denote its normalization. Using the universal
property of normalization, we see that W admits an embedding into Y ′. In particular, Y ′

admits a section C ′ in its smooth locus that maps to C and has normal bundle NC′/Y ′ ∼= F|C .
Thus we can choose a resolution Ỹ of Y that admits a section C̃ which maps to C and satisfies
TỸ/B|C̃ ∼= F|C .

Grauert-Mulich only applies when a general curve is contained in the flat locus of the eval-
uation map. This can always be achieved after a birational modification as in the following
construction:

Construction 7.2. Let Z be a smooth projective variety and let W be a variety admitting
a morphism W → Mg,0(Z) that is generically finite onto its image. Let UW denote the
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universal family over W and let UνW denote the normalization of UW . Then UνW is equipped
with a map p : UνW → W and an evaluation map evW : UνW → Z.
Assume that a general fiber of p is a smooth projective curve. We claim there is a birational

map ϕ : Z ′ → Z from a smooth variety Z ′ and an open subset W ◦ ⊂ W such that the
preimage Uν,◦W := p−1W ◦ admits a flat morphism ev′ : Uν,◦W → Z ′ satisfying evW |Uν,◦

W
= ϕ◦ev′.

Indeed, suppose we take a flattening of ev, i.e. a diagram

V ẽv //

ψ

��

Z̃

ψZ

��
UνW evW

// Z

where V and Z̃ are varieties, ψ and ψZ are projective birational morphisms, and ẽv is flat.

Let ρ : Z ′ → Z̃ be a resolution of singularities. Since ẽv is flat, V ′ := V×Z̃ Z ′ is also a variety
and the projection map ev′ : V ′ → Z ′ is still flat. The induced map ψ′ : V ′ → UνW is still
birational. Since p defines a family of curves, there is an open subset W ◦ ⊂ W such that
p−1W ◦ is disjoint from every ψ′-exceptional center. Then W ◦ has the desired properties.

We are now ready to state the main result of this section.

Theorem 7.3. Let π : Z → B be a good fibration. Fix a positive integer J ≥ 2g(B) + 3.
Suppose M is an irreducible component of Sec(Z/B) and let ev : Uν → Z denote the
evaluation map for the normalization of the universal family over Mred. Assume that ev is
dominant. Let g : S → Z denote the finite part of the Stein factorization of ev and let N
denote the family of sections on S corresponding to general members of M . Let ρ : S ′ → S
be a birational map from a smooth projective variety that flattens the evaluation map for the
normalization of the universal family over N as in Construction 7.2. Let C ′ denote the strict
transform on S ′ of a general section on S parametrized by N .
Suppose that S ′ is equipped with a dominant rational map ψ : S ′ 99K T over B where T is

a normal projective B-variety and ψ has connected fibers. Let G denote the foliation induced
by ψ. Furthermore assume that

µmax[C′] (G) ≥ (J + 2g(B) + γ − 1) > µmax[C′] (TS′/G).

where we define γ = (g(B) dim(Z)− g(B) + 1)2(dim(Z)− 1). Then either:

(1) the deformations of C ′ in the main component P of ψ−1(ψ(C ′)) contain at least J
general points of P, or

(2) there is a dominant rational map ϕ : S ′ 99K W over B to a normal projective B-
variety W such that ψ factors rationally through ϕ and the following holds. Let C ′

be a general section in our family. Let Y denote the main component of ϕ−1(ϕ(C ′)).

Then there is a resolution Ỹ of Y and a section C̃ on Ỹ that maps to C ′ such that:

(a) The deformations of C̃ in Ỹ contain at least J general points of Ỹ.
(b) The space of deformations of C ′ in Y has codimension at most (dim(P)−1)(J+

2g(B) + γ) in the space of deformations of C ′ in P.
(c) Letting H denote the foliation induced by ϕ, we have µmax[C′] (TS′/H) < J+2g(B)+

γ − 1 ≤ µmin[C′] (H).
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Proof. Let us assume that deformations of C ′ do not go through J general points of P . Since
C ′ deforms in a flat family on S ′, a general section C ′ in the family will be contained in the

smooth locus of G. Thus, if take a resolution P̃ and consider the strict transform C† then

Construction 7.1 shows that the normal bundle of C† in P̃ is isomorphic to G|C′ . By Lemma
3.6 our deformation assumption implies that

µmin(G|C′) < J + 2g(B)− 1.

Applying Theorem 6.10 we obtain

µmin[C′] (G) ≤ µmin(G|C′) + γ

< J + 2g(B) + γ − 1(7.1)

Write the Harder-Narasimhan filtration of G with respect to [C ′] as

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fk = G.
By assumption µmax[C′] (G) ≥ J +2g(B) + γ − 1 so there is some index i ≥ 1 such that we have

µmin[C′] (Fi) ≥ J + 2g(B) + γ − 1. Let i be the maximum index for which this inequality holds.

On the one hand, since Equation (7.1) shows that µmin[C′] (G) < J + 2g(B) + γ − 1 we must
have i < k. On the other hand, since i was selected to be as large as possible we must have

µmax[C′] (G/Fi) < J + 2g(B) + γ − 1.

We claim that Fi is a foliation on S ′. By Theorem 2.12 it suffices to check that Fi is
a term in the Harder-Narasimhan filtration of TS′ with respect to [C ′]. By assumption
µmax[C′] (TS′/G) < J + 2g(B) + γ − 1 ≤ µmin[C′] (Fi) and thus the Harder-Narasimhan filtration of
TS′ agrees with the Harder-Narasimhan filtration of G up to the ith entry, proving the claim.

By [CP19, Theorem 1.1] the foliation Fi is induced by a rational map ϕ : S ′ 99K W over
B that has connected fibers. Since i < k this rational map is not trivial. By our flatness

assumption a general section C ′ will be contained in the regular locus of Fi. Let Ỹ denote

a resolution of the main component of ϕ−1(ϕ(C ′)) and let C̃ denote the section chosen as in
Construction 7.1. In particular we have

TỸ/B|C̃ ∼= Fi|C′ .

Theorem 6.10 implies that

µmin(Fi|C′) ≥ µmin[C′] (Fi)− γ
≥ J + 2g(B)− 1

and so by Lemma 3.6 we see that C̃ can go through at least J general points of Ỹ verifying
(a). To prove (b), let NP denote the space of deformations of the strict transform of C ′ in

P̃ and let NY denote the space of deformations of C̃ in Ỹ . Appealing to Corollary 3.4, we
see that

dim(NP)− dim(NY) ≤ (c1(G) · C ′ + (dim(P̃)− 1))− (c1(Fi) · C ′ + (dim(Ỹ)− 1)(1− g(B)))

= c1(G/Fi) · C ′ + (dim(P)− dim(Y)) + g(B)(dim(Ỹ)− 1)

< (dim(P)− dim(Y))(J + 2g(B) + γ) + g(B)(dim(Ỹ)− 1)

≤ (dim(P)− 1)(J + 2g(B) + γ)
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Since the dimension of the space of sections is birationally invariant, we obtain (b). Finally,
by construction µmin[C′] (Fi) ≥ J + 2g(B) + γ − 1. On the other hand we have already seen

that both µmax[C′] (G/Fi) and µmax[C′] (TS′/G) are strictly less than J +2g(B)+γ−1. This implies

(c). □

8. Twists over function fields of complex curves

Let B be a smooth projective curve over an algebraically closed field k of characteristic
0. Suppose we have a dominant generically finite morphism fη : Yη → Xη between normal
projective K(B)-varieties. In this section we study the set of twists of fη. Recall that
a twist of fη is a generically finite K(B)-morphism f ′

η : Y ′
η → Xη such that there is an

Xη-isomorphism between Yη and Y ′
η (where the subscript η denotes the base change to

SpecK(B)).
In Section 8.1 we discuss the Hurwitz space as described by [Wew98]. Using this con-

struction, we show in Section 8.2 that the set of twists of a dominant generically finite map
fη : Yη → Xη can be parametrized by a scheme with countably many components. We will
not construct a universal stack, since there are some steps in the construction which might
not be valid in the setting of stacks. Instead, we will construct a morphism of schemes such
that every twist of fη is the fiber over some closed point.

The remainder of the section is devoted to analyzing the canonical divisor for twists. In
Section 8.3, we prove a local-to-global principle (Corollary 8.5) for the Galois cohomology
group parametrizing twists of fη. In particular the local invariant gives us a convenient way
to identify the places of K(B) where two twists are “the same” locally. In Section 8.4 we
apply Hensel’s Lemma to give a geometric criterion that will guarantee the vanishing of the
local invariant. Finally, in Section 8.5 we analyze how the canonical divisor changes as we
choose different twists of fη. The key point is that its positivity is controlled by the places
of K(B) where the local invariant does not vanish. In particular, we show that if we bound
the positivity of the canonical divisor then the parameter space of twists has finite type
(Corollary 8.13).

8.1. Hurwitz space. The starting point is the following version of the Hurwitz space:

Theorem 8.1 ([Wew98]). Let B be a smooth projective curve. Fix a positive integer r and
a finite group G. There is a smooth Deligne-Mumford stack H(G, r,B) parametrizing pairs
(q, ψ) where q : C → B is a Galois morphism from a smooth projective curve C that has r
branch points and ψ is an isomorphism ψ : Aut(C/B)→ G.

Suppose we fix a finite group G and set H(G,B) = ⊔rH(G, r,B). Then we can think of
H(G,B) as a parameter space for pairs (C/B, ψ) where C/B is a finite Galois cover and
ψ : Gal(K(C)/K(B))→ G is an isomorphism. We denote the universal family over H(G,B)
by U(G,B) → H(G,B). This means that there is a morphism U(G,B) → H(G,B) × B
which over every point of the form Spec(k) → H(G,B) is the corresponding cover C → B
with an isomorphism ψ : Gal(K(C)/K(B))→ G.

Since our parameter space includes the data of an isomorphism ψ : Aut(C/B) → G, the
fiber of G := G ×H(G,B) over (C/B, ψ) ∈ H(G,B) can be canonically identified with the
Galois group Gal(K(C)/K(B)).
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8.2. The space of twists. We fix a dominant generically finite map fη : Yη → Xη of normal
geometrically integral projective K(B)-schemes.
Let G be a finite group. To avoid some stacky issues in our constructions, we will fix an

étale cover HG → H(G,B) from a scheme HG whose irreducible components are varieties
of finite type over C. We denote the pullback of the universal family by UHG

→ HG. We
will use (C/B, ψ) to denote any closed point of HG such that the corresponding fiber of
UHG

→ HG is the map C → B equipped with the isomorphism ψ. We let GHG
→ HG

denote the morphism whose fiber over (C/B, ψ) ∈ HG is the corresponding Galois group,
i.e., GHG

= G×HG. We let K(Yη/Xη)HG
:= K(Yη/Xη)×HG denote the trivial group scheme

over HG associated to

K(Yη/Xη) = Aut(Yη/Xη).
We consider the universal family UHG

→ HG×B and its base change U∗
HG
→ HG×SpecK(B).

Since Yη ×SpecK(B) U∗
HG

is flat and projective over HG × SpecK(B) and Xη ×SpecK(B) U∗
HG

is projective over HG × SpecK(B), by [Kol96, I.1.10 Theorem] we can define the relative
automorphism scheme

K̃(Yη/Xη)HG
:= AutHG×SpecK(B)(Yη ×SpecK(B) U∗

HG
/Xη ×SpecK(B) U∗

HG
).

This is a quasi-finite group scheme over HG × SpecK(B).

Since K̃(Yη/Xη)HG
can be embedded into K(Yη/Xη)HG

×SpecK(B) as a HG×SpecK(B)-

scheme, we conclude that K̃(Yη/Xη)HG
is quasi-affine over HG × SpecK(B). Using the

functoriality of the AutHG×SpecK(B)-functor we can construct descent data for the quasi-finite

group scheme K̃(Yη/Xη)HG
→ HG×SpecK(B) with respect to the map HG×SpecK(B)→

HG. Indeed, we denote by p1, p2 the two projections HG × SpecK(B) × SpecK(B) →
HG× SpecK(B). Then both p∗1K̃(Yη/Xη)HG

and p∗2K̃(Yη/Xη)HG
are canonically isomorphic

to

AutHG×SpecK(B)×SpecK(B)(Yη ×SpecK(B) U∗
HG
× SpecK(B)/Xη ×SpecK(B) U∗

HG
× SpecK(B)).

This defines the canonical descent data p∗1K̃(Yη/Xη)HG
→ p∗2K̃(Yη/Xη)HG

. Then it is easy
to check that this data satisfies the gluing condition. By the fpqc descent theory for quasi
affine schemes as in [Poo17, Theorem 4.3.5(ii)] we conclude the existence of a quasi-finite
group scheme K(Yη/Xη)HG

→ HG whose base change to HG × SpecK(B) is isomorphic

to K̃(Yη/Xη)HG
. Note that this is a locally closed subgroup scheme of K(Yη/Xη)HG

, so in
particular K(Yη/Xη)HG

is quasi-affine over HG. For (C/B, ψ) ∈ HG consider the Galois
action by conjugation

ϕC/B,ψ : Gal(K(C)/K(B))× (K(Yη/Xη)HG
)(K(C)/K(B),ψ) → (K(Yη/Xη)HG

)(K(C)/K(B),ψ).

This fiberwise Galois action defines a group scheme action

ϕ : GHG
×HG

K(Yη/Xη)HG
→ K(Yη/Xη)HG

.

Consider the morphism scheme MorHG
(GHG

,K(Yη/Xη)HG
). We define the space

C1(GHG
,K(Yη/Xη)HG

)

of 1-cocycles as the closed subscheme of MorHG
(GHG

,K(Yη/Xη)HG
) consisting of 1-cocycles

(C/B, ψ, σ : G → (K(Yη/Xη)HG
)(K(C)/K(B),ψ)) which satisfy the cocycle condition σst =

σsϕ(C/B,ψ)(s)(σt).
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Next our goal is to construct a family of twists of (Yη/Xη) over C1(GHG
,K(Yη/Xη)HG

).
Define Y ′ = Yη ×SpecK(B) U∗

HG
. Then the fiber of the projection Y ′ → HG over (C/B, ψ) is

isomorphic to Yη ⊗K(C). We consider

Y ′ ×HG
C1(GHG

,K(Yη/Xη)HG
)→ Xη ×SpecK(B) U∗

HG
.

There is a group scheme action of GHG
on this fiber product by

(s, (C/B, ψ)) · (y, σ, (C/B, ψ)) = (σs ◦ (1⊗ s)(y), σ, (C/B, ψ)).

We let Ỹ denote the quotient of Y ′×HG
C1(GHG

,K(Yη/Xη)HG
) by the finite flat group scheme

GHG
. Then Ỹ comes equipped with a map

Ỹ → C1(GHG
,K(Yη/Xη)HG

)×Xη.

such that the fiber over (σ, (C/B, ψ)) ∈ C1(GHG
,K(Yη/Xη)HG

) is the map

Yση → Xη,

where Yση is the quotient of Yη ⊗K(C) by the Galois action

Gal(K(C)/K(B)) ∋ s 7→ σs ◦ 1⊗ s ∈ Aut(Yη ⊗K(C)/Xη).

By construction every twist of Yη → Xη is parametrized by the fiber over some point
(σ, (C/B, ψ)) ∈ C1(GHG

,K(Yη/Xη)HG
).

Note that the scheme C1(GHG
,K(Yη/Xη)HG

) constructed above need not have finite type
over K(B). However, if we fix certain invariants then the corresponding subscheme will have
finite type.

Lemma 8.2. Fix a smooth projective curve B and positive integers d, b. Suppose we have
a generically finite dominant K(B)-morphism fη : Yη → Xη where Xη and Yη are normal
projective varieties. Let S denote the set of twists fση such that Yση and Yη become isomorphic
after a base change by a Galois extension K(C)/K(B) whose degree is ≤ d and whose branch
locus consists of at most b points.

There is a finite type scheme R over C and morphisms ψ : UR → R, g : UR → Xη such
that every element Yση ∈ S is isomorphic to the fiber of ψ over some closed point t ∈ R and
fση = g|ψ−1t.

Proof. There are finitely many isomorphism classes of finite groups G of order ≤ d. As we
vary G over all such groups and vary over all r ≤ b, we obtain a finite type Deligne-Mumford
stack ⊔H(G, r,B) parametrizing extensions K(C)/K(B) and automorphisms Aut(C/B)→
G. Let HG,r be the preimage of H(G, r,B) via HG → ⊔rH(G, r,B). Then the space

⊔G,rC1(GHG,r
,K(Yη/Xη)HG,r

)

is a finite type scheme over C where C1(GHG,r
,K(Yη/Xη)HG,r

) is the base change of

C1(GHG
,K(Yη/Xη)HG

)

via HG,r → HG. Thus our assertion follows. □
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8.2.1. The spaces of twists in families. Here we perform the constructions in the previous
section in families. As before we fix a smooth projective curve B defined over C. Let
X→ S×SpecK(B),Y→ S×SpecK(B) be flat families of normal projectiveK(B)-varieties
where S is a scheme of finite type over C. We also assume that we have a S× SpecK(B)-
morphism f : Y→ X which is fiberwise dominant and generically finite.

