EXERCISES FOR CHAPTER 2

0.1. Geometric properties.

Exercise 0.1. RPoV Exercise 2.1

Exercise 0.2. Suppose that X and Y are two varieties over a field k.

- (1) Show that if X and Y are geometrically irreducible then $X \times Y$ is geometrically irreducible. Find a counterexample to this statement if we remove the word "geometrically."
- (2) Show that if X and Y are geometrically reduced then $X \times Y$ is geometrically reduced. Find a counterexample to this statement if we remove the word "geometrically."

0.2. Closed points.

Exercise 0.3. RPoV Exercise 2.11

Exercise 0.4. RPoV Exercise 2.13 and 2.14

Exercise 0.5. Describe the closed points of $\mathbb{P}^1_{\mathbb{F}_q(t)}$. (This is not a well-defined problem; part of the problem is figuring out how to think about these points. One option is to show that these closed points are parametrized by a countable union of \mathbb{F}_q -schemes.)

0.3. Scheme-valued points.

Exercise 0.6. RPoV Exercise 2.4

Exercise 0.7. RPoV Exercise 2.5

Exercise 0.8. RPoV Exercise 2.7

0.4. Curves.

Exercise 0.9. RPoV Exercise 2.12

Exercise 0.10. Let X denote a regular, projective, geometrically integral curve over a field k with genus 0. Prove that the following are equivalent:

- (1) X is isomorphic to \mathbb{P}^1 .
- (2) X has a rational point.
- (3) X carries a line bundle of degree 1.

Exercise 0.11. Let X denote a regular, projective, geometrically integral curve over a field k. Suppose \mathcal{L} is a line bundle of degree 0 on X. Prove that either $\mathcal{L} \cong \mathcal{O}_X$ or we have dim $H^0(X, \mathcal{L}) = 0$ and dim $H^1(X, \mathcal{L}) = g - 1$. (Hint: if dim $H^0(X, \mathcal{L}) > 0$ then the global section defines a morphism $\mathcal{O}_X \to \mathcal{L}$. What can the kernel and cokernel look like?)

Exercise 0.12. Let X denote the projective curve over $\mathbb{F}_3(t)$ defined by the equation $zy^2 = x^3 + tz^3$ in \mathbb{P}^2 .

(1) Prove that X is regular and geometrically integral.

- (2) Prove that X has genus 1.
- (3) Let $L = \mathbb{F}_3(t^{1/3})$. Show that X_L is not regular and that its normalization has genus 0.

Exercise 0.13. Let X be the curve $y^2 = -x^6 + x^2 - 1$ over the field \mathbb{F}_3 . Let \overline{X} be the normal projective model of X.

- (1) Show that X does not admit any rational points. (I think \overline{X} also does not but I did not check carefully.)
- (2) Prove that \overline{X} admits a line bundle of degree 1.