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Abstract. Let X be a del Pezzo surface over the function field of a complex curve. We
study the behavior of rational points on X leading to bounds on the counting function in
Geometric Manin’s Conjecture. A key tool is the Movable Bend and Break Lemma which
yields an inductive approach to classifying relatively free sections for a del Pezzo fibration
over a curve. Using this lemma we prove Geometric Manin’s Conjecture for certain split del
Pezzo surfaces of degree ≥ 2 admitting a birational morphism to P2 over the ground field.

1. Introduction

In an unpublished note ([Bat88]), Batyrev developed a heuristic argument for Manin’s
Conjecture for a trivial family of Fano varieties over an Fq-curve. His heuristic relies on
several assumptions about the geometry of sections of a Fano fibration over an Fq-curve as
well as some point counting estimates. If we focus on the geometry of sections, the collection
of analogous conjectures over the function field of a complex curve is known as Geometric
Manin’s Conjecture. In this paper we study Geometric Manin’s Conjecture for del Pezzo
surfaces over the function field of a complex curve.

Let B be a smooth projective curve over an algebraically closed field of characteristic 0.
A del Pezzo fibration over B is an algebraic fiber space π : X → B such that X is projective,
X has only Gorenstein terminal singularities, and the general fiber of π is a smooth del
Pezzo surface. Let Sec(X/B) denote the parameter space of sections of π. Our main results
describe the relationship between irreducible components of Sec(X/B) and the geometric
invariants used in Geometric Manin’s Conjecture.

In the companion paper [LT19a], we studied the analogous problem for del Pezzo fibrations
over P1. The conceptual approach in this paper is similar (particularly in Theorem 5.3 and
in Section 7): we systematically use Bend-and-Break to reduce questions about sections to
properties of rational curves in the fibers. [LT19a] explains how our main results can be
applied to study the Abel-Jacobi map for components of Sec(X/B) and the enumerativity
of certain Gromov-Witten invariants; we will not explain these applications in this paper
but refer the reader to [LT19a] for details.

1.1. Main results. The following definition identifies the “well-behaved” sections of a del
Pezzo fibration.

Definition 1.1. Let π : X → B be a del Pezzo fibration. We say that a section C is
relatively free if C is contained in the smooth locus of X , H1(C,NC/X ) = 0, and NC/X is
generically globally generated.

Remark 1.2. [GHS03] shows that every del Pezzo fibration π : X → B admits a section.
Since a Gorenstein terminal threefold has only lci singularities, starting from any given
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section we can construct a relatively free section by gluing on sufficiently many free rational
curves contained in the fibers of π and smoothing (see Remark 10.8). Thus every del Pezzo
fibration admits many families of relatively free sections.

It is natural to separate irreducible components of Sec(X/B) into three types:

(1) Non-dominant families of sections.
(2) Dominant families for which a general section is not relatively free.
(3) Dominant families for which a general section is relatively free.

We prove structural theorems for all three types of irreducible components. We first analyze
the components of Sec(X/B) which parametrize a non-dominant family of sections.

Theorem 1.3. Let π : X → B be a del Pezzo fibration such that −KX/B is relatively
nef. There is a finite union of surfaces Y whose intersections with a general fiber of π are
rational curves of anticanonical degree ≤ 2 and a constant C(X ) such that the following
holds. Suppose that M ⊂ Sec(X/B) is a component parametrizing a non-dominant family
of sections of height ≥ C(X ). Then the sections parametrized by M sweep out one of these
surfaces Y .

Here C(X ) is an explicit constant determined by the behavior of low degree sections.

Remark 1.4. [Cor96, 3.3 Theorem] shows that any del Pezzo surface over the function field
of B admits an integral model with Gorenstein terminal singularities such that −KX/B is
relatively nef. Thus every del Pezzo fibration admits a birational model where Theorem 1.3
applies.

Remark 1.5. Theorem 1.3 can be used to show that there is a proper closed set V ( X
which contains all sections which do not deform to dominate X .

Our second main result addresses dominant families of sections which are not relatively
free. It shows that the existence of sections of this type is controlled by a bounded family of
surfaces.

Theorem 1.6. Let π : X → B be a del Pezzo fibration such that −KX/B is relatively nef.
There is a bounded family of surfaces Y whose intersections with a general fiber of π are
rational curves of anticanonical degree 2 and a constant D(X ) such that the following holds.
Suppose that M ⊂ Sec(X/B) is a component parametrizing a dominant family of sections of
height ≥ D(X ) which are not relatively free. Then the general section parametrized by M is
contained in some surface in our family.

Here D(X ) is an explicit constant determined by the behavior of low degree sections.
Our final main result shows that any component of Sec(X/B) that parametrizes relatively

free sections of large height will contain in its closure a union of a π-vertical rational free
curve and a relatively free section of smaller height. As in [HRS04], this allows us to study
families of relatively free sections of large height via induction by appealing to the gluing-
and-smoothing structure of stable maps.

Theorem 1.7 (Movable Bend-and-Break for relatively free sections). Let π : X → B be a
del Pezzo fibration such that −KX/B is relatively ample. There is a constant Q(X ) satisfying
the following property. Suppose that M ⊂ Sec(X/B) is a component that parametrizes
a dominant family of relatively free sections C satisfying −KX/B · C ≥ Q(X ). Then the
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closure of M in M g(B),0(X ) contains a point representing a stable map whose domain has two
components; one maps birationally to a relatively free section and the other maps birationally
to a free π-vertical rational curve.

Here Q(X ) is an explicit constant determined by the behavior of low degree sections.

Remark 1.8. [Cor96, 1.10 Theorem] shows that any del Pezzo fibration whose generic fiber
has degree ≥ 3 will admit a birational model which has Gorenstein terminal singularities
and a relatively ample anticanonical divisor.

1.2. Geometric Manin’s Conjecture. Inspired by the thin set version of Manin’s conjec-
ture and the conjectural description of the exceptional set in [LST18], the authors proposed
the first version of Geometric Manin’s Conjecture in [LT19b]. The statement relies on the
following invariant from the Minimal Model Program.

Definition 1.9. Let X be a smooth projective variety over a field of characteristic 0. Let L
be a big and nef Q-Cartier divisor on X. We define the Fujita invariant, or the a-invariant,
to be

a(X,L) = min{t ∈ R | KX + tL ∈ Eff
1
(X)}. (1.1)

When L is nef but not big, we formally set a(X,L) = +∞.
When X is singular, we define the Fujita invariant as the Fujita invariant of the pullback

of L to any smooth model. This is well-defined because of [HTT15, Proposition 2.7].

Roughly speaking Geometric Manin’s Conjecture predicts two things. First, the conjecture
predicts that there should be a “thin exceptional set” which can be described using the Fujita
invariant as in [LST18].

Principle 1.10. Let π : X → B be a Fano fibration over a smooth projective curve.
All “pathological” irreducible components of Sec(X/B) will parametrize sections which are
contained in a bounded family of subvarieties Y ⊂ X such that the Fujita invariant of Yη
with respect to −KX/B is at least as large as the Fujita invariant of Xη.

Here the notion of “pathological” is flexible. If we interpret patholgical to mean “not
relatively free”, then Principle 1.10 for del Pezzo fibrations is established by Theorem 1.3
and Theorem 1.6. We can also interpret pathological more narrowly to mean “components
which grow too quickly” and we give a precise accounting of Principle 1.10 for del Pezzo
fibrations in this setting in Section 10.

Second, Geometric Manin’s Conjecture predicts that the number of relatively free families
representing a given numerical class is bounded above.

Principle 1.11. Let π : X → B be a Fano fibration over a smooth projective curve. After
removing all components of Sec(X/B) which factor through the exceptional set constructed
by [LST18], there should be exactly |Br(X)| irreducible components of Sec(X/B) represent-
ing each sufficiently positive nef curve class which admits a relatively free section.

We do not know how to establish Principle 1.11 for del Pezzo fibrations in general. How-
ever, the inductive structure given by Theorem 1.7 allows us to prove a weaker bound on
the number of components. The following result shows that the number of components of
Sec(X/B) only grows polynomially in the degree as predicted by Batyrev.
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Theorem 1.12. Let π : X → B be a del Pezzo fibration such that −KX/B is relatively
ample. Then there is a polynomial P (d) such that the number of components of Sec(X/B)
parametrizing sections of height ≤ d is bounded above by P (d).

One can rephrase Geometric Manin’s Conjecture to emphasize the analogy with the num-
ber theoretic version. Let π : X → B be a del Pezzo fibration. For simplicity, we assume that
ρ(Xη) ≥ 2 where ρ(Xη) is the Picard rank of Xη. We say that a component M ⊂ Sec(X/B) is
an accumulating component if M parametrizes sections contained in a surface whose generic
fiber is a union of −KXη -lines. We say that a component M ⊂ Sec(X/B) is a Manin
component if it is not accumulating.

Let Manini be the set of Manin components parametrizing sections C with −KX/B.C = i.
For q > 1 and any positive integer d we define the counting function by

N(X ,−KX/B, q, d) :=
d∑
i=1

∑
M∈Manini

qdimM .

This counting function is inspired by Batyrev’s heuristic for Manin’s Conjecture for Fq-curves
on a smooth Fano variety; the term qdimM represents the “expected” number of Fq-points
on M . The “expected” asymptotic growth rate of the counting function is

N(X ,−KX/B, q, d) ∼
d→∞

cqddρ(Xη)−1.

Theorem 1.12 implies a weaker upper bound on the counting function. For simplicity we
assume that the general fiber of π contains a (−1)-curve.

Theorem 1.13. Let π : X → B be a del Pezzo fibration such that X is smooth, −KX/B is
relatively ample, and the general fiber is a del Pezzo surface that is not P2 or P1× P1. Then
there is some non-negative integer r such that

N(X ,−KX/B, q, d) = O(qddr).

Remark 1.14. Suppose we fix a del Pezzo surface Xη over the function field of B. Geometric
Manin’s Conjecture for Xη implicitly relies on the choice of an integral model of Xη over B.
(Analogously, in the number field setting Manin’s Conjecture depends upon a choice of
metrization.)

Just as in the number field setting, if Xη has an integral model where Theorem 1.13 applies
then one should be able to deduce the analogous bound for every integral model of Xη. (In
contrast, although we expect Theorem 1.3 and Theorem 1.7 to hold for any integral model
of Xη we do not see an easy way to pass the statements between different integral models.)

1.3. Classifying components of Sec(X/B). Suppose that π : X → B is a del Pezzo
fibration such that −KX/B is relatively ample. Furthermore, suppose that we can classify
all sections of low height by hand. Then the components of Sec(X/B) of large height can
be described inductively using Theorem 1.3, Theorem 1.6, and Theorem 1.7. This technique
is illustrated in several examples in [LT19a, Section 8]. In particular, this type of argument
should allow us to fully prove Geometric Manin’s Conjecture for specific examples. However
it is challenging to prove a general statement. We are able to prove this strong version in a
somewhat restrictive situation.

Theorem 1.15. Let π : X → B be a del Pezzo fibration such that every fiber of π is a
del Pezzo surface with canonical singularities of degree ≥ 2. Suppose that X is Q-factorial
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and that the generic fiber Xη is the blow-up of P2
k(B) at a finite number of points defined

over k(B). Then there is some section C such that for every integral numerical class α in
C + Nef1(Xη) there is exactly one component of Sec(X/B) which parametrizes relatively free
sections and represents α.

Example 1.16. Suppose we fix a smooth del Pezzo surface S of degree ≥ 2 and a curve
B. Applying Theorem 1.15 to π : S × B → B we see there is a translate of Nef1(S) in
N1(S) such that every curve class in this translate is represented by a unique component of
Mor(B, S).

Theorem 1.15 verifies the strong version of Geometric Manin’s Conjecture for this type of
del Pezzo fibration. Note that in this situation Xη is rational so that Br(X ) is trivial. For
the del Pezzo fibrations addressed by Theorem 1.15 we obtain the expected growth rate

N(X ,−KX/B, q, d) ∼
d→∞

cqddρ(Xη)−1.

where the leading constant c is described by Theorem 10.10.
A key new feature of Theorem 1.15 is that the proof does not rely on induction. In

particular, we do not need any ad hoc arguments to analyze base cases. Instead, we define
a monoid structure on the set R of components of nef curve classes on a del Pezzo surface
given by gluing and smoothing. This monoid acts on the set of components of relatively
free sections of sufficiently large height by gluing and smoothing and Movable Bend and
Break tells us that this set is finitely generated by R. By exhibiting many relations among
components of relatively free sections, we show that every nef class in a translate of the cone
is represented by one irreducible relatively free component.

1.4. Comparison to previous works. Batyrev developed a heuristic for Manin’s Conjec-
ture over global function fields in the unpublished notes [Bat88]. (This heuristic is explained
in [Tsc09, Section 4.7] and [Bou11, Section 1.2].) This perspective motivated the formula-
tion of the Batyrev-Manin Conjecture developed in [BM90]. This theme was also revisited
in [Man95] which proves an exponential bound on the number of components of Mor(P1, X)
and discusses the analogy with rational point counts.

Suppose that X is a Fano variety and B is a smooth projective curve over a finite field.
Batyrev’s heuristic for sections of π : X×B → B is based on the following three assumptions:

(1) For each nef class α ∈ Nef1(X)Z, every irreducible component of the moduli space
Mor(B,X, α) has the expected dimension −KX ·B + dim(X)(1− g(B));

(2) For each nef class α ∈ Nef1(X)Z, Mor(B,X, α) is irreducible;
(3) If we use the naive estimate |Mor(B,X, α)(Fq)| ≈ qdim Mor(B,X,α) then we do not affect

the asymptotic growth rate of the number of rational points.

As stated the assumptions (1) and (2) are not valid even for large degree curves. This failure
is related to the properties of the exceptional set in Manin’s Conjecture for rational points.
(Ellenberg and Venkatesh suggest that (3) may be approached using homological stability –
see [EV05] – but as of now we do not have many examples. [BS20] proves a statement in
this direction for low degree Fano hypersurfaces.)

The classification of components of Mor(P1, X) for a Fano variety X has a long and rich
history. For P1 the predictions (1),(2) implicit in Batyrev’s heuristics have been verified in
the following cases (and in many other special cases):
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• generalized flag varieties ([Tho98] and [KP01]);
• most Fano hypersurfaces ([HRS04], [RY19], and [BV17]);
• toric varieties ([Bou09] and [Bou16]);
• moduli spaces of vector bundles on curves ([Cas04] and [TM20]);
• smooth del Pezzo surfaces ([Tes09]), and;
• Fano threefolds ([CS09], [Cas04], [LT19b], [LT21], and [BLRT20]).

In contrast, there has not been much progress toward the classification of irreducible com-
ponents of Mor(B,X) when B has genus ≥ 1. Aside from Bourqui’s pioneering results for
toric varieties, to the best of our knowledge there are only a few examples of homogeneous
varieties X where the irreducible components of Mor(B,X) have been fully classified (and
primarily when B is an elliptic curve – [Bru87], [Bal89], [Per12], [PP13]).