We fix a finite group G and take an étale open cover HG → H(G,B) where HG is a scheme
over C. As before we denote the pullback of the universal family by UHG

→ HG × B and
consider its base change U∗

HG
→ HG × SpecK(B). Since Y×SpecK(B) U∗

HG
is projective and

flat over S×H× SpecK(B) and X×SpecK(B) U∗
HG

is projective over S×HG × SpecK(B),
we can define the relative automorphism group

K̃(Y/X)S×HG
= AutS×HG×SpecK(B)(Y×SpecK(B) U∗

HG
/X×SpecK(B) U∗

HG
).

This is a quasi-finite group scheme over S × HG × SpecK(B). Since the above relative

automorphism group is also separated overS×HG×SpecK(B), K̃(Y/X)S×HG
is quasi-affine

over S×HG×SpecK(B). Using fpqc descent theory, K̃(Y/X)S×HG
→ S×HG×SpecK(B)

descends to K(Y/X)S×HG
→ S×HG.

Let GS×HG
= G×S×HG and consider the natural conjugation group action

ϕ : GS×HG
×S×HG

K(Y/X)S×HG
→ K(Y/X)S×HG

.

Consider the morphism scheme MorS×HG
(GS×HG

,K(Y/X)S×HG
) and the closed subscheme

consisting of the space of 1-cycles C1(GS×HG
,K(Y/X)S×HG

). Define Y′ = Y ×SpecK(B) U∗
HG

as a scheme over S × HG. Again we have a natural group action of GS×HG
on Y′ ×S×HG

C1(GS×HG
,K(Y/X)S×HG

). We define Ỹ to be the quotient of this group action. It comes

equipped with a morphism Ỹ→ C1(GS×HG
,K(Y/X)S×HG

)×S X realizing

C1(GS×HG
,K(Y/X)S×HG

)

as the parameter space of twists of the maps fs,η : Ys,η → Xs,η for closed points s ∈ S.
Regarding this family we have the following boundedness statement:

Lemma 8.3. Fix a smooth projective curve B and positive integers d, b. Let p : X →
S×SpecK(B), q : Y→ S×SpecK(B) be flat families of normal projective K(B)-varieties
where S is a scheme of finite type over C. We also assume that we have a S× SpecK(B)-
morphism f : Y→ X which is fiberwise dominant and generically finite.

Let A denote the set of twists fση,s : Yσ
η,s → Xη where s is a closed point of S and Yσ

η,s

and Yη,s become isomorphic after a base change by a Galois extension K(C)/K(B) whose
degree is ≤ d and whose branch locus consists of at most b points.

There is a finite type scheme R over S and morphisms ψ : UR → R, g : UR → R ×S X
such that every element fση,s : Yση,s → Xη,s ∈ A is isomorphic to the fiber of ψ over some
closed point t ∈ R and fση,s = g|ψ−1t.

8.2.2. Functoriality. Let X → S × SpecK(B),Y → S × SpecK(B) be flat families of
normal projective K(B)-varieties where S is a smooth scheme of finite type over C. We also
assume that we have a S × SpecK(B)-morphism f : Y → X which is fiberwise dominant
and generically finite. We further assume that we have flat families W → S × SpecK(B),
T → S × SpecK(B) of projective varieties such that Ts is normal for any s ∈ S and we
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have a commutative diagram

Y
f //

r
��

X

p

��
T

t
//W

over S × SpecK(B) where p, r are dominant with connected fibers and t is dominant,
finite, and fiberwise Galois over S, i.e., each fiber Ts → Ws is a finite Galois cover. We
also assume that the Stein factorization of Y → X → W is given by Y → T. Since a
relative automorphism induces a relative automorphism of Stein factorizations, we obtain a
homomorphism

AutS×HG
(Y×SpecK(B)U∗

HG
/X×SpecK(B)U∗

HG
)→ AutS×HG

(T×SpecK(B)U∗
HG
/W×SpecK(B)U∗

HG
),

and this induces a morphism

C1(GS×HG
,K(Y/X)S×HG

)→ C1(GS×HG
,K(T/W)S×HG

).

8.3. Local-to-global principle. Let K(B) be the function field of a smooth projective
curve B. Let f : Yη → Xη be a dominant generically finite morphism between normal
projective varieties Yη and Xη defined over K(B).

We fix a place ν of K(B) over a place ν of K(B). This specifies for every finite cover

C → B a point pν,C on C such that for every factoring C
g−→ C ′ → B we have g(pν,C) = pν,C′ .

Consider the decomposition group

Dν = {σ ∈ Gal(K(B)) |σ(ν) = ν}.
This is isomorphic to

Gal(K(B)ν) ∼= lim←−(Z/NZ)×.
Note that if we have two places ν, ν ′ corresponding to the same place ν on K(B), then Dν

and Dν′ are conjugate to each other in Gal(K(B)). Recall that the Galois group acts on
Aut(Yη/Xη) by conjugation, and in this way one can consider Galois cohomology

H1(Gal(K(B)),Aut(Yη/Xη))
The injection Gal(K(B)ν) ∼= Dν ⊂ Gal(K(B)) induces a map on Galois cohomology

H1(Gal(K(B)),Aut(Yη/Xη))→ H1(Gal(K(B)ν),Aut(Yη/Xη))
which we denote by invν . (Although the choice of isomorphism Gal(K(B)ν) ∼= Dν depends
on the choice of ν, the induced map of Galois cohomology only depends on the place ν up
to an isomorphism of the pointed set, justifying our mild abuse of notation.)

For any twist [σ] of Yη/Xη the local invariant invν([σ]) vanishes for all but finitely many
places ν of B. Thus we obtain a map

H1(Gal(K(B)),Aut(Yη/Xη))→
⊕
ν∈B

H1(Gal(K(B)ν),Aut(Yη/Xη))

and we would like to use this map to establish a local-to-global principle. Note that this map
does not need to be injective; for example, there can be twists of Yη/Xη which are trivialized
by an étale cover of B. However, we will show that the fibers of this map are finite, which
is good enough for our purposes.
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Lemma 8.4. Let f : Yη → Xη be a dominant generically finite morphism between normal
projective varieties over K(B). Then there exists a positive integer d = d(Yη/Xη) and a fixed
finite subset P ⊂ B (depending only on Yη/Xη) such that the following holds. Suppose that

[σ] ∈ H1(Gal(K(B)),Aut(Yη/Xη)),
is a cohomology class and let Q ⊂ B denote the finite set of places ν ∈ B with invν([σ]) ̸= 0.
Then there exists a Galois cover C → B of degree at most d and whose branch locus is
contained in P ∪Q such that Yση → Xη splits over K(C).

Proof. Let K(B′)/K(B) be a fixed Galois extension so that

Aut(Yη/Xη) = Aut(Yη ⊗K(B′)/Xη ⊗K(B′)).

We define P to be the set of branch points for B′ → B.
We can restrict our cocycle σ : Gal(K(B)) → Aut(Yη/Xη) to the subgroup Gal(K(B′))

to get a cocycle σ′. Then σ′ : Gal(K(B′)) → Aut(Yη ⊗ K(B′)/Xη ⊗ K(B′)) is a honest
homomorphism because the Galois action of Gal(K(B′)) on Aut(Yη ⊗K(B′)/Xη ⊗K(B′))
is trivial. The kernel is an open subgroup and thus defines a Galois cover C over B′. Then
the induced cocycle [τ ] ∈ H1(Gal(K(C)),Aut(Yη ⊗ K(C)/Xη ⊗ K(C))) is trivial. Thus
Yση → Xη splits over K(C). Now note that the degree of K(C)/K(B′) is bounded by the
order of Aut(Yη/Xη) and the degree of K(B′)/K(B) only depends on Yη/Xη. Furthermore
for any place ν ∈ B with invν([σ]) = 0 and ν ̸∈ P , we have Dν ⊂ Gal(K(C)). Thus C/B′

cannot be ramified over any place ν ∈ B\(Q∪ P) and our assertion follows. □

Corollary 8.5. Let f : Yη → Xη be a dominant generically finite morphism between normal
projective varieties over K(B). The fibers of the local invariant map

H1(Gal(K(B)),Aut(Yη/Xη))→
⊕
ν∈B

H1(Gal(K(B)ν),Aut(Yη/Xη))

are finite.

Proof. Suppose that ξ is a element of the direct sum and let Q ⊂ B denote the finite set of
indices for which the entries of ξ are non-zero. By Lemma 8.4, there is a fixed integer d and
a fixed finite set P ⊂ B such that any twist that lies in the fiber over ξ is split by a Galois
cover C → B of degree at most d and whose branch locus is contained in P ∪Q. There are
only finitely many such maps C → B, and for each such map there are only a finite set of
twists trivialized by the map. □

8.4. Hensel’s lemma. Let B be a smooth projective curve. Let π : X → B be a good
fibration and f : Y → X be a dominant finite morphism from a normal projective variety
such that Yη is geometrically integral. In this setting we have the equality

Bir(Yη/Xη) = Aut(Yη/Xη).
For each twist [σ] ∈ H1(Gal(K(B)),Aut(Yη/Xη)) of Yη/Xη, we can construct an integral

model Yσ → B in the following way. Suppose that K(C)/K(B) is a Galois extension such
that Yη/Xη and Yση /Xη are isomorphic after base change toK(C). Then the cohomology class

[σ] is represented by a cocycle σ : Gal(K(C)/K(B))→ Aut(Yη⊗K(C)/Xη⊗K(C)). Let ỸC
be the normalization of Y ×B C. Then σ defines a homomorphism from Gal(K(C)/K(B))

to the birational automorphism group of ỸC,η over Xη, or equivalently, to the birational
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automorphism group of ỸC over X . By construction a birational automorphism of ỸC over

X is actually an automorphism, so that Gal(K(C)/K(B)) acts on ỸC via σ. We let Yσ
denote the quotient. Note that Yσ is normal and comes equipped with a finite B-morphism
fσ : Yσ → X .

Here we prove the following birational version of Hensel’s lemma.

Lemma 8.6. Let π : X → B be a good fibration and let Y be a normal projective variety
equipped with a dominant morphism Y → B such that Yη is geometrically integral. Suppose
that f : Y → X is a dominant finite B-morphism. Fix a place ν ∈ B and assume that Xν
is smooth. We also assume that AutB(Y/X ) → B is flat at ν ∈ B and Yν is reduced and
normal.

Suppose that Yσ is an integral model of a twist of fη as constructed above and that there
is a birational Xν-map hν : Yν 99K Yσν . Then there is an X ⊗K(B)ν-isomorphism between
Y ⊗η K(B)ν and Yσ ⊗η K(B)ν. In particular invν(σ) = 0.

Proof. Since Yν is reduced and normal, the automorphism group Bir(Yν/Xν) = Aut(Yν/Xν)
is a reduced finite group. The flatness of AutB(Y/X )→ B at ν implies that the lengths of
Aut(Yη/Xη) and Aut(Yν/Xν) are equal.
Also note that since Yν is normal and finite over Xν and Yσν is also finite over Xν , our

birational map hν extends to a birational morphism Yν → Yσν .
Let us consider the relative X -birational morphism scheme over Spec(ÔB,ν):

B = BirMorSpec(ÔB,ν)
(Y ×B Spec(ÔB,ν),Yσ ×B Spec(ÔB,ν))

equipped with a morphism B → Spec(ÔB,ν). (This scheme can be constructed as an open

subscheme of the relative Hilbert scheme parametrizing graphs in (Y×X Yσ)×B Spec(ÔB,ν).)
Note that B is an AutSpec(ÔB,ν)

(Y ×B Spec(ÔB,ν)/X ×B Spec(ÔB,ν))-torsor. Using the

fact that AutB(Y/X ) → B is flat at ν ∈ B we conclude that the above relative birational
morphism scheme is also flat at ν ∈ B.

Since we have a birational morphism of fibers Yν → Yσν , Hensel’s lemma (see, e.g., [Gro67,

Théorèm 18.5.17]) implies that we have an X × Spec(ÔB,ν)-birational morphism from Y ×B
Spec(ÔB,ν) to Yσ ×B Spec(ÔB,ν). Since Y ⊗η K(B)ν and Yσ ⊗η K(B)ν are normal and
Y ⊗ηK(B)ν → X ⊗K(B)ν , Yσ⊗ηK(B)ν → X ⊗K(B)ν are finite, this birational morphism
induces an isomorphism of the generic fibers. □

8.5. Splitting fields and ramification. Suppose given an algebraic fiber space π : Y → B
with Y a normal projective variety and a dominant finite morphism of smooth projective
curves B′ → B. We will use the term “normalized base change” to refer to the normalization
of Y ×B B′ equipped with the structure morphism to B′. Note that the normalized base
change Y ′ admits a dominant finite morphism Y ′ → Y .

Lemma 8.7. Let Y be a normal projective variety equipped with a surjective morphism
π : Y → B with connected fibers. Suppose B′ → B is a dominant finite morphism of smooth
projective curves and that π′ : Y ′ → B′ is the normalized base change. Fix a closed point
t ∈ B and let t′ ∈ B′ be any point mapping to it. If Yt is generically reduced, then Y ′

t′ is also
generically reduced and the morphism Y ′

t′ → Yt is birational.
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Proof. Since Y is normal, the open set U ⊂ Yt consisting of points that lie in the smooth
locus of Y and the smooth locus of Yt is dense in Yt. It is clear that the fiber of Y ×B B′

over t′ is generically smooth, hence generically reduced. Furthermore, the preimage of U in
Y ×B B′ will be contained in the smooth locus of Y ×B B′. Thus the normalization map
restricts to a birational morphism on this fiber. □

Corollary 8.8. Let π : Y → B and πσ : Yσ → B be morphisms from normal projective
varieties with connected fibers. Suppose that f : Y → X and fσ : Yσ → X are dominant
finite B-morphisms whose generic fibers are twists of each other over X . Suppose further
that t ∈ B is a closed point such that the fibers Yt,Yσt are generically reduced. Then the
maps ft, f

σ
t are birationally equivalent.

Proof. Choose a dominant finite morphism B′ → B such that the normalized base changes
f ′ : Y ′ → X ′, f ′σ : Y ′σ → X ′ are birationally equivalent. Since f ′, f ′σ are finite, they are
equal to their own Stein factorizations and thus f ′ and f ′σ are isomorphic to each other. In
particular the maps f ′

t′ : Y ′
t′ → Xt and f ′σ

t′ : Y ′σ
t′ → Xt are isomorphic to each other. But by

Lemma 8.7 these are birationally equivalent to ft and f
σ
t respectively. □

We next analyze how the canonical divisor changes upon normalized base change. This is
well-understood, e.g., in the context of semistable reduction.

Definition 8.9. Suppose h : Y ′ → Y is a finite morphism of normal projective varieties.
Let U ⊂ Y and U ′ ⊂ Y ′ denote the smooth loci and set V = U ′ ∩ h−1(U). Note that the
complement of V in Y ′ has codimension ≥ 2. The Riemann-Hurwitz formula gives us a
distinguished effective representative E in the linear equivalence class of KV/U . We define
the relative canonical divisor KY ′/Y to be the effective Weil divisor obtained by taking the
closure of E.

Lemma 8.10. Let Y be a normal projective variety equipped with a surjective morphism
π : Y → B with connected fibers. Suppose g : B′ → B is a dominant finite morphism of
curves and consider the normalized base change

Y ′ ϕ //

π′
$$

Y ×B B′ h //

��

Y
π
��

B′ g // B

We define R to be the π′-pullback of the ramification divisor of g and for any point t′ ∈ B′

we let Rt′ denote the intersection of R with the preimage of t′.

(1) We have KY ′/Y ≤ R.
(2) If t ∈ B is a closed point such that the fiber Yt is generically reduced then for any

t′ ∈ B′ mapping to t we have Rt′ ≤ KY ′/Y .

