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Abstract. Suppose that X is a smooth projective variety and that C is a general member
of a family of free rational curves on X. We prove several statements showing that the
Harder-Narasimhan filtration of TX |C is approximately the same as the restriction of the
Harder-Narasimhan filtration of TX with respect to the class of C. When X is a Fano
variety, we prove that the set of all restricted tangent bundles for general free rational
curves is controlled by a finite set of data. We then apply our work to analyze Peyre’s
“freeness” formulation of Manin’s Conjecture in the setting of rational curves.

1. Introduction

Let X be a smooth projective variety over C. For any rational curve f : P1 → X the
restricted tangent bundle f ∗TX decomposes into a sum of line bundles and this decom-
position controls the deformation theory of f . The possible direct summand decomposi-
tions of f ∗TX have been extensively studied for special varieties including projective space
[Asc88], [Ram90], [Ran01], [GHI13], [BGI16], homogeneous varieties [Man19], and hypersur-
faces [BS20b]. They have also been studied by Hwang and Mok in the context of minimal
rational curves; see [HM99, Hwa98] for more details.

Our goal is to study the behavior of the restricted tangent bundle for rational curves on
arbitrary Fano varieties. We will concentrate on free rational curves which are general in
moduli – the restricted tangent bundle of any other free curve will be a specialization. Our
main results show that for general curves the Harder-Narasimhan filtration of the restricted
tangent bundle approximately corresponds to the Harder-Narasimhan filtration of the tan-
gent bundle with respect to the curve class; for highly multiple curve classes in dimension
at most 5, the correspondence is exact. Furthermore, we show that for Fano varieties these
filtrations are “controlled” by a finite set of data.

Given a smooth projective variety X, we let Rat(X) denote the closure in M0,0(X) of the
sublocus parametrizing stable maps with irreducible domains onto free rational curves. The
following definition identifies our main object of interest.

Definition 1.1. Let X be a smooth projective variety of dimension n and let f : P1 → X
be a morphism with image curve C = f∗P1. We will write f ∗TX ∼= ⊕ni=1O(ai) where the ai
are non-increasing. We also let µC(TX) = −KX ·C

n
denote the slope of TX with respect to C.

The slope panel of the rational curve C is the n-tuple

SP(C) :=

(
a1

µC(TX)
,

a2
µC(TX)

, . . .
an

µC(TX)

)
.

The primary factor in determining the slope panel of C is the Harder-Narasimhan filtration
of TX with respect to the class of C. Loosely speaking, one expects the Harder-Narasimhan

1



filtration of TX |C to be “close” to the restriction of the Harder-Narasimhan filtration of
TX with respect to the class of C. We will encapsulate this expectation via the following
definition.

Definition 1.2. Let X be a smooth projective variety of dimension n and let M be an
irreducible component of Rat(X). Let ψ : Y → X be a resolution of the Stein factorization
of the evaluation map for the normalization of the irreducible component of M0,1(X) lying
over M . Let C ′ denote the image on Y of a general curve parametrized by M and denote
the Harder-Narasimhan filtration of TY with respect to the class of C ′ by

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fr = TY .

For each i ∈ {1, . . . , n}, we let σ(i) denote the smallest integer such that rk(Fσ(i)) ≥ i. Set
bi = µC′(Fσ(i)/Fσ(i)−1). We define the expected slope panel of C to be the n-tuple

ESP(C) :=

(
b1

µC(TX)
,

b2
µC(TX)

, . . .
bn

µC(TX)

)
.

(In other words, the slope panel has rk(Fi/Fi−1) entries equal to µC′(Fi/Fi−1)/µC(TX).)

Remark 1.3. When the evaluation map for the universal family over M has connected
fibers, the expected slope panel is determined by the Harder-Narasimhan filtration of the
tangent bundle of X as explained above. In general, the expected slope panel for C is defined
using the tangent bundle on a generically finite cover of X and not on X itself.

Our first theorem shows that the slope panel is usually very close to the expected slope
panel. Fix a positive integer k and an irreducible component M of Rat(X). Choose an
irreducible component of the sublocus of M parametrizing stable maps through a general
rational point p in X, take k general rational curves in this locus, and glue them at p to
obtain a stable map. It turns out that this prescription uniquely determines an irreducible

component of Rat(X) (see Definition 7.7). As we vary the components M , we let Rat
(k)

(X)
denote the subset of Rat(X) obtained via this construction.

Theorem 1.4. Let X be a smooth projective uniruled variety of dimension n.

(1) Fix ε > 0. Then for any irreducible component M of Rat(X) that parametrizes curves
of anticanonical degree ≥ n2/2ε a general curve C parametrized by M will satisfy

| SP(C)− ESP(C)|sup < ε.

(2) Suppose n ≤ 5. Then there is some constant k = k(n) (independent of X) such that

a general curve C parametrized by an irreducible component M of Rat
(k)

(X) satisfies
SP(C) = ESP(C).

The first statement is a direct consequence of the Grauert-Mulich theorem recently proved
in [PRT20, Proposition 3.1]. The second statement relies on a “Mehta-Ramanthan” type
result which we discuss in Section 1.2 below.

Remark 1.5. When TX is semistable we might expect that a “sufficiently positive” free
rational curve will have restricted tangent bundle which is as close to semistable as possible
in the sense that its direct summands differ by at most 1. However, [Man19] shows that this
property fails already for the Grassmannian G(1, 3); see Example 7.8. Thus we can only
hope for such a statement for a “sufficiently divisible” curve as in Theorem 1.4.(2).
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It is natural to ask how the expected slope panel changes as we vary the numerical class
of the family of rational curves. When X is Fano, we can prove a strong finiteness statement
that combines the results of [Neu09] with techniques from [LST18].

Theorem 1.6. Suppose X is a smooth Fano variety of dimension n. There is a finite set
of generically finite morphisms {φi : Yi → X} from smooth projective varieties Yi and for
every i a finite set of homomorphisms {`ij : N1(Yi)Z → Qn} such that the following holds.

For every irreducible component M of Rat(X) there is an index i and an irreducible
component N of Rat(Yi) such that composition with φi induces a dominant rational map

φi∗ : N 99KM . Moreover, there is an index j such that ESP(C) = dim(X)
−KX ·C

`ij(C
′) where C,C ′

denote general curves parametrized by M,N respectively.

1.1. Peyre’s formulation of Manin’s Conjecture. One of our motivations for this study
is [Pey17] in which Peyre formulated a new version of Manin’s Conjecture based on the notion
of the “freeness” of a rational point. Peyre suggests that the exceptional set in Manin’s
Conjecture over a number field should include all points with small “freeness”.

[LT19b] formulates a version of Manin’s Conjecture for rational curves known as Geometric
Manin’s Conjecture. This conjecture predicts the behavior of the discrete invariants of
irreducible components of Rat(X) – the dimension and the number of components – as the
degree increases. Just as in Manin’s Conjecture for rational points, one must remove an
“exceptional set” of components to obtain the expected asymptotic behavior. We will use a
construction of the exceptional set that is inspired by (but not identical to) the definitions
of [LT19b], [LST18]. Our goal is to contrast this construction with Peyre’s formulation.

By analogy with [Pey17], we make the following definition:

Definition 1.7 ([Pey17] Définition 4.11). The minimal slope ratio of a free curve C is the
smallest entry an/µC(TX) in the slope panel of C.

It is then interesting to ask how the exceptional set in Geometric Manin’s Conjecture
interacts with the set of irreducible components of Rat(X) which have small minimal slope
ratio. The example of [Saw20] shows that Peyre’s formulation may not “remove enough”
– there can be components with large minimal slope ratio which dominate the asymptotic
count. On the other hand, our work suggests that Peyre’s formulation will never “remove
too much.”

More precisely, given a Fano variety X Theorem 1.4 constrains the set of lattice points
in Nef1(X) which can be represented by components of Rat(X) with small minimal slope
ratio. Assuming that irreducible components of Rat(X) are “equidistributed” in Nef1(X)
(see Conjecture 8.5) this implies that the set of components removed by [Pey17] but not by
[LST18] will only make a negligible contribution to the asymptotic counting function.

In the following statement, N(X,−KX , q, d) denotes the counting function in Geometric
Manin’s Conjecture (reflecting the dimension and number of components of Rat(X)) and
N `>ε(X,−KX , q, d) denotes the modified counting function of [Pey17].

Theorem 1.8. Assume Geometric Manin’s Conjecture (Conjecture 8.5). Let X be a smooth
projective Fano variety and let ε : [1,∞) → (0, 1) be a continuous decreasing function such
that limd→∞ ε(d) = 0. For any δ > 0, there is some d0 sufficiently large such that

N `>ε(X,−KX , q, d) > (1− δ)N(X,−KX , q, d)

for every d ≥ d0.
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We will define the various terms and state a precise version of Geometric Manin’s Conjec-
ture in Section 8.

1.2. Deformations of vector bundles on rational curves. Our main tool for relating
the behavior of Harder-Narasimhan filtrations to restricted tangent bundles is the version of
the Grauert-Mulich theorem recently proved in [PRT20, Proposition 3.1]. For vector bundles
of low rank, we will prove an even stronger statement:

Theorem 1.9. Let X be a smooth projective variety and let E be a torsion-free coherent
sheaf on X of rank ≤ 5. There is some constant r (independent of X and E) such that the
following holds.

Let M be a component of Rat(X) such that the evaluation map for a resolution of the
universal family over M has connected fibers and let C be a general curve parametrized by
M . If E is semistable with respect to the class of C, then there is a free rational curve C ′

obtained by gluing r members of M and smoothing such that E|C′ is semistable.

Remark 1.10. This result is reminiscent of the Mehta-Ramanathan theorem which ad-
dresses complete intersection classes of the form Hn−1 for an ample divisor H. We do not
know whether an analogous “Mehta-Ramanathan result” for free rational curves holds when
the torsion free sheaf E has arbitrary rank.

Our proof of Theorem 1.9 has two inputs. First, we perform a careful analysis of how vector
bundles behave on a smooth family of rational curves specializing to a union of two curves
meeting at a node. Theorem 4.8 bounds the possible direct summands of the restriction of
a bundle to a general curve in terms of its restriction to the nodal curve. Second, given
a vector bundle E on a projective variety X we study when the positive summands of the
restriction of E to a family of rational curves can be combined to yield a saturated subsheaf.

Organization: Our main statements (Theorem 1.4.(1), Theorem 1.4.(2), Theorem 1.6)
address similar topics but the proofs are mostly independent of each other.

We present some background material in Section 2 and Section 3. Section 4 and Section
5 are dedicated to the proof of Theorem 1.9: in Section 4 we analyze the behavior of vector
bundles on a rational curve under the simplest type of deformation and in Section 5 we apply
this analysis to the study of semistable low-rank vector bundles. The material in Sections 4
and 5 is used to prove Theorem 1.4.(2) but is not needed for Theorem 1.4.(1) and Theorem
1.6.

In Section 6 we prove Theorem 1.6 by studying the behavior of the restricted tangent
bundle for families of curves which factor through generically finite covers. Section 7 is
devoted to the proof of Theorem 1.4: the first part is a straightforward application of Grauert-
Mulich to restricted tangent bundles and the second part follows quickly from the results in
Section 5. Finally, Section 8 discusses applications of Theorem 1.4 to Peyre’s formulation of
Manin’s Conjecture for rational curves.
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for several helpful comments about Grassmannians. We also thank Anand Deopurkar for an
example clarifying the importance of smoothness in Section 4. We are grateful to Jason Starr
for helpful comments on [Kol96]. We also thank the referees for the helpful suggestions. Part
of this work was done at an AIM SQuaRE workshop, and we thank AIM for the excellent
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is supported by NSF grant DMS 1945144.

2. Preliminaries

Throughout we will work with separated finite type schemes over C. All varieties are
reduced and irreducible. For a projective variety X we will use N1(X) to denote the space
of R-Cartier divisors up to numerical equivalence and N1(X) to denote the dual space of
1-cycles up to numerical equivalence. We will also use Eff1(X) ⊂ N1(X) to denote the
pseudo-effective cone of divisors and Nef1(X) ⊂ N1(X) to denote the nef cone of curves.
N1(X)Z will denote the lattice of classes of integral 1-cycles lying inside N1(X). We will use
the same convention for subsets, i.e. if C ⊂ N1(X) then CZ := C ∩N1(X)Z.