More generally, one would like to classify the irreducible components of the space of sec-
tions of a Fano fibration. While there are many powerful theorems describing the qualitative
nature of sections of Fano fibrations, there are fewer quantitative results. [LT19a] develops
Geometric Manin’s Conjecture for sections of Fano fibrations over P1 and proves some results
for del Pezzo fibrations. In this paper we address del Pezzo fibrations over curves of higher
genus. The key contributions of this paper are:

• This is the first paper which uses the inductive strategy of [HRS04] to classify curves
of high genus on a Fano variety. The framework and perspective we develop should
be applicable in other situations. When working with higher genus curves, there are
many new technical obstacles – in particular, the most difficult part of the argument
concerns dominant families of sections which are not relatively free.
• For a special class of del Pezzo fibrations, we give a conceptual proof of Geometric

Manin’s Conjecture using a gluing-and-smoothing monoid structure (Theorem 1.15).
Previous techniques have tended to be somewhat ad hoc.
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2. Preliminaries

Let k be an algebraically closed field of characteristic 0. Let B be a smooth projective
curve defined over k. In this paper our ground fields will be k and k(B). A variety is a
reduced irreducible separated scheme which has finite type over the ground field. In this
paper a component of a scheme means an irreducible component unless otherwise specified.
When we take a component of a scheme, we always endow it with its reduced structure.

2.1. Positive cycles. We will use ∼rat to denote rational equivalence of cycles, ∼alg to
denote algebraic equivalence of cycles, and ≡ to denote numerical equivalence of cycles.
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Let X be a projective variety. We will let N1(X) denote the space of R-Cartier divisors

up to numerical equivalence and let Eff
1
(X) and Nef1(X) denote respectively the pseudo-

effective and nef cones of divisors. Dually, N1(X) denotes the space of real 1-cycles up to
numerical equivalence and Eff1(X) and Nef1(X) denote respectively the pseudo-effective and
nef cones of curves. We will denote by N1(X)Z the lattice of integral curve classes inside of
N1(X) and by N1(X)Z the lattice of integral divisors inside of N1(X).

We say that a reduced irreducible curve C on X is movable if C is a member of a family
of curves which dominates X.

2.2. Height functions.

Definition 2.1. A Fano fibration π : X → B is a surjective morphism with connected fibers
from a Gorenstein terminal projective variety X to a smooth projective curve B such that a
general fiber is a smooth Fano variety.

We will always denote the generic point of B by η and the generic fiber of π by Xη.

Given a section C of π and a divisor L on X , the height of C with respect to L is defined
to be L · C. The following statement is the Northcott property for Fano fibrations over B.

Lemma 2.2. Let π : X → B be a Fano fibration. Fix a Q-Cartier divisor L on X whose
restriction to the generic fiber of π is ample. For any constant γ, the sections whose height
with respect to L is ≤ γ form a bounded family.

One consequence is that there is a lower bound on the possible values of L ·C as we vary
C over all sections.

Definition 2.3. Let π : X → B be a Fano fibration and let L be a Q-Cartier divisor on X
such that the restriction of L to the generic fiber is ample. We define neg(X , L) to be the
smallest value of L · C as we vary C over all sections of π : X → B.

Another consequence is captured by the following observation:

Observation 2.4. Let π : X → B be a Fano fibration. Fix an irreducible component M of
Sec(X/B). We let M [m] denote the family of sections parametrized by M with m marked
points and we denote the evaluation map by evm : M [m] → Xm.

Fix an integer d and a relatively ample divisor L. Suppose that we vary M over all
components of Sec(X/B) of L-degree ≤ d for which the evaluation map evm does not map
dominantly to X×m. By Lemma 2.2 the union of closures of the images of these maps will
be a proper closed subset of X×m. In particular, if we fix m general points of X , then any
irreducible component M of Sec(X/B) of degree ≤ d which parametrizes a section through
these points will yield a dominant map onto X×m.

Remark 2.5. From now on, when we say that an irreducible component M of Sec(X/B)
parametrizes sections through m general points, we will mean “general” in the sense of
Observation 2.4. Note that implicitly the meaning of “general” will depend upon the relative
anticanonical degree of the curves parametrized by M even when this degree is not explicitly
mentioned.
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2.3. Generic Fujita invariants. Let us recall the definition of the Fujita invariant from
the introduction.

Definition 2.6. Let X be a smooth projective variety over a field of characteristic 0. Let L
be a big and nef Q-Cartier divisor on X. We define the Fujita invariant, or the a-invariant,
to be

a(X,L) = min{t ∈ R | KX + tL ∈ Eff
1
(X)}. (2.1)

When L is nef but not big, we formally set a(X,L) = +∞.
When X is singular, we define the Fujita invariant as the Fujita invariant of the pullback

of L to any smooth model. This is well-defined because of [HTT15, Proposition 2.7].

Note that the a-invariant is geometric: it does not change under field extension. We will
be interested in how the Fujita invariant behaves over k(B).

Lemma 2.7 ([LT19a] Lemma 3.3). Let π : X → B be a Fano fibration and let L be a
Q-Cartier divisor on X such that the restriction of L to the generic fiber Xη is big and nef.
Then for any smooth Fano fiber F of π we have

a(Xη, L|Xη) = a(F,L|F ).

As in [LT19a] we will call this quantity the generic a-invariant of X with respect to L. For
del Pezzo surfaces, it is easy to work out the behavior of the a-invariant of the anticanonical
divisor when restricted to subvarieties. This leads to the following description:

Lemma 2.8 ([LT19a] Lemma 3.4). Let π : X → B be a del Pezzo fibration. Then:

• A subvariety Y will have a(Yη,−KX/B) > 1 if and only if its intersection with a
general fiber F is a union of curves of the following types: (−1)-curves, or rational
curves in | −KF | when F has degree 1.
• A subvariety Y will have a(Yη,−KX/B) = 1 if and only if its intersection with a

general fiber F is a union of curves of the following types: irreducible fibers of a
conic fibration on F , the rational curves in |−KF | if F has degree 2, and the rational
curves which lie in | − 2KF | or the pullback of the anticanonical linear series on a
degree 2 del Pezzo surface if F has degree 1.

Corollary 2.9. Let π : X → B be a del Pezzo fibration. The union of all subvarieties Y
with a(Yη,−KX/B) > 1 is a closed subset of X .

The subvarieties Y with generic a-invariant equal to 1 are a little more complicated; note
that they need not form a bounded family on X (even though the corresponding subvarieties
of Xη do form a bounded family). However, we do have a weaker boundedness statement.

Proposition 2.10. Let π : X → B be a del Pezzo fibration. Fix a bounded family of
sections of π. The family of surfaces Y ⊂ X which contain a section in our family and
satisfy a(Yη,−KX/B) = 1 is bounded.

Proof. Lemma 2.8 (2) describes the possible types of a general fiber of π|Y : they are rational
curves of anticanonical degree 2. Note that if we fix a point in a del Pezzo surface there are
only finitely many curves of these types through that point.

Suppose we fix a section C of π. The observation above shows that there are only finitely
many surfaces which contain this section and satisfy a(Yη,−KX/B) = 1. Constructing an
incidence correspondence we obtain the boundedness of the surfaces Y as in the statement
of the proposition. �

8



2.4. Bend-and-Break. We will need the following result controlling the behavior of Bend-
and-Break for sections.

Lemma 2.11. Let π : X → B be a Fano fibration. Fix a set of n general points {xi}ni=1

of X where n ≥ 2. Suppose there is a one-dimensional family of sections which contain all
n points. Then the closure of this family in M g(B),0(X ) contains a stable map f : C → X
such that C has at least two components C1, C2 which are not contracted by f and such that
f(C1) and f(C2) each contain one of the xi.

Proof. When B ∼= P1 this statement is proved in [LT19a, Lemma 4.1]. Suppose that g(B) ≥
1. The statement of Bend-and-Break shows that the family of sections deforms to a stable
map f : C → X such that

• f(C) contains all n general points, and
• there is some component C1 of C which is rational, is not contracted by f , and whose
f -image contains one of the general points.

Since C1 is rational and g(B) ≥ 1 the image of C1 must be π-vertical, so f(C1) can contain at
most one general point. Thus the other general points will be contained in other components
of f(C), proving the statement. �

2.5. Vector bundles on curves. In this section we quickly review some facts about rank
2 vector bundles on curves.

Lemma 2.12 ([Har77] V.2.12.(b), [Nag70] Theorem 1). Let E be a rank 2 vector bundle on
the smooth curve B.

(1) Suppose that E is unstable. Consider the destabilizing exact sequence

0→ L2 → E → L1 → 0

given by the maximal slope subbundle L2. If E is indecomposable then

0 < deg(L2)− deg(L1) ≤ 2g(B)− 2.

(2) Suppose that E is semistable. Consider the exact sequence

0→ L1 → E → L2 → 0

given by a maximal slope rank 1 subbundle L1. Then we have

0 ≤ deg(L2)− deg(L1) ≤ g(B).

Using Kodaira vanishing and the exact sequences above, one obtains:

Corollary 2.13. Let E be a rank 2 vector bundle on the smooth curve B.

(1) If E is unstable, indecomposable, and deg(E) ≥ 6g(B)− 4 then h1(B, E) = 0.
(2) If E is semistable and deg(E) ≥ 5g(B)− 2 then h1(B, E) = 0.

We will also need the following fact about the variation of the Harder-Narasimhan filtration
in families.

Theorem 2.14 ([HL97] Theorem 2.3.2). Let T be a variety and let E be a vector bundle of
rank 2 on T × B. We can think of T as the parameter space for a family of rank 2 vector
bundles on B. Then there exists a non-empty Zariski open subset T ′ ⊂ T such that either

• for each t ∈ T ′, E|{t}×B is semistable, or;
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• there exists a line subbundle L ⊂ E|T ′×B on T ′×B such that for each t ∈ T ′, L|{t}×B
is the maximal destabilizing subsheaf of E|{t}×B.

2.6. Conics on del Pezzo surfaces. Finally we record the following lemma for later ap-
plications:

Lemma 2.15. Let S be a smooth del Pezzo surface of degree d over an algebraically closed
field k of characteristic 0. Let C be an anticanonical conic on S, i.e. C is rational and
−KS · C = 2. Then C satisfies one of the following conditions:

(1) C2 = 0 and C is a member of a conic fibration ρ : S → P1;
(2) d = 2 and C is a rational member of | −KS|;
(3) d = 1 and C is a rational member of |L| where L is the pullback of the anticanonical

divisor via a blow down S → S ′ to a degree 2 del Pezzo surface, or;
(4) d = 1 and C is a rational member of | − 2KS|.

Moreover a general member of each family has at worst nodal singularities.

Proof. First of all it follows from adjunction that C2 ≥ 0 and C2 is even. On the other
hand, by the Hodge index theorem we have dC2 − 4 ≤ 0. Thus when d ≥ 3, we conclude
that C2 = 0 and the linear series |C| defines a conic fibration. When d = 2, we have two
possibilities: C2 = 0 or 2. When C2 = 0, |C| defines a conic fibration. When C2 = 2, C is
linearly equivalent to −KS. Thus C is a rational member of | − KS|. When d = 1, there
are three possibilities: C2 = 0, 2, or 4. Again when C2 = 0 the linear series |C| defines a
conic fibration. When C2 = 2, we claim that C +KS is linearly equivalent to a (−1)-curve.
Indeed, using the exact sequence

0→ H0(S,OS(C +KS))→ H0(S,OS(C))→ H0(C,OC)

one sees that H0(S,C + KS) > 0 and then the intersection-theoretic properties of C + KS

show that it is linearly equivalent to a (−1)-curve. Thus C is a member of a family in (3).
When C2 = 4, C is linearly equivalent to −2KS. Thus our assertion follows.

Finally for the last claim, any general member of a conic fibration is smooth. For a degree
2 del Pezzo surface S, |−KS| defines a double cover S → P2 ramified along a smooth quartic
curve D and any rational member of |−KS| is the pullback of a tangent line to D. A generic
tangent line has only one tangency point so that a general rational curve in | −KS| has only
one node. This proves the claim for families in (2) and (3). Finally for a degree 1 del Pezzo
surface S, | − 2KS| defines a double cover S → Q to a singular quadric cone ramified along
a smooth complete intersection of Q and a cubic surface. A general rational member of
| − 2KS| corresponds to a hyperplane section bitangent to the branch divisor, thus a general
rational curve in | − 2KS| has two nodes. Thus our assertion follows. �

3. Families of sections

3.1. Moduli spaces of sections. Let π : X → B be a Fano fibration with dimX ≤ 3. By
definition X has only Gorenstein terminal singularities. When dim(X ) = 3, this is equivalent
to saying that X has cDV singularities ([KM98, Corollary 5.38]). Such singularities are
analytically isomorphic to hypersurface singularities, and in particular X is locally complete
intersection in the Zariski topology.

We let Sec(X/B) denote the open subset of Hilb(X ) parametrizing sections of π and let
Sec(X/B)d denote the sublocus parametrizing sections of height d. Suppose that C is a
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general curve parametrized by a component M ⊂ Sec(X/B). The expected dimension of M
is

−KX/B · C + (dimX − 1)(1− g(B)).

The expected dimension is a lower bound for the dimension of M by [Kol96, Chapter I.2
Theorem I.2.15.2]. Indeed, let IC ⊂ OX be the ideal sheaf of C. Using the fact that X is
lci, one can conclude that we have the exact sequence

0→ IC/I2
C → Ω1

X |C → Ω1
C → 0.

Our claim follows by combining this with [Kol96, Chapter I.2 Theorem 2.15.2].
When C avoids the singular locus of X and H1(C,NC/X ) = 0, then the expected di-

mension coincides with the actual dimension and C represents a smooth point of M . The
quantity H0(C,NC/X ) is an upper bound for the dimension of M assuming that C avoids
the singularities of X .

3.1.1. Compactifications. Using the functor defining the Hilbert scheme, we see that each
component M ⊂ Sec(X/B) admits a natural embedding into the stack Mg(B),0(X ). Since
every stable map parametrized by M is birational onto its image these curves have trivial
automorphism group over X , so thatM also admits a natural embedding into a componentM
of the coarse moduli space M g(B),0(X ). Note that the domain of any stable map parametrized

byM will be the union of a section with a finite collection of trees of π-vertical rational curves.

3.1.2. Fixed points. We will also need parameter spaces for sections containing a set of fixed
points. When the base has genus 0 we can appeal to [She12] which constructs a moduli space
for rational curves through fixed points. We will briefly discuss the situation for curves of
higher genus.

Let q1, . . . , qr be r points on X whose images pi := π(qi) are distinct. Recall that [Kol96,
Section I.1] constructs the moduli space Mor(B,X , pi 7→ qi) of morphisms f : B → X
sending pi 7→ qi. This space admits a map to Aut(B, pi). Since the genus of B is at least
1 and r ≥ 1, this automorphism group is finite. Using the universal properties, we see that
the component of Mor(B,X , pi 7→ qi) lying above the trivial automorphism is isomorphic to
the sublocus Sec(X/B, q1, . . . , qr) in Sec(X/B) parametrizing sections containing the points
{qi}. It is clear from the construction that we have natural inclusions Sec(X/B, q1, . . . , qr)→
Sec(X/B, q1, . . . , qr−1). The expected dimension of Sec(X/B, q1, . . . , qr) is

−KX/B · C + (dimX − 1)(1− g(B)− r)
and every component has at least the expected dimension. If C avoids the singular locus
of X and H1(C,NC/X (−q1 − . . .− qr)) = 0 then the expected dimension coincides with the
actual dimension and C represents a smooth point of M . If C is in the smooth locus of X
the quantity H0(C,NC/X (−q1 − . . .− qr)) is an upper bound for the dimension of M .

3.2. Dominant families. Suppose that M ⊂ Sec(X/B) parametrizes a dominant family of
sections. Let C be a general section parametrized by M ; we will study the properties of the
normal bundle.