Proof. (1) First note that the support of KY ′/Y is contained in the support of R. Indeed, the
map h is étale away from ϕ(Supp(R)) and thus ϕ is an isomorphism over this locus.
Suppose t′ ∈ B′ is a ramification point for g with index e. Let t ∈ B be the image of

t′. We choose local coordinates s′ and s at t′ and t respectively so that g is defined locally
by s = s′e. Let T ′ be an irreducible component of the fiber π′−1(t′) and let q′ denote its
multiplicity in its component. Let u′ be a generic local equation of T ′ so that generically
the map Y ′ → B′ is given by by s′ = u′q

′
. Let T ⊂ U be the image of T ′ and let u denote
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a local equation of T at a generic point. We denote the multiplicity of T in π−1(t) by q so
that Y is generically defined by s = uq. The coefficient of T ′ in R is given by (e− 1)q′. Also
uq = s = s′e = u′eq

′
so the coefficient of T ′ in KY ′/Y is given by

(8.1) e
q′

q
− 1.

Since e > 1, we have (e− 1)q′ ≥ e q
′

q
− 1 when q > 1. When q = 1, q′ = 1 by Lemma 8.7 and

so the inequality still holds. Thus our assertion follows.
(2) As explained above when q = 1 we have q′ = 1 as well by Lemma 8.7. Thus we have

our assertion. □

Proposition 8.11. Let X → B be a good fibration. Let Y ,Yσ be normal projective varieties
which admit surjective morphisms π : Y → B and πσ : Yσ → B with connected fibers.
Suppose there are dominant finite B-morphisms f : Y → X and fσ : Yσ → X whose generic
fibers are twists of each other over K(B). Choose a finite Galois morphism g : B′ → B such

that the normalized base changes of Y and Yσ over B′ are isomorphic. We let Ŷ denote this

abstract variety; it is equipped with finite morphisms ρ1 : Ŷ → Y and ρ2 : Ŷ → Yσ. We
denote the degree of B′ → B by d.

There is a Weil divisor E on Ŷ , which we write as E = E+ − E− where E+, E− are
effective with no common divisor in their support, such that

• KŶ/Y −KŶ/Yσ ≥ E;

• we have E+ ≥
∑

t′ Ŷt′ as t′ ∈ B′ varies over closed points whose image t ∈ B satisfies
that Yt is normal but the fiber Yσt is not generically reduced;

• we have E− ≤ d ·
∑

t′ Ŷt′ as t′ ∈ B′ varies over closed points whose image t ∈ B
satisfies that Yt is not normal.

Proof. We compare these divisors along each fiber separately. Let t′ ∈ B′ be a closed point
and let t ∈ B be its image. If the fiber Yt is not normal, then it follows from Lemma 8.10
that

(KŶ/Y)t′ − (KŶ/Yσ)t′ ≥ −(e− 1)Ŷt′ ,

where e is the ramification index of t′. In particular this difference is ≥ −dŶt′ . If Yt is normal,

then in particular Yt is irreducible and reduced. Thus the fiber Ŷt′ is also irreducible and
reduced, and we conclude that Yσt is irreducible. Let us denote the multiplicity of Yσt by q.
It follows from Lemma 8.10 that

(KŶ/Y)t′ − (KŶ/Yσ)t′ ≥ 0

and equality holds when q = 1. The two inequalities above together prove the upper bound
on E−. To prove the lower bound on E+, we analyze those fibers such that Yt is normal and

which satisfy q > 1. Since Ŷt′ is reduced we must have e > 1. Since the multiplicities of Yt
and Ŷt′ are 1, Equation (8.1) in Lemma 8.10 shows that

(KŶ/Y)t′ = (e− 1)Ŷt′ , (KŶ/Yσ)t′ =
(
e
q
− 1
)
Ŷt′

so that we conclude

(KŶ/Y)t′ − (KŶ/Yσ)t′ ≥ e
(
1− 1

q

)
Ŷt′ ≥ Ŷt′ .
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Thus our assertion follows. □

Proposition 8.12. Let X → B be a good fibration. Let Y ,Yσ be normal projective varieties
which admit surjective morphisms π : Y → B and πσ : Yσ → B with connected fibers.
Suppose there are dominant finite B-morphisms f : Y → X and fσ : Yσ → X whose generic
fibers are twists of each other over K(B). Choose a finite Galois morphism g : B′ → B such

that the normalized base changes of Y and Yσ over B′ are isomorphic. We let Ŷ denote this

abstract variety; it is equipped with finite morphisms ρ1 : Ŷ → Y and ρ2 : Ŷ → Yσ. We
denote the degree of B′ → B by d.

Let Yσ ′ be a smooth birational model of Yσ equipped with a birational morphism β : Yσ ′ →
Yσ. Assume that there exists a section C on Yσ ′ and a constant R > 0 such that C corre-
sponds to a rational point on the smooth locus of Yση and

(KYσ ′/B − β∗(fσ)∗KX/B) · C ≤ R.

Let r denote the number of closed points t ∈ B such that the fiber Yt is normal but the fiber
Yσt is not generically reduced. Then we have r ≤ dR.

Proof. We choose smooth models Y ′, Ŷ ′ of Y , Ŷ respectively such that there are birational

morphisms α : Y ′ → Y , γ : Ŷ ′ → Ŷ and generically finite morphisms ρ̃1 : Ŷ ′ → Y ′,

ρ̃2 : Ŷ ′ → Yσ ′ which are birationally equivalent to ρ1, ρ2 respectively. We may ensure that
γ−1 is well-defined along the smooth locus of Yση ⊗K(B′). Our intersection bound implies
that

KYσ ′/X · C ≤ R.

Since by assumption C is not contained in the ρ2-image of the γ-exceptional centers, there

is a section C ′ of Ŷ ′/B′ such that (ρ̃2)∗C
′ = dC. Then we have

ρ̃∗2KYσ ′/X · C ′ ≤ dR.

Note that

ρ̃∗2KYσ ′/X = KŶ ′/X −KŶ ′/Yσ ′

= ρ̃∗1KY ′/X +KŶ ′/Y ′ −KŶ ′/Yσ ′ ≥ KŶ ′/Y ′ −KŶ ′/Yσ ′

Let E be the divisor on Ŷ defined by Proposition 8.11, so E+ is at least as effective as the

sum of the r fibers of Ŷ corresponding to the r closed points t ∈ B such that the fiber Yt
is normal but the fiber Yσt is not generically reduced. Taking strict transforms, we see that
KŶ ′/Y ′−KŶ ′/Yσ ′ is at least as effective as the sum of the strict transforms of these r fibers of

Ŷ . Furthermore every exceptional divisor of β : Yσ ′ → Yσ is contracted by fσ ◦β : Yσ ′ → X
as well, and thus appears with positive coefficient in the ramification divisor KYσ ′/X . We
conclude that the support of the effective divisor ρ̃∗2KYσ ′/X contains the r reduced fibers over
these points. Since our section C ′ must meet each fiber in a component of multiplicity one,
we conclude that

r ≤ ρ̃∗2KYσ ′/X · C ′ ≤ dR.

□

Corollary 8.13. Let X → B be a good fibration. Let Y ,Yσ be normal projective varieties
which admit surjective morphisms π : Y → B and πσ : Yσ → B with connected fibers.
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Suppose there are dominant finite B-morphisms f : Y → X and fσ : Yσ → X whose generic
fibers are twists of each other over K(B).

Let Ỹσ be a smooth birational model of Yσ equipped with a birational morphism β : Ỹσ →
Yσ. Assume that there exists a section C on Ỹσ and a constant R > 0 such that C corre-
sponds to a rational point on the smooth locus of Yση and

(KỸσ/B − β
∗(fσ)∗KX/B) · C ≤ R

Then there exists constants d = d(Y/X ) and n = n(Y/X , R) such that there exists a finite
Galois morphism B′ → B of degree at most d with at most n branch points such that the
normalized base changes of Y/B and Yσ/B by B′ → B become X ×B B′-isomorphic.

In particular, the set of such twists is a bounded family.

Proof. It follows from Lemma 8.4 that there exists d = d(Y/X ) and a finite Galois morphism

B̃ → B of degree at most d such that the normalizations of Y ×B B̃ and Yσ ×B B̃ are
isomorphic.

Let s = s(Y/X ) be the number of t ∈ B such that Yt is not normal or AutB(Y/X )→ B
is not flat at t ∈ B. Let r be the number of t ∈ B such that Yt is normal but Yσt is not
generically reduced. By Proposition 8.12 we have r ≤ dR.
For t ∈ B such that Yt is normal, AutB(Y/X )→ B is flat at t ∈ B and Yσt is generically

reduced, it follows from Corollary 8.8 and Lemma 8.6 that invt(σ) = 0. Thus the number
of t ∈ B such that invt(σ) ̸= 0 is bounded above by s+ dR. Thus our first assertion follows
from Lemma 8.4.

The final statement then follows from Lemma 8.2. □

9. Fujita invariant and sections

Suppose that π : X → B is a good fibration and L is a generically relatively big and
semiample Cartier divisor on X . In this section the goal is to classify the generically finite
B-morphisms f : Y → X such that Y carries a family of sections N with the property that
f∗N has small codimension in an irreducible component of Sec(X/B). Assuming the sections
have large L-degree but small degree against f ∗(KX/B + a(Xη, L|Xη)L), we show that the
Fujita invariant of Yη must be at least as large as the Fujita invariant of Xη. This puts a
strong constraint on the set of morphisms f which have this property.

After addressing some preliminaries in Section 9.1 and Section 9.2, we show the funda-
mental result discussed above in Section 9.3. When working with the Fujita invariant it is
often helpful to know that the pair (Yη, f ∗L|Yη) is adjoint rigid; in Section 9.4 we show that
if we additionally assume that the sections parametrized by N go through many general
points of Y then we can also guarantee adjoint rigidity.

9.1. Modifying by π-vertical divisors. Let π : X → B be a good fibration and let L
be a generically relatively big and semiample Cartier divisor on X . We know that L|Xη

is Q-linearly equivalent to a divisor which has smooth support. The following proposition
discusses how to reframe this property as a global statement by adding π-vertical divisors.

Proposition 9.1. Let π : X → B be a good fibration, let L be a generically relatively big
and semiample Cartier divisor on X , and let a be a positive rational number. Let b > a be a
positive integer such that bL|Xη defines a basepoint free linear series. There is some effective
π-vertical Q-Cartier divisor E on X such that the following property holds.
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Suppose ψ : Y → B is a good fibration and f : Y → X is a B-morphism that is generically
finite onto its image. Then there is an effective Q-Cartier divisor D on Y that is Q-linearly
equivalent to f ∗(aL+E) such that D|Yη has smooth irreducible support and coefficient a

b
. In

particular (Yη, D|Yη) is a terminal pair.

Proof. Let T1, . . . , Tr be a K(B)-basis for |bL|Xη |. Note that ∩iTi = ∅.
We denote by T i the closure of Ti in X . There is some effective π-vertical Q-Cartier divisor

Ê such that for every i there is an effective π-vertical divisor Fi satisfying T i+Fi ∼ b(L+Ê).
Let f : Y → X be a morphism as in the statement. By construction we have ∩if ∗(T i+Fi)

does not intersect Yη. Thus f ∗(b(L+Ê)) is linearly equivalent to a divisor D̂ whose restriction

to Yη is smooth and irreducible. Then D = a
b
D̂ and E = aÊ have the desired properties. □

We will use the following definition to capture the effect of the extra divisor E.

Definition 9.2. Let π : X → B be a good fibration. Suppose that E is an effective π-vertical
Q-Cartier divisor. Define

τ(π,E) = sup
sections C

E · C.

Note that this supremum is achieved by some section C since the intersection number is
bounded above by the sum of the coefficients of E and is contained in 1

r
Z where r is the

least common multiple of the denominators of the coefficients of E.

9.2. Relative versus absolute positivity. We will also need a couple results comparing
relative and absolute positivity for a fibration over a curve.

Lemma 9.3. Let π : Z → B be a good fibration. Suppose that D is an effective Q-Cartier
divisor on Z such that (Z, D) is a terminal pair.

(1) Suppose that g(B) ≥ 1. Suppose that ρ : Z 99K Z̃ is a rational map obtained by
running the (KZ + D)-MMP. Then ρ is also a run of the relative (KZ + D)-MMP
over B.

(2) Suppose that g(B) = 0. There is a constant m = m(dim(Z)) such that the following
holds. Fix a general fiber F of π and suppose that ρ : Z 99K Z̃ is a birational
morphism obtained by running the (KZ + D +mF )-MMP. Then ρ is also a run of
the relative (KZ +D +mF )-MMP over B.

In particular, in case (1) (resp. case (2)) if KZ +D (resp. KZ +D+mF ) is not pseudo-
effective then its restriction to Zη is also not pseudo-effective.

Proof. (1) By [Kaw91] each step of the (KZ + D)-MMP contracts an extremal ray that is
spanned by a rational curve. This rational curve must be vertical with respect to π because
B has genus ≥ 1.
(2) Since (Z, D) is 1

2
-lc, by Theorem 5.4 there is an integer m = m(dim(Z)) such that

Nef1(Z) + Eff1(Z)KZ+D+mF≥0 = Eff1(Z)KZ+D+mF≥0 +
∑
j

[Cj]

where the Cj are π-vertical moving curves. In particular, any contraction of a (KZ+D+mF )-
negative extremal ray must define a relative contraction over B. Furthermore the analogous
equality of cones holds for any birational model of Z obtained by running the MMP (since
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the 1
2
-lc condition is preserved). Thus we see that every step of the (KZ +D +mF )-MMP

is actually a step of the relative MMP over B.
To see the final statement, suppose we are in case (1) and KZ +D is not pseudo-effective.

Then we can run the (KZ +D)-MMP with scaling of an ample divisor and the outcome will
be a Mori fibration. But then this Mori fibration must be a relative fibration over B, so
that (KZ +D) is not relatively pseudo-effective over B. The same argument applies in case
(2). □

Our next result shows how to turn intersection inequalities into Fujita invariant inequali-
ties.

Lemma 9.4. Let π : Z → B be a good fibration. Suppose that D is an effective Q-Cartier
divisor on Z such that (Zη, D|Zη) is a terminal pair and D|Zη is big and nef.

(1) Suppose that g(B) ≥ 1. If there is a dominant family of HN-free sections C on Z
which satisfy −(KZ +D) · C > 0 then a(Zη, D|Zη) > 1.

(2) Suppose that g(B) = 0. There is a constant Ξ = Ξ(dim(Z)) such that the following
holds. If there is a dominant family of HN-free sections C on Z which satisfy −(KZ+
D) · C > Ξ then a(Zη, D|Zη) > 1.

Proof. Let ϕ : Z ′ → Z be a log resolution of (Z, D) and let D′ be the strict transform of the
π-horizontal components of D. After perhaps taking a further blow-up, we may assume that
two irreducible components of D′ intersect if and only if their restrictions to the generic fiber
intersect. Along the central fiber we can write KZ′

η
+D′|Z′

η
= ϕ∗(KZη +D|Zη) + Eη where

Eη is an effective ϕ-exceptional divisor. We conclude that KZ′
η
+D′|Z′

η
is pseudo-effective if

and only if KZη +D|Zη is pseudo-effective.
We claim that the pair (Z ′, D′) has terminal singularities. Since Supp(D′) is an SNC

divisor, by [Kol97, 3.11 Lemma] the pair (Z ′, D′) will be terminal if and only if when we
write D′ =

∑
i diD

′
i in terms of irreducible components we have

min
i
{1− di} > 0 and min

i,j|Di∩Dj ̸=∅
{1− di − dj} > 0.

Recall that by construction two irreducible components of D′ intersect if and only if their
restrictions to the generic fiber intersect. Thus this computation can be done on the generic
fiber, where the desired inequalities follow from the fact that (Zη, D|Zη) is terminal.
Let C ′ be the strict transform of a general deformation of C. Since C is HN-free, by

Lemma 3.8 we can assume that C ′ avoids any codimension 2 locus in Z and thus C ′ has
vanishing intersection against every ϕ-exceptional divisor. We have

(KZ′ +D′) · C ′ ≤ (KZ′ + ϕ∗D) · C ′

= ϕ∗(KZ +D) · C ′

(1) We are in the case g(B) ≥ 1 and

(KZ′ +D′) · C ′ ≤ ϕ∗(KZ +D) · C ′ < 0

Since C ′ is a movable curve, we see that KZ′ +D′ is not pseudo-effective. By Lemma 9.3 we
see that (KZ′ +D′)|Z′

η
is also not pseudo-effective. As demonstrated above this means that

(KZ +D)|Zη also fails to be pseudo-effective, showing that a(Zη, D|Zη) > 1.
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(2) We are in the case g(B) = 0. Let m = m(dim(Z)) be the constant from Lemma 9.3.(2)
and set Ξ = m+ 1. We have

(KZ′ +D′) · C ′ ≤ ϕ∗(KZ +D) · C ′ < −Ξ
and thus (KZ′+D′+mF )·C ′ < 0. Since C ′ is a movable curve, we see that thatKZ′+D′+mF
is not pseudo-effective. By Lemma 9.3 we see that (KZ′ +D′)|Z′

η
is also not pseudo-effective.