2.1. Vector bundles on rational curves. Let E denote a rank r degree d vector bundle
on P1. We can write

E ∼= ⊕ri=1O(ai)

where ai ≥ aj for i < j and
∑r

i=1 ai = d. We say that E is k-balanced if supi,j |ai − aj| = k.
Note that if E is 0-balanced or 1-balanced then E is “as balanced as possible” given its degree
and rank.

We will need the following result showing that vector bundles on P1 can only become
“more balanced” under generalization.

Lemma 2.1 ([EH16] Theorem 14.7.(a)). Let E1, E2 be two vector bundles on P1 of equal rank
r and degree d, and write

E1 = ⊕ri=1O(ai) E2 = ⊕rj=1O(bj)

where the {ai} and {bj} form non-increasing sequences. The vector bundle E1 specializes to
E2 if and only if for every integer k satisfying 1 ≤ k ≤ r we have

r∑
i=r−k+1

ai ≥
r∑

j=r−k+1

bj.

Definition 2.2. Suppose that E is a vector bundle on P1 of the form E ∼= ⊕ri=1O(ai) where
the ai are non-increasing. Set µ = deg(E)/r. The slope panel of E is the r-tuple of rational
numbers (

a1
µ
, . . . ,

ar
µ

)
.

The minimal slope ratio is the smallest entry in the slope panel.

Definition 2.3. We will say that a vector bundle E on P1 is sequential if when we write
E ∼= ⊕ri=1O(ai) as above we have ai ≥ ai−1 − 1 for 1 < i ≤ r.

2.2. Saturated subsheaves. Let X be a smooth projective variety equipped with a locally
free sheaf E . In this section we briefly recall some facts about saturated subsheaves of E .

Lemma 2.4. Let X be a smooth projective variety equipped with a locally free sheaf E and
let U ⊂ X be an open subset. Any saturated subsheaf FU ⊂ E|U extends in a unique way to
a saturated subsheaf F ⊂ E.
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Proof. Consider the subsheaf FU ⊂ E|U . By combining [Sta20, Lemma 28.22.2] with the fact
that a finite type subsheaf of a coherent sheaf is coherent, we see that there is a coherent
subsheaf F ′ ⊂ E such that F ′|U = FU . Let F denote the saturation of F ′ in E . Since FU is
saturated we have F|U = FU .

We next argue that there is a unique such extension. Suppose given two saturated sub-
sheaves F1,F2 of E extending FU . Consider the composition of the inclusion F1 → E with
the quotient E → E/F2. The composition vanishes along U , and since E/F2 is torsion-free
we conclude that the map vanishes everywhere. As the reverse is also true by symmetry we
see that F1 = F2. �

Lemma 2.5. Let X be a smooth projective variety equipped with a locally free sheaf E of
rank n. There is a bijection between saturated subsheaves F ⊂ E of rank d and rational maps
X 99K Gr(n− d, E) to the relative Grassmannian of (n− d)-dimensional quotients.

Proof. First suppose we have a saturated subsheaf F ⊂ E . Let U ⊂ X denote an open
subset such that E/F|U is locally free. Then we obtain a morphism U → Gr(n− d, E) using
the universal property of the Grassmannian.

Conversely, suppose given a rational map φ : X 99K Gr(n − d, E) defined on an open set
U . By taking the φ-pullback of the universal subsheaf on Gr(n−d, E), we obtain a saturated
subsheaf FU ⊂ E|U . We can then extend this to a saturated subsheaf of E on all of X using
Lemma 2.4.

By the uniqueness in Lemma 2.4 these two constructions are inverse to each other. �

We next use Lemma 2.5 to construct saturated subsheaves from dominant families of
curves.

Lemma 2.6. Let E be a torsion-free sheaf on a smooth projective variety X. Let g : C → X
be the evaluation map for a family of free rational curves parametrized by an open subset of a
component of Rat(X) and let F0 be a torsion-free subsheaf of g∗E. Then there is a saturated
subsheaf F of E whose fiber at a general point p is the span of (F0)(f,p) as f : C → X ranges
over all curves in C passing through p.

Furthermore, for a general curve C parametrized by C we have an injection F0|C → g∗F|C.

Proof. Recall that any torsion-free sheaf is locally free away from a codimension 2 subset.
By [Kol96, II.3.7 Proposition] a general member C of a family of free rational curves will
not intersect a fixed codimension 2 subset. Thus, if we choose a general member C of our
family of curves we can assume that C is contained in the locally free locus of any finite set
of torsion-free sheaves.

Let V ⊂ C be the open subset for which g∗E/F0 is locally free. We obtain a morphism
V → Gr(rk(g∗E/F0), g

∗E). Since g is dominant, there is an open subset U of X contained in
f(V ). We can define a map U → Gr(d, E) sending a point p in U to the span of the planes
parametrized by g−1(p). By Lemma 2.5 this gives a saturated subsheaf F of E which is equal
to the span of (F0)(f,p) as we vary f : C → X over general curves in C through p. By taking
a closure, we see that F satisfies the first statement.

We still must show the final statement. By construction there is an open subset U ⊂ X
such that for a general curve C in our family, the map F0|C∩f−1U → g∗E|C∩f−1U factors
through g∗F|C∩f−1U . Since F is a saturated subsheaf of E and since C is general, it is still
true that g∗F is a saturated subsheaf of g∗E . Thus the factoring of the map F0|C → g∗E|C
through g∗F|C over f−1(U) extends to a factoring over all of C. �
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2.3. Stability of the tangent bundle for Fano varieties. Our main results show that
the restricted tangent bundle for rational curves depends upon the stability properties of
the tangent bundle. When X is a Fano variety, the stability of the tangent bundle has
been extensively studied, particularly in regards to its relationship with K-stability. In this
section, we briefly review some examples which help illustrate the possible range of behaviors
for Fano varieties.

Many Fano varieties of Picard rank 1 – complete intersections in projective space ([PW95]),
many homogeneous varieties ([Bor12]), all examples of dimension ≤ 5 ([Hwa98]) – have
stable tangent bundle. Previously it was expected that a Fano variety of Picard rank 1 will
always have a stable tangent bundle. However, [Kan19] gave several examples of smooth
horospherical varieties of Picard rank 1 which have unstable tangent bundle. In particular,
for such varieties TX is not stable with respect to any nef curve class.

This same phenomenon can occur for Fano varieties of higher Picard rank.

Example 2.7. Fix a projective space Pn and choose a non-increasing sequence of positive
integers {ai}mi=0 whose sum d satisfies d ≤ n. Let X be the projective bundle PPn(⊕iO(ai))
equipped with the map π : X → Pn. Then X is a Fano variety. Let ξ denote a section of
OX/Pn(1) and let H denote the pullback of a hyperplane on Pn. Then

Eff1(X) = 〈H, ξ − a0H〉.
If we set α = ξm ·Hn−1 and ` = Hn · ξm−1 we get the following intersection matrix:

H ξ
α 1 d
` 0 1

Thus the nef cone of curves is generated by the class ` of a line in a fiber in π and the
class β = α + (a0 − d)`.

Consider the restriction of the exact sequence

0→ TX/Pn → TX → π∗TPn → 0

to a general free rational curve f : C → X of class xβ + y`. The restriction of the leftmost
term has degree x(ma0 + a0 − d) + y(m + 1) and the restriction of the rightmost term has
degree x(n+ 1). Choose parameters so that a0 = d = n ≥ 3 and m ≥ 2. Then the sheaf on
the left has slope at least 1 larger than the sheaf on the right so that TX |C will be unbalanced
for any rational nef curve C. (In fact, if we ignore the rational curves contained in the fibers
of π then the difference between the highest and lowest summands of TX |C will be at least
n− 2 for every other rational nef curve C.)

3. Families of rational curves

Let X be a smooth projective variety. We will parametrize rational curves on X using the
coarse moduli space M0,0(X) of the Kontsevich space of stable maps. Note that if we choose
a general stable map f : Z → X representing a point of this moduli space, the isomorphism
class of the restricted tangent bundle f ∗TX is independent of the choice of representative f .
Given a stable map f : Z → X with image curve C, we will sometimes abusively use C in
place of f and write E|C in place of f ∗E for coherent sheaves E on X.
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We will let Rat(X) denote the closure of the sublocus of M0,0(X) parametrizing free
curves f : P1 → X. In other words, any irreducible component M of Rat(X) will generically
parametrize free curves. For such a component M , we will call the corresponding component
M ′ of M0,1(X) the one-pointed family over M . Note that M ′ comes equipped with a flat
map p : M ′ → M and an evaluation map ev : M ′ → X. We let Ratconn(X) ⊂ Rat(X)
denote the sublocus consisting of those components M which have the property that if we
precompose ev : M ′ → X with a normalization map ν : M ′ν → M ′ the composition ev ◦ ν
has connected fibers.

3.1. Gluing free curves. We will frequently deal with stable maps f : Z → X where Z is
the union of two rational curves meeting transversally at a point and the restriction of f to
each component of Z is free.

Lemma 3.1. Let X be a smooth projective variety. Let Z denote the union of two rational
curves meeting transversally at a point. Suppose that f : Z → X is a stable map such
that the restriction of f to each component of Z is free. Then there is a smooth surface
S equipped with a flat projective morphism to a curve π : S → T , a point 0 ∈ T , and a
morphism g : S → X such that

(1) the fiber of π over 0 is isomorphic to Z,
(2) the restriction of g to the fiber over 0 is f , and
(3) the restriction of g to a general fiber of π is a free curve on X.

Proof. Since the restriction of f to each irreducible component of Z is free, we see that f
will be a smooth point of M0,0(X). Thus there is a smooth complete curve T mapping
finitely to M0,0(X) and meeting the locus of irreducible curves such that we can pull back
the universal family to T . This gives rise to a surface S mapping to X via a map g and
mapping to T via a map π, with π−1(0) isomorphic to Z. Because the components of Z are
free, S will be smooth along Z, and we can resolve the other singularities of S to ensure that
S is smooth. By construction a general fiber of S → T is smooth and irreducible and since
f ∗TX is globally generated the restriction of g∗TX to a general fiber will be as well. �

Suppose we have two free curves C1, C2 on X which meet at a point p. By choosing a
branch of each curve at p we can construct a stable map from a reducible curve Z which has
two rational components meeting transversally at a single point. Since both curves are free,
the corresponding map f : Z → X is a smooth point of the space of stable maps. We will
(somewhat imprecisely) refer to this process as “gluing and smoothing” C1 and C2. (Note
that we allow C1 = C2.)

Lemma 3.2. Let X be a smooth projective variety. Suppose that M1 and M2 are two
irreducible components of Ratconn(X). Then there is only one irreducible component M of
M0,0(X) obtained by selecting a general point p ∈ X and gluing and smoothing two general
free curves through p from M1 and M2. Furthermore, M is also an irreducible component of
Ratconn(X).

Proof. Let C1 and C2 denote free curves parametrized by M1 and M2 which meet at a
general point of X. Note that the stable map obtained by gluing C1 and C2 is a smooth
point of M0,0(X). Since our assumption implies that the unique component of M ′

1 ×X M ′
2

which dominates both factors under the projection maps is irreducible, there is a unique
8



component M of M0,0(X) that contains generic points of M ′
1 ×X M ′

2 and this component
generically parametrizes rational curves.

We still must show that the evaluation map for the normalization of M ′ has connected
fibers. Suppose we fix a general point of X. The fiber over x of the evaluation map for
the one-pointed family over M ′

1×X M ′
2 is irreducible. Note that the monodromy action acts

transitively on the irreducible components of fibers of M ′ over x. Since this action preserves
the irreducible components of M0,0(X) containing the two components of our reducible
curve, we see that every component of the fiber of M ′ over x contains a curve parametrized
by M ′

1 ×X M ′
2 and we deduce that the fiber of M ′ over x is irreducible. �

3.2. Grauert-Mulich. Recently, [PRT20] proved a version of the Grauert-Mulich theorem
which holds for arbitrary projective varieties. Note that the theorem only holds for families of
curves in Ratconn(X), that is, families of curves for which the evaluation map has connected
fibers.