Definition 3.1. We say that a section C is relatively free if C avoids the singular locus
of X , H1(C,NC/X ) = 0, and NC/X is generically globally generated, in the sense that the
evaluation map

H0(C,NC/X )⊗OC → NC/X
11



is surjective at the generic point of C.

Remark 3.2. According to [Kol96, II.3 Definition 3.1] a curve f : C → X is free if C avoids
the singular locus of X, H1(C, f ∗TX) = 0, and f ∗TX is globally generated. Note that our
notion of relatively free is not quite a “relative version” of the notion of freeness, since we
only require the normal bundle to be generically globally generated. Our decision to use a
weaker notion is motivated by Corollary 3.4.

The following proposition connects the existence of deformations of C through general
points with the generically globally generated condition of NC/X .

Proposition 3.3. Let π : X → B be a Fano fibration. Fix different points q1, . . . , qm
of X and let M denote a component of Sec(X/B, q1, . . . , qm). Suppose that the sections
parametrized by M dominate X and the general such section avoids the singular locus of X .
Then for a general section C parametrized by M and for a general point p ∈ B we have that
H0(C,NC/X (−q1 − . . .− qm))→ NC/X |p is surjective.

Conversely, suppose we fix a section f : B → X whose image C avoids the singularities of
X . Suppose that q1, . . . , qm are distinct points of C such that H1(C,NC/X (−q1−. . .−qm)) = 0.
Let M ⊂ Sec(X/B, q1, . . . , qm) denote the unique component containing f . If for a general
point p ∈ C we have that H0(C,NC/X (−q1 − . . . − qm)) → NC/X |p is surjective, then M
parametrizes a dominant family of curves on X .

Proof. This is proved by [She12, Section 2] when the genus is 0. Let p1, · · · , pm be the images
of q1, · · · , qm on B. In the situations where Sec(X/B, q1, . . . , qm) can be identified with a
component of Mor(B,X , pi 7→ qi), this follows from the deformation theory for morphisms
described by [Kol96, Section II.3]. The only remaining case is when g(B) = 1 and m = 0,
and it follows from similar arguments. �

In particular, we obtain an alternative description of relative free sections.

Corollary 3.4. Let C be a section that is general in its family. Then C is relatively free if
and only if C avoids the singularities of X , H1(C,NC/X ) = 0, and C is movable.

We next give two statements relating the space of sections of NC/X with the existence of
deformations of C through general points.

Proposition 3.5. Let π : X → B be a Fano fibration of relative dimension 1. Let C be a
section of π. If H1(C,NC/X ) = 0 and for some positive integer m we have h0(C,NC/X ) ≥ m
then deformations of C go through m general points of X .

Conversely, if deformations of C go through m general points of X then

h0(C,NC/X ) ≥ m.

Proposition 3.6. Let π : X → B be a del Pezzo fibration.

(1) Let C be a section of π contained in the smooth locus of X whose normal bundle is
unstable with the maximal destabilizing exact sequence

0→ L2 → NC/X → L1 → 0.

Suppose that −KX/B · C ≥ 4g(B) − 4 and H1(C,NC/X ) = 0. Suppose m is a
positive integer such that

h0(C,L1) ≥ m.
12



Then C is relatively free and deformations of C go through at least m general points
of X .

Conversely, suppose that C is general in moduli. Fix a positive integer m. If C
goes through at least m general points of X then we have

h0(C,L1) ≥ m.

(2) Let C be a section of π contained in the smooth locus of X whose normal bundle is
semistable.

Suppose that −KX/B · C ≥ 6g(B) − 2 and H1(C,NC/X ) = 0. Suppose m is a
positive integer such that

h0(C,NC/X ) ≥ 2m.

Then C is relatively free and deformations of C go through at least m general points
of X .

Conversely, fix a positive integer m. If deformations of C go through at least m
general points of X then we have

h0(C,NC/X ) ≥ 2m.

We will only prove Proposition 3.6, since the proof of Proposition 3.5 is similar but easier.

Proof. Case (1): We start by proving the reverse implication. Suppose that C is general
in moduli and goes through m general points. By Proposition 3.3, if q1, · · · , qm are general
points on C then for any j = 1, 2, . . . ,m we have a surjection

H0(C,NC/X (−q1 − . . .− qj−1))→ NC/X (−q1 − . . .− qj−1)|qj .

Using the exact sequence

0→ L2(−q1 − . . .− qm−1)→ NC/X (−q1 − . . .− qm−1)→ L1(−q1 − . . .− qm−1)→ 0

we see that we must have h0(C,L1(−q1 − . . . − qm−1)) > 0. Indeed, there are at least two
sections of H0(C,NC/X (−q1− . . .− qm−1)) which generate NC/X (−q1− . . .− qm−1)|qm . Then
one of these sections must generate L1(−q1 − . . .− qm−1)|qm . Thus our claim follows. Since
the points qi were generic, we deduce that h0(C,L1) ≥ m.

Next we prove the forward implication. Suppose that−KX/B·C ≥ 4g(B)−4, H1(C,NC/X ) =
0, and for some positive integer m we have

h0(C,L1) ≥ m.

Since h1(C,NC/X ) = 0 we have h1(C,L1) = 0. Moreover since deg(L2) > −1
2
KX/B · C ≥

2g(B)− 2 we have h1(C,L2) = 0. Since we have deg(L2) > deg(L1), we must have

h0(C,L2) ≥ m.

If we fix m− 1 general points q1, . . . , qm−1 in C then for i = 1, 2

h0(C,Li(−q1 − . . .− qm−1)) = h0(C,Li)− (m− 1).

Thus h1(C,Li(−q1− . . .− qm−1)) = 0 and h0(C,Li(−q1− . . .− qm−1)) ≥ 1. Since for i = 1, 2
we have a surjection

Li(−q1 − . . .− qm−1)→ Li(−q1 − . . .− qm−1)|p
13



for a general point p, the Snake Lemma shows that NC/X (−q1 − . . . − qm−1) surjects onto
NC/X (−q1 − . . . − qm−1)|p for a general point p. Applying Proposition 3.3 we obtain the
desired statement.

Case (2): We first prove the reverse implication. Let C ′ be a general section in our family.
Fix m general points q1, . . . , qm on C ′. By Proposition 3.3

H0(C ′, NC′/X (−q1 − . . .− qj−1))→ NC′/X (−q1 − . . .− qj−1)|qj
is surjective for any j = 1, 2, . . . ,m. Thus for j in this range

h0(C ′, NC′/X (−q1 − . . .− qj)) = h0(C ′, NC′/X (−q1 − . . .− qj−1))− 2

and we conclude h0(C ′, NC′/X ) ≥ 2m. Then our assertion follows from upper semicontinuity
of h0.

We next prove the forward implication. Suppose that h = −KX/B · C ≥ 6g(B) − 2 and
H1(C,NC/X ) = 0. We let k ≥ 0 denote the maximal number of general points contained in
deformations of C. Assume for a contradiction that h+2−2g(B) > 2k+1. We fix k general
points q1, · · · , qk on C and set D = q1 + . . . + qk. Using Proposition 3.3 inductively as we
twist down by general points, we see that h1(C,NC/X (−D)) = 0. Since k is the maximal
number of general points, Proposition 3.3 shows that NC/X (−D) is not generically globally
generated. Thus the image of the evaluation map

H0(C,NC/X (−D))⊗OC → NC/X (−D)

is a rank 1 subsheaf. We let LD denote the saturation of this subsheaf. Note that by our
assumption on k we have

h0(C,LD) = h0(C,NC/X (−D)) > 1.

We next study how LD varies as we change D. Choose a different general point qk+1 and set
D′ = q1 + . . .+ qk−1 + qk+1. Just as above we obtain a saturated subsheaf LD′ of NC/X (−D′).
Note that we have

h0(C,LD(−qk+1)) = h0(C,NC/X (−q1 − · · · − qk+1)) = h0(C,LD′(−qk))
and that all of these spaces of sections have dimension at least 1. This implies that both
LD(−qk+1) and LD′(−qk) agree with the saturation of the subsheaf of NC/X (−q1− . . .−qk+1)
generated by global sections. In particular LD′ = LD(qk − qk+1).

Define L = LD(D). Note that by our argument above L does not depend on the choice of
the sum of k general points. Consider the exact sequence

0→ L → NC/X → K → 0.

Then K is invertible because L is saturated. Since we have

h0(C,NC/X ) = h0(C,NC/X (−q1 − · · · − qk)) + 2k,

we must have

h0(C,L) = h0(C,L(−q1 − · · · − qk)) + `

h0(C,K) = h0(C,K(−q1 − · · · − qk)) + k,

for some ` ≤ k. Since the sections of NC/X (−q1 − · · · − qk) generate L(−q1 − · · · − qk) we
also must have

h0(C,K(−q1 − · · · − qk)) = h1(C,L(−q1 − · · · − qk)) = h1(C,L) + k − `.
14



Since h0(C,L(−q1 − · · · − qk)) > 1 we see that g(B) ≥ h1(C,L(−q1 − · · · − qk)) = k − ` +
h1(C,L). Thus

deg(K) ≤ h0(C,K) + g(B)− 1

≤ (g(B) + k) + g(B)− 1

≤ `+ 3g(B)− 1

< h0(C,L) + 3g(B)− 1.

If h0(C,L) ≤ g(B), then we conclude that deg(K) < 4g(B)− 1. This would also imply that
deg(L) ≤ 2g(B) − 1. Combining we get h < 6g(B) − 2, contradicting our height bound.
Hence we must have h0(C,L) ≥ g(B) + 1 so that h1(C,L) = 0.

Since NC/X is semistable we see that deg(L) ≤ deg(K). Since h1(C,L) = h1(C,K) = 0
we deduce that deformations of C go through at least deg(L) + 1− g(B) general points. Set
s = deg(L) + 1− g(B). Note in particular that k ≥ s. For a set of s general points {qi} we
have h0(C,L(−q1−· · ·− qs)) = 0 which contradicts with h0(C,L(−q1−· · ·− qk)) > 0. Thus
our assertion follows. �

We will frequently use the following two useful corollaries which allow us to easily show
that a curve must be relatively free.

Corollary 3.7. Let π : X → B be a del Pezzo fibration and let C be a section.

(1) Suppose that C avoids the singular locus of X and the normal bundle of C is unstable
with the maximal destabilizing exact sequence

0→ L2 → NC/X → L1 → 0.

If we have

h0(C,L1) ≥ g(B) + 1

then C is relatively free.
(2) Suppose that C avoids the singular locus of X and the normal bundle of C is semistable.

If

h0(C,NC/X ) ≥ 4g(B) + 1

then C is relatively free.
(3) In particular, if C is a section containing 2g(B)+1 general points of X then a general

deformation of C avoids the singular locus of X and is relatively free.

Proof. In case (1), since h0(C,L1) > g(B) we must have deg(L1) ≥ 2g(B) − 1. Since
deg(L2) > deg(L1) this implies that −KX/B · C ≥ 4g(B) − 1 and H1(C,NC/X ) = 0. Then
the statement follows from Proposition 3.6.

In case (2), write 0→ L1 → NC/X → L2 → 0 as in Lemma 2.12. We have

h0(C,L1) + h0(C,L2) ≥ h0(C,NC/X ) ≥ 4g(B) + 1.

If h0(C,L1) > g(B) then h1(C,L1) = 0. In this case deg(L2) ≥ deg(L1) ≥ 2g(B) − 1 and
H1(C,NC/X ) = 0. If h0(C,L1) ≤ g(B) then h0(C,L2) ≥ 3g(B) + 1. However, in this case
we have deg(L2)− deg(L1) > g(B), a contradiction to Lemma 2.12.

Thus we conclude thatH1(C,NC/X ) = 0. By Riemann-Roch this implies that deg(NC/X ) ≥
6g(B)− 1. We conclude the relative freeness condition using Proposition 3.6.
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Finally we prove (3). If a general deformation of C avoids the singularities of X then
relative freeness follows from Proposition 3.6 and (1), (2) above, so we only need to prove that
a general deformation of C is contained in the smooth locus. Let M denote the component
of Sec(X/B) containing C and suppose that all sections parametrized by M meet with the
singular locus of X . Let C ′ be a general member of M . We choose a resolution β : Y → X
and let C̃ ′ be the strict transform of C ′. Since X has terminal singularities

−KY/B · C̃ ′ < −KX/B · C ′.

On the other hand since C̃ ′ contains 2g(B) + 1 general points of Y it must be relatively free.

This means that the dimension of the component containing C̃ ′ is equal to −KY/B · C +
2(1− g(B)). This contradicts with

dimM ≥ −KX/B · C + 2(1− g(B))

and our assertion follows. �

The analogue of Corollary 3.7 in the relative dimension 1 case is:

Corollary 3.8. Let π : X → B be a Fano fibration of relative dimension 1. Let C be a
section of π. If either

(1) deformations of C go through g(B) + 1 general points of X , or
(2) −KX/B · C ≥ 2g(B)

then a general deformation of C is relatively free.

Finally, we will need the following observation.

Lemma 3.9. Let π : X → B be a Fano fibration of relative dimension 1. Let C be a section
of π. If −KX/B ·C ≥ 2g(B) then for any codimension 2 subset Z of X there is a deformation
of C that avoids Z.

Lemma 3.10. Let π : X → B be a del Pezzo fibration. Let C be a relatively free section of
π that is general in its family (and thus avoids the singular locus of X ). Suppose that either:

(1) the normal bundle of C is semistable and −KX/B · C ≥ 5g(B), or
(2) the normal bundle of C is unstable and indecomposable and −KX/B ·C ≥ 6g(B)− 2,

or
(3) the normal bundle of C is split and the two summands L1,L2 satisfy deg(Li) ≥ 2g(B)

for i = 1, 2.

Then for any codimension 2 subset Z of X there is a deformation of C that avoids Z. In
particular, this statement holds for any section C whose deformations go through ≥ 2g(B)+1
general points of X .

We will only prove Lemma 3.10, since the proof of Lemma 3.9 is similar but easier.

Proof. In each of the three circumstances above we have h1(C,NC/X (−p)) = 0 for every point
p in C. Thus the space Sec(X/B, p) has the expected dimension, and the first statement
follows easily. The second statement follows from Corollary 3.7 and Riemann-Roch. �
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3.3. Gluing criterion. We will need the following lemma allowing us to glue relatively free
sections to free vertical curves.

Lemma 3.11. Let π : X → B be a Fano fibration. Suppose that f : C → X is a stable map
satisfying the following conditions:

(1) The domain of C is a genus g(B) curve which consists of a single curve C0 isomorphic
to B attached to several trees of rational curves, and these trees of rational curves
are contracted by π ◦ f .

(2) The image of f is contained in the smooth locus of X .
(3) The restriction of f to C0 is an isomorphism from C0 to a relatively free section of

π.
(4) For each rational component Ti of C, f ∗TX |Ti is globally generated.

Then f is a smooth point of M g(B),0(X ). Furthermore assume that f is an immersion on a
neighborhood of every node on C0. Then a general point of the corresponding component of
M g(B),0(X ) parametrizes a relatively free section of π.

The proof is a combination of well-known techniques in deformation theory; see for example
[Tes09, Section 1] and [GHS03, Lemma 2.6].

3.4. Shen’s work on curves with unstable normal bundles. Suppose that a section C
has unbalanced normal bundle. If we look at all deformations of C which contain a suitable
number of general points then the resulting sections sweep out a surface Σ in X . In [She12]
Shen studied the geometry of this surface Σ in the setting of rational curves on 3-folds with
unbalanced normal bundles. In this section, we will make a few modifications to develop a
similar story for sections of higher genus. The goal is Proposition 3.14 which we later use to
produce rational curves in Σ by applying Bend-and-Break to a large family of sections.