As demonstrated above this means that (KZ+D)|Zη also fails to be pseudo-effective, showing
that a(Zη, D|Zη) > 1. □

9.3. Fujita invariant along the generic fiber. In this section we show that the Fujita
invariant along the generic fiber controls the expected dimension for families of sections. We
will use the following easy lemma many times.

Lemma 9.5. Let π : X → B be a good fibration and let L be a generically relatively big and
semiample Cartier divisor. Assume that Xη is geometrically uniruled. Fix a positive rational
number arel and define a = arela(Xη, L|Xη). Fix a rational number β. Fix a positive integer
T .

Suppose that ψ : Y → B is a good fibration equipped with a B-morphism f : Y → X that
is generically finite onto its image. Suppose that N is an irreducible component of Sec(Y/B)
parametrizing a dominant family of sections C on Y which satisfy f ∗(KX/B+a(Xη, L|Xη)L) ·
C ≤ β. Finally, suppose that

(9.1) dim(N) ≥ arel(−f ∗KX/B · C + (dim(X )− 1)(1− g(B)))− T.
Then

(KY + af ∗L) · C ≤ arelβ + T + arel(dim(X )− 1)(g(B)− 1) + (dim(X )− 1) + 2g(B)− 2.

Proof. Let C denote a general section parametrized by N . By Corollary 3.4

dim(N) ≤ −KY/B · C + (dim(Y)− 1).

Combining this equality with Equation (9.1) and rearranging we get

(KY/B − arelf ∗KX/B) · C ≤ T + arel(dim(X )− 1)(g(B)− 1) + (dim(Y)− 1)

≤ T + arel(dim(X )− 1)(g(B)− 1) + (dim(X )− 1)(9.2)

Adding in the fact that f ∗(KX/B + a(Xη, L|Xη)L) · C ≤ β, we see that

(9.3) (KY/B + af ∗L) · C ≤ arelβ + T + arel(dim(X )− 1)(g(B)− 1) + (dim(X )− 1).

or equivalently

(KY + af ∗L) · C ≤ arelβ + T + arel(dim(X )− 1)(g(B)− 1) + (dim(X )− 1) + 2g(B)− 2.

□

We can now prove our basic result for controlling the Fujita invariant using pathological
families of sections.

Theorem 9.6. Let π : X → B be a good fibration and let L be a generically relatively big and
semiample Cartier divisor on X . Assume that Xη is geometrically uniruled. Fix a positive ra-
tional number arel and set a = arela(Xη, L|Xη). Fix a rational number β. Fix a positive integer
T . Fix a positive integer b > a such that bL|Xη defines a basepoint free linear series. Use b to
construct an effective π-vertical Q-Cartier divisor E satisfying the conclusion of Proposition
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9.1 with respect to aL. There is some constant ξ = ξ(dim(X ), g(B), τ(π,E), arel, a, T, β, b)
with the following property.

Suppose that ψ : Y → B is a good fibration equipped with a B-morphism f : Y → X
that is generically finite onto its image. Suppose that N is an irreducible component of
Sec(Y/B) parametrizing a dominant family of sections C on Y which satisfy f ∗L · C ≥ ξ
and f ∗(KX/B + a(Xη, L|Xη)L) · C ≤ β. Finally, suppose that

(9.4) dim(N) ≥ arel(−f ∗KX/B · C + (dim(X )− 1)(1− g(B)))− T.

Then

a(Yη, f ∗L|Yη) ≥ a.

Proof. We first prove the statement when the general section C parametrized by N is HN-
free on Y . By Theorem 2.13 there is a rational number ϵ > 0 depending only on a and
dim(X ) such that no smooth variety of dimension ≤ dimX − 1 has Fujita invariant in the
range [(1− ϵ)a, a) with respect to any big and nef Cartier divisor. Define Ξ as:

• Ξ = 0, if g(B) ≥ 1.
• Ξ is the supremum of the constants obtained by applying Lemma 9.4 to all dimensions
≤ dim(X ), if g(B) = 0.

We define ξHN(dim(X ), g(B), τ(π,E), arel, a, T, β, b) to be

1

aϵ
((1− ϵ)τ(π,E) + arelβ + T + arel(dim(X )− 1)(g(B)− 1) + (dim(X )− 1) + 2g(B)− 2 + Ξ) + 1

and assume that our sections C satisfy f ∗L · C ≥ ξHN .
Let C denote a general section parametrized by N . Since we are assuming C moves in a

dominant family on Y Lemma 9.5 shows that

(KY + af ∗L) · C ≤ arelβ + T + arel(dim(X )− 1)(g(B)− 1) + (dim(X )− 1) + 2g(B)− 2.

Adding in E, we get

(KY+af
∗L+f ∗E)·C ≤ arelβ+T+arel(dim(X )−1)(g(B)−1)+(dim(X )−1)+2g(B)−2+τ(π,E).

When the section C has degree ≥ ξHN then the inequality simplifies to

(KY + a(1− ϵ)f ∗L+ (1− ϵ)f ∗E) · C < −Ξ.

Since E satisfies the conclusion of Proposition 9.1 with respect to aL the pullback f ∗(aL+
E) is Q-linearly equivalent to an effective Q-divisor D such that (Yη, D|Yη) has terminal
singularities. Of course (Yη, (1−ϵ)D|Yη) also has terminal singularities. Applying Lemma 9.4,
we deduce that a(Yη, f ∗L|Yη) ≥ (1−ϵ)a. By construction this implies that a(Yη, f ∗L|Yη) ≥ a.

Next we prove the statement when C is not necessarily HN-free on Y . Our strategy is to
reduce to the HN-free case. Define
(9.5)

ξ = sup

{
ξHN(dim(X ), g(B), τ(π,E), arel, a, T + (dim(X )− 1)(4g(B) + 3 + γ), β, b),
1
a
((dim(X )− 1)(5g(B) + 3 + γ) + arelβ + T + arel(dim(X )− 1)(g(B)− 1))

}
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where γ = (g(B) dim(X )− g(B)+1)2(dim(X )−1). Using the second term as a lower bound
on ξ and appealing to Equation (9.3) in Lemma 9.5, we have

−KY/B · C ≥ af ∗L · C − arelβ − T − arel(dim(X )− 1)(g(B)− 1)− (dim(X )− 1)

≥ (dim(X )− 1)(5g(B) + 2 + γ)

≥ (dim(Y)− 1)(5g(B) + 2 + γY)

where γY = (g(B) dim(Y) − g(B) + 1)2(dim(Y) − 1). Let S ′ be a smooth birational model
of the finite part of the Stein factorization of the evaluation map for the normalization of
the universal family over N . Since the dimension of N is the same as the dimension of the
corresponding family of sections C ′ on S ′, Corollary 3.4 shows that

−KS′/B · C ′ ≥ −KY/B · C − g(B)(dim(S ′)− 1).

In particular we see that µmax[C] (TS′/B) ≥ µ[C](TS′/B) ≥ (4g(B) + 2 + γY). On the other hand

it is clear that (4g(B) + 2 + γY) > 2 ≥ µmax[C] (π
∗TB). Thus we can apply Theorem 7.3 to Y

with J = 2g(B) + 3, T = B, and G = TS′/B.
Consider the dominant family of subvarieties W on Y obtained by taking images of the

subvarieties constructed on S ′ by Theorem 7.3. These subvarieties W have the following

properties. First, if we take the strict transform of C in a resolution W̃ of W then de-

formations go through ≥ 2g(B) + 3 general points of W̃ . In particular by Proposition 3.7

the strict transform of a general C in W̃ is HN-free. Second, the codimension in N of

the space of sections on W̃ can only increase by at most (dim(Y) − 1)(4g(B) + 3 + γY) ≤
(dim(X )− 1)(4g(B) + 3 + γ). Applying the HN-free version of the desired statement to W̃
with the constant Tnew = T + (dim(X )− 1)(4g(B) + 3 + γ), we see that

a(Wη, f
∗L|Wη) ≥ a.

Since such W move in a dominant family on Y , [LST22, Lemma 4.8] shows that the generic
Fujita invariant of Y is at least as large as that of W so that

a(Yη, f ∗L|Yη) ≥ a.

□

Remark 9.7. LetM denote the component of Sec(X/B) containing the pushforward of the
sections parametrized by N . Then the right hand side of Equation (9.4) is arel ·expdim(M)−
T . Since the expected dimension is a lower bound on dim(M), we can replace Equation (9.4)
by the stronger assumption

dim(N) ≥ arel · dim(M)− T.
In particular, when arel = 1 then T should be thought of as the codimension of N in M .
The same remark holds for later theorems as well.

9.4. Adjoint rigidity. Our next goal is to establish a strengthening of Theorem 9.6 that
allows us to conclude adjoint rigidity at the cost of increasing the constants.

Lemma 9.8. Let π : Z → B be a good fibration and let M be an irreducible component of
Sec(Z/B) parametrizing sections C. Suppose that H is a Cartier divisor on Z satisfying

H · C + 1 < h0(Z,OZ(H)).

Then the sections parametrized by M go through at most H · C + 1 general points of Z.
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Proof. Set Q = H ·C+1. Since general points impose codimension 1 conditions on the linear
series |H| we see that for any set of Q points in Z there is a (possibly reducible) divisor
D ∈ |H| containing all Q points.

Suppose for a contradiction that the sections parametrized by M can go through Q + 1
general points. This means that the space of sections through Q general points of Z forms a
dominant family. In particular, if we fix Q general points and a divisor D ∈ |H| containing
those points, then we can find a section C parametrized by M that contains all the points
but is not contained in Supp(D). Thus D · C ≥ Q > H · C, yielding a contradiction. □

Lemma 9.9. Let Z be a smooth projective variety of dimension n and let H be a Cartier
divisor on Z such that |H| defines a birational morphism. Then for any non-negative integer
m we have

h0(Z,OZ(mH)) ≥
(
n+m

n

)
Proof. The map |H| defines a morphism g : Z → PN for some N ≥ n such that OZ(H) =
g∗O(1). By composing with a generic projection, we obtain a morphism h : Z → Pn such
that OZ(H) = h∗O(1). Thus we have

h0(Z,OZ(mH)) ≥ h0(Pn,O(m)) =

(
n+m

n

)
.

□

We can now prove the criterion for adjoint rigidity.

Theorem 9.10. Let π : X → B be a good fibration and let L be a generically relatively
big and semiample Cartier divisor on X . Assume that Xη is geometrically uniruled. Fix
a positive rational number arel and set a = arela(Xη, L|Xη). Fix a rational number β.
Fix a positive integer T . Fix a positive integer b > a such that bL|Xη defines a base-
point free linear series. Use b to construct an effective π-vertical Q-Cartier divisor E
satisfying the conclusion of Proposition 9.1 with respect to aL. There is some constant
Γ = Γ(dim(X ), g(B), τ(π,E), arel, a, T, β, b) with the following property.

Suppose that ψ : Y → B is a good fibration equipped with a B-morphism f : Y → X that
is generically finite onto its image. Suppose that N is an irreducible component of Sec(Y/B)
parametrizing a dominant family of sections C on Y which satisfy f ∗(KX/B+a(Xη, L|Xη)L) ·
C ≤ β. Suppose that

dim(N) ≥ arel(−f ∗KX/B · C + (dim(X )− 1)(1− g(B)))− T.
Suppose that

a(Yη,−f ∗L|Yη) = a.

Then either:

(1) (Yη,−f ∗L|Yη) is adjoint rigid, or
(2) deformations of C go through at most Γ general points of Y.

Proof. Assume that (Yη, f ∗L|Yη) is not adjoint rigid. We may assume that the general section
C is HN-free in Y , since otherwise by Proposition 3.7 the sections parametrized by N can
go through at most 2g(B) general points of Y . Applying Lemma 9.5 we see that

(KY + af ∗L) · C ≤ arelβ + T + arel(dim(X )− 1)(g(B)− 1) + (dim(X )− 1) + 2g(B)− 2.
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Adding in E and rearranging slightly, we obtain

(KY+af
∗L+f ∗E)·C ≤ arelβ+T+arel(dim(X )−1)(g(B)−1)+τ(π,E)+(dim(X )−1)+2g(B)−2.

We denote the right hand side of this equation byR = R(dim(X ), g(B), τ(π,E), arel, a, T, β, b).
Since E satisfies the conclusion of Proposition 9.1 with respect to aL, the pullback f ∗(aL+

E) is Q-linearly equivalent to an effective Q-divisor D such that D|Yη has smooth irreducible
support and coefficient a

b
. Let ϕ : Y ′ → Y be a log resolution of (Y , D) and let D′ denote

the strict transform of the π-horizontal components of D. We may ensure that ϕ is an
isomorphism on an open neighborhood of Yη. In particular D′ is still generically relatively
big and nef and is irreducible with coefficient a

b
, so (Y ′, D′) has terminal singularities. Since

we are assuming the sections are HN-free, the strict transform C ′ of a general deformation
of C avoids any ϕ-exceptional divisor and thus satisfies

(KY ′ +D′) · C ′ ≤ (KY ′ + ϕ∗D) · C ′

= ϕ∗(KY +D) · C ′

≤ R

Let F ′ denote a general fiber of Y ′ → B. By Lemma 9.3, there is some integer m only
depending on dim(X ) such that the (KY ′ +D′ +mF ′)-MMP is the same as a relative MMP
over B. By assumption on the Fujita invariants KY ′ +D′ +mF ′ is on the boundary of the
relative pseudo-effective cone over B. Thus the result of the MMP will be a relative Iitaka
fibration ψ : Y ′ 99K Z for this divisor. Furthermore since we are assuming (Yη, f ∗L|Yη) is
not adjoint rigid we know that dim(Z) ≥ 2.
Since D′ is relatively big over B, it is also relatively big over Z in the sense of [HX15,

Definition 2.3]. By [HX15, Theorem 1.4], there is a positive integer k only depending on
dim(X ) and a

b
such that |k(KY ′ +D′ +mF ′)| defines a rational map birational to the Iitaka

fibration. Applying the canonical bundle formula as in [FM00, Section 4], there is a birational
model ρ :W → Y ′ and a morphism ψW :W → ZW birationally equivalent to ψ such that:

• W and ZW are smooth,
• there is an effective Q-Cartier divisor BW and a nef Q-Cartier divisor MW such that
(ZW , BW ) is klt and k(KZW

+BW +MW ) is Cartier,
• KZW

+BW +MW is big, and
• for every integer p divisible by k we have that

h0(Y ′,OY ′(p(KY ′ +D′ +mF ′))) = h0(ZW ,OZW
(p(KZW

+BW +MW )))

and the linear series |p(KZW
+BW +MW )| defines a birational map.

We claim that there is an integer Q = Q(dim(X ), g(B), τ(π,E), arel, a, T, β, b) such that
Q(KZW

+BW +MW ) is Cartier and

h0(ZW ,OZW
(Q(KZW

+BW +MW ))) > Q(R +m) + 1

Indeed, consider the birational map ZW 99K V defined by |k(KZW
+ BW + MW )|. Let

µ : Z ′ → ZW be a smooth model resolving the map and let H denote the basepoint free part
of µ∗(k(KZW

+BW +MW )). There are only finitely many possible values of dim(ZW ) which
satisfy dim(X ) ≥ dim(ZW ) ≥ 2, and thus Lemma 9.9 gives a quadratic lower bound (that
depends only on dim(X )) on the growth rate of sections of multiples of H. In particular
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there is a constant Q′ = Q′(dim(X ), g(B), τ(π,E), arel, T, β, b) such that

h0(Z ′,OZ′(Q′H)) > (Q′)k(R +m) + 1.

Then we have

h0(Z ′,OZ′(Q′H)) ≤ h0(Z ′,OZ′(Q′µ∗(k(KZW
+BW +MW ))))

= h0(ZW ,OZW
(Q′k(KZW

+BW +MW )))

finishing the proof of the claim with Q = Q′k. Using the comparison of spaces of sections
above, we conclude that also

h0(Y ′,OY ′(Q(KY ′ +D′ +mF ′))) > Q(R +m) + 1

≥ Q(KY ′ +D′ +mF ′) · C ′ + 1

By applying Lemma 9.8 to the divisor Q(KY ′ +D′ +mF ′) we obtain an upper bound

Γ(dim(X ), g(B), τ(π,E), arel, a, T, β, b) = Q(R +m) + 1

on the number of general points that can be contained in deformations of the sections C ′

on Y ′. But this also implies an upper bound Γ on the number of general points that can be
contained in deformations of the sections C on Y . □

Suppose that Y carries a family of sections which have large L-degree. Although we cannot
necessarily use Theorem 9.10 to show that (Yη,−f ∗L|Yη) is adjoint rigid, by combining with
the results of Section 7 we can at least find a covering family of subvarieties of Y whose
generic fibers are adjoint rigid.