Lemma 3.3 ([PRT20] Proposition 3.1). Let X be a smooth projective variety and let E be
a torsion free sheaf on X. Suppose that M is an irreducible component of Ratconn(X). Let
C be a general free curve parametrized by M and write E|C =

⊕
iO(ai) with a1 ≥ a2 ≥

· · · ≥ ar. If j is an index satisfying aj > aj+1 + 1, then there is a subsheaf F ⊂ E such that
F|C = O(a1)⊕ · · · ⊕ O(aj).

We will usually use the following consequence:

Corollary 3.4. Let X be a smooth projective variety and let E be a torsion free sheaf on X.
Suppose that M is an irreducible component of Ratconn(X) and let C be a general free curve
parametrized by M . If E is semistable with respect to C then E|C is sequential.

4. Vector bundles on smoothings of rational curves

Suppose we have a family of curves π : C → B whose general fiber C is a rational curve
and whose special fiber Z is a union of two rational curves meeting at a single node. Given
a vector bundle E on C, we analyze how information about E|Z can be used to constrain the
possibilities for E|C .

It turns out that there is an essential difference between the case when C is smooth and
the case when C is singular at the node of Z. In this section, we will focus on the situation
when C is smooth, which is the correct setting for our intended applications. When C is
allowed to be singular, there is much less that one can say: by [Smi20], in general the only
restriction one can place on E|C comes from upper semicontinuity of cohomology groups.

The main result of this section is Theorem 4.8 which shows that when E|Z is “close” to
balanced, then E|C must also be “close” to balanced. The idea is to use projectivity of the
Quot scheme to limit how negative a quotient of E|C can be.

4.1. Sheaves on nodal curves. We start with a brief review of sheaf theory on a union
of two P1s. Throughout this section Z will denote the union of two rational curves Z1, Z2

meeting transversally at a single node p.
Let F be a sheaf on Z. We say that F is torsion free if every subsheaf E ⊂ F has support

of dimension 1. By [Ses82, VII.1 Lemme 3] any sheaf F has a canonical sequence

0→ Ftors → F → Ftf → 0
9



where Ftors is supported on a dimension 0 subset and Ftf is a torsion free quotient of F .
[Ses82, VIII.1 Proposition 3] proves a local structure theorem for torsion free modules near

a nodal point of an arbitrary curve. Since we are working with two rational curves, this local
result extends to a global one by exactly the same argument.

Lemma 4.1 ([Ses82] VIII.1 Proposition 3). Any torsion free sheaf F on Z admits a unique
expression

F ∼= G ⊕H1 ⊕H2

where G is a vector bundle on Z and H1,H2 are respectively vector bundles on Z1, Z2.

We will also need to know about the structure of locally free sheaves on Z. First of all,
an invertible sheaf is determined up to isomorphism by its degree on the two components
Z1, Z2. We will denote the invertible sheaf whose degree on Z1 is a and whose degree on Z2

is b by OZ(a, b). In general every locally free sheaf is a direct sum of the OZ(ai, bi):

Lemma 4.2 ([Ran07] Proposition 5.1). Every locally free sheaf on Z splits into a direct sum
of line bundles.

We will later need one additional fact about torsion free sheaves on Z.

Lemma 4.3. Let g : OZ(a, b) → F be a morphism of torsion-free sheaves on Z such that
for the node p the restriction g|p is not the zero map. Set F ′ to be the cokernel of g. Write

F ∼= G ⊕H1 ⊕H2 (F ′)tf ∼= G ′ ⊕H′1 ⊕H′2
as in Lemma 4.1. If g is injective then

0 ≤ rk(G)− rk(G ′) ≤ 1.

If g is not injective, then

rk(G)− rk(G ′) = 0.

Proof. Let s, t1, t2 denote respectively rk(G), rk(H1), rk(H2) and let s′, t′1, t
′
2 denote respec-

tively rk(G ′), rk(H′1), rk(H′2).
We first show that rk(G)− rk(G ′) ≥ 0. Let h : F → G ′ denote the composition of g with

the projection map F ′ → G ′. For any direct summand OZ1(a) of F the map OZ1(a) → G ′
vanishes at the node, and similarly for Z2. Since h|p is surjective, we see that rk(G) ≥ rk(G ′).

To prove upper bounds on rk(G)− rk(G ′), first suppose that g is injective. By comparing
ranks at the generic points of Z1 and Z2 we see that

s+ t1 = 1 + s′ + t′1 s+ t2 = 1 + s′ + t′2.

Using the fact that g|p is not zero and comparing ranks at p, we see that

s+ t1 + t2 = 1 + s′ + t′1 + t′2 + χ(F ′tors|p).

Combining these equations we see that

s− s′ = 1− χ(F ′tors|p).

In particular this shows that s− s′ ≤ 1.
The argument when g is not injective is exactly analogous. Since F is torsion-free g must

factor through the quotient map from OZ(a, b) to either OZ1(a) or OZ2(b). Without loss of
10



generality we may assume it is the former. By comparing ranks at the generic points of Z1

and Z2 we see that
s+ t1 = 1 + s′ + t′1 s+ t2 = s′ + t′2.

Using the fact that g|p is not zero and comparing ranks at p, we see that

s+ t1 + t2 = 1 + s′ + t′1 + t′2 + χ(F ′tors|p).
Combining these equations, we see that

s− s′ = −χ(F ′tors|p).
This proves that s− s′ ≤ 0. �

4.2. Deformations. We next turn to the problem of analyzing how vector bundles interact
with smoothings of a nodal curve. As before Z will denote a union of two smooth rational
curves Z1, Z2 meeting transversally at a single node p.

Lemma 4.4. Let π : C → B be a smoothing of Z with smooth total family and with dim(B) =
1. Let F be a torsion free sheaf on C whose restriction to a general fiber C of π is a vector
bundle of rank r and degree d. Suppose we write

(F|Z)tf = G ⊕H1 ⊕H2

where G is locally free on Z of rank s, H1 is locally free of rank t1 on Z1, and H2 is locally
free of rank t2 on Z2. Then t1 = t2 and

χ((F|Z)tf ) ≤ d+ s.

Proof. Since F is torsion free, by the discussion in [Har80, Section 1] there is an injection
F → F∗∗ with torsion cokernel. Since F and F∗∗ have the same first chern class, the cokernel
is supported in codimension 2. Since F∗∗ is a reflexive sheaf on a smooth surface [Har80,
Corollary 1.4] shows that F∗∗ is locally free. Altogether, we have the following short exact
sequence.

0→ F → F∗∗ → T → 0

where T is supported at finitely many points. After restriction to Z we have the exact
sequence

0→ T0 → F|Z → F∗∗|Z → T |Z → 0,

where T0 = Tor1(T,OZ) is torsion. In fact, T0 is the torsion part of F|Z , although we do not
need this for the proof.

Since F is torsion free and π is dominant, F is also torsion free as an OB-module. Thus F
is flat over B by [Sta20, Lemma 15.22.10]. By comparing Hilbert polynomials, we see that
the rank of F at the generic points of Z1 and Z2 is r. By comparing ranks at the generic
points of Z1 and Z2 we see that s+ t1 = r = s+ t2. Thus from now on we simply write t for
t1 = t2.

Since F is flat over B, we have

d+ r = χ(F|Z) = χ((F|Z)tf ) + χ((F|Z)tors).

To prove the statement, it suffices to verify that s+ χ((F|Z)tors) ≥ r.
By restricting F|Z → F∗∗|Z to p, we obtain

F|p → O⊕rp .
11



We also have the surjection

F|p → ((F|Z)tf )|p ∼= O⊕s+2t
p .

Thus, we see that the kernel K of F|p → F∗∗|p has length at least s + 2t− r = t. Since T0
surjects onto the kernel of F|Z → F∗∗|Z , we see that K is a quotient of T0. Since T0 is a
torsion subsheaf of F|Z , we obtain

s+ χ((F|Z)tors) ≥ s+ χ(T0) ≥ s+ t = r

as desired. �

Lemma 4.5. Let E be a vector bundle of rank r on the nodal curve Z = Z1 ∪ Z2 with Zi
isomorphic to P1. Suppose there is a surjection g : E → F where F is a torsion free sheaf of
the form

F = G ⊕H1 ⊕H2

as in Lemma 4.1. Then there are non-negative integers j, k1, and k2 and a direct summand
E ′ ∼= ⊕j+k1+k2i=1 OZ(ai, bi) of E such that g|E ′ is generically surjective,

j + k1 = rk(G) + rk(H1), j + k2 = rk(G) + rk(H2),

and

rk(G) +

j∑
i=1

(ai + bi) +

j+k1∑
i=j+1

(ai + 1) +

j+k1+k2∑
i=j+k1+1

(bi + 1) ≤ χ(F).

Proof. Let s, t1, t2 denote respectively rk(G), rk(H1), rk(H2) and let m denote the sum
2s+ t1 + t2. We prove the statement by induction on m, where m is allowed to decrease by
1 or 2 each time.

We start with the base case when m = 1 or m = 2. There are several cases:

(1) s = 0, t2 = 0, and 0 ≤ t1 ≤ 2. Let OZ(a, b) be a summand of E such that the map to
F does not vanish. Then the restriction of g to OZ(a, b) will factor through OZ1(a).
Let F ′ denote the cokernel of O(a, b)→ F . Then

χ(F)− χ(F ′tf ) ≥ χ(OZ1(a)) = a+ 1.

If F ′tf = 0 we are done. Otherwise, we can repeat the argument on F ′tf .
(2) s = 0, t1 = 0, and 0 ≤ t2 ≤ 2. This is analogous to the previous case.
(3) s = 0, t1 = t2 = 1. Let OZ(a, b) be a summand of E such that the map to F does not

vanish. There are two cases to consider. First suppose that g|OZ(a,b) is injective at
the generic point of both components of Z. Then g|O(a,b) is injective and its cokernel
is torsion. Thus χ(F) ≥ χ(OZ(a, b)) = a+ b+ 1.

Next, suppose that g|OZ(a,b) fails to be injective at the generic point of some compo-
nent of Z. Without loss of generality we may suppose that g|OZ(a,b) vanishes along Z2,
so that it must factor through OZ1(a). Let F ′ denote the cokernel of OZ(a, b)→ F .
Then

χ(F)− χ(F ′tf ) ≥ χ(OZ1(a)) = a+ 1.

We then apply the argument above to F ′tf .
12



(4) s = 1 and t1 = t2 = 0. There are two options. First suppose there is a summand
OZ(a, b) of E such that the restriction of g to this summand does not vanish along
either component of Z. Then g|OZ(a,b) is injective, so that

χ(F) ≥ χ(OZ(a, b)) = a+ b+ 1 = a+ b+ rk(G).

Otherwise, there are different summands OZ(ai, bi) for i = 1, 2 such that g|OZ(ai,bi)
does not vanish along the generic point of Zi. Arguing as before, we see that the
map OZ(a1, b1)⊕OZ(a2, b2)→ F factors through a map

OZ1(a1)⊕OZ2(b2)→ F .

Note that for each summand on the left the map to F must vanish at the node. In
particular, we see that this map has a non-trivial cokernel. Thus

χ(F) ≥ (a1 + 1) + (b2 + 1) + 1

= (a1 + 1) + (b2 + 1) + rk(G).

We next prove the induction step. Choose any direct summand OZ(a, b) of E such that
the map g : OZ(a, b) → F does not vanish at the node p. Let F ′ denote the quotient of F
by the g-image of OZ(a, b). We write

F ′tf = G ′ ⊕H′1 ⊕H′2
and s′, t′1, t

′
2 for the ranks. Then one of the following must hold:

(1) The map g : OZ(a, b)→ F is injective. We deduce that

χ(F)− χ(F ′tf ) = (χ(F)− χ(F ′)) + (χ(F ′)− χ(F ′tf ))
≥ (a+ b+ 1) + χ(F ′tor|p).

By Lemma 4.3, we see that

χ(F)− χ(F ′tf ) ≥ (a+ b) + (rk(G)− rk(G ′)).