Suppose that we have a del Pezzo fibration π : X → B. Let M ⊂ Sec(X/B) be a
component generically parametrizing relatively free sections. Let C be a general section
parametrized by M . We assume that NC/X is unstable so that it fits into the maximal
destabilizing exact sequence

0→ L2 → NC/X → L1 → 0.

We define h = −KX/B ·C and assume that h ≥ 5g(B)−2. As the general section parametrized
by M is relatively free, by definition we have h1(C,NC/X ) = 0. This implies that h1(C,L1) =
0, and since deg(L2) > deg(NC/X )/2 = h/2 we also have h1(C,L2) = 0. Define k =
deg(L1) + 1− g(B). Since h1(C,L1) = 0 we must have have k ≥ 1.

Assume that deg(L2) > deg(L1) + 1. Fix k general points q1, . . . , qk on C so that
H1(C,Li(−q1 − . . .− qk)) = 0. Then the deformation space Sec(X/B; q1, · · · , qk) is smooth
at C and at least 2 dimensional. Denote the unique component of Sec(X/B; q1, · · · , qk)
that contains C by M(C; q1, · · · , qk). As discussed in Section 3.1.2 we have an inclusion
M(C; q1, · · · , qk) ⊂M . Let

U(C; q1, · · · , qk)→M(C; q1, · · · , qk)
be the universal family with the evaluation map v : U(C; q1, · · · , qk)→ X . Since by Propo-
sition 3.6 deformations of C can not go through more than k general points of X , the
closure Σ of the image v(U(C; q1, · · · , qk)) is a surface. Let Σ′ → Σ be the normalization.
By the universal property of normalizations there is some neighborhood of the curve C
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in U(C; q1, · · · , qk) such that the evaluation map v restricted to this neighborhood factors
through Σ′. Then we have

Lemma 3.12. Suppose M parametrizes a relatively free section C as above. Then Σ′ is
smooth along C \ {q1, · · · , qk}.

Proof. We claim that L2(−q1−· · ·− qk) is basepoint free. If deg(L2)−deg(L1) + g(B)−1 ≥
2g(B), then deg(L2(−q1 − · · · − qk)) ≥ 2g(B) and thus this line bundle is basepoint free.
Otherwise deg(L2)−deg(L1) ≤ g(B). Since we have 2 deg(L1)+g(B) ≥ deg(L1)+deg(L2) ≥
5g(B)− 2, in this situation

k = deg(L1)− g(B) + 1 ≥ g(B).

Thus the class [L2(−q1 − · · · − qk)] in Pic(B) is generic and has degree ≥ g(B) + 1 so that
it is basepoint free. Now our assertion follows from the argument of [She12, Lemma 2.4].
Indeed, the destabilizing exact sequence shows that for any q ∈ C \ {q1, · · · , qk} the map
H0(C,NC/X )→ NC/X |q has rank 1. We are thus in a situation where we can apply [She12,
Lemma 2.3]. �

Then arguing as in [She12, Proposition 2.5], we have

Lemma 3.13. Suppose M parametrizes a relatively free section C as above. Let k =
deg(L1)−g(B)+1 and choose general points q1, · · · , qk on C. The surface Σ = Σ(C; q1, · · · , qk)
is independent of q1, · · · , qk.

Proof. We already showed that L2(−q1 − · · · − qk) is basepoint free. Hence for any q ∈
C \ {q1, · · · , qk} we have

h0(C,NC/X (−q1 − · · · − qk − q)) = h0(C,NC/X (−q1 − · · · − qk))− 1.

Thus the arguments in [She12, Proposition 2.5] yield our assertion. �

Finally arguing as in [She12, Corollary 2.7], we obtain

Proposition 3.14. Suppose M parametrizes a relatively free section C as above. Denote
the maximal destabilizing exact sequence for the unstable normal bundle as

0→ L2 → NC/X → L1 → 0.

Let k = deg(L1)−g(B)+1 and choose general points q1, · · · , qk on C. Let Σ = Σ(C; q1, · · · , qk)
and let Σ′ → Σ be the normalization. Then Σ′ is smooth along the strict transform of C and
we have NΣ′/X |C = L1 and NC/Σ′ = L2.

4. Breaking curves on surfaces

The following conjecture is essential for understanding sections of Fano fibrations.

Conjecture 4.1 (Movable Bend-and-Break for sections). Let π : X → B be a Fano fibration.
There is a constant Q = Q(X ) such that the following holds. Suppose that C is a relatively
free section of π satisfying −KX/B ·C > Q(X ). Then C deforms (as a stable map) to a union
of a relatively free section with a π-vertical free curve.

In this section we prove Conjecture 4.1 for sections of surfaces over B. We first need a
couple lemmas about the intersection theory of reducible fibers of a map from a surface to
a curve.
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Lemma 4.2 ([LT19a] Lemma 4.3). Let Y be a smooth projective surface with a morphism
π : Y → B such that a general fiber of π is isomorphic to P1. Let F be a singular fiber of
π with components {Ei}ri=1. Suppose that E1 is a (−1)-curve that has multiplicity 1 in the
fiber F . Then there is another (−1)-curve in the fiber F .

Corollary 4.3. Let Y be a smooth projective surface with a morphism π : Y → B such
that a general fiber of π is isomorphic to P1. Let C be a movable section of π. Then there
is a birational morphism φ : Y → F to a ruled surface F which is an isomorphism on a
neighborhood of C. This ruled surface satisfies

KY/B · C ≤ neg(F,−KF/B) ≤ g(B).

(where neg is defined as in Definition 2.3.)

Proof. Every reducible fiber of π will carry a (−1)-curve. Lemma 4.2 guarantees that if this
(−1)-curve intersects C then there is another π-vertical (−1)-curve in the same fiber that is
disjoint from C. Thus we may inductively contract (−1)-curves that are disjoint from C to
obtain F.

To see the final statement, write ρ∗C ≡ C ′0 + kF where C ′0 is a section of minimal height
and F is a general fiber of the projective bundle. Since ρ∗C is movable we have ρ∗C ·C ′0 ≥ 0.
Thus by applying adjunction to ρ∗C we see

−KY/B · C = −KF/B · ρ∗C = (ρ∗C)2 = ρ∗C · (C ′0 + kF ) ≥ k.

On the other hand
0 ≤ ρ∗C · C ′0 = C ′20 + k.

Since −KF/B · C ′0 = C ′20 this yields the first inequality. The second inequality holds true for
every ruled surface and is a consequence of Lemma 2.12. �

It will be helpful to have a numerical version of Corollary 4.3.

Definition 4.4. Let π : X → B be a Fano fibration such that X is smooth. An intersection
profile λ for π is a choice of a component F0 in each fiber F of π such that F0 has multiplicity
1 in F . We will denote the finite set of intersection profiles for π by Λ.

Note that any section C naturally identifies an intersection profile for π by selecting the
components of fibers which meet C. By repeating the arguments of Corollary 4.3 we obtain:

Lemma 4.5. Let π : X → B be a Fano fibration of relative dimension 1. Fix an intersection
profile λ for π. Then there is a birational morphism φ : X → F to a ruled surface F over B
such that φ contracts every component of every fiber not identified by λ.

Lemma 4.6. Let Y be a smooth projective surface with a morphism π : Y → B such that
a general fiber of π is isomorphic to P1. Let F be a reducible fiber of π with components
{Ei}ri=1. We assume that E1 and E2 have multiplicity 1 in F . Suppose Q =

∑r
i=1 aiEi is an

effective Q-divisor such that

Q · Ej =


1 if j = 1

−1 if j = 2

0 otherwise

Then we have
−KY ·Q > 0.
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Proof. We prove this by induction on the number of components r of F . When F consists
of two components our assertion is trivial.

Suppose that r is greater than 2. If some component Ej with j 6= 1, 2 is a (−1)-curve,
then we can contract Ej via φ : Y → Y ′ and apply the induction hypothesis to deduce that

−KY ·Q = −KY ′ · φ∗Q > 0.

So we may assume that there is no (−1)-curve other than E1 and E2. Suppose that E1 is
a (−1)-curve. By Lemma 4.2 F must contain a different (−1)-curve, and by the argument
above we may assume this is E2. Similarly, if E2 is a (−1)-curve then we may assume that
E1 is also. Thus we have reduced to the case when E1 and E2 are both (−1)-curves.

Since the multiplicity of E2 in F is 1, there is a unique curve E3 adjacent to E2. If we
contract E2 and denote the blow down by φ : Y → Y ′, then we have

φ∗Q · φ∗(Ej) =


1 if j = 1

−1 if j = 3

0 otherwise

Then we have

−KY ·Q = −KY ′ · φ∗Q+ 1 > 0

by the induction hypothesis. �

The following theorem is the statement of Movable Bend-and-Break for sections of surface
fibrations.

Theorem 4.7. Let π : Y → B be a Fano fibration of relative dimension 1. Suppose that C
is a section satisfying

−KY/B · C ≥ max{2, 2g(B) + 1, 4g(B) + 1− neg(Y,−KY/B)}.

Then there is a relatively free section C0 and a general fiber F such that

C ∼alg C0 + F.

Furthermore C deforms as a stable map to a morphism whose domain has two components
where each component is mapped birationally onto either C0 or F .

Proof. Let n = −KY/B ·C+1−g(B). By our degree assumption we know that H1(C,NC/Y ) =
0. Since general points impose codimension 1 conditions on the moduli space of sections, we
see that deformations of C contain n general points of Y . Thus there is a 1-parameter family
of curves through n − 1 general points of Y . By Lemma 2.11 C deforms into the union of
a section with some π-vertical curves, at least one of which goes through a general point.
Thus we can write

C ∼alg C0 +mF + T

where F denotes a general fiber of π, m ≥ 1, and T is an effective π-vertical curve which
does not deform.

Fix a fiber F0 and let T0 denote the sum of the components of T contained in F0. By
[Mat02, Lemma 1-2-10] there are two possibilities: either T0 is proportional to a multiple of
F0 or T0 has non-vanishing intersection against some components of F0. In the latter case T0

must have exactly the intersection pattern as in the statement of Lemma 4.6. By applying
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Lemma 4.6 and summing over all fibers, we conclude that −KY/B · T > 0 unless T = 0. We
let b denote this non-negative constant.

We divide the argument into two cases. First suppose that H1(C0, NC0/Y ) = 0. Since
−KY/B · C0 + 1 − g(B) = n − 2m − b, Proposition 3.5 shows that C0 can only go through
n− 2m− b general points. A fiber F can go through only 1 general point and T cannot go
through any general points. But the broken curve C0 +mF + T should pass through n− 1
general points of Y . Thus b = 0 and m = 1 yielding the desired expression with C ′ = C0.
We see that C0 is relatively free using Corollary 3.8.

Next suppose that H1(C0, NC0/Y ) 6= 0. We will show that this case is impossible using our
degree assumption. The maximum number of general points that C0 can contain is bounded
above by H0(C0, NC0/Y ) ≤ g(B). Thus we must have m ≥ n − g(B) − 1 so that the entire
curve can contain n− 1 points. But we also know that

neg(Y,−KY/B) ≤ −KY/B · C0

= n− 1 + g(B)− 2m− b
≤ 3g(B) + 1− n
= 4g(B) +KY/B · C

which contradicts our degree assumption.
To see the final statement, choose a deformation from C to C0 + F . The generic curve in

this deformation family will be a section, yielding a map σ : B → Y . Taking a closure in
the space of stable maps, we obtain a limit stable map whose image in Y is C0 + F which
satisfies the desired properties. �

The following example illustrates that the intersection bound in Theorem 4.7 must depend
on the choice of surface Y and not just the genus of B. In particular, this justifies the presence
of neg(Y,−KY/B) in the statement of Theorem 4.7.

Example 4.8. Let Fe denote the Hirzebruch surface whose rigid section has self-intersection
−e and let π : Fe → P1 denote the projective bundle structure. Every movable section C
on Fe satisfies −KFe/P1 · C ≥ e. Thus Theorem 4.7 can only apply to a section C when the
height of C is ≥ e+ 1.

We also prove a breaking statement which deals with numerical equivalence.

Proposition 4.9. Let π : Y → B be a Fano fibration of relative dimension 1. Let C be a
general member of a dominant family of sections on Y . Let ρ : Y → F be the birational map
to a ruled surface F obtained by applying Corollary 4.3 to Y and C. Then:

(1) We have C ≡ C0 +T +kF where T is an effective π-vertical curve, C0 is a section on
Y satisfying −KY/B ·C0 ≤ neg(F,−KF/B), and k = 1

2
(−KY/B ·C)− 1

2
neg(F,−KF/B).

(2) Define

s =
1

2
(KY/B · C) +

1

2
neg(F,−KF/B) + max{4g(B)− 2, 2g(B)− neg(F,−KF/B)}

Then for any r ≥ 0, there is a unique dominant family of relatively free sections C1

on Y which satisfy
C1 ≡ C + (s+ r)F

where F denotes a general fiber of π. For any 2r+ 1 general points of Y we can find
a deformation of C1 containing these 2r + 1 points.
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Proof. Applying Corollary 4.3 to Y and C we find a ruled surface F and a birational map
ρ : Y → F which is an isomorphism on a neighborhood of C.

Let C ′0 denote a section on F with minimal self intersection, so that −KF/B · C ′0 =
neg(F,−KF/B). Then we have ρ∗C ≡ C ′0 + kF where F denotes a general fiber of the
projective bundle map and k = 1

2
(−KY/B · C) − 1

2
neg(F,−KF/B). Write ρ∗C ′0 = C0 + T .

Lemma 4.6 implies that KY/B · T ≤ 0, proving (1).
To prove (2), we need to appeal to the geometry of ruled surfaces. Define

m = max{4g(B)− 2, 2g(B)− neg(F,−KF/B)}

so that s = −k+m. Suppose that E is a rank 2 bundle such that F = PB(E). After twisting
E , we may suppose that the section C ′0 constructed above is a section of OF/B(1).

First suppose that E is indecomposable. Since E has a section, by Lemma 2.12 we see that
E(D) is globally generated for any divisor D on B of degree at least 4g(B)−2. In particular,
E(D) is globally generated for any D of degree m + r with r ≥ 0. Then sections of E(D)
yield a basepoint free family of sections C ′1 on F with numerical class

ρ∗C + (−k +m+ r)F.

Furthermore, the additional twist by rF guarantees that we can find deformations of C ′1
through any 2r + 1 general points of F. Since the same logic applies if we replace D by any
numerically equivalent divisor, we see that the component of Sec(F/B) containing C ′1 is a
projective bundle over Jac(B), and in particular, is irreducible. To construct the desired
family of sections on Y , note that when C ′1 and F are general in their respective families
they avoid all ρ-exceptional centers by Lemma 3.9. Thus by pulling back we obtain sections
of the desired class on Y . Note that pushforward and pullback by ρ induce birational maps
on the moduli space of sections of this class, so that sections on Y of the given numerical
class also must form an irreducible family.

Second suppose that E is decomposable. Since C ′0 is a minimal section, we can write
E = L1⊕O. Note that we have deg(L1) = neg(F,−KF/B). Thus, E(D) is globally generated
for any divisor D on B of degree ≥ 2g(B) − neg(F,−KF/B). We conclude by the same
argument as before. �

5. Non-dominant families of sections

Let π : X → B be a del Pezzo fibration such that −KX/B is relatively nef. Suppose that
M ⊂ Sec(X/B) is a component which defines a non-dominant family of sections. The main
goal of this section is to show that if the height of the sections parametrized by M is suffi-
ciently high then these sections sweep out a surface Y with a(Yη,−KX/B|Y ) ≥ a(Xη,−KX/B).
Using this result we show there is a finite set of surfaces which contain all such families of
sections.