Corollary 9.11. Let π : X → B be a good fibration and let L be a generically rela-
tively big and semiample Cartier divisor on X . Assume that Xη is geometrically uniruled.
Fix a positive rational number arel and set a = arela(Xη, L|Xη). Fix a rational number
β. Fix a positive integer T . Fix a positive integer b > a such that bL|Xη defines a base-
point free linear series. Use b to construct an effective π-vertical Q-Cartier divisor E sat-
isfying the conclusion of Proposition 9.1 with respect to aL. There are constants ξ+ =
ξ+(dim(X ), g(B), τ(π,E), arel, a, T, β, b) and T+ = T+(dim(X ), g(B), τ(π,E), arel, a, T, β, b)
with the following property.

Suppose that ψ : Y → B is a good fibration equipped with a B-morphism f : Y → X
that is generically finite onto its image. Suppose that N is an irreducible component of
Sec(Y/B) parametrizing a dominant family of sections C on Y which satisfy f ∗L · C ≥ ξ+

and f ∗(KX/B + a(Xη, L|Xη)L) · C ≤ β. Suppose that

dim(N) ≥ arel(−f ∗KX/B · C + (dim(X )− 1)(1− g(B)))− T.
Suppose that

a(Yη,−f ∗L|Yη) = a.

Let g : S → Y denote the finite part of the Stein factorization of the evaluation map for
the normalization of the universal family over N . Then there is a dominant rational B-map
ϕ : S 99K T to a normal projective B-variety such that the following holds. For a general
section C† on S parametrized by N let W denote the main component of the closure of
ϕ−1(ϕ(C†)). Then:

(1) We have a(Wη, g
∗f ∗L|Wη) = a and the pair (Wη, g

∗f ∗L|Wη) is adjoint rigid,
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(2) W is swept out by the sections parametrized by a sublocus NW ⊂ N whose closure
has codimension ≤ T+ in N , and

(3) there is a resolution of W such that the strict transform of a general section in NW
to the resolution goes through ≥ 2g(B) + 1 general points and is HN-free.

Proof. Define d = dim(Y) and set γ = (dg(B)− g(B) + 1)2(d− 1). We also define constants
Tk and Γk for 2 ≤ k ≤ d as follows. We first set Td = 0 and

Γd = sup{2g(B) + 3,Γ(dim(X ), g(B), τ(π,E), arel, a, T, β, b) + 1}
where Γ is the constant defined in Theorem 9.10. Then for 2 ≤ k < d we define via a
downward induction

Tk = k(Γk+1 + 2g(B) + γ) + Tk+1

and

Γk = sup{2g(B) + 3,Γk+1,Γ(dim(X ), g(B), τ(π,E), arel, a, T + Tk, β, b) + 1}.
Finally, we set T+ = T +supk=2,...,d Tk, Γ

+ = supk=2,...,d Γk and ξ
+ to be the maximum of the

constant ξ(dim(X ), g(B), τ(π,E), arel, a, T
+, β, b) as in Theorem 9.6 and of

1

a
(dim(X )(Γ+ + 2g(B) + γ + 1) + arelβ + T+ + (arel + 1)(dim(X )− 1)(g(B)− 1)).

Recall that S denotes the finite part of the Stein factorization of the evaluation map for
the normalization of the universal family over N . We let S ′ denote a smooth birational
model of S that flattens the family of sections on S as in Construction 7.2. We denote the
strict transform of a general section in our family on S ′ by C ′ and denote the family of
deformations of C ′ by N ′. Appealing to Corollary 3.4 we have

−KS′/B · C ′ + (dim(S ′)− 1) ≥ dim(N ′)

= dim(N)

≥ −KY/B · C + (dim(Y)− 1)(1− g(B))

≥ af ∗L · C − arelβ − T+ − (dim(X )− 1)

− (arel dim(X ) + dim(Y)− arel − 1)(g(B)− 1)

where the last line follows from Equation (9.3) of Lemma 9.5. Combining with the bound
f ∗L · C ≥ ξ+, we conclude that

(9.6) −KS′/B · C ′ ≥ dim(S ′)(Γ+ + 2g(B) + γ − 1) + 2.

We next inductively define foliations Gd,Gd−1, . . . on S ′ by repeatedly applying Theorem 7.3
to Y using the constants Γd,Γd−1, . . .. We will also denote by ψi the rational map on S ′

induced by the foliation Gi. We will inductively verify the inequalities

µmax[C] (Gi) ≥ Γi + 2g(B) + γ − 1

µmax[C] (TS′/Gi) < Γi + 2g(B) + γ − 1

which show the requirements necessary to inductively apply Theorem 7.3.
For the base case we set Gd = TS′/B. By construction we have Γd > 2 ≥ µmax[C] (π

∗TB) and

Equation (9.6) shows that

µmax[C] (TS′/B) ≥ µ[C](TS′/B) ≥ Γ+ + 2g(B) + γ − 1 ≥ Γd + 2g(B) + γ − 1.
64



Thus we have verified the two necessary inequalities in the base case.
Now suppose inductively that we apply Theorem 7.3 to Y for the foliation Gi on S ′ and

the constant Γi. There are two possible outcomes. The first possibility is that if we set Pi
to be the main component of ψ−1

i (ψi(C ′)) for a general section C ′ in our family then the
deformations of C ′ go through at least Γi general points of Pi. In this case we stop the
inductive process. The second possibility is that we obtain a new foliation Gi−1 and a new
rational map ψi−1. Note that Theorem 7.3.(c) shows that

µmax[C] (TS′/Gi−1) < Γi + 2g(B) + γ − 1 ≤ Γi−1 + 2g(B) + γ − 1.

On the other hand, letting r denote the rank of Gi−1 we have

µmax[C] (Gi−1) ≥ µ[C](Gi−1) =
c1(TS′/B) · C − c1(TS′/B/Gi−1) · C

r

=
c1(TS′/B) · C − c1(TS′/Gi−1) · C + 2g(B)− 2

r

≥ dim(S ′)(Γ+ + 2g(B) + γ − 1)− (dim(S ′)− r)(Γi + 2g(B) + γ − 1)

r
≥ Γ+ + 2g(B) + γ − 1

≥ Γi−1 + 2g(B) + γ − 1

where the third line is a consequence of Equation (9.6). Thus we have verified the necessary
inequalities for continuing the inductive process.

Since the dimension of ψ−1
i (ψi(C ′)) is always at least 2, this process stops after at most

d− 2 steps with either

• a foliation Gk such that if we set Pk to be the main component of ψ−1
k (ψk(C ′)) for a

general section C ′ in our family then the deformations of C ′ go through at least Γk
general points of Pk, or
• a rank 1 foliation Gk such that if we set Pk to be the main component of ψ−1

k (ψk(C ′))
for a general section C ′ in our family then the deformations of C ′ go through at least
Γk+1 general points of Pk.

Then the foliation Gk induces a rational map S ′ 99K T , and hence also a rational map
S 99K T . We prove that in either case this map has the desired properties. Note that the
subvarieties Pk of S ′ are birational to the subvarieties W in the statement of the theorem,
and it suffices to prove that Pk has the desired properties.

By applying Theorem 7.3.(2).(b) inductively, we see that the codimension of the space of
deformations of C ′ in Pk inside of N is at most

d∑
j=k

(j − 1)(Γj + 2g(B) + γ)

verifying (2). Note that by construction the deformations of C ′ in Pk go through either
Γk or Γk+1 general points of Pk. Both quantities are at least 2g(B) + 1. This property is
preserved by passing to the strict transform, and curves through this many general points
must be HN-free by Proposition 3.7, proving (3). Using the lower bound ξ ≤ ξ+, we can
apply Theorem 9.6 to Pk equipped with the family of deformations of C ′ to see that

a(Pk,η, f ∗L|Pk,η
) ≥ a
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But since the deformations of Pk,η form a dominant family of subvarieties on Yη the equality
must be achieved. To prove (1), it only remains to verify the adjoint rigidity. If Gk has rank
1, Pk is a P1-fibration over B and thus is automatically adjoint rigid. If Gk has rank > 1,

then deformations of C ′ on a resolution P̃k of Pk go through at least Γk general points. We

then apply Theorem 9.10 on P̃k to determine adjoint rigidity. This proves (3). □

10. Boundedness statements

We now turn to proving boundedness statements for the set of morphisms f : Y → X
such that Y carries a family of sections which is “large” on X . In Section 10.1 we prove
several technical statements which combine [Bir22] with our work on twists. In Section 10.2
we state and prove our main boundedness result, Theorem 10.10.

10.1. Boundedness. Our first statement appeals to the recent results of [Bir22] to prove
birational boundedness when the generic fiber is adjoint rigid.

Theorem 10.1. Let π : X → B be a good fibration and let L be a generically relatively
big and semiample Cartier divisor on X . Assume that Xη is geometrically uniruled. Fix
a positive rational number arel and set a = arela(Xη, L|Xη). Fix a rational number β.
Fix a positive integer T . Fix a positive integer b > a such that bL|Xη defines a base-
point free linear series. Use b to construct an effective π-vertical Q-Cartier divisor E
satisfying the conclusion of Proposition 9.1 with respect to aL. There is some constant
ξ = ξ(dim(X ), g(B), τ(π,E), arel, a, T, β, b) with the following property.

Suppose that ψ : Y → B is a good fibration equipped with a B-morphism f : Y → X that
is generically finite onto its image. Suppose that a(Yη, f ∗L|Yη) = a and that (Yη, f ∗L|Yη)
is adjoint rigid. Suppose that N is an irreducible component of Sec(Y/B) parametrizing a
dominant family of HN-free sections C on Y which satisfy f ∗L · C ≥ ξ and f ∗(KX/B +
a(Xη, L|Xη)L) · C ≤ β. Finally, suppose that

(10.1) dim(N) ≥ arel(−f ∗KX/B · C + (dim(X )− 1)(1− g(B)))− T.

Then:

(1) The set of such projective varieties Y is birationally bounded.
(2) Suppose that L is big and semiample. Choose a positive integer b > a such that |bL|

is basepoint free. Then there is a constant ℸ = ℸ(dim(X ), g(B), arel, a, T, β, b) such
that vol(f ∗L) ≤ ℸ.

Proof. Lemma 9.5 shows that

(KY + af ∗L) · C ≤ arelβ + T + arel(dim(X )− 1)(g(B)− 1) + (dim(X )− 1) + 2g(B)− 2.

Proposition 9.1 shows that f ∗(aL + E) is Q-linearly equivalent to an effective Q-Cartier
divisor D such that (Yη, D|Yη) is a terminal pair. Let ϕ : Y ′ → Y be a log resolution of this
pair and let D′ denote the strict transform of the π-horizontal components of D. Since D′

is irreducible we see that (Y ′, D′) is a terminal pair.
66



Since we are assuming the sections are HN-free, the strict transform C ′ of a general
deformation of C avoids any ϕ-exceptional divisor and thus satisfies

(KY ′ +D′) · C ′ ≤ (KY ′ + ϕ∗D) · C ′

= ϕ∗(KY +D) · C ′

≤ arelβ + T + τ(π,E) + arel(dim(X )− 1)(g(B)− 1) + (dim(X )− 1) + 2g(B)− 2.

Furthermore C ′ is HN-free on Y ′.
Run the relative MMP for KY ′ + D′ over B. Due to our adjoint rigidity assumption on

the generic fiber, the result will be a birational model ρ : Y ′ 99K Ỹ where KỸ + ρ∗D
′ is

relatively Q-linearly equivalent to 0. We denote by ψ̃ the structural map ψ̃ : Ỹ → B. Write

KỸ + ρ∗D
′ ∼Q ψ̃

∗P . Since the map ρ is a (KY ′ +D′)-negative birational contraction,

ψ̃∗P · ρ∗C ′ = ρ∗(KỸ + ρ∗D
′) · C ′

≤ (KY ′ +D′) · C ′

≤ arelβ + T + τ(π,E) + arel(dim(X )− 1)(g(B)− 1) + (dim(X )− 1) + 2g(B)− 2.

Then [Bir22, Theorem 1.3] applies with Z = B and A = ⌈arelβ+T +τ(π,E)+arel(dim(X )−
1)(g(B)−1)+(dim(X )−1)+2g(B)−1⌉p for a point p ∈ B, showing that the set of minimal

models (Ỹ , ρ∗D′) is log bounded.
Now suppose that L is big and semiample. Note that the effective divisor E = 0 satisfies

the conclusion of Proposition 9.1 with respect to aL, and we make this choice for E. Recall
that the divisor D is constructed by applying Proposition 9.1. However, in our setting we
can choose D ∼Q aL where Supp(D) is smooth and irreducible and has coefficient a

b
. In

particular we can take Y ′ = Y and D′ = D.

Repeating the argument above, we run a relative MMP ρ : Y 99K Ỹ and see that the

resulting pairs (Ỹ , ρ∗D) are log bounded. By construction ρ∗D is irreducible with coefficient
a/b. This implies that there is some constant ℸ such that

vol(f ∗L) =
vol(D)

adimY ≤
vol(ρ∗D)

adimY ≤ ℸ.

□

Remark 10.2. In the setting of Theorem 10.1.(1) the variety Y can be replaced by a higher
birational model and N can be replaced by the strict transform family of curves without
affecting the hypotheses. Thus birational boundedness is the best one can hope for.

Construction 2.15 and Theorem 2.16 construct certain families of varieties over K(B). We
next modify these constructions to apply to integral models.

Construction 10.3. Let π : X → B be a good fibration and let L be a big and semiample
Cartier divisor on X . Assume that Xη is geometrically uniruled. Set a = a(Xη, L|Xη).

By applying Construction 2.15 to Xη we obtain a proper closed subset Vη ⊂ Xη and a
finite collection of families pi,η : Ui,η → Wi,η whose smooth fibers are birational to closed
subvarieties of Xη. Let pi : Ui → Wi denote any smooth integral model such that the
structural morphism Ui,η → Xη extends to Ui and let V denote the closure of Vη. The
subvarieties parametrized by pi,η correspond to the K(B)-points of Wi,η, or equivalently, to
sections of Wi over B. Let Wi denote Sec(Wi/B). We let W = ⊔iWi. We first shrink W
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so that the generic point of every section parametrized by W is contained in the open locus
over which ⊔ipi is smooth. We enlarge V by adding the images in X of the loci where the
maps pi fail to be smooth. Consider the universal family Wi×B →Wi with the evaluation
map Wi×B →Wi. By taking a base change of pi : Ui →Wi over this morphism, we obtain
a morphism which we denote by Zi →Wi ×B. We let Z = ⊔iZi.
Note that W is a countable union of quasiprojective schemes and Z →W× B is a finite

type morphism such that for every closed point w ∈ W the B-scheme Zw → {w} × B
has the property that Zw,η is isomorphic to a fiber of pi,η over a K(B)-point of Wi,η. By
repeatedly stratifying W into locally closed subsets and taking resolutions of components of
Z, we may also ensure that the fibers of Z→W are smooth. We denote the evaluation map
by ι : Z→ X .

Construction 10.4. Let ⊔GH(G,B) be the Hurwitz stack. Fix an étale covering ⊔GHG →
⊔GH(G,B) from a scheme.

Let π : X → B be a good fibration and let L be a big and semiample Cartier divisor on
X . Assume that Xη is geometrically uniruled. Set a = a(Xη, L|Xη). Let Z→W× B be the
morphism constructed in Construction 10.3.

By Theorem 2.16 there is a finite set of smooth projective K(B)-varieties Yi,j,η equipped
with dominant generically finite morphisms hi,j,η : Yi,j,η → Ui,η and a closed set Rη ⊂ Xη
that has the following property. Suppose that g : Yη → Xη is a generically finite morphism
from a geometrically integral smooth projective variety such that g(Yη) is not contained in
Rη. Suppose furthermore that a(Yη, g∗L|Yη) = a and that (Yη, g∗L|Yη) is adjoint rigid. Since
Yη is geometrically rationally connected by [LTT18, Theorem 4.5], [GHS03, Theorem 1.1]
and [HT06, Theorem 12] show that Yη carries a dense set of rational points. Thus Theorem
2.16 shows that there are indices i, j such that the map g factors rationally through a twist
hσi,j,η and Yη maps birationally to a fiber of a morphism Yσi,j,η → T σi,j,η.
Let Vη be the union of Rη with the generic fiber of the closed set from Construction 10.3.