Let E ′ denote the quotient of E by the chosen direct summand OZ(a, b). We have a
surjection E ′ → F ′tf . By combining the equation above with the induction hypothesis
for the surjection E ′ → F ′tf we deduce the desired inequality for χ(F ). By calculating
ranks along the generic points of Z1 and Z2 we see that

s+ t1 = 1 + s′ + t′1 s+ t2 = 1 + s′ + t′2.

and the two rank equations can be deduced by the induction hypothesis.
(2) The map g : OZ(a, b)→ F is not injective but the restriction to the generic point of

Z1 is injective. Then g must factor through OZ1(a). Thus

χ(F)− χ(F ′tf ) = (χ(F)− χ(F ′)) + (χ(F ′)− χ(F ′tf ))
≥ (a+ 1) + χ(F ′tor|p).

By Lemma 4.3, we see that

χ(F)− χ(F ′tf ) ≥ (a+ 1) + (rk(G)− rk(G ′)).

Let E ′ denote the quotient of E by the chosen direct summand OZ(a, b). We have a
surjection E ′ → F ′tf . By combining the equation above with the induction hypothesis
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for the surjection E ′ → F ′tf we deduce the desired inequality for χ(F ). By calculating
ranks along the generic points of Z1 and Z2 we see that

s+ t1 = 1 + s′ + t′1 s+ t2 = s′ + t′2.

and the two rank equations can be deduced by the induction hypothesis.
(3) The map g : OZ(a, b)→ F is not injective but the restriction to the generic point of

Z2 is injective. The argument is exactly analogous to the previous case.

�

Example 4.6. Consider the vector bundle E = OZ(2,−1)⊕OZ(−1, 2) on Z. Suppose that
F is a torsion free sheaf with rank 1 along each component of Z such that there is a surjection
E → F . There are two cases:

(1) If F is locally free, then Lemma 4.5 shows that χ(F) ≥ 2. This equality will be
achieved only when F is one of the components of E .

(2) If F is not locally free, then Lemma 4.5 shows that χ(F) ≥ 0. This equality will be
achieved when F = OZ1(−1)⊕OZ2(−1) and the surjection is constructed by taking
the projection onto the −1-component on each factor.

In both cases the bound given by Lemma 4.5 is sharp.

In applications we are given a vector bundle E on a smoothing of Z and would like to
control the degrees along a general fiber of the sheaves F admitting a surjection E → F .
We will show that the lowest possible degree of a torsion free sheaf F that has rank m on a
general fiber and admits a surjection E → F is bounded below by the following constant.

Definition 4.7. Let E denote a vector bundle on the nodal curve Z and let E = ⊕ri=1Ei with
Ei = O(ai, bi) be the decomposition into direct summands. For any positive integer m, we
define the degree bound

degbd(E ,m) = inf
J,K1,K2

{∑
i∈J

(ai + bi) +
∑
i∈K1

(ai + 1) +
∑
i∈K2

(bi + 1)

}
where J,K1, K2 denote disjoint subsets of {1, 2, . . . , r} such that |J | + |K1| = m and |J | +
|K2| = m.

The index set for the infimum represents the summands of E which could admit a generi-
cally surjective map to a sheaf F of rank (m,m) as in Lemma 4.5. For each summand the
corresponding contribution to the infimum is similar to the bound given in Lemma 4.5, but
Lemma 4.4 will allow us to make a small improvement.

We will mostly be interested in the special case m = 1, where we have

degbd(E , 1) = min{ inf
i=1,...,r

(ai + bi), inf
i=1,...,r

(ai) + inf
i=1,...,r

(bj) + 2}.

Theorem 4.8. Let π : C → B be a smoothing of Z with smooth total family and let E be a
vector bundle on C. Suppose that for a general curve C in our family E|C admits a surjection
onto a vector bundle QC of rank m and degree d. Then d ≥ degbd(E|Z ,m).

Proof. Let η denote the generic point of B and let Cη denote the generic fiber of π. Since
Cη ∼= P1

k(B), the restriction of E to Cη decomposes into a direct sum of line bundles (in exactly

the same way that E|C decomposes). Thus E|Cη admits a surjection onto a sheaf Qη which
14



has the same decomposition structure as QC . Spreading out, we find an open subset U ⊂ B
and a sheaf QU on π−1(U) such that there is a surjection E|π−1(U) → QU .

Using properness of Quot schemes, we see that there is a torsion free sheaf F on C and
a surjection g : E → F whose restriction to the general fiber C coincides with the original
surjection E|C → QC . Restricting to the central fiber Z, we still have a surjection

E|Z → F|Z → (F|Z)tf .

Let s denote the rank of the locally free part of (F|Z)tf as in the statement of Lemma 4.4.
By Lemma 4.4, we see that χ((F|Z)tf ) ≤ d + s. By Lemma 4.5 we find a direct summand
⊕ti=1OZ(ai, bi) of E|Z such that

j∑
i=1

(ai + bi) +

j+k1∑
i=j+1

(ai + 1) +

j+k1+k2∑
i=j+k1+1

(bi + 1) ≤ χ((F|Z)tf )− s.

Combining everything, we see that

degbd(E|Z ,m) ≤
j∑
i=1

(ai + bi) +

j+k1∑
i=j+1

(ai + 1) +

j+k1+k2∑
i=j+k1+1

(bi + 1)

≤ χ((F|Z)tf )− s
≤ d+ s− s
= d

proving the desired statement. �

Example 4.9. Let X be the blow-up of P1×P1 at a point. Consider the fibers of a projection
map f : X → P1; there is a single reducible fiber Z which is the union of two rational curves
at a single node. In this case TX |Z ∼= OZ(2,−1)⊕OZ(−1, 2). Let C denote a general fiber of
f . Theorem 4.8 predicts that every one-dimensional quotient of TX |C will have non-negative
degree. This is of course easy to verify directly since TX |C ∼= OC(2)⊕OC .

It is interesting to observe explicitly how the argument of Theorem 4.8 applies in this
situation. The infimum in Theorem 4.8 is obtained by taking the (−1)-component in each
summand of TX |Z . Comparing against Example 4.6, we should expect to observe the quotient
OZ1(−1)⊕OZ2(−1) as a limit of quotients on a general fiber. Indeed, the map TX |C → f ∗TP1

fails to be an isomorphism at the node in Z, yielding a surjection TX |C → Ip ⊗ f ∗TP1 . The
restriction of this map to a general fiber is TX |C → OC ; the restriction to the special
fiber is a map TX |Z → F where F has torsion part of length 1 and has torsion-free part
OZ1(−1)⊕OZ2(−1).

We next show that Theorem 4.8 is in some sense the optimal result possible. The following
proposition identifies the key construction.

Proposition 4.10. Let S denote the blow-up of P1 × P1 at a point equipped with one of the
projection maps π : S → P1. Let Z denote the nodal fiber with components Z1, Z2 and let p
denote the nodal point. Let T1 be a section of π that meets Z1 and let T2 be a section of π
that meets Z2. Choose integers a, b, c, d satisfying c ≥ a + 2 and b ≥ d + 2. There is a rank
2 vector bundle Ea,b,c,d on S that fits into an exact sequence

0→ OS((c− 1)T1 + (b− 1)T2)→ Ea,b,c,d
ψ−→ Ip((a+ 1)T1 + (d+ 1)T2)→ 0
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so that

(1) The restriction of the map ψ to a general fiber C of π yields the surjection OC(b +
c− 2)⊕OC(a+ d+ 2)→ OC(a+ d+ 2).

(2) The restriction of the map ψ to Z yields the surjection OZ(a, b)⊕OZ(c, d)→ OZ1(a)⊕
OZ2(d).

Proof. We first recall the Serre construction. If L is a line bundle on S satisfying H2(S,L) =
0, then Serre’s construction (see for example the summary at the end of [Sch20], with Z = p,
X = S) yields a locally free sheaf E obtained via an extension

0→ L → E → Ip → 0.

If D is an effective divisor, then h2(S,OS(D − Z)) ≤ h2(S,OS(−Z)) = 0. Thus, we may
perform the Serre construction above with L = OS((c− a− 2)T1 + (b− d− 2)T2 − Z), and
twist by OS((a+ 1)T1 + (d+ 1)T2) to obtain the sequence

0→ OS((c− 1)T1 + (b− 1)T2)→ Ea,b,c,d → Ip((a+ 1)T1 + (d+ 1)T2)→ 0.

The restriction of the above sequence to C is

0→ OC(b+ c− 2)→ Ea,b,c,d → OC(a+ d+ 2)→ 0

so it only remains to calculate the restriction to Z. Restricting to Z1 yields

0→ OZ1(c− 1)→ Ea,b,c,d|Z1 → OZ1(a)⊕ k(p)→ 0

and since by assumption c ≥ a+2 we see that E|Z1
∼= OZ1(c)⊕OZ1(a). Similarly Ea,b,c,d|Z2 =

OZ2(b)⊕OZ2(d). This means that the sequence restricted to Z is

(4.1) 0→ OZ(c− 1, b− 1)→ Ea,b,c,d|Z → OZ1(a)⊕OZ2(d)→ 0.

Note that the OZ1(c) summand of Ea,b,c,d|Z1 and the OZ2(b) summand of Ea,b,c,d|Z2 cannot
line up since if they did the rightmost term in Equation (4.1) would need to have a torsion
subsheaf supported in dimension 0. Altogether we see that

E|Z ∼= OZ(a, b)⊕OZ(c, d).

�

The next theorem shows that the degree bound given in Theorem 4.8 is sharp.

Theorem 4.11. Let S denote the blow-up of P1 × P1 at a point equipped with one of the
projection maps π : S → P1. Let Z be the reducible fiber with components Z1, Z2 and node p
and fix a vector bundle EZ on Z. For any m satisfying 0 ≤ m ≤ rk(EZ) there is

• a vector bundle E on S of rank rk(E|Z) such that E|Z = EZ, and
• a reflexive sheaf F on S whose restriction to a general fiber C has rank m and degree

degbd(E|Z ,m)

such that E admits a surjection onto F .

Proof. We let E denote the exceptional divisor of φ, let H1 denote a divisor representing
π∗OP1(1), and let H2 denote a general fiber of the other projection map to P1. We let T1 be
a section of π that meets Z1 and let T2 be a section of π that meets Z2.
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Let E ′Z ⊂ EZ be a direct summand which realizes the infimum in degbd(EZ ,m). It suffices
to prove the statement for E ′Z . We write

E ′Z =

j⊕
i=1

OZ(ai, bi)⊕
j+k⊕
i=j+1

OZ(ai, bi)⊕
j+2k⊕

i=j+k+1

OZ(ai, bi)

where j + k = m and the decomposition coheres to the notation used in Definition 4.7.
Since we are assuming that E ′ computes degbd(EZ ,m) we must have that bi ≥ bi+k + 2 and
ai + 2 ≤ ai+k whenever j + 1 ≤ i ≤ j + k.

We construct the desired global sheaf E ′ and the surjection E ′ → F using direct sums.

• For 1 ≤ i ≤ j, let Ei be the line bundle OS((ai + bi)H2 − aiE). Set Fi = Ei. Let
ψi : Ei → Fi be the identity map.
• For j + 1 ≤ i ≤ j + k, let Ei be the rank 2 bundle Eai,bi,ai+k,bi+k constructed in Claim

4.10. (Note that we have already verified the required inequalities on the indices.)
Setting Fi = Ip((ai + 1)T1 + (bi+k + 1)T2), the claim shows that we have a surjection
Ei → Fi.

Set F = ⊕j+ki=1Fi. It only remains to show that the degree of F|C is degbd(E|Z ,m). For
1 ≤ i ≤ j we have that Fi contributes ai + bi to the degree, and for j + 1 ≤ i ≤ j + k we
have that Fi contributes ai + bi+k + 2 to the degree, finishing the proof. �

4.3. Gluing results. We end this section by applying these results to control the behavior
of a locally free sheaf for a smoothing of a union of two free curves. As we discussed before,
the key observation is that we can ensure that the total space of the deformation is smooth.