We start with a couple results concerning surfaces swept out by sections. The first
lemma shows that if we have a family N of surfaces Y ⊂ X satisfying a(Yη,−KX/B|Y ) =
a(Xη,−KX/B) then we can stratify the parameter space N according to the set of minimal
models of Y .

Lemma 5.1. Let π : X → B be a del Pezzo fibration. Suppose that we have a bounded
family S → N where each fiber is a surface Y ⊂ X such that Yη is geometrically irreducible
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and a(Yη,−KX/B|Y ) = a(Xη,−KX/B). Then there is a stratification {Ni} of N into locally
closed subsets with the following properties:

(1) There is a family S → Ni such that every fiber is a resolution of the corresponding
surface Y ⊂ X .

(2) There is a base change Wi → Ni such that if we fix a resolution Ỹ parametrized by

Ni and fix a birational map φ : Ỹ → F as in Lemma 4.5 then the base change SWi

admits a birational morphism over Wi to a family where every fiber is isomorphic

to a ruled surface Fw → B and there is a point in Wi representing Ỹ such that the
restriction of the map to this fiber is φ.

Furthermore, we may assume that the degrees of the terms in the Harder-Narasimhan filtra-
tion for the bundle E that defines Fw is constant for the entire family.

Proof. By repeatedly taking resolutions and restricting to the smooth locus we can stratify
N into a finite collection of irreducible locally closed subsets Ni such that over each Ni there
is a smooth family of surfaces Si → Ni where the fiber over a point in Ni is a resolution of the
corresponding point in N . The main step is to show that after repeatedly replacing Ni by
a non-empty open subset we may ensure the desired properties hold for Ni. For notational
clarity we will continue to call this open set Ni even while making these changes.

Since every surface Y satisfies a(Yη,−KX/B|Y ) = a(Xη,−KX/B), every resolution Ỹ will
admit a morphism to B whose general fiber is birational to an irreducible −KX/B-conic. In

particular, the Picard rank of Ỹ is the same as the rank of H2(Ỹ ,Z). Thus it is constant in

each smooth family. Moreover the Néron-Severi groups of Ỹ form a local system over Ni.
Take a base change Wi → Ni that kills the monodromy action on the Néron-Severi groups

of the fibers over Ni. We let SWi
denote the smooth family obtained by base change. Note

that the restriction map N1(SWi
)→ N1(Ỹw) is surjective for every surface Ỹw in our family.

For any fiber Ỹw in our family consider the components of the reducible fibers of Ỹw → B.
Using a relative Hilbert scheme argument, after perhaps shrinking Wi (and Ni) we obtain a
finite collection of irreducible divisors Di on SWi

such that the intersection of the Di with

the surfaces Ỹi are exactly the components of the reducible fibers. Due to the monodromy
condition, after perhaps shrinking Wi (and Ni) again we see that in fact the restriction of
Di to each surface is irreducible and that when i 6= j the restrictions of Di and Dj to every
fiber in our family are different components.

Using the constancy of intersection numbers, if the restriction of Di to some Ỹw is a (−1)-
curve then it is a (−1)-curve in every fiber. By running the relative MMP for SWi

over
Wi × B we can contract the divisor Di, and this contraction will result in the contraction

of the corresponding (−1)-curve on each fiber. This shows that any morphism φ : Ỹw → F
obtained by contracting (−1)-curves in fibers can be spread out to the entire family over Wi.

Finally, by Theorem 2.14 we can shrink Ni so that for any of our families of ruled surfaces
obtained as above the bundles E defining the ruled surfaces have the property that the terms
in the Harder-Narasimhan filtration are of constant degree. This guarantees that all the
desired properties hold for our new Ni. Repeating the argument on the complement and
appealing to Noetherian induction we deduce the desired statement. �
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Next we show that if we have a family N of surfaces Y ⊂ X satisfying a(Yη,−KX/B|Y ) =
a(Xη,−KX/B) then we can deform a section in one surface Y into other surfaces which lie
in the same stratum as Y .

Corollary 5.2. Let π : X → B be a del Pezzo fibration. Suppose that we have a bounded
family S → N where each fiber is a surface Y ⊂ X such that Yη is geometrically irreducible
and a(Yη,−KX/B|Y ) = a(Xη,−KX/B). Let {Ni} be the stratification of N as in Lemma 5.1.

Let M ⊂ Sec(X/B) be a component. Suppose that some sublocus of M parametrizes a
family of sections which sweep out a surface Y parametrized by Ni. Take the strict transform

of these sections on the resolution Ỹ identified by Ni and consider the corresponding birational

map ρ : Ỹ → F as in Corollary 4.3. Suppose that the sections CF on F obtained in this way
satisfy

−KF/B · CF ≥ neg(F,−KF/B) + 2 max{4g(B)− 2, 2g(B)− neg(F,−KF/B)}.

Then for every surface S parametrized by Ni there is a unique component of Sec(S̃/B)
parametrizing sections of anticanonical degree −KF/B · CF which have intersection profile
compatible with the birational map to F and the image of these sections in X is parametrized
by M . In particular every surface parametrized by Ni is swept out by sections parametrized
by M .

Proof. Lemma 5.1 yields a base change Wi → Ni and a universal family SWi
→ Wi such

that SWi
admits a birational map to a family of ruled surfaces TWi

over Wi whose restriction

to Ỹ coincides with ρ. Due to our height restriction on CF, Proposition 4.9 shows that
every ruled surface in TWi

admits a unique dominant family of sections which has the same
anticanonical height as CF. Using the description of these curves as sections of a twist of the
bundle defining the ruled surface, we see that in fact all these sections form a single family
on TWi

. By taking the strict transform of this family on SWi
and pushing forward to X we

obtain the desired statement. �

The following theorem is the main result in this section.

Theorem 5.3. Let π : X → B be a del Pezzo fibration such that −KX/B is relatively nef.
Let M denote a component of Sec(X/B) parametrizing sections C satisfying

−KX/B · C ≥ C(X ) := max{3g(B) + 1,−2neg(X ,−KX/B) + 6g(B)− 2,

2g(B)− 1 + 2 max{4g(B)− 2, 3g(B)− 1− neg(X ,−KX/B)}}.
Suppose that the closure of the locus swept out by the corresponding sections is a surface

Y . Then a(Yη,−KX/B|Y ) ≥ a(Xη,−KX/B).
If equality of a-invariants is achieved, then these sections satisfy the height bound of Corol-

lary 5.2 with respect to the surface Y . Moreover, Y is swept out by a (possibly different)
family of sections of height at most 2g(B)−1+2 max{4g(B)−2, 3g(B)−1−neg(X ,−KX/B)}.

Proof. Let φ : Ỹ → Y denote a resolution of singularities. Let C̃ denote the strict transform

of a general deformation of the section C. By assumption the deformations of C̃ are Zariski

dense on Ỹ ; thus the natural map ψ : Ỹ → B is an algebraic fiber space. Moreover our
height bound guarantees that there is at least a 3-parameter family of deformations of C on

X , and hence also of C̃ on Ỹ . By Bend-and-Break we see that Ỹ is generically a P1-bundle
over the base.
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Since by assumption −KX/B ·C ≥ 3g(B) + 1, the dimension of the space of deformations
of C is bounded below by 3g(B)+1+2−2g(B) = g(B)+3. Since the deformations of C are

contained in Y , we can find a deformation of C̃ through g(B) + 3 general points of Ỹ . This

implies that H0(C̃, NC̃/Ỹ ) ≥ g(B) + 3, and in particular by Corollary 3.8 H1(C̃, NC̃/Ỹ ) = 0.

Thus if M denotes the the family of deformations of C̃ on Ỹ , then

dim(M) = −KỸ /B · C̃ + (1− g(B)).

Since M has at least the expected dimension on X , we obtain

(KỸ /B − φ
∗KX/B|Y ) · C̃ ≤ g(B)− 1.

Apply Corollary 4.3 to find a ruled surface F and a birational map ρ : Ỹ → F which is an

isomorphism on a neighborhood of C̃. As in Proposition 4.9 (1) we can write C̃ ≡ C̃0+kF+T
where F is a general fiber of the map to B and

k =
1

2
(−KỸ /B · C̃)− 1

2
neg(F,−KF/B).

Then

g(B)− 1 ≥ KỸ /B · C̃ − φ
∗KX/B|Y · C̃

= KỸ /B · C̃ − φ
∗KX/B|Y · C̃0 + k(−φ∗KX/B|Y · F )− φ∗KX/B|Y · T

≥ KỸ /B · C̃ + neg(X ,−KX/B) + k(−φ∗KX/B|Y · F ) (5.1)

where we have used the fact that −KX/B is relatively nef at the last step. Suppose for a
contradiction that there is an inequality a(Yη,−KX/B|Y ) < a(Xη,−KX/B). This is equivalent
to saying that −φ∗KX/B|Y ·F ≥ 3. Rearranging and substituting in our value for k, we find

1

2
(−KỸ /B · C̃) ≤ 3

2
neg(F,−KF/B)− neg(X ,−KX/B) + g(B)− 1.

Using the inequality neg(F,−KF/B) ≤ g(B) from Corollary 4.3, we see that

−KX/B · C ≤ −KỸ /B · C̃ + g(B)− 1

≤ −2neg(X ,−KX/B) + 6g(B)− 3.

contradicting our height bound.
Suppose now that the equality of a-invariants is achieved so that−φ∗KX/B|Y ·F = 2. Using

this to simplify Equation (5.1) we see that −neg(X ,−KX/B) + g(B)− 1 ≥ −neg(F,−KF/B).
Furthermore we know neg(F,−KF/B) ≤ g(B) by Corollary 4.3. Thus

−KỸ /B · C̃ ≥ −φ
∗KX/B|Y · C̃ + 1− g(B)

≥ g(B) + 2 max{4g(B)− 2, 3g(B)− 1− neg(X ,−KX/B)}
≥ neg(F,−KF/B) + 2 max{4g(B)− 2, 2g(B)− neg(F,−KF/B)} (5.2)

proving the first claim. To see the last claim we will appeal to Proposition 4.9 (2) with

r = 0. This guarantees the existence of a dominant family of sections C̃1 on Ỹ which satisfy

C̃ ≡ C̃1 − sF where

s =
1

2
(KY/B · C) +

1

2
neg(F,−KF/B) + max{4g(B)− 2, 2g(B)− neg(F,−KF/B)}
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and F denotes a general fiber of π. Since C̃ and C̃1 differ by a multiple of F , the equality of
a-invariants shows that

g(B)− 1 ≥ KỸ /B · C̃ − φ
∗KX/B|Y · C̃

= KỸ /B · C̃1 − φ∗KX/B|Y · C̃1.

Thus

−φ∗KX/B|Y · C̃1 ≤ g(B)− 1−KỸ /B · C̃1

= g(B)− 1 + neg(F,−KF/B) + 2 max{4g(B)− 2, 2g(B)− neg(F,−KF/B)}
≤ 2g(B)− 1 + 2 max{4g(B)− 2, 3g(B)− 1− neg(X ,−KX/B)}

where the last step is given by the bound neg(F,−KF/B) ≤ g(B) from Corollary 4.3. Alto-
gether this shows that Y is swept out by sections satisfying the desired height bound. �

Corollary 5.4. Let π : X → B be a del Pezzo fibration such that −KX/B is relatively
nef. Then there is a proper closed subset V ( X such that any component M ⊂ Sec(X/B)
parametrizing a non-dominant family of sections will parametrize sections contained in V .

Proof. Rigid sections are bounded in height and thus are contained in a closed subset. Thus
it suffices to consider sections which sweep out a surface. By Theorem 5.3, any component
M ⊂ Sec(X/B) parametrizing such a non-dominant family will satisfy one of the following
properties:

(1) M will parametrize sections C satisfying −KX/B · C < C(X ), or
(2) M will parametrize sections C satisfying −KX/B · C ≥ C(X ) which sweep out a

2-dimensional subvariety Y satisfying

a(Yη,−KX/B|Y ) > a(Xη,−KX/B),

or
(3) M will parametrize sections C satisfying −KX/B · C ≥ C(X ) which sweep out a

2-dimensional subvariety Y satisfying

a(Yη,−KX/B|Y ) = a(Xη,−KX/B)

and which contains a section of height at most 2g(B)−1+2 max{4g(B)−2, 3g(B)−
1− neg(X ,−KX/B)}.

Lemma 2.2 shows that curves of the first type lie in a bounded family. Thus, the union of
the subvarieties swept out by the non-dominant families satisfying this height bound will
be a proper closed subset of X . Corollary 2.9 shows that the surfaces Y defined by the
components of the second type will lie in a proper closed subset of X . Proposition 2.10
shows that the surfaces defined by the components of the third type form a bounded family
S → N . We stratify the parameter space N using Lemma 5.1. Let Ni denote a component of
this stratification. Combining Corollary 5.2 and Theorem 5.3, we see that for any d ≥ C(X )
a family of non-dominant sections of height d which sweeps out a surface parametrized by
Ni will in fact sweep out every surface parametrized by Ni. Thus if dim(Ni) ≥ 1 then we
would have a dominant family, a contradiction. This shows that there are only finitely many
surfaces parametrized by our bounded family which can contain sections as in (3), proving
our claim. �
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6. Dominant families which are not relatively free

Let π : X → B be a del Pezzo fibration. If B has genus ≥ 1 then a dominant family of
sections need not be relatively free. In fact, such families can have arbitrarily large height
and can have larger than the expected dimension.

Example 6.1. Let B be a curve of genus ≥ 1. For d sufficiently large, there is a unique
component M ⊂ Mor(B,P1) parametrizing degree d-maps whose dimension is the expected
value 2d+ (1− g(B)).

Give X = P1×P1×B the structure of a del Pezzo fibration using the projection π : X → B.
Consider the component M ⊂ Sec(X/B) parametrizing sections such that the induced map
f : B → P1 × P1 is a degree d cover of a fiber of the first projection. The dimension of M is
2d + (1− g(B)) + 1. This is always greater than the expected dimension 2d + 2(1− g(B)).
In this situation we have NC/X = OC ⊕ f ∗O(2) and the discrepancy between the actual and
expected dimension is accounted for by H1(C,NC/X ).

In this section we will show that the existence and behavior of such families is controlled by
the generic Fujita invariant. We have two main goals. First, we show that there is a bounded
family of surfaces Y with a(Yη,−KX/B) = a(Xη,−KX/B) which contains any section of this
type of sufficiently large degree (Theorem 6.6). Second, we bound the dimension of such
families so that we can control their contributions to the counting function (Lemma 6.5).

We start with a proposition that identifies the geometric properties of these dominant
families under the assumption that the general curve does not intersect the singular locus of
X .

Proposition 6.2. Let π : X → B be a del Pezzo fibration. Let M denote a component
of Sec(X/B) parametrizing a dominant family of sections such that a general member C
satisfies

−KX/B · C ≥ 6g(B)− 2.

If the general section parametrized by M is not relatively free and is contained in the smooth
locus of X , then:

(1) The normal bundle of C is unstable and split.
(2) Let q denote the maximal number of general points of X contained in a curve C

parametrized by M . Then q ≤ g(B).

Proof. Note that this situation can only happen if g(B) > 0. Let C be a general section in
our family. We split into two cases.