Then we enlarge Vη by adding si(Bi,j,η) where Bi,j,η is the union of the irreducible components
of the branch locus of hi,j,η. We further enlarge Vη by adding the Zariski closure of the union
of the images of the fibers of ri,j,η which fail to be smooth, fail to have the same a-invariant
as Yi,j, or fail to be adjoint rigid. If Yi,j,η is a component such that some twist of Yi,j,η admits
a K(B)-rational point mapping to Xη \ Vη, then we replace Yi,j,η by this twist. If Yi,j,η is
a component such that no twist of Yi,j,η admits a K(B)-rational point mapping to Xη \ Vη,
then we remove Yi,j,η from our set.

Set Di,j = ⊔GC1(GHG
,K(Yi,j,η/Ui,η)HG

). By construction Di,j is a countable union of finite
type schemes over C. As described in Section 8.2, there is a morphism

hi,j,η : Yi,j,η → Di,j × Ui,η

which parametrizes twists of hi,j,η : Yi,j,η → Ui,η. After perhaps replacing Di,j by a strat-
ification into locally closed subsets, we can construct integral models in families to obtain
a map Yi,j → Di,j × Ui → Di,j × X whose composition we denote by fi,j. After perhaps
again replacing Di,j by a stratification by locally closed subsets and taking resolutions of
irreducible components of Yi,j, we may ensure that for every closed point d ∈ Di,j the fiber
Yi,j,d is a good fibration equipped with a B-morphism fi,j,d : Yi,j,d → X . By construction
every twist of hi,j,η has an integral model hσi,j : Yσi,j → Ui that is a member of our fam-
ily. After again replacing Di,j by a stratification into locally closed subsets, we may ensure
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that the Stein factorization of the composition Yi,j → Di,j × Ui → Di,j × Wi induces for
every fiber over a closed point in Di,j the Stein factorization of Yσi,j → Wi. Denote the
Stein factorization of Yi,j → Di,j × Wi by ri,j : Yi,j → Ti,j. Then ri,j : Yi,j → Ti,j and
ti,j : Ti,j → Wi define a family of Stein factorizations rσi,j : Yσi,j → T σi,j, tσi,j : T σi,j → Wi. Due
to the functoriality in Section 8.2.2, we see that Ti,j,η → Di,j ×Wi,η parametrizes the family
of twists of Ti,j,η →Wi,η which are induced by twists of Yi,j,η → Ui,η.

Let V be the closure of Vη. We further enlarge V by adding the Zariski closure of the union
of the images of the fibers of ri,j which fail to be smooth, fail to have the same a-invariant as
Yi,j, or fail to be adjoint rigid. We let Bi,j be the closure of Bi,j,η and define B := ∪i,jBi,j. We
also define B′

i,j ⊂ Wi as the union of components of the branch locus of ti,j which dominate
B and the closures of the images of loci where fibers of ri,j fail to be smooth, fail to have
the same a-invariant as Yi,j, or fail to be adjoint rigid. We define B′ := ∪i,jB′

i,j.
Recall that we assume that Yi,j,η admits a K(B)-rational point y mapping to Xη \ Vη.

Let h̃i,j,η : Ỹi,j,η → Ui,η be a geometric Galois closure of hi,j,η : Yi,j,η → Ui,η such that

Bir(Ỹi,j,η/Ui,η) = Aut(Ỹi,j,η/Ui,η) and Ỹi,j,η admits a K(B)-rational point ỹ mapping to y.

Let Yi,j
ĥi,j−−→ Pi,j

ℓi,j−−→ Ui be the cover corresponding to the normalizer of Aut(Ỹi,j,η/Yi,j,η) in
Aut(Ỹi,j,η/Ui,η) such that Pi,j is normal and ℓi,j is finite. Note that every twist Yσi,j → Ui
factors through ℓi,j : Pi,j → Ui. By taking the Stein factorization, we have a commutative
diagram

Yi,j
ĥi,j //

ri,j

��

Pi,j
bi,j
��

ℓi,j // Ui
pi

��
Ti,j ci,j

// Si,j ai,j
//Wi

where Si,j is projective and normal, bi,j has connected fibers, and ai,j is finite.
We also let Mi,j = ⊔GC1(GHG

,K(Ti,j,η/Wi,η)HG
) denote the parameter space for all twists

of Ti,j,η → Wi,η. We denote the universal family over Mi,j by T′
i,j → Mi,j ×Wi. Then by

the functoriality established in Section 8.2.2 we have a natural isomorphism

Ti,j → T′
i,j ×Mi,j

Di,j.

We set Y = ⊔i,jYi,j, T = ⊔i,jTi,j, T′ = ⊔i,jT′
i,j, D = ⊔i,jDi,j, and M = ⊔i,jMi,j with

morphisms Y→ D×X , T→ D and T′ →M.
For each Yσi,j → T σi,j, the varieties described by Theorem 2.16.(3).(b) are parametrized by

the K(B)-points of T σi,j,η, or equivalently, by the closed points of Sec(T σi,j/B). We consider
the relative space of sections S = SecD(T/B) = SecM(T′/B) ×M D. We first shrink S
so that the generic point of every section parametrized by S is contained in the locus
in T over which Y → T is smooth. Then by taking a base change of Y → T over the
evaluation map S × B → T, we obtain a morphism F′ → S × B whose fibers are closed
subvarieties of the various Yσi,j. Note that we have a morphism S → Sec(⊔iWi/B), and we
replace S by the the fiber product S×Sec(⊔iWi/B)W so that we have a compatible morphism
S→W. By repeatedly stratifying S into locally closed subsets, throwing away components
whose intersection with a fiber Ys does not dominate B, taking resolutions of irreducible
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components of F′, and taking Stein factorizations, we obtain a commuting diagram

F //

��

Z

��
S×B //W×B

where for every closed point s ∈ S the fiber Fs is a normal projective B-variety such that
Fs → B has connected fibers and Fs → Zw is a finite morphism where w denotes the image
of s in W. After taking a stratification of S, we may assume that F → S is a flat family.
Altogether, we have constructed a family F → S × B whose base is a countable union of
finite type schemes and a morphism g : F→ S×X such that

(1) for every closed point s ∈ S the fiber Fs is a normal projective B-variety such that
Fs → B has connected fibers;

(2) for every closed point s ∈ S the map gs : Fs → X is a B-morphism that is generically
finite onto its image and the corresponding morphism Fs → Zw is a finite morphism;

(3) for every closed point s ∈ S we have a(Fs,η, g
∗
sL|Fs,η) = a and (Fs,η, g

∗
sL|Fs,η) is adjoint

rigid,
(4) if Y is a good fibration over B and f : Y → X is a generically finite B-morphism

such that a(Yη, f ∗L|Yη) = a and (Yη, f ∗L|Yη) is adjoint rigid, either the map f is
birationally equivalent to gs for some closed point s in our family or f(Yη) ⊂ Vη.

We also have a family Y → D × X parametrizing integral models hσi,j : Yσi,j → Ui of twists
hσi,j,η : Yσi,j,η → Ui,η. Note that all such twists hσi,j : Yσi,j → Ui factor through ĥi,j : Yσi,j → Pi,j
and that ĥi,j : Yσi,j → Pi,j is Galois.

We will also need two additional lemmas.

Lemma 10.5. Suppose that Y → S × B is a family of good fibrations over B with S
irreducible. Suppose that for some closed point s ∈ S we have an HN-free section C of
Ys/B. Then the deformations of C form a dominant family on Y.

Proof. LetM denote the space of deformations of C inY and for a closed point s′ ∈ S letMs′

denote the sublocus parametrizing spaces of sections of Ys′/B. Since H1(C, TYs/B|C) = 0,
[Kol96, Theorem I.2.15.(2)] shows that

dim(M) ≥ dim(Ms) + dim(S).

Since C is an HN-free section in Ys, by replacing C by a general deformation we may ensure
that it avoids any codimension 2 locus of Ys. We conclude that TY/S×B|C is locally free,
and thus the restriction of this sheaf to a general deformation of C is also locally free. As
the universal family over Sec(Y/B) is smooth, Lemma 2.4 shows that the minimal slope of a
quotient of TY/S×B|C′ is a lower semicontinuous function as we vary C ′ in Sec(Y/B). Thus
there is an open subset of M parametrizing sections which are HN-free in their fiber. For
a general section C ′ parametrized by M denote by s′ the closed point of S parametrizing
the good fibration Ys′ → B containing C ′. As explained above C ′ is HN-free in Ys′ , and in
particular for such points s′ we have dim(Ms′) = dim(Ms). Thus the dimension computation
shows that sections parametrized by M must dominate Y. □

Since the next lemma is well-known we will omit the proof.
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Lemma 10.6. Let k be a field of characteristic 0 and let f : Y → X be a dominant
generically finite morphism between normal projective varieties defined over k. Assume that

Bir(Y /X) = Aut(Y /X).

Let X◦ ⊂ X be a Zariski open subset such that f |f−1(X◦) : f−1(X◦) → X◦ is étale. Let
fσ : Y σ → X be a twist of f over X and suppose that there are k-rational points p ∈ Y (k)
and pσ ∈ Y σ(k) which define the same geometric point on f−1(X◦)k. Then f and fσ are
isomorphic as X-schemes.

We are now ready to prove our main boundedness theorems. For these results we will be
in the situation arel = 1.

Theorem 10.7. Let π : X → B be a good fibration and let L be a big and semiample
Cartier divisor. Assume that Xη is geometrically uniruled. Set a = a(Xη, L|Xη). Fix a
rational number β. Fix a positive integer T . Fix a positive integer b > a such that bL defines
a basepoint free linear series. There is:

• a constant ξ† = ξ†(dim(X ), g(B), a, T, β, b),
• a closed subset V ⊂ X , and
• a bounded family of smooth projective varieties q : F̂→ Ŝ equipped with Ŝ-morphisms

p : F̂→ Ŝ×B and g : F̂→ Ŝ×X
which have the following properties:

(1) For every closed point s ∈ Ŝ, F̂s → B is a good fibration.

(2) For every closed point s ∈ Ŝ the morphism gs : F̂s → X is a B-morphism that is
generically finite onto its image.

(3) For every irreducible component F̂i of F̂ the composition of g|F̂i
: F̂i → Ŝ × X with

the projection Ŝ×X → X is dominant.

(4) For every closed point s ∈ Ŝ we have a(F̂s,η, g
∗
sL|F̂s,η

) = a(Xη, L|Xη) and (F̂s,η, g
∗
sL|F̂s,η

)

is adjoint rigid.
(5) Suppose that ψ : Y → B is a good fibration equipped with a B-morphism f : Y → X

that is generically finite onto its image and satisfies a(Yη, f ∗L|Yη) ≥ a. Suppose
that N is an irreducible component of Sec(Y/B) parametrizing a dominant family of
sections C on Y which satisfy f ∗L · C ≥ ξ and f ∗(KX/B + aL) · C ≤ β. Let M ⊂
Sec(X/B) be the irreducible component containing the pushforward of the sections
parametrized by N . Finally, suppose that

dim(N) ≥ dim(M)− T.
For a general section C parametrized by N , either:
• C is contained in V, or
• there is an irreducible component F̂i of F̂ and an irreducible component N ′ of

Sec(F̂i/B) parametrizing a dominant family of sections on F̂i such that f(C)

is the image of a section C ′ parametrized by N ′ and if F̂i,s denotes the fiber

containing C ′ then the strict transform of C ′ in a resolution of F̂i,s is HN-free.

We will divide the proof into five steps. Step 1 is devoted to some preliminary work. In
Step 2, we construct a bounded family of varieties P→ Q such that every Y as in Theorem
10.7.(5) is a birational to a twist of a fiber over a closed point of Q. In Step 3, we bound
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the invariants from Corollary 8.13 for the varieties in our family P → Q. Then in Step 4

we use this corollary to construct a bounded family of twists F̂→ Ŝ which carry sections of

low L-degree. Finally, in Step 5 we verify that F̂→ Ŝ has the desired properties.

Proof. Step 1: Let m be the maximum of the degrees of the morphisms Yi,j → Ui from
Construction 10.4 and set d = (m + 1)!. Let ⊔GH(G,B) be the Hurwitz stack and fix an
étale covering ⊔G,|G|≤dHG → ⊔G,|G|≤dH(G,B) by a scheme. We will work over this base for
the entire proof.

Note that the divisor E = 0 satisfies the condition of Proposition 9.1. Define ξ =
ξ(dim(X ), g(B), 0, 1, a, T, β, b) as in Theorem 9.6. We then choose

ξ+ = ξ+(dim(X ), g(B), 0, 1, a, T, β, b) and T+ = T+(dim(X ), g(B), 0, 1, a, T, β, b)

as in Corollary 9.11. Define ℸ = ℸ(dim(X ), g(B), 1, a, T, β, b) as in Theorem 10.1. Finally
we define ξ† = sup {ξ, ξ+}.
Since L is big and semiample, there is a closed subvariety V1 ⊂ X such that the family

of subvarieties of X that are not contained in V1 and have L-degree ≤ ℸ is bounded. By
[LST22, Theorem 4.18.(2)] there is a closed sublocus V2,η ⊂ Xη that contains all subvarieties
with larger generic Fujita invariant and we let V2 denote its closure. Let V3 be the exceptional
closed set from Construction 10.4. We start by setting V to be the union of V1, V2, and V3;
we will later enlarge it.

Let Zi → Wi × B be the families in Construction 10.3. Then there is a finite-type
subscheme Ri ⊂ Wi parametrizing those varieties whose images in X have L-degree ≤ ℸ
and are not contained in V . Indeed, this follows from the fact that being the integral main
component of the pullback of a section in Wi is an open condition so that perhaps after
taking a finer stratification of Wi there is an bijective map from Wi to a Zariski open subset
of a component of the Hilbert scheme parametrizing integral main components of pullbacks
of sections. We denote by Zi,Ri

→ Ri the universal family over Ri. Set R = ⊔iRi.
Let Y→ T→ D, T′ →M, F→ S and g : F→ X ×B be defined as in Construction 10.4.

For any closed point s ∈ S the map gs : Fs → X has image that is birationally equivalent
to a fiber Zs of Z→W. By [LST22, Lemma 4.7] we have

a(Fs,η, g
∗
sL|Fs,η) ≤ a(Zs,η, ι∗sL|Zs,η)

and if equality is achieved then [LST22, Lemma 4.9] shows that (Zs,η, ι∗sL|Zs,η) is adjoint
rigid. If we shrink S to remove all maps gs whose image lies in V , then we will always
have equality of Fujita invariants. We let S′ denote the sublocus of S consisting of maps gs
whose image is a member of our fixed bounded family ZR → R and denote by F′ → S′ the
corresponding family.

Step 2: We next claim that there is a morphism Q → S′ ⊂ S such that Q is of finite
type over C and for every map gs parametrized by S′ the map gs,η is a twist of the generic
fiber of a map parametrized by Q. Indeed, recall from Theorem 2.16 that we have a finite
number of smooth projective varieties Yi,j,η equipped with morphisms

Yi,j,η
hi,j,η //

ri,j,η

��

Ui,η
pi,η

��
Ti,j,η ti,j,η

//Wi,η
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where ti,j,η is Galois.
It follows from our construction that Ri is contained in finitely many irreducible compo-

nents of Sec(Wi/B). Let Sec(Wi/B,B′) denote the space of sections not contained in B′ and
define Sec(Si,j/B, a−1

i,j (B′)) analogously. Then ai,j,∗ : Sec(Si,j/B, a−1
i,j (B′)) → Sec(Wi/B,B′)

is of finite type, so the fiber product

R̂i,j := Sec(Si,j/B, a−1
i,j (B′))×Sec(Wi/B,B′) Ri

is of finite type over C. Moreover for any C ∈ R̂i,j, the fiber b−1
i,j (Cη) is geometrically ra-

tionally connected so R̂i,j is in the image of Sec(Pi,j/B, ℓ−1
i,j (B)) → Sec(Si,j/B, a−1

i,j (B′)).

Thus there is a finite disjoint union of locally closed subschemes of finite type R̃i,j ⊂
Sec(Pi,j/B, ℓ−1

i,j (B)) with a surjective morphism R̃i,j → R̂i,j. We denote the base change

of Zi,Ri
→ Ri over R̃i,j → R̂i,j → Ri by ZR̃i,j

→ R̃i,j.

Recall that we are working over ⊔G,|G|≤dHG. We claim that every twist of Yi,j,η/Ui,η splits
over an extension K(B′)/K(B) of degree ≤ d. Indeed, if we denote Aut(Yi,j,η/Ui,η) by G,
then Lemma 8.4 shows that one may use a Galois base change of degree ≤ |G| ·#Aut(G).
In particular d = (m+ 1)! gives an upper bound on this degree.
Since each rational point of Wi,η not contained in B′ will lift to a unique twist of Ti,j,η

and the number of 1-cycles representing the same Galois cohomology class is at most m, the
pushforward morphism

ti,j,∗ : SecMi,j
(T′

i,j/B, t
−1
i,j (B′))→ Sec(Wi/B,B′)× (⊔G,|G|≤dHG)

is a quasi-finite morphism onto its image of degree at most m2.