Theorem 4.12. Let X be a smooth projective variety and let E denote a torsion-free sheaf
on X. Suppose f1 : Z1 → X and f2 : Z2 → X are two free rational curves in X meeting at
a point p whose images are contained in the locally free locus of E. Let fZ : Z → X denote
the map obtained by gluing Z1 and Z2 at p and let fC : C → X be a general smoothing of
Z. For any integer m satisfying 1 ≤ m ≤ dimX the vector bundle f ∗CE does not have any
summands with rank m and degree less than degbd(f ∗ZE ,m).

Proof. By Lemma 3.1 there is a smooth surface S equipped with a flat projective morphism
to a curve π : S → T , a point 0 ∈ T , and a morphism g : S → X such that the restriction
of g to the central fiber is fZ . We apply Theorem 4.8 to g∗E . �

5. Stability for low rank vector bundles

In this section we explore the relationship between the stability of vector bundles and the
stability of their restrictions to free rational curves. Recall that we can discuss stability with

respect to any nef curve class α by using the slope µα(E) = c1(E)·α
rk(E) . We start with a familiar

and elementary observation.

Proposition 5.1. Let X be a smooth projective variety and let E be a vector bundle on X.
Suppose that a variety M parametrizes a dominant family of irreducible curves on X such
that for any codimension 2 closed subset Z ⊂ X there is a curve parametrized by M that is
disjoint from Z. Let C be a general curve parametrized by M and let α denote its numerical
class. If E|C is (semi-)stable, then E is (semi-)stable on X with respect to α.
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Proof. We prove the contrapositive statement. Suppose E → Q is a destabilizing quotient
for E with respect to α. Then restricting E and Q to C gives a surjection E|C → Q|C .
Computing slopes we get

µ(E|C) =
c1(E|C)

rk E|C
=
c1(E) · α

rk E
= µα(E).

By generality C is contained in the locally free locus of Q, and in particular Q|C is torsion
free. Thus a similar argument shows that µ(Q|C) = µα(Q). Thus E|C → Q|C is also
destabilizing. The argument for semi-stability is the same. �

Corollary 5.2. If X has a 0-balanced free rational curve C, then TX must be semistable
with respect to the numerical class of C.

Proof. Since the 0-balanced property is preserved under generalization, this follows from
Proposition 5.1. �

We will be interested in identifying situations where a converse statement holds. This
question was also analyzed by [Ran01] when the ambient variety is Pn. We will need the
following (well-known) result concerning k-planes in Pn.

Lemma 5.3. Consider an irreducible family of k-planes in Pn. Suppose that the intersection
of any two planes in our family has dimension (k − 1). Then either all the k-planes in our
family are contained in a fixed (k+ 1)-dimensional subspace of Pn or there is a fixed (k− 1)-
dimensional subspace of Pn which is contained in every k-plane.

Proof. Suppose that there is no fixed (k − 1) plane that is contained in every k-plane in
our family. Fix two general planes L1, L2 in our family. Since a general k-plane L in our
family does not contain L1 ∩ L2, it must be contained in the span of L1 and L2 which is a
(k + 1)-plane. �

The following result is the main theorem in this section. As discussed in the introduction,
it can be seen as a “Mehta-Ramanathan type statement” for families of free rational curves
and torsion free sheaves of low rank.

Theorem 5.4. Let X be a smooth projective variety and let E be a torsion free sheaf on
X of rank r ≤ 5. Suppose that α is the class of a free rational curve C0 that is general in
an irreducible component of Ratconn(X). There is some constant Γ = Γ(r) such that E is

semistable with respect to α if and only if there is a curve C̃ obtained by gluing and smoothing
Γ(r) copies of C0 with E|C̃ is semistable.

Remark 5.5. Loosely speaking, our strategy in the proof of Theorem 5.4 is to think about
whether the positive directions in E|C vary a lot as we deform C. If they vary a lot, we can
glue two curves of class C together and deform to a curve C ′ with more balanced E|C′ . If
they don’t vary, then we argue that they correspond to a positive subsheaf of E .

However, one cannot expect a precise relationship along these lines even when E is the
tangent bundle of X. For instance, let X be a homogeneous contact manifold coming from
an orthogonal or exceptional simple Lie algebra as described in Section 1.4 of [HM99]. Then
X has dimension 2m + 1 and has a single minimal family of rational curves, which are
lines under the natural projective embedding. Let C be a general such line. Then TX |C =
O(2)⊕O(1)m ⊕Om, with the O(2) factor corresponding to the image of TC in TX |C . At a
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point x of X, the tangent spaces to the lines span a codimension one subspace Dx ⊂ TX,x,
giving rise to a distribution D ⊂ TX . Even though D is the span of the “positive” directions
of these rational curves, we have that D|C = O(2) ⊕ O(1)m−1 ⊕ Om−1 ⊕ O(−1), which is
not destabilizing for TX . Thus, even the distribution spanned by the positive directions of a
family of curves can be less “positive” than the tangent bundle.

Before starting the proof let us give a couple reminders of facts established earlier in the
paper. First, the restriction of a torsion free sheaf to a general member of a family of free
curves will be locally free, and we will use this fact without further mention. Second, when
we speak of “gluing and smoothing” free rational curves C1, C2 which meet at a point we
allow the case C1 = C2 (in which case the resulting stable map could be a double cover of
the underlying curve).

Proof. Since the reverse implication is established by Corollary 5.2, we only need to prove
the forward implication. The proof is by induction on r. The base case when r = 1 is trivial.

When r > 1, we begin by making some reductions. First, observe that by Lemma 3.2
we can replace C0 by a general smoothing of a gluing of r curves which are deformations
of C0 (and absorb the factor of r into Γ(r)). This ensures that the slope µ(E|C0) is an
integer which we denote by a. Furthermore, by replacing C0 by gluing and smoothing
lcm(Γ(2), . . . ,Γ(r − 1)) copies of C0 (and absorbing the factor into Γ(r)) we may assume
that any semistable sheaf F of rank < r has the property that F|C0 is semistable.

We will always assume that C0 is general in its family, so that the direct summand de-
composition of E|C0 will be the same as the direct summand decomposition of the restriction
of E to a general deformation of C0. The version of the Grauert-Mulich Theorem proved in
[PRT20, Theorem 3.1] shows that E|C0 will be sequential.

r = 2: By Lemma 3.3 the only possibility for E|C0 is O(a)⊕O(a) which is semistable.

r = 3: By Lemma 3.3 E|C0 is isomorphic to either O(a)3 or O(a+ 1)⊕O(a)⊕O(a− 1),
and we only need to consider the latter case. Fix a general point p of X and consider the
sublocus Sp ⊂ E|p swept out by the O(a+ 1) summands as we vary C over all deformations
of C0 through p such that E|C ∼= O(a + 1) ⊕ O(a) ⊕ O(a − 1). We claim that Sp spans
all of E|p. Suppose for a contradiction that this is not the case. Let F be the saturated
subsheaf of E constructed in Lemma 2.6 whose restriction to a general point p is the span of
Sp. Letting C denote a general deformation of C0, Lemma 2.6 shows that F|C will contain
the O(a + 1) factor of E|C . Our induction assumption implies that the Harder-Narasimhan
filtration of F restricts to give the Harder-Narasimhan filtration of F|C . Since F|C has at
least one summand of degree ≥ a + 1, we see that the maximal destabilizing subsheaf of F
will also destabilize E . This verifies the claim.

Suppose that C1 and C2 are two general curves in the deformation class of C0 that pass
through the same general point p. The argument above shows that the O(a + 1) summand
in C1 will line up with the O(a− 1) summand in C2 (and vice versa). By Theorem 4.12 we

deduce that a general smoothing C̃ of the gluing of C1 and C2 will be 0-balanced.

r = 4: By Lemma 3.3 E|C0 is isomorphic to either O(a)4 or O(a+ 1)⊕O(a)2 ⊕O(a− 1),
and we need only consider the latter case. Let C1 and C2 be two general deformations of C0

through a fixed point p. As in the r = 3 case, the O(a + 1) factor on C1 and the O(a − 1)
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factor on C2 will line up unless there is a saturated subsheaf F ( E such that F|p is the
span of the O(a+ 1) directions of deformations of C0 through a general point p.

Suppose for a contradiction that there is such a subsheaf F . Note that for a general
deformation C of C0 the restriction F|C contains the O(a + 1) factor in E|C . By the in-
duction assumption the Harder-Narasimhan filtration of F will restrict to give the Harder-
Narasimhan filtration of F|C and every term of the Harder-Narasimhan filtration of F|C
will be 0-balanced. Since F|C has at least one summand of degree ≥ a+ 1, we see that the
maximal destabilizing subsheaf of F will also destabilize E .

r = 5: Aside from the semistable case, Lemma 3.3 gives three possibilities for E|C .
Case 1: E|C = O(a + 1) ⊕ O(a)3 ⊕ O(a − 1). Suppose that as we vary C over general

deformations of C0 through a general point p the O(a+ 1) factors at p span all of E|p. Then
we can argue as before.

Otherwise, let F ( E be the saturated subsheaf such that for a general point p the
restriction F|p is the span of the O(a + 1) summands for deformations of C0. Lemma
2.6 guarantees that there is an inclusion O(a + 1) → F|C . By induction we know that
the restriction of the maximal destabilizing subsheaf of F to C is balanced. Thus it will
destabilize E .

Case 2: E|C = O(a+ 1)2 ⊕O(a)⊕O(a− 1)2. Let F ⊂ E denote the saturated subsheaf
such that for a general point p the restriction F|p is the span of the O(a + 1)2 subspaces
at p for general deformations C of C0. By Lemma 2.6 there is an inclusion O(a + 1)2 →
F|C for a general deformation C of C0. If the rank of F is smaller than 5, then by the
induction assumption the Harder-Narasimhan filtration of F will restrict to give the Harder-
Narasimhan filtration of F|C and every term of the Harder-Narasimhan filtration of F|C will
be 0-balanced. In this case the maximal destabilizing subsheaf of F would also destabilize E ,
a contradiction. We conclude that the O(a+ 1)2 subspaces sweep out all of E|p for a general
point p.

We also claim that for two general deformations C1, C2 of C through a general point p, the
O(a+1)2 subspaces for C1 and C2 at p only intersect at 0. If not, then they must generically
intersect in a one-dimensional subspace (since by the argument above as we vary C their
span is all of E|p). By Lemma 5.3 we conclude that either there is a fixed three-dimensional
subspace of E|p which contains every O(a+ 1)2 subspace or there is a fixed one-dimensional
subspace of E|p which is contained in every O(a+ 1)2 summand. Furthermore, the previous
paragraph shows that the first case cannot happen. Thus there is a distinguished one-
dimensional subspace at every general point p. As we vary p these one-dimensional spaces
yield a rank 1 saturated subsheaf G ⊂ E .

Note that if we restrict G → E to a general deformation C of C0, then G|C must map to
the O(a+ 1)2 summand in E|C . Consider the exact sequence

0→ G → E → Q → 0.

Then one of the following two situations must occur:

(1) G|C has slope a+ 1. Then it is a destabilizing subsheaf, a contradiction.
(2) G|C has slope < a+ 1. Then Q|C ∼= O(b)⊕O(a)⊕O(a− 1)2 for some b ≥ a+ 2. By

Lemma 3.3 Q has a quotient sheaf Q′ such that Q′|C ∼= O(a)⊕O(a− 1)2. But then
the quotient E → Q′ is destabilizing, a contradiction.

This completes the argument showing that the O(a+ 1)2 subspaces only intersect at 0.
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Finally, we claim that the O(a + 1)2 subspace for C1 at p meets the O(a + 1)2 ⊕ O(a)
subspace for C2 at p transversally. If not, then since the two O(a + 1)2 subspaces intersect
only at 0 the two O(a+1)2⊕O(a) subspaces will intersect in dimension exactly 2. By Lemma
5.3 the O(a+ 1)2 ⊕O(a) factors will either always be contained in a fixed four-dimensional
subspace or will all intersect along a fixed two-dimensional subspace. The first case cannot
happen since the O(a + 1)2 subspaces span all of E|p. If the second happens, then arguing
as before one can deduce that E is not stable, a contradiction.