Case 1: NC/X is semistable. Using our height bound, we see the line bundles L1, L2

as in Lemma 2.12 have degree ≥ 2g(B) − 1. Thus h1(C,NC/X ) = 0. Since we know that
g(B) > 0 we also see that NC/X is generically globally generated. Thus C is relatively free,
a contradiction.

Case 2: NC/X is unstable. Consider the maximal destabilizing exact sequence

0→ L2 → NC/X → L1 → 0

If NC/X is indecomposable, then Lemma 2.12 shows that L1 and L2 have degree ≥ 2g(B).
In this case C must be relatively free, a contradiction, finishing the proof of (1).

Since we know that the normal bundle of C is split and unstable, we can write NC/X =
L1⊕L2 with deg(L1) < deg(L2). Suppose that deformations of C go through the maximum
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number q of general points of X . If q > g(B), then Proposition 3.6 shows h0(C,L1) > g(B).
This implies that deg(L1) > 2g(B)− 2, and thus also deg(L2) > 2g(B)− 2. We deduce that
h1(C,NC/X ) = 0 and that the family is relatively free, a contradiction. This proves (2). �

Next we would like to extend the above proposition to sections which meet the singular
locus of X . For this purpose we introduce the following invariant:

Definition 6.3. Let π : X → B be a del Pezzo fibration. Let β : Y → X be a resolution of
singularities such that β : Yη → Xη is an isomorphism. We define

m(Y/X ) := max{KY/X · C |C ∈ Sec(Y/B)}.
This is a non-negative integer as KY/X is a π-vertical effective divisor and any section C
meets with a vertical component with multiplicity at most 1. Then we define

m(X/B) := min{m(Y/X )|β : Y → X a resolution}.

Corollary 6.4. Let π : X → B be a del Pezzo fibration. Let M denote a component of
Sec(X/B) parametrizing a dominant family of sections C such that

−KX/B · C ≥ 6g(B)− 2 +m(X/B).

Suppose that the generic section parametrized by M is not relatively free. If we let q denote
the maximal number of general points of X contained in a curve C parametrized by M then
q ≤ g(B).

Proof. Let β : Y → X be a resolution achieving m(X/B). Let C̃ be the strict transform of a
general C ∈M . If a general member ofM avoids the singular locus, then our assertion follows

from Proposition 6.2. If all members of M pass through the singular locus of X , then C̃
cannot be relatively free on Y . Indeed if it is relatively free, then the dimension of M is equal

to −KY/B+2(1−g(B)). However since X has terminal singularities −KY/B · C̃ < −KX/B ·C
which is a contradiction with dimM ≥ −KX/B + 2(1− g(B)).

Now our height bound implies that

−KY/B · C̃ ≥ 6g(B)− 2.

Thus our assertion follows from Proposition 6.2. �

This yields an estimate on the dimension of the components of Sec(X/B) parametrizing
curves of this type.

Lemma 6.5. Let π : X → B be a del Pezzo fibration such that −KX/B is relatively nef.
Suppose that M ⊂ Sec(X/B) is a component that parametrizes a dominant family of non-
relatively free sections C with

−KX/B · C ≥ 6g(B)− 2 +m(X/B).

Then dim(M) ≤ −KX/B · C + 2− g(B) +m(X/B).

Proof. Choose a resolution β : Y → X achieving the minimum in the definition of m(X/B).
Let C ′ be the strict transform of a general member of our family of sections on Y . Arguing
as in the proof of Corollary 6.4 we see that the parameter space M ′ of deformations of C ′

has the same dimension as M and that the sections C ′ have height ≥ 6g(B)− 2.
Since Y is smooth we have dim(M ′) ≤ H0(C ′, NC′/Y). By Proposition 6.2 NC′/Y splits.

Proposition 3.3 shows that NC′/Y is generically globally generated so that both summands
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must have non-negative degree. Our height bound implies that at least one of the summands
will have degree ≥ 2g(B) − 1. Thus H1(C ′, NC′/Y) ≤ g(B). By Riemann-Roch we obtain
H0(C ′, NC′/Y) ≤ −KY/B · C ′ + 2− g(B), which proves the statement. �

The next theorem is our main result describing dominant families of sections that fail to
be relatively free.

Theorem 6.6. Let π : X → B be a del Pezzo fibration such that −KX/B is relatively nef.
Let M denote a component of Sec(X/B) parametrizing a dominant family of sections such
that for a general C ∈M we have

−KX/B · C ≥ max{6g(B)− 2 +m(X/B),−2neg(X ,−KX/B) + 12g(B)− 2,

8g(B) + 2 max{4g(B)− 2, 5g(B)− 1− neg(X ,−KX/B)}},

and the general section C is not relatively free.
Let q denote the maximal number of general points contained in deformations of C. Fix

q general points of X and fix a component N of the sublocus of M parametrizing sections
through these q points. Then the sections parametrized by N will sweep out a surface Y that
satisfies a(Yη,−KX/B|Y ) = a(Xη,−KX/B). These sections will satisfy the height bound of
Corollary 5.2 with respect to Y .

Furthermore, there is a component M1 of Sec(X/B) which satisfies the following condi-
tions:

(1) The sections C1 parametrized by M1 have height

−KX/B · C1 ≤ 8g(B)− 1 + 2 max{4g(B)− 2, 5g(B)− 1− neg(X ,−KX/B)}.

(2) The general surface Y constructed above is swept out by sections parametrized by a
sublocus of M1.

(3) There is an integer r ≥ 1 such that the closure of M in M g(B),0(X ) contains the
union of a section parametrized by M1 with r general fibers of Y → B.

Proof. First note that we have g(B) ≥ 1 since any dominant family of rational sections
generically parameterizes a free section. By Corollary 6.4 we have 1 ≤ q ≤ g(B).

As in the statement of the theorem, let N be any component of the sublocus of M
parametrizing curves through a fixed set of q general points. A dimension count shows

that the sections parametrized by N will sweep out a surface Y . Let φ : Ỹ → Y be a

resolution and let C̃ denote the strict transform of a general deformation of C in Y . By our
height bound on C, we know there is at least a g(B) dimensional family of deformations of

C̃ contained in Ỹ . Since this situation can only happen when g(B) ≥ 1, by Bend-and-Break

we deduce that the induced map ψ : Ỹ → B is generically a P1 fibration. We also see that

h0(C̃, NC̃/Ỹ ) > g(B). By Kodaira vanishing the dimension of the space of sections of any

line bundle of degree 2g−1 on C̃ is equal to g(B). Thus the normal bundle has degree ≥ 2g,

and in particular, h1(C̃, NC̃/Ỹ ) = 0. We conclude that the family of deformations of C̃ in Ỹ

has the expected dimension on Ỹ . Since the family also has at least the expected dimension

on X̃, we deduce

−KỸ /B · C̃ + (1− g(B)) ≥ −φ∗KX/B|Y · C̃ + 2(1− g(B))− 2q.
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Apply Corollary 4.3 to find a ruled surface F and a birational map ρ : Ỹ → F which is an

isomorphism on a neighborhood of C̃. As in Proposition 4.9 (1) we can write C̃ ≡ C̃0+kF+T
where F is a general fiber of the map to B and

k =
1

2
(−KỸ /B · C̃)− 1

2
neg(F,−KF/B).

Then

3g(B)− 1 ≥ 2q + g(B)− 1

≥ KỸ /B · C̃ − φ
∗KX/B|Y · C̃

= KỸ /B · C̃ − φ
∗KX/B|Y · C̃0 + k(−φ∗KX/B|Y · F )− φ∗KX/B|Y · T

≥ KỸ /B · C̃ + neg(X ,−KX/B) + k(−φ∗KX/B|Y · F ) (6.1)

where we have used the fact that −KX/B is relatively nef at the last step. Suppose for a
contradiction that there is an inequality a(Yη,−KX/B|Y ) < a(Xη,−KX/B). This is equivalent
to saying that −φ∗KX/B|Y ·F ≥ 3. Rearranging and substituting in our value for k, we find

1

2
(−KỸ /B · C̃) ≤ 3

2
neg(F,−KF/B)− neg(X ,−KX/B) + 3g(B)− 1.

Using the inequality neg(F,−KF/B) ≤ g(B) from Corollary 4.3, we see that

−KX/B · C ≤ −KỸ /B · C̃ + 3g(B)− 1

≤ −2neg(X ,−KX/B) + 12g(B)− 3.

contradicting our height bound. Thus we see that a(Yη,−KX/B|Y ) ≥ a(Xη,−KX/B). Since
the subvarieties Y with larger generic a-invariant lie in a closed set but M defines a dominant
family, we see that we must have equality of generic a-invariants, i.e. −φ∗KX/B|Y · F = 2.
Applying Equation (6.1) we see that

−neg(F,−KF/B) ≤ −neg(X ,−KX/B) + 3g(B)− 1. (6.2)

Then

−KỸ /B · C̃ ≥ −φ
∗KX/B|Y · C̃ + 1− 3g(B)

≥ 1 + 5g(B) + 2 max{4g(B)− 2, 5g(B)− 1− neg(X ,−KX/B)}
≥ 1 + 4g(B) + neg(F,−KF/B) + 2 max{4g(B)− 2, 2g(B)− neg(F,−KF/B)}

(6.3)

where we have used the fact that neg(F,−KF/B) ≤ g(B) as proved in Corollary 4.3. This
verifies that the sections will satisfy the height bound of Corollary 5.2 with respect to Y .

Proposition 4.9 (2) guarantees the existence of a dominant family of sections C̃1 on Y

which satisfy C̃ ≡ C̃1 + (−s− 2g(B))F where

s =
1

2
(KY/B · C) +

1

2
neg(F,−KF/B) + max{4g(B)− 2, 2g(B)− neg(F,−KF/B)}

and F denotes a general fiber of π. Equation (6.3) shows that −s−2g(B) ≥ 1. In particular,

by Proposition 4.9 (2) C̃ deforms to the union of C̃1 with −s− g(B) general fibers of Y .
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Since C̃ and C̃1 differ by a multiple of F , we have

3g(B)− 1 ≥ KỸ /B · C̃ − φ
∗KX/B|Y · C̃

= KỸ /B · C̃1 − φ∗KX/B|Y · C̃1.

Note that

−KỸ /B · C̃1 = 4g(B) + neg(F,−KF/B) + 2 max{4g(B)− 3, 2g(B)− neg(F,−KF/B)}.

Using the bound −neg(F,−KF/B) ≤ −neg(X ,−KX/B) + 3g(B)− 1 from (6.2), we conclude

−φ∗KX/B|Y · C̃1 ≤ 3g(B)− 1 + 4g(B) + neg(F,−KF/B)

+ 2 max{4g(B)− 2, 5g(B)− 1− neg(X ,−KX/B)}
≤ 8g(B)− 1 + 2 max{4g(B)− 2, 5g(B)− 1− neg(X ,−KX/B)}

Now suppose we carry out this construction for every surface Y obtained above. Let C1

denote the image of C̃1 in X . Using a Hilbert scheme argument, we see that the corresponding
families of sections C1 constructed for general Y must be members of some fixed component
M1 ∈ Sec(X/B). Indeed, as we vary over general sets of q points in X the surfaces Y
constructed above are parametrized by an irreducible variety. For each surface, we have
constructed some sections C1 which have bounded relative anticanonical degree in X . Since
there are only finitely many components of Sec(X/B) parametrizing sections of bounded
degree, for a general surface Y these sections are all parametrized by the same irreducible
component. Thus we have verified that these sections satisfy properties (1), (2), and (3). �

Corollary 6.7. Let π : X → B be a del Pezzo fibration such that −KX/B is relatively nef.
There is a bounded family S → N of surfaces Y ⊂ X with a(Yη,−KX/B|Y ) = a(Xη,−KX/B)
such that every component M ⊂ Sec(X/B) parametrizing a dominant family of non-relatively
free sections C with

−KX/B · C ≥ max{6g(B)− 2 +m(X/B),−2neg(X ,−KX/B) + 12g(B)− 2,

2 max{4g(B)− 2, 5g(B)− 1− neg(X ,−KX/B)}+ 8g(B) + 1},
will generically parametrize sections contained in these surfaces Y .

Proof. Let q denote the maximal number of general points contained in deformations of C.
As in Theorem 6.6, the set of sections through q general points sweeps out a surface Y . The
theorem also shows that the general such Y contains a section C1 with

−KX/B · C1 ≤ 8g(B)− 1 + 2 max{4g(B)− 2, 5g(B)− 1− neg(X ,−KX/B)}.
We conclude by Proposition 2.10 that the set of surfaces Y obtained in this way forms a
bounded family. �

Later on we will need to compare the normal bundles of the sections C and C1 in Theorem
6.6. This will be accomplished by the following lemma.

Lemma 6.8. Let π : X → B be a del Pezzo fibration. Let Y ⊂ X be a surface such that

if φ : Ỹ → Y denotes the minimal resolution then the general fiber F of π ◦ φ : Ỹ → B is
isomorphic to P1, satisfies −KX/B ·F = 2, and its image in X has at worst nodal singularities.

Let C1, C2 be sections of π ◦ φ : Ỹ → B such that

• both Cis are contained in the smooth locus of X ;
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• the difference C1 − C2 is numerically equivalent to a multiple of F , and;
• there exists an integer c such that −φ∗KX/B · Ci + KỸ /B · Ci ≤ c and −KỸ /B · Ci ≥

max{2g(B), c+ 2g(B)− 1}.
Then we have

h1(C1, NC1/X ) = h1(C2, NC2/X ).

Proof. For the surfaces Ỹ as above, define the normal sheaf NỸ /X as the cokernel of the map
TỸ → φ∗TX . We first prove some properties of the normal sheaf. We assume above that a
general fiber of the map π|Y : Y → B is a rational conic in a fiber of π : X → B with only
nodal singularities. Thus the support of the torsion subsheaf of NỸ /X does not intersect a
general fiber of Y . Now consider the exact sequence

TỸ → φ∗TX → NỸ /X → 0.

If we restrict this sequence to Ci and remove the direct summands coming from TCi , we
obtain an exact sequence

NCi/Ỹ
→ NCi/X → NỸ /X |Ci → 0

which must be exact on the left due to the fact that NCi/Ỹ
is an invertible sheaf. Since Ci is

a general section in a family of sections on Ỹ which satisfy −KỸ /B ·Ci ≥ 2g(B), by Lemma

3.9 we may ensure that Ci avoids any codimension 2 locus in Ỹ .
In particular, let (NỸ /X )tf denote the torsion-free quotient of NỸ /X . Note that (NỸ /X )tf

is locally free away from a codimension 2 subset, since it is locally free at every codimension

1 point of Ỹ . Thus we may ensure that Ci is contained in the locus where (NỸ /X )tf is locally
free. Altogether this implies that

(NỸ /X |Ci)tor = (NỸ /X )tor|Ci
= OZ |Ci

where Z is the divisor whose components are the codimension 1 components of the support
of (NỸ /X )tor and the multiplicities are the lengths of the torsion subsheaf along the generic
point of each component.

We claim that the restriction of NỸ /X to C1 and to C2 are isomorphic sheaves. We first

prove that the restrictions of (NỸ /X )tor agree. Since a general fiber of Ỹ → B will not
intersect the torsion subsheaf of NỸ /X but C1 and C2 differ by a sum of general fibers, we see

that the torsion subsheaves of NỸ /X |C1 and NỸ /X |C2 are isomorphic and in particular have
the same length.