Now for each C ∈ Sec(Pi,j/B, ℓ−1
i,j (B)), ĥ−1

i,j (C) decomposes into a union of curves which are

Galois conjugate to each other over B where ĥi,j : Yi,j → Pi,j is the morphism constructed

in Construction 10.4. Then after taking a stratification of R̃i,j by locally closed subsets

and replacing R̃i,j by an étale cover, the universal property of the Hurwitz stack yields a
morphism

ψi,j : R̃i,j → ⊔G,|G|≤dH(G,B)

that sends a section C of Pi,j/B to the cover C ′ → B obtained by normalizing an irreducible

component of ĥ−1
i,j (C). We denote by Ri,j the fiber product

R̃i,j ×⊔G,|G|≤dH(G,B) (⊔G,|G|≤dHG)

which is of finite type over C. Thus using the morphismRi,j → Sec(Wi/B,Bi,j)×(⊔G,|G|≤dHG)
we define the scheme

Q′
i,j = SecMi,j

(T′
i,j/B, t

−1
i,j (Bi,j))×Sec(Wi/B,Bi,j)×(⊔G,|G|≤dHG) Ri,j

which is a finite type scheme over C. Note that Q′
i,j parametrizes the sections of T σi,j/B which

map toRi such that the twist T σi,j is trivialized by a base change C ′ → B coming from ĥ−1
i,j (C)

as constructed above. Let Q′ = ⊔i,jQ′
i,j. Then we have a morphism Q′ → SecM(T′/B) and

S′ → SecD(T/B)→ SecM(T′/B).
We set Q = Q′ ×SecM(T′/B) S

′. Since S′ → SecM(T′/B) is of finite type over each HG, Q
is a scheme of finite type over C. Then we denote the base change of Y → D over Q → D

by Ŷ→ Q and we denote the base change of F→ S over Q→ S′ ↪→ S by P→ Q.
73



We still must verify that P → Q satisfies the claimed property. Let s ∈ S′ and consider
the corresponding gs : F′

s → Zr → X with r ∈ R. By Theorem 2.16, gs,η : F′
s,η → Xη

is birationally equivalent to the map to Xη from a fiber of a twist Yσi,j,η → T σi,j,η for some
i, j. Then since Yσi,j factors through Pi,j, by the construction we find a point r̂ ∈ Ri,j

mapping to r. This point r̂ specifies a point (B′/B) ∈ ⊔G,|G|≤dHG. On the other hand

one can find a twist Yτi,j,η → T σi,j,η such that the preimage (ĥτi,j,η)
−1(Cη) of the section C ∈

Sec(Pi,j/B) corresponding to r̂ consists entirely of K(B)-rational points. Such a twist will
be trivialized by the base change B′ → B. This means that r is in the image of the map
Q = Q′ ×SecM(T′/B) S

′ → Sec(⊔iWi/B,B′). Thus there is a point q ∈ Q mapping to r such
that F′

s,η → Xη is a twist of Pq,η → Xη for the fiber Pq over q. This finishes the verification
of the desired property.

Step 3: Note that the degree of hσq,η : Pσ
q,η → Zq,η is bounded by the maximum of the

degrees of hi,j : Yi,j → Ui. In particular the size of Aut(Pσ
q,η/Zq,η) is uniformly bounded

by the integer m. It follows from Lemma 8.4 that for every closed point q ∈ Q the map
hσq,η : Pσ

q,η → Zq,η becomes isomorphic to hq,η : Pq,η → Zq,η after a Galois base change

B̃ → B of degree ≤ d.
Next we define an integer t by using the family P→ Q. Since normality is a constructible

property in proper families ([Gro66, Théorème 12.2.4]), by Noetherian induction there is
a positive integer t1 that bounds the number of non-normal fibers of Pq → B as we vary
over all q ∈ Q. Since the relative automorphism scheme AutB(Pq/Zq) is quasifinite over
Q×B and since flatness is a constructible property, as we vary over all closed points q ∈ Q
there is a positive integer t2 that bounds the number of places in B where the restriction of
AutB(Pq/Zq) to {q} ×B is not flat. We set t = t1 + t2.
Step 4: Lemma 8.3 and Corollary 8.13 show that as we vary the closed point q ∈ Q

the set of twists of hq : Pq → Zq which are trivialized by a base change B′ → B of degree
at most d and with at most t + d(T + T+) branch points is parametrized by a bounded

family. We denote by F̃ → S̃ the bounded subfamily of F′ → S′ parametrizing maps
gs : Fs → Zs satisfying these properties. After taking smooth resolutions and stratifying the

base, we obtain F̂ → Ŝ such that each fiber is a good fibration over B. We then shrink Ŝ

by removing all irreducible components Sj such that the corresponding family F̂j fails to
dominate X and we enlarge V by taking the union with the closures of the images of these
families.

Step 5: We are now ready to verify the desired properties of F̂ → Ŝ. Properties (1)-(4)
follow from the construction, and we only need to check (5). Suppose f : Y → X is as in
(5). Applying Theorem 9.6 with arel = 1 we see that a(Yη, f ∗L|Yη) ≥ a. If we have a strict
inequality then f(Y) ⊂ V and so the sections on Y are accounted for by V . From now on
we assume that f(Y) ̸⊂ V which implies that a(Yη, f ∗L|Yη) = a.
We apply Corollary 9.11 to construct subvarieties on the Stein factorization of the eval-

uation map over Y and then take images in Y to obtain a dominant family of subvarieties
F ⊂ Y satisfying:

• the codimension in N of the space of deformations of C in F is at most T+,
• the strict transform of C to a resolution of F is HN-free,
• (Fη, f ∗L|Fη) is adjoint rigid.
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We will show that the conclusion of (5) holds for the sections on the general subvariety F
in our family.

Consider a general subvariety F in our family and set Z = f(F). Since it is not possible
for Zη to have larger a-invariant (as it is not contained in Vη), we have a(Zη, L|Zη) = a and
thus by [LST22, Lemma 4.9] (Zη, L|Zη) is adjoint rigid. Theorem 10.1.(2) shows that Z is
birationally equivalent to a smooth Z ′ that is parametrized by the bounded family ZR → R.
In particular the map µ : Fη → Zη is birationally equivalent to a twist of hq : Pq,η → Zq,η
for some closed point q ∈ Q.
Choose a morphism µ′ : F ′ → Z ′ birationally equivalent to µ where F ′ is smooth. Let NF

denote the moduli space of deformations of the strict transforms C ′ of C in F ′ and let MZ
denote the moduli space of deformations of the image in Z ′. Then

dim(MZ)− dim(NF) ≤ dim(M)− (dim(N)− T+) ≤ T + T+

so that NF has codimension at most T+ + T in MZ . Then we have

−KF ′/B · C ′ + (dim(F ′)− 1)(1− g(B)) = dim(NF)

≥ dim(MZ)− T+ − T
≥ −KZ′/B · µ′

∗C
′ + (dim(Z ′)− 1)(1− g(B))− T+ − T

which rearranges to
(KF ′/B − µ∗KZ′/B) · C ′ ≤ T+ + T.

This intersection bound and Corollary 8.13 imply that µ′ : F ′ → Z ′ is birationally equivalent
to a twist of hq that is trivialized by a base change B′ → B that has degree at most d and
has at most t + d(T + T+) branch points. Thus µ′ is birationally equivalent to one of the

maps hs : F̃s → Zs parametrized by our bounded family F̃→ S̃.

Consider the strict transform of our family of sections in the fiber F̂s. Since these sections

go through at least 2g(B)+1 general points of F̂s, they are HN-free in this fiber. Lemma 10.5
shows that the sections deform to give a dominant family on the entire irreducible component

F̂i containing F̂s. Since by construction every irreducible component of F̂ dominates X , we
deduce that the family of sections gives a dominant family on X . Furthermore, we see that

the general section parametrized by NF is in the image of the map Sec(F̂i/B)→ Sec(X/B).
Thus the same property is true for N , proving (5). □

Our next boundedness statement is closer in spirit to the results of [LST22]: instead of

using a bounded family F̂ → Ŝ such that the fibers F̂s,η are adjoint rigid, one can instead

use a bounded family Ỹ→ S̃ such that the fibers Ỹs,η are twists of the finite set of universal
families constructed in Theorem 2.16.

Theorem 10.8. Let π : X → B be a good fibration and let L be a big and semiample Cartier
divisor. Assume that Xη is geometrically uniruled. Set a = a(Xη, L|Xη). Fix a constant β.
Fix a positive integer b > a such that bL defines a basepoint free linear series.

There is a constant ξ† = ξ†(dim(X ), g(B), a, β, b), a proper closed subset V ⊂ X , and a

bounded family Ỹ→ S̃×B of good fibrations equipped with a S̃×B-morphism f̃ : Ỹ→ S̃×X
such that:

(1) for every closed point s ∈ S̃ the map f̃s is dominant and generically finite but not
birational;
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(2) for every closed point s ∈ S̃ we have a(Ỹs,η,−f̃ ∗
sKX/B|Ỹs,η

) = a(Xη,−KX/B|Xη);

(3) as we vary over all closed points s ∈ S̃ the set of birational equivalence classes of the

maps {f̃s,η : Ỹs,η → Xη} obtained by base changing to Spec(K(B)) is finite;
(4) if M ⊂ Sec(X/B) is an irreducible component that generically parametrizes non-HN-

free sections C with L · C ≥ ξ† and (KX/B + a(Xη, L|Xη)L) · C ≤ β then a general

section C parametrized by M satisfies either C ⊂ V or C ∈ f̃∗(Sec(Ỹs/B)) for some

closed point s ∈ S̃.

Proof. We begin by making exactly the same constructions and definitions as in the proof
of Theorem 10.7; we continue from the end of this proof. Additionally we set T = 0.

Let f̃ : Ỹ → S̃ × X be the family of twists of hi,j : Yi,j → Ui which becomes isomorphic

to a member of Ŷ → Q by a finite base change B′ → B of degree ≤ d and with at most

t+ dT+ branch points. By Lemma 8.3 S̃ has finite type over C.
Properties (1), (2), (3) follow from the construction and we only need to verify (4). Suppose

M ⊂ Sec(X/B) is an irreducible component that generically parametrizes non-relatively free
sections C with −KX/B · C ≥ ξ and (KX/B + a(Xη, L|Xη)L) · C ≤ β. We may assume that
M generically parametrizes sections which are not contained in V . Then M parametrizes a
dominant family of sections due to Theorem 10.7.(5). Let Y → X be the finite part of the
Stein factorization for the evaluation map for M .
Applying Corollary 9.11, we find a dominant family of subvarieties F ⊂ Y satisfying:

• the codimension in N of the space of deformations of C in F is at most T+,
• the strict transform of C is HN-free in a resolution of F ,
• (Fη, f ∗L|Fη) satisfies a(Xη, L) = a(Fη, f ∗L|Fη) and is adjoint rigid.

Using the universal property described in Theorem 2.16, there exists a twist Yσi,j → T σi,j over
Ui such that F is birational to the main component F ′

C of the preimage of a section C under
the map Yσi,j → T σi,j. Then note that Yσi,j → Ui factors through Pi,j → Ui.
We claim that there is some closed point q ∈ Q such that there is an Xη-isomorphism

between Yσi,j,η and Ŷq,η which maps FC,η to the imageP′
q,η ofPq,η under the mapPq,η → Ŷq,η.

Indeed, by the defining property of P → Q we know that FC,η is a twist of Pq′,η for some
q′ ∈ Q. The point q′ specifies a twist Yτi,j → T τi,j and a point q′′ on Sec(T τi,j/B, t−1

i,j (B′)). We
let p denote the rational point on Sec(Wi/B,B′) obtained by taking the image of q′′ under

Sec(T τi,j/B, t−1
i,j (B))→ Sec(Wi/B,B′).

Let Cp denote the section of Wi → B corresponding to p. Since tτi,j : T τi,j → Wi is Galois,

every geometric point in (tτi,j)
−1(Cp,η) is a K(B)-rational point on T τi,j,η. Note that the

geometric fiber corresponding to FC,η will lie over one of these points; we replace q′′ by this
point. Moreover by construction the image Zr of FC has L-degree ≤ ℸ. In particular this
point will lift to q′′′ ∈ Q′. Thus we can define a point q = (q′′′, s′) ∈ Q′ ×SecM(T′/B) S

′ = Q
where s′ ∈ S′ is a point corresponding to (q′′, d′) with d′ is the image of q′ via Q→ D. This

point q maps to p and Pq,η is birational to the same geometric fiber of Ŷq,η as FC,η in Yσi,j,η.
By the construction of the families F̂→ Ŝ, FC,η and P′

q,η are trivialized by a base change
B′ → B of degree ≤ d with the number of branch points ≤ t + dT+. By Lemma 10.6 Yσi,j,η
and Ŷq,η are trivialized by the same base change. Thus our assertion follows. □
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10.2. General statements. The following proposition will allow us to remove the global
positivity assumption in Theorem 10.8.

Proposition 10.9. Let π : X → B be a good fibration and let L be a generically relatively
ample Q-Cartier divisor. There is a birational model ϕ : X+ → X that restricts to an
isomorphism of generic fibers over B such that X+ is smooth and there is a π ◦ ϕ-vertical
effective Q-Cartier divisor G such that ϕ∗L+G is a big and semiample Q-Cartier divisor.

Proof. Choose a positive integer p such that A = pL − KX is generically relatively ample.
Choose E as in Proposition 9.1 applied to A. Thus there is an effective Q-divisor D ∼Q A+E
such that D|Xη has SNC support and has positive coefficients < 1. Let ψ : X ′ → X denote
a log resolution and let D′ denote the strict transform of the π-horizontal components of
D. Note that ψ is an isomorphism over Xη and so D′ and ψ∗D only differ by a π-vertical
divisor. Thus we can choose some positive integer m such that D′+mF −ψ∗D is Q-linearly
equivalent to an effective Q-Cartier divisor, where F denotes a general fiber of X ′ → B.

By passing to a relative canonical model, we obtain a birational map ρ : X ′ 99K X̂
such that ρ∗(KX ′ + D′ + mF ) is relatively ample. Note that ρ is an isomorphism along
X ′
η since (KX ′ + D′ + mF )|X ′

η
was already ample. By increasing m, we can ensure that

ρ∗(KX ′ + D′ + mF ) is ample. Let X+ denote a birational model admitting morphisms to

X and to X̂ . Then the difference between the pullback of 1
p
ρ∗(KX ′ +D′ +mF ) to X+ and

the pullback of L to X+ is Q-linearly equivalent to a π-vertical Q-Cartier divisor G′. Since
we may add any fiber of X+ → B to the pullback of 1

p
ρ∗(KX ′ +D′ +mF ) without affecting

semiampleness, we may eliminate the negative part of G′ to obtain the desired effective
π-vertical Q-Cartier divisor G. □

Putting everything together, we obtain the following variant of Theorem 10.7. (One can
easily develop an analogous variant of Theorem 10.8 using a similar argument.)

Theorem 10.10. Let π : X → B be a good fibration and let L be a generically relatively
ample Q-Cartier divisor. Fix a constant β.

(1) There is a proper closed subset R ⊊ X such that if M ⊂ Sec(X/B) is an irre-
ducible component parametrizing a non-dominant family of sections with (KX/B +
a(Xη, L|Xη)L) · C ≤ β then the sections parametrized by M are contained in R.

(2) There is a constant ξ, a proper closed subset V ⊂ X , and a bounded family of smooth
projective B-varieties Y equipped with B-morphisms f : Y → X satisfying:
(a) dim(Y) < dim(X ) and f is generically finite onto its image;
(b) a(Yη,−f ∗L|Yη) = a(Xη, L|Xη) and the Iitaka dimension of KYη + f ∗L|Yη is 0;
(c) ifM ⊂ Sec(X/B) is an irreducible component that generically parametrizes non-

HN-free sections C with L · C ≥ ξ and (KX/B + a(Xη, L|Xη)L) · C ≤ β then for
a general section C parametrized by M we have either
(i) C ⊂ V, or
(ii) for some f : Y → X in our family there is a HN-free section C ′ of Y/B

such that C = f(C ′).