Altogether, suppose that C1, C2 are two general deformations of C through a fixed general
point p. Let Z denote their union. Then

E|Z ∼= OZ(a+ 1, a− 1)2 ⊕OZ(a, a)⊕OZ(a− 1, a+ 1)2.

By Theorem 4.12 we deduce that for a general smoothing C̃ of Z the restriction E|C̃ will not
admit a surjection to O(a− 1). We conclude that E|C̃ is 0-balanced.

Case 3: E|C = O(a+ 2)⊕O(a+ 1)⊕O(a)⊕O(a− 1)⊕O(a− 2). By arguing as above,
we see that as we vary C over all general deformations of C0 through a general point p the
O(a+ 2) factors must sweep out all of E|p.

We next claim that for two general deformations C1, C2 of C0 through a general point p,
the O(a + 2) ⊕ O(a + 1) subspaces at p will meet transversally. If not, then by applying
Lemma 5.3 as before we would obtain a rank 1 saturated subsheaf G such that at a general
point p the restriction G|p is contained in every O(a + 2) ⊕ O(a + 1) subspace. But this
would yield a destabilizing subsheaf or quotient of E .

We next claim that for two general deformations C1, C2 of C0 through a general point p,
the O(a+2)⊕O(a+1) subspace on C1 at p will meet the O(a+2)⊕O(a+1)⊕O(a) subspace
transversally. If not, then the two O(a+ 2)⊕O(a+ 1)⊕O(a) subspaces for the two curves
would intersect along a two-dimensional subspace. By combining the previous paragraph
with Lemma 5.3 we see there is a fixed 2-dimensional subspace of E|p that is contained in
every O(a + 2) ⊕ O(a + 1) ⊕ O(a) subspace. This would yield a destabilizing subsheaf or
quotient.

Altogether, suppose that C1, C2 are two general deformations of C through a fixed general
point p. Let Z denote their union. Since the O(a + 2) summands along the curves Ci span
the entire space at the node, on Z the restriction of E has direct summands of the form
OZ(a + 2, a − 2) and OZ(a − 2, a + 2). By similar logic, we see that the a + 1 and a − 1
summands must align. Thus

E|Z ∼= OZ(a+ 2, a− 2)⊕OZ(a+ 1, a− 1)⊕OZ(a, a)⊕OZ(a− 1, a+ 1)⊕OZ(a− 2, a+ 2).

By Theorem 4.12 we deduce that for a general smoothing C̃ of Z the restriction E|C̃ will not
admit a rank 2 quotient of degree ≤ 2a− 3. By Lemma 3.3, if E|C̃ admitted a surjection to
O(a−2) then it would also need to admit a surjection to a rank 2 bundle of degree ≤ 2a−3,
which we just showed is not possible. Thus every summand of E|C̃ has degree at least a− 1.

This means that the new curve C̃ will either be in Case 1 or in Case 2 above, and we have
reduced the statement to a known case. �

Remark 5.6. Our approach for Theorem 5.4 cannot be extended to the case when E has
rank 7. The issue occurs when we have a curve C0 such that

E|C0
∼= O(a+ 3)⊕O(a+ 2)⊕O(a+ 1)⊕O(a)⊕O(a− 1)⊕O(a− 2)⊕O(a− 3).
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In the best case scenario, for two general deformations C1, C2 through a point p the O(a+ b)
summand in C1 will line up with the O(a − b) summand in C2. Suppose we glue the two

curves and smooth to get C̃. Even in this optimal situation, Theorem 4.12 does not prove
that E|C̃ is more balanced than E|C0 . It only shows that E|C̃ is not less balanced than E|C0 .

6. Factoring covers

Our main tools for understanding direct summand decompositions of restricted bundles
– [PRT20, Proposition 3.1] and Theorem 5.4 – include the assumption that the evaluation
map for a family of free rational curves has connected fibers. In this section we analyze
families of free rational curves for which the evaluation map fails to have connected fibers.
The key definition is the following.

Definition 6.1. Let X be a smooth projective variety. Let M be an irreducible component
of Rat(X). Suppose that ψ : Y → X is a generically finite map from a projective variety
Y and that N is an irreducible component of Rat(Y ) such that composition with ψ defines
a dominant rational map ψ∗ : N 99K M . Then we say that the component N and the map
ψ : Y → X form a factoring cover for the component M . (Often we will drop N from the
notation.)

Remark 6.2. In the setting of Definition 6.1 it is possible that there are several different
irreducible components of M0,0(Y ) which all map dominantly to the same irreducible com-
ponent of M0,0(X). Thus when discussing factoring covers it is important to specify the
component N of Rat(Y ).

For example, let f : Y → Hilb2(P2) be the double cover obtained by blowing up the
diagonal of P2 × P2. For i = 1, 2 let Ni denote the strict transform on Y of the family of
lines contained in the fibers of the ith projection map of P2 × P2. Then N1 and N2 map to
the same component M of Rat(X) and both components give Y the structure of a factoring
cover.

Our main example of factoring covers comes from irreducible components M of Rat(X)
such that the evaluation map U → X for the one-pointed family U over M fails to have
connected fibers. In this case the finite part of the Stein factorization of the evaluation
map will be a factoring cover in a natural way. However, there are many other examples of
factoring covers.

Example 6.3. Let X be a smooth projective variety and M an irreducible component of
Rat(X). Suppose that ψ : Y → X is a factoring cover for M . If we precompose ψ by any
birational map φ : Y ′ → Y then the composition ψ ◦ φ is still a factoring cover. Indeed, we
can simply take the strict transform on Y ′ of the family of rational curves on Y parametrized
by N .

Lemma 6.4. Let X be a smooth projective variety. Suppose that M is an irreducible com-
ponent of Rat(X) and that ψ : Y → X is a factoring cover for M equipped with an ir-
reducible component N of Rat(Y ). For a general map g parametrized by N we have that
(ψ ◦ g)∗TX ∼= g∗TY and Ng/Y

∼= Nψ◦g/X .

Proof. There is an exact sequence 0 → TY → ψ∗TX → T → 0, where T is a torsion sheaf.
Taking the top exterior power, we get an injection ω∨Y → ψ∗ω∨X . We let R denote the
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ramification divisor whose ideal sheaf is defined by the injection ω∨Y ⊗ψ∗ωX → OY . Since T
is supported on Supp(R) we see that ψ is smooth on the complement of Supp(R).

Suppose that CX is a general curve parametrized byM and that CY is a curve parametrized
by N that maps to CX . We have

−KX · CX + dim(X)− 3 = dim(M) = dim(N) = −KY · CY + dim(Y )− 3

showing that R · CY = 0. Thus CY is contained in the smooth locus of ψ, so that the map
TY |CY → ψ∗TX |CY is surjective. But a surjective morphism of two locally free sheaves on P1

which have the same rank must be an isomorphism. �

6.1. Equivalence relation.

Definition 6.5. Let X be a smooth projective variety. Suppose that M is an irreducible
component of Rat(X) and that we have two M factoring covers f1 : Y1 → X and f2 : Y2 → X
with corresponding irreducible components of curves N1 and N2. For i = 1, 2 let Ci denote
the universal family over Ni. We say the two factoring covers are equivalent if the general
fibers of the evaluation maps C1 → Y1 and C2 → Y2 have the same number of irreducible
components.

We have in mind two key examples. First, if we modify a factoring cover by a birational
morphism (as in Example 6.3) we obtain an equivalent factoring cover. Our second key
example arises from base change:

Example 6.6. Suppose that f : Y → X and an irreducible component N of Rat(Y ) yields
a factoring cover for the irreducible component M of Rat(X). Suppose furthermore there
is a morphism π : Y → Z that contracts the curves parametrized by N so that we get
a morphism N → Z. Take any generically finite map W → Z, let Y ′ denote the unique
irreducible component of W ×Z Y that dominates both W and Y under the projection maps
and let N ′ be the similarly-defined irreducible component of W ×Z N . Then Y ′ equipped
with N ′ is a factoring cover for M that is equivalent to our original cover.

Theorem 6.7. Let X be a smooth projective variety. Suppose that M is a component of
Rat(X). There is a finite set of equivalence classes of factoring covers for M .

Proof. We will show that if f : Y → X and the irreducible component N ⊂ Rat(Y ) is a
factoring cover of M then the number of irreducible components of a general fiber of the
evaluation map for N is bounded above by the number of irreducible components of a general
fiber of the evaluation map for M . The desired finiteness follows immediately.

Fix a general point y ∈ Y and let x = f(y). Let Ny denote the sublocus of N parametrizing
curves through y, and similarly for Mx and x. We let Γy denote the set of irreducible compo-
nents of Ny and Γx denote the set of irreducible components of Mx. Then the pushforward
map induces a function q : Γy → Γx. An incidence correspondence argument shows that
(since y is general) for any fixed irreducible component of Ny the general curve parametrized
by this component is smooth at y.

We claim that this function q is injective. Since dim(Y ) = dim(X) and dim(N) = dim(M)
we see that every irreducible component of Ny and every irreducible component of Mx has
the same dimension dim(M)+1−dim(X). In particular, if two components T1, T2 ∈ Γy map
to the same irreducible component of Γx, then for a general rational curve C1 parametrized
by T1 there is a rational curve C2 parametrized by T2 such that f(C1) = f(C2). This implies
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that C1 = C2. Indeed, as discussed above by generality the curves C1, C2 are smooth (and
hence unibranch) at y. Since y is general we know that f is étale on an open neighborhood
of y. We conclude that C1 and C2 must be the same on a formal local neighborhood of y,
hence everywhere. Since C1 = C2 we see that T1 = T2 and the map q is injective. �

Example 6.8. Let X be a smooth projective variety and M be an irreducible component
of Rat(X). Suppose that there is a Galois cover f : Y → X and an irreducible component
N of Rat(Y ) that yield a factoring cover for M . As demonstrated in the proof of Lemma
6.4, this implies that the general curve parametrized by N is disjoint from the ramification
divisor for Y . Since f is a Galois cover, we deduce that a general curve C parametrized
by M is disjoint from the branch divisor for f . In particular, the preimage of C will be a
disjoint union of deg(f) rational curves.

Fix a general point x ∈ X and let y1, . . . , yd denote the preimages of x. Let N1, . . . , Nr

be all the irreducible components of Rat(Y ) which map dominantly onto M under the
pushforward map. We let m(Ni, yj) denote the number of components of the sublocus of
Ni parametrizing rational curves through yj, and we define m(M,x) similarly. Then for any
j = 1, . . . , d we have ∑

i

m(Ni, yj) = m(M,x).

Indeed, a general rational curve parametrized by M through x is mapped to by some rational
curve through yj, and as argued in the proof of Theorem 6.7 this implies a local bijection on
components of the space of rational curves.

In particular, this shows that N is equivalent to M if and only if it is the unique irreducible
component of Rat(Y ) mapping to M .

6.2. Factoring covers and Fano varieties. Suppose that X is a Fano variety and that f :
Y → X is a factoring cover for an irreducible component of Rat(X). Since the ramification
divisor R = KY − f ∗KX for f has vanishing intersection against a dominant family of
rational curves on Y , it lies on the boundary of the pseudo-effective cone. Equivalently,
a(Y,−f ∗KX) = 1 where a(Y,−) denotes the Fujita invariant as in [LST18, Definition 4.1].
Since a(X,−KX) = 1 as well, a factoring cover is an example of a thin map which preserves
the Fujita invariant. [LST18, Theorem 7.7] proves a “finiteness” statement for the set of all
such maps to X. The following result translates this “finiteness” to the setting of equivalence
classes of factoring covers for components of Rat(X).

Theorem 6.9. Let X be a smooth projective Fano variety. There is a finite collection of
generically finite morphisms ψi : Yi → X such that if an irreducible component M of Rat(X)
admits a factoring cover ψ : Y → X with an irreducible component N of Rat(Y ) then there
will be some index i and a component Ni of Rat(Yi) such that ψi : Yi → X is a factoring
cover for M which is equivalent to N .