Next consider the restriction of (NỸ /X )tf . Since a general fiber F of Ỹ → B is P1 and the

degree of the restriction of (NỸ /X )tf to F is zero, in the open locus of Ỹ where the torsion

free part is locally free the invertible sheaf (NỸ /X )tf is linearly equivalent to a sum of vertical
curves. Since C1 and C2 have the same intersection profile, we conclude that the restrictions
of the torsion free part to Ci are isomorphic.

Note that

deg(NỸ /X |Ci) = −φ∗KX/B · Ci +KỸ /B · Ci ≤ c.
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On the other hand, we have

−KỸ /B · Ci ≥ c+ 2g(B)− 1

≥ deg(NỸ /X |Ci) + 2g(B)− 1

Let K be the kernel fitting in the exact sequence

0→ K → NCi/X → (NỸ /X |Ci)tf → 0.

The argument above shows that the degree of K is at least 2g(B)− 1 more than the degree
of the rightmost term. Thus Ext1((NỸ /X |Ci)tf ,K) = 0 and we conclude that the exact

sequence splits. By degree considerations h1(Ci,K) = 0 and so (NỸ /X |C̃i)tf contributes all

of H1(Ci, NCi/X ). As explained above this implies that the dimension of this vector space is
the same for both curves. �

7. Stable maps through general points

Let π : X → B be a del Pezzo fibration. Suppose that f : C → X is a genus g(B) stable
map obtained by deforming a section of π. The goal of this section is to relate the number of
general points of X contained in f(C) with its anticanonical degree. When C is irreducible
this is straightforward, but the situation is more subtle when C is reducible.

In particular, we will show that when f(C) contains (almost) as many points as possible
given its degree then C will have a particularly simple form. In the next section, we use
this fact to deduce that a section with semistable normal bundle will break in a particularly
simple way, implying a special case of Movable Bend-and-Break.

We first discuss irreducible curves:

Lemma 7.1. Let π : X → B be a del Pezzo fibration. Fix n ≥ 2g(B)+1. Let M ⊂ Sec(X/B)
denote a component such that for any n general points of X there exists a member of M
containing those points. Then M has the expected dimension and the curves C parametrized
by M have height ≥ 2n+ 2g(B)− 2.

Proof. Corollary 3.7 shows that a general C is relatively free so that M has the expected
dimension. Since the points are general they will impose independent conditions on M , so
that dim(M) ≥ 2n. Thus

2n ≤ −KX/B · C + 2(1− g(B))

which rearranges to give the desired height bound. �

We will use the following definition to control the failure of families of sections to have
the expected dimension.

Definition 7.2. Let π : X → B be a del Pezzo fibration. Fix an integer d. We let maxdef(d)
denote the maximum dimension of any component M ⊂ Sec(X/B) parametrizing sections
of height d. When there is no section of height d, we simply set maxdef(d) = −∞. We also
define

maxdef(≤ q) = max

{
0,max

d≤q
maxdef(d)

}
.
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Lemma 7.3. Let π : X → B be a del Pezzo fibration such that −KX/B is relatively ample.
Fix an integer d. Choose a positive integer n satisfying n ≥ maxdef(d). Suppose that we
have a connected effective curve C = C0 +

∑
aiTi where C0 is a section of height d and each

Ti is a π-vertical rational curve. If C contains n general points of X then −KX/B · C ≥
d+ 3n− 3

2
maxdef(d).

Proof. Let M be the component of Sec(X/B) containing C0. We split into several cases
depending upon the dimension of the locus swept out by the sections in M .

First suppose that C0 is a rigid section. In this case each general point contained in C is
contained in a π-vertical component. There are only finitely many π-vertical conics through a
general point of X . By generality, none of these conics will intersect C0. Thus any π-vertical
curve through a general point of X that intersects C0 must have anticanonical degree ≥ 3.
Thus −KX/B · C ≥ d+ 3n.

Next suppose that deformations of C0 sweep out a surface Y . Fix a general point p of
X and consider the finite set of π-vertical conics through this point. Each such conic will
intersect Y in a finite set of points. If a π-vertical conic through p is a component of C,
then C0 must contain one of these intersection points with Y to ensure that C is connected.
Furthermore, the conditions imposed on C0 by insisting that it contain the attachment points
for conics through p will be independent for different general points p. Thus C can have at
most maxdef(d) components which are π-vertical conics through general points. This proves
that

−KX/B · C ≥ d+ 2maxdef(d) + 3(n−maxdef(d))

= d+ 3n−maxdef(d).

Finally suppose that deformations of C0 form a dominant family. Suppose that q of
the general points are contained in C0; this imposes 2q independent conditions on M . In
particular 2q ≤ maxdef(d). Meeting a π-vertical conic through a fixed general point imposes
one additional condition on C0. Thus C can have at most maxdef(d)−2q components which
are π-vertical conics through general points. This proves that

−KX/B · C ≥ d+ 2(maxdef(d)− 2q) + 3(n− q − (maxdef(d)− 2q))

≥ d+ 3n−maxdef(d)− q

≥ d+ 3n− 3

2
maxdef(d).

�

The two following propositions describe which stable maps can pass through the maximal
number of general points of X . The first handles the case of even height.

Proposition 7.4. Let π : X → B be a del Pezzo fibration such that −KX/B is relatively
ample. Fix a positive integer

n ≥ 3

2
maxdef(≤ 6g(B)) + 2g(B) + 2 + max{0,−neg(X ,−KX/B)}.

Suppose that f : C → X is a genus g(B) stable map with anticanonical height 2n+2g(B)−2
such that the unique component of C whose image is not π-vertical maps birationally to a
section. Then:
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(1) Suppose the image of C contains n general points of X . Then f is a birational map
to a relatively free section.

(2) Fix a general curve Z in a basepoint free linear series in a general fiber of π. Suppose
the image of C contains n − 1 general points of X and intersects Z. Suppose also
that the image of C is reducible and at least one of our general points is contained in
a π-vertical component of C. Then C has exactly two components and f maps one
component birationally onto a relatively free section and the other birationally onto
either a conic or a cubic in a general fiber of π. Moreover the intersection of the
section and the π-vertical curve is a smooth point of the π-vertical curve.

Construction 7.5. Before giving the proof, we clarify what “general” means in the state-
ment of the proposition. We let Z be a fixed general member of a basepoint free linear
system in a general fiber of π. We may then ensure that the n points satisfy the following
conditions:

(1) Suppose we fix any subset of our set of points of size d. Then we may ensure that these
points impose independent conditions on every family of height ≤ 2n + 2g(B) − 2.
In particular, when d ≥ 2g(B) + 1 then Corollary 3.7 (3) shows that a general
deformation of a section through all d points will be relatively free. Thus when
choosing d general points we may ensure that there are only finitely many sections of
height 2d + 2g(B) − 2 which contain this subset of points and that every section of
this height containing the points will be relatively free. Also we may ensure there are
finitely many loci of dimension ≤ 1 in Sec(X/B) that parametrize sections of height
2d+ 2g(B)− 1 which contain this set of points and that the general section in these
families is relatively free.

(2) We may ensure that every fiber of π that contains one of the general points or Z is
a smooth del Pezzo surface. Moreover we may assume that each general point and
Z are contained in different fibers of π. Furthermore, we may ensure that a general
point is not contained in any (−1)-curve in its fiber F and that the finite set of
conics in F through the point have the expected dimension of intersection against the
sections described in (1); namely, for any 0-dimensional component of the parameter
space the corresponding section is disjoint from each conic, and for any 1-dimensional
component of the parameter space there are only finitely many sections intersecting
each conic. We may also ensure that these finitely many sections are relatively free
when they contain more than 2g(B) general points.

(3) By choosing Z general we may ensure that the sections in (1) and (2) meet Z in
the expected dimension: for any 0-dimensional component of the parameter space
the corresponding section is disjoint from Z, and for any 1-dimensional component
of the parameter space there are only finitely many sections intersecting Z. We may
further ensure that these finitely many sections are relatively free when they contain
more than 2g(B) general points.

(4) Consider a subset of d of our general points where d−1 ≥ 2g(B)+1. Fix one of these
general points p and let T be any π-vertical anticanonical conic which contains p. By
choosing the points general we may ensure that there are only finitely many sections
of height 2d + 2g(B) − 2 ≤ 2n + 2g(B) − 2 passing through the remaining d − 1
general points and meeting with Z and T . Indeed, by Corollary 3.7 (3) it suffices
to consider families which generically parametrize relatively free sections. Lemma
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3.10 shows that a general member of such a family will not intersect Z. Due to the
generality of the point p we may ensure that no π-vertical conic through p meets
every section that intersects Z. Finally, since general points impose codimension 2
conditions on the remaining subfamily we obtain the desired claim. Furthermore, we
may ensure that the finitely many sections satisfying these incidence conditions are
relatively free.

(5) Note that if we take a general point in a del Pezzo surface S there are only finitely
many rational anticanonical cubics containing this point and any other general point
in S. We ensure that all of our n points satisfy this condition in their fiber.

In (1), (2), (3), and (4) we have constructed certain incidence conditions such
that the families of sections satisfying these conditions are parametrized by a 0-
dimensional space. For each choice of conditions, consider the set of π-vertical rational
anticanonical cubics passing through one of our n general points. These anticanonical
cubics are parameterized by a 1-dimensional family, and they sweep out the fiber F
of π containing the point. By choosing our remaining points general, we may ensure
that sections satisfying the above incidence conditions go through a general point of
F . Using an incidence correspondence, we see that for general choices of n points
there will only be finitely many anticanonical cubics through one of our general points
which meet these sections.

(6) We may ensure that there is no section as in (2) or (4) that intersects two different
conics through two different points in our set. Indeed, since each such conic im-
poses independent conditions on the parameter space of sections, the set of sections
through two general conics cannot meet the 1-dimensional locus parametrizing sec-
tions through the other general points and Z. By a similar argument we may ensure
that any section as in (1)-(4) that is parametrized by a 0-dimensional set does not
meet with any line intersecting Z.

(7) Since n ≥ maxdef(≤ 6g(B)), we may ensure that for any d < 6g(B) + 1 and any
subset of our set of points of size ≥ maxdef(d) the points are general in the sense of
Lemma 7.3.

Proof of Proposition 7.4: Note that our hypotheses imply that the π-vertical connected com-
ponents of C\C0 are trees of rational curves.

(1). It suffices to show that the image of f is irreducible. Suppose otherwise, so that
f(C) = C0 +

∑
i∈I aiTi for some π-vertical curves Ti. Let d denote the height of C0 and set

ti = −KX/B · Ti, so that

2n+ 2g(B)− 2 = d+
∑
i∈I

aiti.

Note that C0 can contain at most max{0, bd
2
c+1−g(B)} general points of X if it is relatively

free. By Corollary 3.7 C0 can contain at most 2g(B) general points of X if it is not relatively
free. An irreducible vertical curve Ti can contain at most 1 general point and if it does then
ti ≥ 2. Let I ′ ⊂ I denote the set of vertical curves that contain one of the general points.

We now break the argument into several cases.
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Case 1: d ≥ 6g(B). Then the number of general points contained in f(C) is bounded above
by the number of general points contained in C0 and in the Ti. Thus:

max

{
0,

⌊
d

2

⌋
+ 1− g(B), 2g(B)

}
+ |I ′| ≥ n

=
d

2
+ 1− g(B) +

∑
i∈I

aiti/2.

Since d ≥ 6g(B) the RHS is an upper bound for the LHS. Thus the inequality above must be
an equality. This means that d is even, that C0 goes through

⌊
d
2

⌋
+ 1− g(B) general points,

that C0 is relatively free (since it contains at least 2g(B)+1 general points), that each ai = 1,
and that each component of T is a free vertical curve through one of the general points with
ti = 2. In particular, the set of d

2
+ 1 − g(B) general points determines a finite number of

possibilities for C0, and each vertical curve is also determined by a general point up to a
finite set of possibilities. If there are any vertical components, then for general choices f(C)
will not be connected, an impossibility. Thus f(C) is irreducible.
Case 2: d < 6g(B). Due to our lower bound on n we may apply Lemma 7.3. It shows that
C must have height

−KX/B · C ≥ neg(X ,−KX/B) + 3n− 3

2
maxdef(≤ 6g(B)− 1)

Applying our assumption on the lower bound for n, we see that

−KX/B · C > 2n+ 2g(B)− 2

contradicting our assumption that C have height 2n+ 2g(B)− 2.

(2). Write f(C) = C0 +
∑

i∈I aiTi for some π-vertical curves Ti. Let d denote the height
of C0 and set ti = −KX/B · Ti, so that

2n+ 2g(B)− 2 = d+
∑
i∈I

aiti.

Let I ′ ⊂ I denote the set of vertical curves that contain one of the general points. Again we
separate into cases:
Case 1: d ≥ 6g(B) + 1 and C0 intersects Z. Meeting Z will impose one condition
on a relatively free section. Since C0 intersects Z it can contain at most max{0, bd+1

2
c −

g(B), 2g(B)} general points of X . The number of general points contained in f(C) is bounded
above by the number of general points contained in C0 and in the Ti. Thus:

max

{
0,

⌊
d+ 1

2

⌋
− g(B), 2g(B)− 1

}
+ |I ′| ≥ n− 1

≥ d

2
− g(B) +

∑
i∈I

aiti/2.

If d is even, then we must have equality everywhere. This means that C0 contains the
maximal number of general points, the set of deformations of C0 which meet Z and go
through the maximal number of points is at most 1-dimensional, that every ai = 1, and
that each component of T is a free vertical curve through one of the general points with
ti = 2. However, for C0 to meet a vertical conic through a general point is a codimension 1
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condition, so by generality there can be at most one vertical component and we obtain the
desired expression. Moreover the intersection of the section and the vertical curve must be
a smooth point of the vertical curve due to generality. Since C0 contains at least 2g(B) + 1
general points, it must be relatively free by generality.

If d is odd, then the equation simplifies to 1/2 + |I ′| ≥
∑

i∈I aiti/2. There are only three
options for the vertical components:

(1) every component of T has anticanonical degree 2 and contains a general point, or
(2) every component of T but one has anticanonical degree 2 and contains a general

point, and the last one has anticanonical degree 3 and contains a general point, or,
(3) every component of T but one has anticanonical degree 2 and contains a general

point, and the last component has anticanonical degree 1.

Note that there are only finitely many deformations of C0 which meet Z and go through
d+1

2
− g(B) points. Thus such C0 is relatively free by generality as it contains at least

2g(B) + 1 general points. Recall that by assumption there is a vertical component of f(C)
through a general point. However, since there are only finitely many vertical conics through
a general point, by generality no such conic can intersect C0. This rules out the first and
third situations, showing that C must be the union of a free section and a cubic in a fiber.
Moreover there are only finitely many cubics containing a general point and meeting with
C0 thus by generality the intersection of the section and the cubic is a smooth point of the
cubic.
Case 2: d ≥ 6g(B) + 1 and C0 does not intersect Z. Just as before, the number of
general points contained in f(C) is bounded above by the number of general points contained
in C0 and in the Ti. Thus:

max

{
0,

⌊
d

2

⌋
+ 1− g(B), 2g(B)− 1

}
+ |I ′| ≥ n− 1

≥ d

2
− g(B) +

∑
i∈I

aiti/2.

Since C0 does not intersect Z, there must be a vertical curve that does intersect Z but does
not contain any general points, so that∑

i∈I

aiti/2− |I ′| ≥
∑
i∈I

aiti/2−
∑
i∈I′

aiti/2 ≥ 1/2.

