
ERRATUM: RATIONAL CURVES ON PRIME FANO THREEFOLDS OF
INDEX 1

ERIC JOVINELLY, BRIAN LEHMANN, AND SHO TANIMOTO

Abstract. In this erratum, we provide correct proofs of Theorem 7.4 and Theorem 7.6 in
[LT21].

1. Introduction

The proofs of Theorem 7.4 and 7.6 of [LT21] are not correct. Indeed, the second and third
authors claimed that the zero locus of a general section of a globally generated locally free
sheaf is irreducible, but this is not correct in general. We need a stronger condition (such as
ampleness) to claim this, but unfortunately in our situations we do not have this property.
Thus the method of proof of Theorem 7.4 and 7.6 of [LT21] is not correct. In this erratum,
we provide correct proofs of Theorem 7.4 and Theorem 7.6.
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2. The spaces of prime Fano threefolds of index 1.

Let X be a smooth Fano threefold over C of Picard rank 1 and index 1 such that −KX

is very ample and (−KX)3 = 2g − 2. Note that g takes the values between 3 and 10 or 12;
we will focus on the cases 3 ≤ g ≤ 10. For each g in this range we construct a space M2g−2

parametrizing smooth Fano threefolds X with the given genus as well as certain singular
degenerations.
The case of g = 3: Let M4 = P69 be the projective space parametrizing quartic hypersur-
faces in P4. Let M4 = M4.
The case of g = 4: Let P20 be the projective space parametrizing quadric hypersurfaces in P5

and P55 be the projective space parametrizing cubic hypersurfaces in P5. We set M6 = P20×
P55. Let M6 ⊂ M6 be the Zariski open subset parametrizing pairs of quadric hypersurfaces
and cubic hypersurfaces whose intersection is a complete intersection of dimension 3.
The case of g = 5: Let A28 be the vector space of quadric sections on P6. Let M8 =
Gr(3,A28) be the Grassmannian parametrizing nets of quadrics. Let M8 ⊂M8 be the Zariski
open subset parametrizing nets of quadrics whose base locus is a complete intersection of
dimension 3.
The case of g = 6: Let P54 be the projective space parametrizing quadric hypersurfaces
in P9, A10 be the vector space of linear sections on P9, and Gr(2,A10) be the Grassmannian
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parametrizing pencils of hyperplane sections. We set M10 = P54 × Gr(2,A10). Let M10 ⊂
M10 be the Zariski open subset parametrizing pairs of quadrics and pencils such that the
intersection of the quadric, the base locus of the pencil, and Gr(2, 5) ⊂ P9 is a complete
intersection of dimension 3 in Gr(2, 5).
The case of g = 7: Let A16 be the vector space of linear sections on P15 and Gr(7,A16)
be the Grassmannian parametrizing 7-dimensional subspaces of hyperplane sections. We set
M12 = Gr(7,A16). Let M12 ⊂ M12 be the Zariski open subset parametrizing subspaces of
hyperplane sections such that the intersection of the base locus and OGr+(5, 10) ⊂ P15 is a
complete intersection of dimension 3 in OGr+(5, 10).
The case of g = 8: Let A15 be the vector space of linear sections on P14 and Gr(5,A15)
be the Grassmannian parametrizing 5-dimensional subspaces of hyperplane sections. We
set M14 = Gr(5,A15). Let M14 ⊂ M14 be the Zariski open subset parametrizing subspaces
of hyperplane sections such that the intersection of the base locus and Gr(2, 6) ⊂ P14 is a
complete intersection of dimension 3 in Gr(2, 6).
The case of g = 9: Let A14 be the vector space of linear sections on P13 and Gr(3,A14)
be the Grassmannian parametrizing 3-dimensional subspaces of hyperplane sections. We set
M16 = Gr(3,A14). Let M16 ⊂ M16 be the Zariski open subset parametrizing subspaces of
hyperplane sections such that the intersection of the base locus and LGr(3, 6) ⊂ P13 is a
complete intersection of dimension 3 in LGr(3, 6).
The case of g = 10: Let A14 be the vector space of linear sections on P13 and Gr(2,A14)
be the Grassmannian parametrizing 2-dimensional subspaces of hyperplane sections. We
set M18 = Gr(2,A14). Let M18 ⊂ M18 be the Zariski open subset parametrizing subspaces
of hyperplane sections such that the intersection of the base locus and G2/P ⊂ P13 is a
complete intersection of dimension 3 in G2/P .

Lemma 2.1. For each 3 ≤ g ≤ 10, M2g−2 is smooth and simply connected.