Proof. Suppose that f : Y → X equipped with the component N of Rat(Y ) is a factoring
cover for an irreducible component M of Rat(X). As discussed in the proof of Lemma 6.4,
this implies that the ramification divisor R for f has vanishing intersection against a general
rational curve parametrized by N . In particular, R = KY − f ∗KX is on the boundary of
the pseudo-effective cone. Since −f ∗KX is a big and nef divisor, [BCHM10] constructs a
canonical model π : Y 99K T associated to the divisor KY − f ∗KX . Note that π contracts
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the general curve parametrized by N . By replacing Y by a birational model (and N by the
strict transform family), we may assume that π is a morphism.

Let {fi : Yi → X} denote the finite set of morphisms constructed by [LST18, Theorem
7.7]. For each i, let πi : Yi → Zi denote the canonical map associated to KYi−f ∗i KX . [LST18,
Theorem 7.7] shows that for any factoring cover f : Y → X there exists a variety Z admitting
a generically finite morphism Z → T such that if YZ denotes a suitably chosen birational
model of the main component of the base change Y ×T Z then the induced morphism
fZ : YZ → X factors through one of the fi. In fact, the proof shows a little more: since fZ
is dominant, a general fiber of πZ : YZ → Z will map birationally to a general fiber of the
map πi.

Since the curves parametrized by N are in the fibers of π, by taking a base change we
obtain a family of rational curves NZ contained in the fibers of πZ . As explained in Example
6.6, the factoring cover Y,N is equivalent to the factoring cover YZ , NZ . Define Ni by taking
the images of these curves parametrized by NZ under the rational map to Yi. Then it is
clear that Yi, Ni is a factoring cover of X,M . Furthermore, since the the fibers of πZ map
birationally to the fibers of πi the factoring cover Yi, Ni is equivalent to the cover YZ , NZ and
hence also to the original cover Y,N . �

We will also need to know a little more about the nef cone of curves for these covers.

Theorem 6.10. Let X be a smooth projective Fano variety. Suppose that ψ : Y → X is
a generically finite morphism such that the divisor R := KY − ψ∗KX is on the boundary of
the pseudo-effective cone. Then the face F of Nef1(Y ) consisting of curve classes α which
satisfy R · α = 0 is a polyhedral subcone.

Proof. For any ε > 0 define Rε := KY − (1 − ε)ψ∗KX . It suffices to show that for some
sufficiently small ε there is a finite set of nef curve classes {αi}qi=1 such that

Nef1(X) = Nef1(X)Rε≥0 +
∑

R≥0αi

where Nef1(X)Rε≥0 denotes the intersection of Nef1(X) with the halfspace of classes with
non-negative intersection againstRε. This is a consequence of Batyrev’s conjecture describing
a Cone Theorem for the nef cone of curves when applied to the klt pair (Y,−ψ∗KX); see
[Ara10, Lemma 6.1] or [LST18, Section 3.2]. �

Finally we will need a result of [Neu09].

Theorem 6.11 ([Neu09] Proposition 3.3.5). Let X be a smooth projective variety. Suppose
that C ⊂ Nef1(X) is a polyhedral subcone. Then C admits a decomposition into a finite union
of locally closed convex cones ∪jCj such that for any fixed j there is a positive integer rj and

a linear function ̂̀j : Cj → Qr such that the Harder-Narasimhan filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Frj = TX .

of TX with respect to any class α ∈ Cj satisfies that µα(Fk/Fk−1) is the kth entry of ̂̀j(α).

We are now able to prove Theorem 1.6.

Proof of Theorem 1.6: Theorem 6.9 shows that there is a finite set of generically finite maps
ψi : Yi → X such that for every component M of Rat(X) there will be some index i such
that ψi defines a factoring cover for M that is equivalent to the Stein factorization of the
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evaluation map for the universal family over M . In particular the corresponding family is
an element of Ratconn(Yi). Furthermore, by Theorem 6.10 there will be a rational polyhedral
subcone Ci of Nef1(Yi) which contains the classes of all rational curves on Yi obtained in this
way. Applying [Neu09, Proposition 3.3.5] to each variety Yi equipped with the cone Ci we

obtain a finite set of linear functions ˜̀ij on rational polyhedral subcones of Ci. We obtain

the desired functions `ij by dividing the kth entry of ˜̀ij by the rank of the corresponding
quotient Fk/Fk−1 and repeating this number rk(Fk/Fk−1) times. �

7. Restricted tangent bundles for Fano varieties

In this section we return to our original motivating question – what are the possible
restricted tangent bundles for free rational curves on Fano varieties?

7.1. Slope panels. Our first collection of results addresses the slope panel of an arbitrary
torsion-free sheaf.

Proposition 7.1. Let X be a smooth projective variety and let E be a torsion-free sheaf
on X. Suppose C is a free rational curve that is general in an irreducible component of
Ratconn(X) such that E is semistable with respect to [C]. If we write E|C ∼= ⊕O(ai) then

every summand satisfies |µC(E)− ai| < rk(E)
2

.

Proof. [PRT20, Proposition 3.1] shows that E|C is sequential, and the statement follows
immediately. �

Corollary 7.2. Let X be a smooth projective variety. Suppose C is a free rational curve
that is general in an irreducible component of Ratconn(X) such that TX is semistable with

respect to [C]. Then the minimal slope ratio of C is bounded below by 1− dim(X)2

2(−KX ·C)
.

Proposition 7.1 can be extended to arbitrary torsion free sheaves using Harder-Narasimhan
filtrations.

Corollary 7.3. Let X be a smooth projective variety and let E be a torsion-free sheaf on X
of rank r. Suppose C is a general free curve parametrized by an irreducible component of
Ratconn(X). Write

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fs = E
for the Harder-Narasimhan filtration of E. Let ~v be the non-increasing r-tuple which for every
j ≥ 1 contains rk(Fj/Fj−1) repetitions of the entry µC(Fj/Fj−1). If we write E|C ∼= ⊕O(ai)
where the ai are in non-increasing order, then

|~v − (a1, . . . , ar)|sup <
supi{rk(Fi/Fi−1)}

2
.

Proof. We prove this statement by induction on the length s of the Harder-Narasimhan
filtration. The base case s = 1 is Proposition 7.1.

For the induction step, note that since C is general every term Fi is locally free along C.
Thus we have an exact sequence

0→ Fs−1|C → E|C → Fs/Fs−1|C → 0.

We next compare the rk(Fs−1) largest summands in E|C (written in decreasing order) with
the summands of Fs−1|C (in decreasing order). Any given entry of the former list is no
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smaller than the corresponding entry on the latter. The summand for E|C may be larger,
but it will never be larger than the largest summand of Fs/Fs−1|C . This in turn is no larger
than

µC(Fs/Fs−1) +
{rk(Fs/Fs−1)}

2
.

By induction all the summands of Fs−1|C lie within supi≤s−1{rk(Fi/Fi−1)}/2 of the expected
value. The argument above shows that the largest rk(Fs−1) direct summands of E|C can only
increase but if they do they will still lie within the desired range.

Similarly, any entry in the list of the rk(Fs/Fs−1) lowest summands of E|C (written in
decreasing order) cannot be larger than the corresponding entry in the list of summands of
Fs/Fs−1|C (in decreasing order). The summand of E|C can be smaller, but in this case it
cannot be smaller than

µC(Fs−1/Fs−2)−
supi≤s−1{rk(Fi/Fi−1)}

2
.

This implies the desired statement for these entries of E|C . �

7.2. Restricted tangent bundles. We next turn to the restricted tangent bundle. If we
divide the equation in Corollary 7.3 by the slope we obtain:

Corollary 7.4. Let X be a smooth projective variety and fix ε > 0. Let C be a generic curve

parametrized by an irreducible component of Ratconn(X) with anticanonical degree > dim(X)2

2ε
.

Then
|ESP(C)− SP(C)|sup < ε.

In particular, if −KX is big then there for any ε there are only finitely many families of
curves for which this inequality fails to hold.

We can translate this into a geometric statement in the following way.

Lemma 7.5. Let X be a smooth projective variety. Let M be an irreducible component of
Ratconn(X) and let C be a general curve parametrized by M . Let

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fr = TX .

denote the Harder-Narasimhan filtration of TX with respect to C. Then for every index i
with 1 ≤ i ≤ r we have that µC(Fi/Fi−1) ≥ 0.

Proof. Suppose for a contradiction that ESP(C) had a negative entry c and fix ε < |c|. Note
that if we glue r curves parametrized by M and take a general smoothing of the result
to obtain a free curve C ′ we have ESP(C ′) = ESP(C). By choosing r sufficiently large,
Corollary 7.4 guarantees that we can ensure

|ESP(C)− SP(C ′)|sup < ε.

But SP(C ′) is non-negative since C ′ is free. This yields the desired contradiction. �

Corollary 7.6. Let X be a smooth projective variety. Let M be an irreducible component
of Ratconn(X) and let C be a general curve parametrized by M . Let

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fr = TX .

denote the Harder-Narasimhan filtration of TX with respect to C. Then for every index i
with 0 < i < r the sheaf Fi is a foliation induced by a rational map φ : X 99K Z such that
the closures of the fibers of φ are rationally connected.
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Proof. [CP19, Theorem 1.1] shows that the existence of desired foliation is a consequence of
the positivity of the slopes of the quotients in the Harder-Narasimhan filtration as in Lemma
7.5. �

Our next goal is to prove Theorem 1.4 by removing the connected fibers condition in
Corollary 7.4. The argument relies on our work with factoring covers, and in particular on
Lemma 6.4 which shows that restricted tangent bundles interact well with factoring covers.
Before proving Theorem 1.4 we need to give a precise version of the definition used in the
statement of the Theorem:

Definition 7.7. Let X be a smooth projective variety. Fix a positive integer k. For each
irreducible component M of Rat(X), let ψ : Y → X denote a resolution of the Stein
factorization of a normalization of the evaluation map for the universal family over M and
let N denote the corresponding irreducible component of Rat(Y ). By construction the
evaluation map for the universal family over N has connected fibers. Suppose we fix a
general point p in Y and take k general curves parametrized by N through p. Since all the
curves are free, the resulting stable map represents a smooth point of M0,0(Y ) and is thus
contained in a unique irreducible component. By applying Lemma 3.2 repeatedly, we see that
this component is independent from the choice of point p and of the general curves through
p and thus we may denote it by N (k). The pushforward map takes N (k) birationally onto an

irreducible component of Rat(X). We let Rat
(k)

(X) denote the union of the components of
Rat(X) obtained in this way as we vary M .

Proof of Theorem 1.4: (1) follows immediately from applying Corollary 7.4 to a resolution
of the Stein factorization of the evaluation map for the universal family over irreducible
components of Rat(X). By Lemma 6.4 the restricted tangent bundle does not change upon
this operation. (2) is a consequence of Theorem 5.4 applied to a resolution of the Stein
factorization of the evaluation map for the universal family over irreducible components of
Rat(X). Again we apply Lemma 6.4 to deduce that the restricted tangent bundles on X
and on the Stein factorization are the same. �

Theorem 1.4 shows that in low dimension for “sufficiently divisible” families of curves
the slope panel is the same as the expected slope panel. It is natural to wonder whether
“sufficiently positive” families of curves will have a slope panel which is “as close as possible”
to the expected slope panel. The following example shows this need not be the case.

Example 7.8. Let G(1, 3) be the Grassmannian of lines in P3. Then the tangent bundle
TG(1,3) is given by S∨ ⊗ Q, where S and Q are the universal sub and quotient bundles on
G(1, 3). By [Man19] the restrictions of S and Q to a general rational curve of given degree
on G(1, 3) will be as balanced as possible. Thus, for curves on G(1, 3) of odd degree, we have
that S∨ ⊗Q will have the form (O(a)⊕O(a+ 1))⊗ (O(a)⊕O(a+ 1)) = O(2a)⊕O(2a+
1)2 ⊕ O(2a + 2). In particular, the restricted tangent bundle will not be O(2a + 1)4 even
though there is no arithmetic obstruction to such a decomposition.

8. Minimal slope ratio

Recall that the minimal slope ratio of a free rational curve is the minimal entry in the slope
panel. [Pey17] proposes a variant of Manin’s Conjecture for rational points that depends on
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an analogue of the minimal slope ratio. In this section we analyze Peyre’s proposal in the
setting of Geometric Manin’s Conjecture for rational curves.