Proof. Let ϕ : X+ → X be a birational morphism and G be a π-vertical effective Q-Cartier
divisor as in Proposition 10.9. Choose a positive integer k such that kϕ∗(L+G) is Cartier.
We define L+ = k(ϕ∗L+G) and β+ = β + τ(π ◦ ϕ,KX+/X + ka(X+

η , L
+|X+

η
)G).
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Choose a b > a(X+
η , L

+|X+
η
) such that bL+|X+

η
defines a basepoint free linear series. We

then apply the constructions of the proof of Theorem 10.7 to (X+, L+) with our chosen
constants and with T = 0 to obtain a constant ξ†, a closed subset V+ ⊂ X+, and a bounded

family of normal projective varieties q : F̂→ Ŝ equipped with Ŝ-morphisms p : F̂→ Ŝ×B
and g : F̂→ Ŝ×X+. We define V to be the union of ϕ(V+) with the locus where ϕ−1 is not
defined. We define ξ = 1

k
ξ†.

Suppose M ⊂ Sec(X/B) parametrizes a family of sections satisfying L · C ≥ ξ and
(KX/B+a(Xη, L|Xη)L)·C ≤ β. If the locus swept out by the curves parametrized byM meets
the locus where ϕ−1 is defined, by taking strict transforms we obtain a family of sections C+

on X+. These sections satisfy L+ ·C+ ≥ ξ†. Furthermore since a(X+
η , L

+|X+
η
) = 1

k
a(Xη, L|Xη)

we have
(KX+/B + a(X+

η , L
+|X+

η
)L+) · C+ ≤ β+.

First we prove the statement (1). We define R to be the union of V with the images
of the (finitely many) non-dominant families of sections satisfying L · C < ξ and (KX/B +
a(Xη, L|Xη)L) · C ≤ β. If we have a non-dominant family of sections C such that L · C ≥ ξ
then it follows from Theorem 10.7.(5) applied to (X+, L+) that the sections will be contained
in V and thus in R. Altogether we see that R has the desired property.

Next we prove (2). By Theorem 10.7 the bounded family F̂ → Ŝ equipped with the

composition F̂ → Ŝ × X+ → Ŝ × X satisfies all the properties except possibly Theorem
10.10.(2).(c). If M parametrizes a non-dominant family of sections, then as explained above
the sections are contained in V . On the other hand, if M parametrizes a dominant family
of non-HN-free sections, then the inclusion TX+ → ϕ∗TX is still injective upon restriction
to a general section C+. Thus the family of strict transforms C+ is a dominant family of
non-HN-free curves on X+. Theorem 10.7 shows that the general section parametrized by

M will be the pushforward of an HN-free section on some fiber F̂s. □

11. Fano fibrations

In this section we apply previous results to Fano fibrations.

11.1. The Υ-invariant.

Definition 11.1. Let π : X → B be a Fano fibration. Fix a positive rational number a.
By [KMM92, Theorem 0.2] there is a positive integer b = b(dim(X ), a) such that | − bKXη |
is very ample and b > a. Define Υa(π) to be the minimal value of τ(π,E) as we vary over
all effective π-vertical Q-Cartier divisors E constructed as in Proposition 9.1 with respect to
our choice of b and a. (Note that there is a divisor E achieving this infimum since if a = p

q

then each τ(π,E) lies in 1
bq
Z.)

We also define Υ(π) = Υ1(π).

Remark 11.2. The invariant Υ(π) measures the “failure” of π to be a trivial fibration. For
example, if X = X ×B for some Fano variety X then we have Υ(π) = 0.

Applying the results of Section 9 we obtain:

Theorem 11.3. Let π : X → B be a Fano fibration. Fix a positive rational number arel.
Fix a positive integer T . There is some constant ξ = ξ(dim(X ), g(B),Υarel(π), arel, T ) with
the following property.
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Suppose that ψ : Y → B is a good fibration equipped with a B-morphism f : Y → X that
is generically finite onto its image. Suppose that N is an irreducible component of Sec(Y/B)
parametrizing a dominant family of sections C on Y which satisfy −f ∗KX/B ·C ≥ ξ. Finally,
suppose that

dim(N) ≥ arel(−KX/B · C + (dim(X )− 1)(1− g(B)))− T.
Then

a(Yη,−f ∗KX/B|Yη) ≥ arel.

Proof. Set L = −KX/B. By [KMM92, Theorem 0.2] there is a positive integer b > arel
depending only on dim(X ) and arel such that | − bKXη | is very ample. We apply Theorem
9.6 with β = 0, with a = arel, with our choice of b, and with an effective π-vertical Cartier
divisor E as in Definition 11.1 that achieves the bound τ(π,E) = Υarel(π). The explicit
bound (9.5) for ξ is a max of two terms, which simplifies to

ξ =
1

arelϵ
((1− ϵ)Υarel(π)+T + (dim(X )− 1)(5g(B) + 3 + γ)(11.1)

+ arel(dim(X )− 1)(g(B)− 1) + 2g(B)− 2 + Ξ) + 1

where ϵ is a rational number chosen so that no smooth projective variety of dimension
≤ dim(X )− 1 has a Fujita invariant in the range [1− ϵ, 1) with respect to any big and nef
Cartier divisor, γ = (g(B) dim(X )− g(B) + 1)2(dim(X )− 1), and

• Ξ = 0, if g(B) ≥ 1.
• Ξ is the supremum of the constants obtained by applying Lemma 9.4 to all dimensions
≤ dim(X ), if g(B) = 0.

Theorem 9.6 immediately implies the desired conclusion. □

Remark 11.4. The exceptional set in Geometric Manin’s Conjecture as described in [LST22]
can include families of relatively free sections as well as families of non-relatively free sec-
tions. For example, sometimes we must discount the contributions of irreducible com-
ponents M ⊂ Sec(X/B) which parametrize relatively free sections when the evaluation
map for the universal family over M has disconnected fibers. Let f : Y → X denote
the finite part of the Stein factorization of the evaluation map. Theorem 11.3 shows that
a(Yη,−f ∗KX/B|Yη) = a(Xη,−KX/B|Xη) so that such sections can be accounted for by the
exceptional set of [LST22].

11.2. Proofs of main results. We now prove the theorems stated in the introduction
(except for Theorem 1.10 which is postponed to Section 13).

Proof of Theorem 1.3: (1) Let Y ′ be a resolution of Y and let N parametrize the strict
transforms on Y ′ of the general sections on Y parametrized byM . Since the Fujita invariant
is birationally invariant, the desired statement follows from Theorem 11.3 applied to Y ′ and
N with arel = 1 and T = 0.

(2) To see the equality of Fujita invariants for Y , we let Y ′ denote a resolution of singu-
larities and let N denote the family of sections on Y ′ such that f∗N is dense in M . The
desired equality follows from Theorem 11.3 applied to Y ′, N , and L = −KX/B with arel = 1
and T = 0.

We next construct the rational map ϕ. By [KMM92, Theorem 0.2] there is a positive
integer b > arel depending only on dim(X ) and arel such that |− bKXη | is very ample. Define
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ξ+ as in Corollary 9.11 applied to Y ′, N , L = −KX/B, arel = 1, β = 0, T = 0, with our choice
of b, and with an effective π-vertical Cartier divisor E as in Definition 11.1 that achieves
the bound τ(π,E) = Υ(π). Then Corollary 9.11 constructs a rational map ϕ : Y ′ 99K Z
over B that has all the desired properties. The only thing left to check is that dim(Z) ≥ 2,
or in other words, that the rational map ϕ is not trivial. Note that we have an inclusion
TY ′/B → f ∗TX/B. Since C ′ deforms in a dominant family on Y ′, this map remains injective
upon restriction to a general C ′ and we conclude that C ′ is not an HN-free section on Y ′.
But then the map Y ′ → B does not satisfy Corollary 9.11.(3), showing that ϕ must be
non-trivial. □

Proof of Theorem 1.6: This follows from Theorem 10.10 applied with L = −KX/B and β =
0. □

We will deduce Theorem 1.8 as a consequence of a slightly more precise theorem that takes
dominant maps into account:

Theorem 11.5. Let π : X → B be a Fano fibration. There is a linear function R(d) whose
leading coefficient is a positive number depending only on dim(X ) such that the following
property holds.

Suppose that M is an irreducible component of Sec(X/B) parametrizing a family of sec-
tions C which satisfy −KX/B · C = d. Let W ⊂ M be a locally closed subvariety. Let UνW
denote the normalization of the universal family over W equipped with the evaluation map
evW : UνW → X .
Then either:

(1) the codimension of W in M is at least ⌊R(d)⌋,
(2) evW is dominant with connected fibers, or
(3) evW factors through a generically finite non-birational morphism f : Y → X that

satisfies

a(Yη,−f ∗KX/B|Yη) ≥ a(Xη,−KX/B|Xη).

We emphasize that case (3) of Theorem 11.5 must be included: an accumulating morphism
can contribute families of bounded codimension in arbitrarily large degrees.

Proof. Fix a positive integer T . Define the constant ξ(T ) (depending also on dim(X ), g(B),
and Υ(π)) as in Theorem 11.3 using the constants arel = 1, an effective π-exceptional divisor
E as in Definition 11.1 such that τ(π,E) = Υ(π), and the chosen value of T . The explicit
description of ξ(T ) in Equation (11.1) shows that ξ(T ) is linear in T with leading coefficient
1/ϵ where ϵ = ϵ(dim(X )) is a positive rational number such that no smooth projective variety
of dimension ≤ dim(X ) − 1 has Fujita invariant in [1 − ϵ, 1) with respect to a big and nef
Cartier divisor. By inverting the linear function ξ(T ) we obtain a linear function R.
Suppose that evW does not satisfy (2). If evW is not dominant, let f : Y → X denote the

inclusion of the image of evW . If evW is dominant with disconnected fibers, let f : Y → X
denote the finite part of the Stein factorization of ev. For a fixed value of T , if d ≥ ξ(T ) and
the codimension of W is smaller than T then Theorem 11.3 shows that

a(Yη,−f ∗KX/B|Yη) ≥ a(Xη,−KX/B|Xη).

Equivalently, either the codimension ofW is at least ⌊R(d)⌋ or we have the desired inequality
of Fujita invariants. □
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Proof of Theorem 1.8. Since by assumption the sections parametrized by N do not dominate
X , case (2) in Theorem 11.5 does not hold. If case (1) does not hold, then evN factors through
a generically finite non-dominant morphism f : Y ′ → X satisfying

a(Y ′
η,−f ∗KX/B|Y ′

η
) ≥ a(Xη,−KX/B|Xη).

Set Y = f(Y ′). Since the Fujita invariant of Yη is at least as large as the Fujita invariant of
Y ′
η, we deduce the desired statement. □

Proof of Theorem 1.11: This is the special case of Theorem 6.10.(1) when E is [C]-semistable.
□

Proof of Theorem 1.13: This follows from Theorem 11.3 applied to an irreducible component
M ⊂ Sec(X/B) using arel = a and the inequality

dim(M) ≥ −KX/B · C + (dim(X )− 1)(1− g(B)).

□

Proof of Theorem 1.15: Let C be a general section parametrized by Ñ . By Corollary 3.4 we
have

−KỸ/B · C + (dim(Ỹ)− 1) ≥ dim(Ñ)

≥ dim(M)− T

≥ −f̃ ∗KX/B · C + (dim(X )− 1)(1− g(B))− T
Rearranging we see that

(KỸ/B − f̃
∗KX/B) · C ≤ T + g(B)(dim(X )− 1).

We conclude the desired statement by Corollary 8.13. □

12. Examples

Our first example illustrates how Theorem 1.3 can be used in practice to understand
sections.

Example 12.1 (Cubic hypersurface fibrations). Suppose that π : X → B is a Fano fibration
whose general fiber is a smooth cubic hypersurface of dimension n ≥ 4. We will analyze
the irreducible components of Sec(X/B) parametrizing non-relatively free sections of large
degree. (In the special case when X is a smooth cubic hypersurface and B = P1, [CS09]
proves a stronger statement for X × P1 by classifying all the irreducible components of
Mor(P1, X).)

A straightforward argument combining [Hör10, 1.3 Proposition] with the techniques of
[LT19b, Theorem 11.1] shows that:

• If n ≥ 5 then there are no non-birational generically finite morphisms f : Yη → Xη
with a(Yη,−f ∗KXη) ≥ 1.
• If n = 4 then there are no non-birational generically finite morphisms f : Yη → Xη
with a(Yη,−f ∗KXη) ≥ 1 unless Xη contains a plane. When Xη contains a plane, the
only possibility is that f is the composition of a birational map ϕ : Yη → P2

η and the

inclusion of a plane P2
η ⊂ Xη.
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Let M be a component of Sec(X/B) of sufficiently large anticanonical degree. Then
Theorem 1.3 shows:

(1) If n ≥ 5 thenM will generically parametrize relatively free sections and the evaluation
map for its universal family will have connected fibers as in Remark 11.4.

(2) If n = 4, then M can only fail to generically parametrize relatively free sections if it
parametrizes a family of sections whose intersection with Xη is contained in a plane.

This finishes the classification of irreducible components parametrizing non-free curves of
large degree.

Our second example addresses the non-generically-globally-generated locus. Let π : X →
B be a Fano fibration and let M be an irreducible component of Sec(X/B) of large degree.
Theorem 1.8 shows that the codimension in M of the non-generically-globally-generated
locus will grow linearly in degree except possibly when the sections sweep out a subvariety
with large Fujita invariant. The following example demonstrates that it is possible for the
non-generically-globally-generated locus to have constant codimension.

Example 12.2. LetX be a smooth cubic threefold. SupposeM is a component of Mor(P1, X)
parametrizing maps of anticanonical degree ≥ 3. We will see that M admits a (possibly
reducible) codimension 1 sublocus parametrizing multiple covers of non-free lines. In partic-
ular, the non-free locus in M will always have codimension 1.
[CS09] shows that for any degree d ≥ 2 the moduli stackM0,0(X, d) has two irreducible

components: a component Md that generically parametrizes irreducible free curves and a
component Rd that parametrizes degree d covers of lines. We will be interested in the
intersection Td of these two components.
Inside of the parameter space of lines on X the sublocus parametrizing non-free lines has

codimension 1. Thus the locus Qd ⊂ Rd parametrizing multiple covers of non-free lines
also has codimension 1. Note that Td will be contained in Qd. On the other hand, since
all components of the moduli stackM0,0(X, d) have the expected dimensionM0,0(X, d) has
only LCI singularities. Thus Td must have codimension 1. Altogether, we see that Td consists
of a (non-empty) union of irreducible components of Qd.
Since the general stable map parametrized by Td has irreducible domain, we see that

every irreducible component of Mor(P1, X) of degree ≥ 3 will have a codimension 1 sublocus
parametrizing non-free morphisms consisting of multiple covers of non-free lines.

This result illustrates Theorem 1.8 applied to the projection π : X×P1 → P1. Let Y ⊂ X
denote a subvariety swept out by the curves parametrized by an irreducible component of Td.
Then Y is also swept out by a one-parameter family of non-free lines; in particular we have
a(Y,−KX |Y ) = 1. Passing to the relative situation, we see that any codimension 1 locus
of Md parametrizing sections whose normal bundle is not generically globally generated will
sweep out a subvariety Y × P1 which has generic Fujita invariant ≥ 1.

13. An arithmetic application

In this section we prove Theorem 1.10. We freely use the notations set up in Section 1.5.
First of all, consider the open subscheme of the relative Hilbert scheme that parametrizes

sections of anticanonical height ≤ d which are not contained in R. There exists a finite set of
places Sd ⊃ S such that this open subset is flat over Spec oF,Sd

. Let ψ : Hd → Spec oF,Sd
be
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the closure of this set inside the relative Hilbert scheme equipped with the reduced structure.
Then ψ : Hd → Spec oF,Sd

is projective and flat.
We denote the generic fiber of ψ by Hd. By Theorem 1.6.(1) every irreducible component

of Hd parametrizes a dominant family of sections. Corollary 3.4 shows that the dimension
of such a component is bounded by d+ dimXη. Define

Cd :=

2(d+dimXη)∑
i=0

hising(H
an
d ,Q).

Since the ℓ-adic sheaf Riψ∗Qℓ
is constructible in the pro-étale topology by [BS15, Lemma

6.7.2], there exists a pro-étale open i : U → Spec oF,Sd
such that i−1Riψ∗Qℓ

is a constant
sheaf in the pro-étale topology. In particular there exists a finite set of places S ′

d ⊃ Sd such
that we have

hiét(Hd,v,Qℓ) = hising(H
an
d ,Q)

for all i and v ̸∈ S ′
d where Hd,v is the base change of Hd,v to the algebraic closure. By

applying the Grothendieck-Lefschetz trace formula and a version of the Weil conjectures for
singular projective varieties ([Del80]), we conclude that

N(Xv \Rv,−KXv/Bv , d) ≤ #Hd,v(kv) ≤ Cdq
d+dimXη
v

Thus assuming dϵ > dimXη, we can conclude that

N(Xv \Rv,−KXv/Bv , d)

q
d(1+ϵ)
v

→ 0

as v →∞.
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