Proof. Since M2g−2 is smooth and simply connected, it suffices to show that the codimension
of M2g−2 \M2g−2 is at least 2. We will demonstrate this proof when g = 6; the other cases
are similar. Let X ⊂ P9×M10 be the family formed by intersecting Gr(2, 5) with the quadric
and codimension 2 linear space defined by the corresponding point in M10. We denote the
projections by π : X →M10 and ev : X → Gr(2, 5). Then every fiber of ev is isomorphic to
P53×Gr(2, 9). In particular X is irreducible. However, if M10 \M10 has codimension 1, then
X cannot be irreducible: every fiber of π over M10 \M10 has dimension at least 4, so in this
situation the π-preimage of M10 \M10 would contain an additional irreducible component
of X by a dimension count. Our assertion follows. �

Let D2g−2 ⊂ M2g−2 be the locus parametrizing singular objects; we call this locus the
discriminant locus. Regarding this locus, we have

Lemma 2.2. For each 3 ≤ g ≤ 10, D2g−2 is irreducible in M2g−2.

Proof. We demonstrate this analysis when g = 6. Let π : X → M10 be the universal family
of complete intersections of one quadric section and two hyperplane sections on Gr(2, 5)
with the evaluation map ev : X → Gr(2, 5). Then for any x ∈ Gr(2, 5), the fiber ev−1(x) is
isomorphic to a Zariski open subset of P53 × Gr(2, 9) parametrizing complete intersections
containing x. Among them, complete intersections which are singular at x form an irreducible
locus of dimension 63. Indeed, this follows from the fact that in the space of matrices, the
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locus of non-full rank matrices is irreducible. Thus as x varies, singular threefolds form an
irreducible locus of dimension at most 69 in M10.

The other cases are similar. Every family is defined by taking hypersurface sections of a
homogeneous space G. The sublocus parametrizing threefolds which are singular at a fixed
point x ∈ G corresponds to choices of hypersurface sections whose derivatives are linearly
dependent in TxG. This is a cone over the locus of non-full rank matrices A : TxG→ kdim G−3,
which is always irreducible. Letting x vary, we see that D2g−2 is irreducible. �

Lemma 2.3. For each 3 ≤ g ≤ 10, a general variety parametrized by D2g−2 is a terminal
Gorenstein Fano threefold embedded via its anticanonical linear series.

Proof. We first show that each D2g−2 actually parametrizes a single threefold of the desired

type. Let X be a smooth Fano threefold of genus g ≥ 5. Let X̃ denote the blow-up of X along

a line and consider the anticanonical model φ : X̃ → X̄. By [IP99, Proposition 4.3.1], X̄ is a
terminal Gorenstein Fano threefold of index 1 and genus g′ = g−2. This constructs singular
Fano threefolds of genus 3 ≤ g′ ≤ 8 and g′ = 10. By [IP99, Lemma 4.1.1, Proposition 4.4.1],
when g = 12 we may obtain a terminal Gorenstein Fano threefold of genus g′ = 9 by
blowing up a conic instead of a line. In each case, φ∗(−KX̄) = −KX̃ is not expressible as
the sum of two moving Weil divisors. Thus each X̄ is BN-general in the sense of [Muk02,
Proposition 7.8]. Hence, the anticanonical linear series embeds X̄ as a complete intersection
of the desired type [Muk02, Theorem 6.5(2)].

We next verify that our desired properties spread out to a general threefold parametrized
by the (irreducible) variety D2g−2. Since the property of being a Gorenstein terminal three-
fold is open in flat families ([KM98, Corollary 5.44]), we conclude that a general member of
D2g−2 has these properties. Once we know the Gorenstein terminal property for the general
singular threefold, it is clear from the construction that each such threefold is embedded by
the anticanonical linear series. �

3. Spaces of Curves

For each moduli space M2g−2 parametrizing Fano threefolds as constructed earlier, let π :
X2g−2 →M2g−2 be the parametrized family of complete intersections. Let X2g−2 ⊂ X2g−2 be
a general fiber of π. Every component of the Kontsevich space M0,0(X2g−2) which generically
parametrizes free curves extends to a component of M0,0(X2g−2) parametrizing free curves
on X2g−2. To prove irreducibility of moduli spaces of free curves on X2g−2, we analyze the
corresponding components of M0,0(X2g−2).

Lemma 3.1. The locus of M0,0(X2g−2) parameterizing free cubics (resp. very free quartics)
contracted by π is irreducible.

Proof. Let G be the homogenous space containing each fiber of π as a complete intersection
and consider the evaluation map ev : X2g−2 → G. By [LT21, Lemma 7.3 and Lemma
7.5], a general free cubic (resp. very free quartic) on X2g−2 embeds as a rational normal
curve in G. Rational normal curves of degree d = 3, 4 in G form an irreducible family
([Tho98]). Moreover, for each such curve the sublocus of M2g−2 parametrizing complete
intersections which contain the curve is irreducible. Thus the corresponding family in X2g−2

is also irreducible. �
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Let Z3, Z4 ⊂M0,0(X2g−2) be the closure of the locus of free cubics (resp. very free quartics)
contracted by π. The following lemma verifies the validity of the statements of [LT21,
Theorem 7.4 and Theorem 7.6].

Lemma 3.2. For d = 3, 4, the natural map π∗ : Zd →M2g−2 has irreducible general fiber.