We will be studying a geometric analogue of the number field version of Manin’s Con-
jecture as formulated in [FMT89], [BM90], [Pey95], [BT98], [Pey03], [LST18]. The roots
of Geometric Manin’s Conjecture can be found in the heuristic assumptions developed by
[Bat88] for analyzing the function field version of the conjecture. There are two aspects: the
classification of components of the moduli space of (rational) curves on a Fano variety and
the study of their homology groups or motive. The first aspect is more relevant for our work
and is primarily developed in [Bou12], [LT19b], [BLRT20], [LT19a], [LT21]. The homology
of moduli spaces of maps has been studied by [Seg79], [Kir86], [MM91], [CJS94], [Gue95],
[BS20a] and many more authors; the motive of moduli spaces of maps has been explored in
[Bou09], [CLL16], [Bil18], [Fai21].

We will use the following notations in this section:

• Br(X), for the Brauer group of X.
• ρ(X), for the Picard rank of X.
• N1(X), N1(X)Z, Nef1(X), Nef1(X)Z, as defined in the beginning of Section 2.

8.1. Geometric Manin’s Conjecture. Let X be a smooth projective Fano variety. Geo-
metric Manin’s Conjecture predicts the asymptotic growth rate of the number of components
of Rat(X) as the anticanonical degree increases. To get the “expected” counting function, we
must first discount certain families of curves. One option is given by the following definition.

Definition 8.1. Let X be a smooth projective Fano variety. We call an irreducible compo-
nent of Rat(X) pathological if it admits a factoring cover f : Y → X such that f is not a
birational map.

Remark 8.2. Any irreducible component of Rat(X) that fails to be a component of Ratconn(X)
will be pathological, but there can be other pathological components. For example, if we
have a morphism π : X → Z with dimZ ≥ 1 then any family of free curves contracted by π
will be pathological.

Remark 8.3. The notion of a pathological component is very similar to the notion of an
“accumulating component” as defined by [BLRT20, Definition 7.1] which depends upon the
exceptional set as constructed in [LST18]. The two definitions are not precisely the same,
but [BLRT20, Theorem 7.7] shows that for Fano threefolds the distinction between the two
is negligible compared to the asymptotic growth of the counting function.

The counting function in Geometric Manin’s Conjecture captures the number of non-
pathological components of Rat(X) of a given degree. The following version emphasizes the
relationship with Manin’s Conjecture over a number field.

Definition 8.4. Let X be a smooth Fano variety and let r(X,−KX) denote the minimal
positive integer of the form KX · α for some α ∈ N1(X)Z. For every positive integer i we
let Pi denote the set of non-pathological components of Rat(X) which parametrize curves
of anticanonical degree i · r(X,−KX)

Fix a positive constant q > 1. We define

N(X,−KX , q, d) =
d∑
i=1

∑
W∈Pi

qdimW .
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Consider the function ξ : N1(X)Z → Z≥0 which assigns to any curve class α the number of
non-pathological components of Rat(X) parametrizing curves of class α. Then the counting
function is entirely determined by the function ξ:

N(X,−KX , q, d) =
∑

α∈Nef1(X)Z
−KX ·α≤dr(X,−KX)

ξ(α)q−KX ·α.

With this notation, we can state a version of Geometric Manin’s Conjecture:

Conjecture 8.5. Let X be a smooth projective Fano variety. Then:

(1) There is some constant M such that ξ(α) ≤M for every α ∈ N1(X)Z.
(2) for some translate Q = β + Nef1(X) of the nef cone, every numerical class in Q

satisfies ξ(α) = |Br(X)|.

Using standard lattice summation techniques, Conjecture 8.5 would imply that the count-
ing function satisfies an asymptotic formula

N(X,−KX , q, d) ∼d→∞ Cqdr(X,−KX)dρ(X)−1

for some constant C.

8.2. Peyre’s formulation of Manin’s Conjecture.

Definition 8.6. Let X be a smooth projective variety. Fix ε > 0. We say that a free rational
curve C is ε-liberated if its minimal slope ratio is > ε.

Suppose that ε : [1,∞)→ (0, 1) is a continuous decreasing function such that limd→∞ ε(d) =
0. By analogy with [Pey17, Définitions 6.11], we define

N `>ε(X,−KX , q, d) =
d∑
i=1

∑
W∈P̃i

qdimW .

where P̃i denotes the set of ε(d)-liberated components of Rat(X) which parametrize curves
of anticanonical degree i · r(X,−KX).

[Saw20] showed that when working over a number field Peyre’s definition can fail to remove
“enough” rational points to obtain the expected growth rate in Manin’s Conjecture. Analo-
gously, in the setting of Geometric Manin’s Conjecture there can be pathological components
of Rat(X) which are ε-liberated for all sufficiently small ε. Furthermore, such components
can make a non-trivial contribution to the asymptotics of the counting function so that
N `>ε(X,−KX , q, d) fails to have the expected growth rate.

Example 8.7 ([Saw20]). Let X denote the Fano variety Hilb2(Pn). If we let φ : W → Pn×Pn
denote the blow-up of the diagonal, then the quotient of W by the involution that switches
the two factors induces a finite map f : W → X which is ramified along the φ-exceptional
divisor E.

Suppose that N is an irreducible component of Rat(W ) such that the general curve C ′

parametrized by N does not intersect E. (We can obtain many such families by taking the
strict transforms of irreducible components of Rat(Pn × Pn).) If M denotes the irreducible
component of Rat(X) parametrizing the images C of these curves in X then f is a factoring
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cover for M . In particular, M is a pathological component of Rat(X) and should not be
counted in Geometric Manin’s Conjecture.

On the other hand, since a general curve C ′ parametrized by N avoids E the restriction
of the map TW → f ∗TX to C ′ is an isomorphism. By the same logic, the restriction of the
map TW → φ∗TPn×Pn to C ′ yields an isomorphism. By choosing different components of
Rat(Pn × Pn), we see that for any fixed ε there will be many components of Rat(X) coming
from W that are pathological but are ε-liberated. Since ρ(Pn×Pn) = 2 = ρ(X), these curves
will affect the leading constant in the asymptotic formula.

(If we are willing to work with weak Fano varieties in place of Fano varieties, then by
doing a similar construction for X = Hilb2(Pm×Pm) we can even ensure that the exponents
in the asymptotic formula for W are larger than the exponents for X.)

We next show that Peyre’s proposal never removes “too much”: although Peyre’s sugges-
tion will discount some non-pathological families, if we assume Conjecture 8.5 such families
do not impact the asymptotic formula. We will need the following facts:

Observation 8.8. (1) By taking closures of the cones constructed in [Neu09, Propo-
sition 3.3.5], the cone Nef1(X) can be decomposed into a finite set of closed full-
dimensional rational polyhedral cones {Ci}ri=1 such that for every i the Harder-
Narasimhan filtration of TX with respect to classes α in the interior of Ci is constant.

(2) Conjecture 8.5.(2) implies that the closure of the cone generated by the classes of
components of Ratconn(X) is all of Nef1(X). By Lemma 7.5 this implies that for
any Ci and any successive quotient Fk/Fk−1 occurring in the corresponding Harder-
Narasimhan filtration the slope of Fk/Fk−1 with respect to any numerical class in Ci
is non-negative. Since Ci is full-dimensional it is not possible for these slopes to be
identically 0 on Ci, and thus each will be positive on the interior of Ci.

Theorem 8.9. Assume Conjecture 8.5. Let X be a smooth projective Fano variety and let
ε : [1,∞) → (0, 1) be a continuous decreasing function such that limd→∞ ε(d) = 0. For any
δ > 0, there is some d0 sufficiently large such that

N `>ε(X,−KX , q, d) > (1− δ)N(X,−KX , q, d)

for every d ≥ d0.

Proof. We continue to write {Ci}bi=1 for the subcones of Nef1(X) such that the Harder-
Narasimhan filtration is constant for classes in the interior of Ci. We let `i denote the linear
function on Ci that identifies the minimal slope quotient.

Let Q ⊂ Nef1(X) denote the translate of the nef cone identified by Conjecture 8.5.(2).
Conjecture 8.5.(1) implies that for d sufficiently large we have

(8.1)
∑
α∈QZ

−KX ·α≤dr(X,−KX)

ξ(α)q−KX ·α > (1− δ)1/6N(X,−KX , q, d).

Furthermore Conjecture 8.5.(2) predicts that ξ(α) = |Br(X)| for every α ∈ Q. Together
these imply that we can approximate N(X,−KX , q, d) using a sum of exponentials over the
lattice points of Q. Our plan is to estimate the percentage of numerical classes in Q which
represent ε-liberated rational curves.
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For any positive integer d let N d denote the subset in Nef1(X) of classes which have
anticanonical degree = r(X,−KX) · d. By Observation 8.8.(2) we see that for γ sufficiently
small we have

Vol
({
α ∈ N d ∩ Ci

∣∣∣`i(α) ≥ γ

2
(−KX · α)

})
> (1− δ)1/6 Vol(N d ∩ Ci)

where the volume is normalized with respect to the lattice of integer curve classes in the
codimension 1 subspace of N1(X) consisting of classes with −KX · α = 0. Appealing to the
theory of Ehrhart quasipolynomials, we see that by decreasing the leading constant we may
ensure that for any fixed value of γ as above there is a constant d0 such that

#
{
α ∈ N d

Z ∩ Ci
∣∣∣`i(α) ≥ γ

2
(−KX · α)

}
> (1− δ)2/6#(N d

Z ∩ Ci)

for every d ≥ d0.
Since Q is a translate of the nef cone, for sufficiently large d the number of lattice points

in a cross section of Q∩Ci ∩N d
Z is asymptotically the same as the number in Ci ∩N d

Z . More
precisely, after perhaps increasing d0 further to account for the translate defining Q (and
increasing the leading constant) we see that for every d ≥ d0 we have

#
{
α ∈ Q ∩N d

Z ∩ Ci
∣∣∣`i(α) ≥ γ

2
(−KX · α)

}
> (1− δ)3/6#(Q∩N d

Z ∩ Ci).

Since “almost all” of the points in Q ∩ Ci ∩ N d
Z satisfy the inequality `i(α) ≥ γ

2
(−KX · α)

for d sufficiently large, we see that after possibly increasing d0 (and the leading constant) we
have for every d ≥ d0 ∑

α∈Q∩N dZ∩Ci
`i(α)≥ γ2 (−KX ·α)

q−KX ·α > (1− δ)4/6
∑

α∈Q∩N dZ∩Ci

q−KX ·α.

Summing up over anticanonical degrees, we see that for d0 sufficiently large we have

(8.2)
∑

α∈QZ∩Ci
−KX ·α≤dr(X,−KX)
`i(α)≥ γ2 (−KX ·α)

q−KX ·α > (1− δ)5/6
∑

α∈QZ∩Ci
−KX ·α≤dr(X,−KX)

q−KX ·α.

for every d ≥ d0. In particular we can first choose γ small enough and then choose d0
sufficiently large so that this inequality holds for every Ci simultaneously.

Suppose that M is an irreducible component of Ratconn(X) and that C is a general free
rational curve parametrized by M . Suppose furthermore that −KX ·C > dim(X)2/4γ. Then
by Theorem 1.4 we see that if the numerical class of C lies in Ci and if

`i(C) ≥ γ

2
(−KX · C)

then C is γ-liberated. In particular, if α is a numerical class counted by the left hand side
of Equation (8.2) then any free rational curve of class α that is general in its deformation
class will be γ-liberated.
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Altogether, if we further increase d0 to ensure that ε(d) < γ for every d ≥ d0, then we see
that for d ≥ d0 we have

N `>ε(X,−KX , q, d) ≥
b∑
i=1

∑
α∈QZ∩Ci

−KX ·α≤dr(X,−KX)
`i(α)≥ γ2 (−KX ·α)

|Br(X)|q−KX ·α

> (1− δ)5/6
b∑
i=1

∑
α∈QZ∩Ci

−KX ·α≤dr(X,−KX)

|Br(X)|q−KX ·α by Equation (8.2)

= (1− δ)5/6
∑
α∈QZ

−KX ·α≤dr(X,−KX)

|Br(X)|q−KX ·α

> (1− δ)N(X,−KX , q, d) by Equation (8.1)

�
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