Proof. Let Z̃ be a resolution of Zd and assume the Stein factorization f : Z̃ → Y , g :
Y → M2g−2 of π∗ : Z̃ → M2g−2 is nontrivial. Since M2g−2 is smooth and simply connected,
the branch locus B ⊂ M2g−2 of the finite part of the Stein factorization is non-empty and

has codimension one. Over any point b ∈ B, the fiber of Z̃ has an everywhere non-reduced
connected component N . By upper semicontinuity of fiber dimension applied to the image of
the family of curves parametrized by Z̃ in Y ×M2g−2X2g−2, some irreducible component N1 ⊂
N parametrizes a dominant family of curves of dimension ≥ d on the complete intersection
Xb = π−1(b). When d = 4, by a similar upper semicontinuity argument and [LT21, Lemma
8.1], we may further assume N1 parameterizes curves passing through two general points
which are general in X×2

b . Since B has codimension 1, Lemma 2.3 shows that for b ∈ B
general Xb has at worst Gorenstein terminal singularities.

By functoriality, we may identify N1 with a non-reduced component of M0,0(Xb, d). Since
Xb has terminal Gorenstein singularities and N1 pararameterizes a dominant family of curves,
[LT23, Lemma 2.3] shows that if the general curve C parametrized by N1 is irreducible then
a general point of N1 parametrizes a free curve. Since N1 is non-reduced, we conclude that
the general curve C parameterized by N1 must be reducible. We will prove our statement
by studying the locus of reducible curves in Xb of low degrees and verifying that there can
be no such component N1 parametrizing reducible curves and satisfying the other properties
described above.

From now on we assume that the general curve C parametrized by N1 is reducible. As we
vary C there is (at least) one component C1 ⊂ C which dominates Xb and therefore belongs
to a component of M0,0(X) that parametrizes free curves and has the expected dimension.
The other components of C must have total degree between one and two.

We first claim that each irreducible non-contracted component of C \ C1 belongs to an
irreducible component of M0,0(X) that parametrizes a non-dominant family of curves. Oth-
erwise C would be a quartic curve with two conics as irreducible components. The space of
such conics through any fixed point x ∈ X has dimension at most 1, and will have dimension
equal to 1 at only finitely many points. Thus the locus of reducible deformations of C has
dimension three. However, the irreducible component of M0,0(X) parametrizing C must
have dimension at least four. This verifies the claim.

We show that there can be no N1 as described above by considering separately the cases of
anticanonical degree 3 and 4. If −KXb

·C = 4, recall that we may assume N1 parameterizes
a quartic curve passing through two general points of Xb. This is impossible if the general
curve parameterized by N1 is reducible, a contradiction.

Suppose −KXb
· C = 3 instead. It follows that C = C1 ∪ C2, where −KXb

· Ci = 3 − i.
Let W ( Xb denote the closed subvariety swept out by the deformations of C2. As −KXb

is Cartier, the argument of [LT19a, Proposition 4.2] shows that W has a-invariant strictly
greater than 1:

a(W,−KXb
|W ) ≥ 1 +

q + 1

−KXb
· C2

> 1.
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where q is the difference between the actual dimension of deformations and the expected
dimension of deformations of C2. Note that if q > 0 then a(W,−KXb

|W ) > 2. Appealing
to the classification of surfaces with large a-invariant (see [LT19b, Proposition 3.17]) we see
that one of the following two conditions hold:

(1) Deformations of C2 have the expected dimension −KXb
· C2 = 1;

(2) Letting φ : W̃ → W denote a resolution of singularities, a run of the (KW̃ −3φ∗KXb
)-

MMP yields a birational morphism ψ : W̃ → P2 and ψ∗O(1) is linearly equivalent to
−φ∗KXb

.

Since −KXb
is very ample, every (−1)-curve contracted by ψ is also contracted by φ. Thus

we may set W̃ = P2 so that φ is a finite birational morphism. Furthermore, since no sublinear
series of |O(1)| is basepoint free, we conclude that φ must be an isomorphism.

Recall that as we vary C the images of the component C1 dominate X. Since C1 is a
conic, if we fix a finite set of points in the divisor swept out by C2 then the general C1 will
meet C2 away from this finite set. Hence, the dimension of the space of stable maps formed
by attaching C1 to C2 has the expected dimension. In particular if C2 satisfies (1) then
dim N1 < −KXb

· C, giving our contradiction. If C2 satisfies (2) instead, then for general C
in N1 both C1 and C2 are general in moduli. Note that since (W,−KXb

) is isomorphic to
(P2,O(1)), the normal sheaf of W in X restricted to C2 is isomorphic to O(−2) because C2

avoids any singular point on X. It follows from this that the normal bundle of C2 is given
by

O(1)⊕O(−2).

Moreover it follows from [BLRT22, Proposition 2.9] that C1 meets with W transversally.
Thus we conclude by [GHS03, Lemma 2.6] that the first cohomology of the normal bun-
dle of C vanishes. Therefore, [C] is a smooth (and in particular, reduced) point of N1, a
contradiction. �
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