Thus when d is even, C0 must contain the maximal number of points d
2

+ 1− g(B) and must
be relatively free by generality. In this situation the difference between |I ′| and

∑
i∈I′ aiti/2

is at most 1/2. There are four options for the vertical components:

(1) every component of T but one has anticanonical degree 2 and contains a general
point, and the last has anticanonical degree 1 and meets Z.

(2) every component of T but two has anticanonical degree 2 and contains a general point,
one has anticanonical degree 1 and meets Z, and the last one has anticanonical degree
3 and contains a general point,

(3) every component of T but two has anticanonical degree 2 and contains a general
point, and the last two components have anticanonical degree 1, one of which meets
Z,

38



(4) every component of T has anticanonical degree 2, all but one contain a general point,
and the last component meets Z.

Since by generality there are only finitely many deformations of C0 through the required
number of points, such C0 can not intersect a vertical line meeting Z or a vertical conic
through a general point. This rules out the first three cases immediately, and the fourth is
also ruled out since by assumption there exists at least one vertical curve which contains
some general point.

When d is odd then C0 must contain the maximal number of points bd
2
c+1−g(B). In this

case there is only one option: every component of T but one has anticanonical degree 2 and
contains a general point, and the last has anticanonical degree 1 and meets Z. However, since
by generality C0 can only deform in a one-parameter family while containing the maximal
number of points, it is impossible for C0 to meet both a line intersecting Z and a conic
through a general point. Since by assumption f(C) contains a vertical component through
a general point, this case is also ruled out.
Case 3: d < 6g(B) + 1. In this case Lemma 7.3 shows that C must have height

−KX/B · C ≥ neg(X ,−KX/B) + 3(n− 1)− 3

2
maxdef(≤ 6g(B))

> 2n+ 2g(B)− 2

proving the impossibility of this case. �

The next proposition is the analogue of Proposition 7.4 for sections of odd height.

Proposition 7.6. Let π : X → B be a del Pezzo fibration such that −KX/B is relatively
ample. Fix a positive integer

n ≥ 3

2
maxdef(≤ 6g(B)) + 2g(B) + max{0,−neg(X ,−KX/B)}.

Suppose that f : C → X is a genus g(B) stable map with anticanonical height 2n+2g(B)−1
such that the unique component of C whose image is not π-vertical maps birationally to a
section. Then:

(1) Fix a general curve Z in a basepoint free linear series in a general fiber of π. Suppose
the image of C contains n general points of X and intersects Z. Then f is a birational
map to a relatively free section.

(2) Suppose the image of C contains n general points of X . Suppose also that the image
of C is reducible and at least one general point is contained in a π-vertical component
of C. Then C has exactly two components and f maps one component birationally
onto a relatively free section and the other birationally onto a conic or a cubic in a
general fiber of π. Moreover the intersection of the section and the π-vertical curve
is a smooth point of the π-vertical curve.

The proof is essentially the same as the proof of Proposition 7.4, but slightly easier.

8. Movable Bend-and-Break for del Pezzo fibrations

We next establish Movable Bend-and-Break for sections of del Pezzo fibrations such that
−KX/B is relatively ample.
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Theorem 8.1. Let π : X → B be a del Pezzo fibration such that −KX/B is relatively ample.
Define

Q(X ) = max{10g(B) + 3, 3maxdef(≤ 6g(B)) + 6g(B) + 3 + 2 max{0,−neg(X ,−KX/B)},
− 2neg(X ,−KX/B) + 12g(B) + 5,−2neg(X ,−KX/B) + 21g(B)− 3,

3maxdef(≤ 8g(B)− neg(X ,−KX/B))− neg(X ,−KX/B) + 6g(B) + 1}.

Suppose that M ⊂ Sec(X/B) is a component that parametrizes a family of relatively free
sections C satisfying −KX/B · C ≥ Q(X ). Then the closure of M in M g(B),0(X ) contains
a point representing a stable map whose domain has exactly two components, one which
maps birationally onto a relatively free section and one which maps birationally onto a free
π-vertical curve. Moreover the section and the vertical curve meet at a smooth point of the
vertical curve.

It is helpful to introduce the following definition:

Definition 8.2. Let π : X → B be a del Pezzo fibration such that −KX/B is relatively
ample. We define MBBbound(X ) to be the smallest non-negative integer r such that any
component of M g(B),0(X ) which generically parametrizes relatively free sections of height at
least r will also parametrize a stable map whose domain has exactly two components, one
which maps birationally onto a relatively free section and one which maps birationally onto
a free π-vertical curve, and such that the section intersects a smooth point of the vertical
curve.

Thus Theorem 8.1 establishes that MBBbound(X ) exists and gives an explicit upper bound
MBBbound(X ) ≤ Q(X ).

We will prove Theorem 8.1 by splitting into several cases. The first situation (Cases (1)
and (2)) is when NC/X is “almost” semistable. In this case we can appeal to Proposition 7.4
and Proposition 7.6 to obtain a suitable breaking of C. The second situation (Cases (3) and
(4)) is when NC/X is unstable. By taking all deformations of C through a suitable number
of general points we obtain a surface Σ as in Section 3.4. Since C deforms a lot in Σ, we can
break C inside Σ and then show that this breaking satisfies the desired properties. Note that
in this case the argument depends upon whether the degree of the destabilizing quotient of
NC/X is large or small.

Proof of Theorem 8.1: Suppose that M is a component of Sec(X/B) parametrizing a rela-
tively free family of sections that satisfy

−KX/B · C ≥ Q(X ).

Since each section is smooth we can consider its normal bundle, and we separate into several
cases based on the normal bundle of the general curve C parametrized by M .

Case 1: NC/X is semistable. First assume that the height of C is even. Choose n so that
−KX/B · C = 2n+ 2g(B)− 2. Our height bound implies that

n ≥ 3

2
maxdef(≤ 6g(B)) + 2g(B) +

5

2
+ max{0,−neg(X ,−KX/B)} ≥ 5

2
,

which implies that n ≥ 3. Since C is relatively free Riemann-Roch implies that

h0(C,NC/X ) = 2n.
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Fix n−1 general points and a basepoint free curve Z in a general fiber of π. Proposition 3.6
shows there is a one parameter family of deformations of C passing through n − 1 general
points and meeting with Z. By Bend-and-Break as in Lemma 2.11 C degenerates to a
stable map whose image is the union of a section with π-vertical rational curves where at
least one π-vertical component contains a general point. Now our assertion follows from
Proposition 7.4.

When the height is odd, choose n so that −KX/B ·C = 2n+ 2g(B)− 1. Our height bound
implies that

n ≥ 3

2
maxdef(≤ 6g(B)) + 2g(B) + 2 + max{0,−neg(X ,−KX/B)} ≥ 2.

Since C is relatively free Riemann-Roch implies that

h0(C,NC/X ) = 2n+ 1.

Fix n general points.. Proposition 3.6 shows there is a one parameter family of deformations
of C passing through n general points. By Bend-and-Break as in Lemma 2.11 C degenerates
to a stable map whose image is the union of a section with π-vertical rational curves where
at least one π-vertical component contains a general point. Now our assertion follows from
Proposition 7.6.

Case 2: NC/X is unstable with the maximal destabilizing exact sequence

0→ L2 → NC/X → L1 → 0

such that deg(L2) − deg(L1) ≤ 1. Due to the relative freeness of the curve and the bound
on the degrees of the components we have

h0(C,L1) =

⌊
h0(C,NC/X )

2

⌋
.

Thus the same proof for Case 1 works without any modification.
Case 3: NC/X is unstable with the maximal destabilizing exact sequence

0→ L2 → NC/X → L1 → 0

such that 3g(B) ≤ deg(L1) ≤ deg(L2)− 2.
We write a = H0(C,L1) = deg(L1) + 1− g(B) and b = H0(C,L2) = deg(L2) + 1− g(B).

Our assumption implies that a ≥ 2g(B) + 1.
By Proposition 3.6 deformations of C can contain a general points of X . Consider a

component Σ of the locus swept out by the curves C parametrized by M through a general
points {x1, . . . , xa}; we may assume that the general curve sweeping out Σ has generic normal
bundle and {x1, . . . , xa} are general on C. We know that Σ ( X and a dimension count
shows that it is a surface. In fact, since each general point imposes 2 independent conditions
on the moduli space, there is a (b − a)-dimensional family of curves through these general
points which sweep out Σ.

Let ν : Σ′ → Σ be the normalization and let φ : Σ̃ → Σ be the minimal resolution. The

results in Section 3.4 show that Σ̃→ Σ is finite on an open neighborhood of a general section

C sweeping out Σ and the strict transforms C̃ will define a dominant family of sections of

Σ̃ which have normal bundle L2. In particular the induced map ψ : Σ̃ → B has connected
fibers. Since deg(L2) ≥ g(B) + 2 the usual Bend-and-Break theorem shows that the general
fiber of ψ is P1.
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By Corollary 4.3 we find a ruled surface F and a birational map ρ : Σ̃ → F which is an

isomorphism on a neighborhood of C̃. Let C0 be a section of F→ B of minimal height and

write ρ∗C̃ ≡ C0 + kF where F is some fixed general fiber.

Claim 8.3. The section ρ∗C̃ deforms on F to the sum of a relatively free section on F and
a general fiber of ψ.

Proof of claim: Assume for a contradiction that it does not. By Theorem 4.7 we see that

max{2, 2g(B) + 1, 4g(B) + 1− neg(F,−KF/B)} > −KF/B · C̃ = deg(L2).

By Lemma 2.12 we have −neg(F,−KF/B) ≥ −g(B), so that the supremum is achieved by
4g(B) + 1 − neg(F,−KF/B) unless g(B) = 0 where the supremum is 2. Thus (even in the
genus 0 case) we have

−neg(F,−KF/B) ≥ deg(L2)− 4g(B)− 2. (8.1)

On the other hand, note that

deg(L1) + deg(L2) = −KX/B · C
= −φ∗KX/B · ρ∗C0 − kφ∗KX/B · F

≥ −φ∗KX/B · C̃0 − kφ∗KX/B · F

where the last inequality follows from the fact that ρ∗C0 − C̃0 is effective and −φ∗KX/B is
ψ-relatively nef. Also, by arguing on F we see that

deg(L2) = −KF/B · ρ∗C̃ = −KF/B · C0 + 2k. (8.2)

Substituting and simplifying, we see that

deg(L1) ≥ neg(X ,−KX/B) + k(−φ∗KX/B · F − 2)− neg(F,−KF/B). (8.3)

We now split the argument into two cases. First, suppose that −KX/B · F ≥ 3. Then we
obtain

deg(L1) ≥ neg(X ,−KX/B) + k − neg(F,−KF/B)

= neg(X ,−KX/B) +
1

2
deg(L2)− 3

2
neg(F,−KF/B)

Using the lower bound on −neg(F,−KF/B) from Equation (8.1), we find altogether

deg(L2) ≥ deg(L1) ≥ neg(X ,−KX/B) + 2 deg(L2)− 6g(B)− 3.

Thus

−KX/B · C ≤ 2 deg(L2)− 2 ≤ −2neg(X ,−KX/B) + 12g(B) + 4

contradicting our degree bounds.
Second, suppose that −KX/B · F = 2. Then the inequality (8.3) and (8.1) yield

deg(L1) ≥ neg(X ,−KX/B) + deg(L2)− 4g(B)− 2.

In particular this means that

−KX/B · C = deg(L1) + deg(L2) ≤ 2 deg(L1)− neg(X ,−KX/B) + 4g(B) + 2. (8.4)
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Then we have

−KX/B · C = −ρ∗φ∗KX/B · ρ∗C̃

≥ −φ∗KX/B · C̃0 + 2k

where the last inequality follows from the relative nefness of −KX/B. Combining with Equa-
tion (8.2) and (8.1), we see that

2 deg(L1)− 2 deg(L2) + 8g(B) + 4− neg(X ,−KX/B) > −φ∗KX/B · C̃0.

In particular, the image C0 of C̃0 in X has height at most 8g(B) − neg(X ,−KX/B). Note

that any a general points of Σ̃ will also be general in X . Thus by adding on a general fibers

to C̃0 and taking the image in X , we obtain a reducible curve C0 +S where C0 is a section, S
is π-vertical, and the entire curve goes through a general points of X . By Lemma 7.3 either

−KX/B · C0 + 2a ≥ −KX/B · C0 + 3a− 3

2
maxdef(≤ 8g(B)− neg(X ,−KX/B))

or a < maxdef(≤ 8g(B) − neg(X ,−KX/B)). Together these show that a ≤ 3
2
maxdef(≤

8g(B)−neg(X ,−KX/B)). Then by Equation (8.4) and the fact that deg(L1) = a+ g(B)− 1
we have

−KX/B · C ≤ 3maxdef(≤ 8g(B)− neg(X ,−KX/B))− neg(X ,−KX/B) + 6g(B)

contradicting our degree bound. �

Having proved the claim, we now return to the main argument. Since a general deformation
of a relatively free section on F will avoid any codimension 2 locus, we may assume that

the curves C̃1 and F constructed on F in Claim 8.3 avoid the exceptional centers of Σ̃→ F.

Thus by taking the strict transforms of these curves, we have shown that on Σ̃ the curves C̃

deform to curves of the form C̃1 +F where F is a general fiber of π and C̃1 is relatively free

in Σ̃ that is general in its deformation class. Moreover since C̃ avoids the preimage of the

singularities in X and Σ′, we may ensure that C̃1 avoids the preimage of the singularities

of X and Σ′. Indeed since a relatively free section avoids any codimension 2 loci, C̃1 avoids
0-dimensional preimages of singularities. For 1-dimensional preimages of singularities since

C̃ avoids such loci, the intersection number of C̃ to such loci is 0. Then since C̃1 shares the

same intersection property with C̃, we conclude that it avoids any preimage of singularities.

Moreover we may assume that the image of the intersection of C̃1 and F is a smooth point
of the image of F in X .

Our plan is to show that C̃1 is relatively free in X and that F is free in X , yielding
the desired deformation of C. We separate the argument into two cases depending on the

stability of the normal bundle of C̃1.

If NC̃1/X is semistable, then C̃1 is relatively free by Proposition 3.6 and Corollary 3.7

(2). Indeed, it follows from Proposition 3.14 that the normal bundle NC̃/Σ̃ is given by L2.

Then since deg(NC̃1/Σ̃
) = deg(L2) − 2 ≥ deg(L1) and since Σ̃ contains the a general points

{x1, · · · , xa} that we have fixed, we conclude that a deformation of C̃1 also contains these

a general points so that h0(C̃1, NC̃1/X ) ≥ 4g(B) + 2 by Proposition 3.6 (2). Thus C̃1 is
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relatively free by Corollary 3.7 (2). Since F is free on Σ̃ and Σ contains a general point of
X , the image of F is free on X , finishing the argument in this case.

Suppose that NC̃1/X is unstable with the maximal destabilizing exact sequence:

0→ L′2 → NC̃1/X → L
′
1 → 0.

Then after reselecting a general points q1, · · · , qa on C̃1 we have

h0(C̃1, NC̃1/X ) = h0(C̃1, NC̃1/X (−q1 − · · · − qa)) + 2a.

Note that our surface Σ does not depend on the choice of qi’s because of Lemma 3.13. This
means that

h0(C̃1,L′1) = h0(C̃1,L′1(−q1 − · · · − qa)) + a ≥ a.

Corollary 3.7 (1) shows that C̃1 is relatively free on X . Similarly, since F is free on Σ̃, it is
also free on X .

Case 4: NC/X is unstable with the maximal destabilizing exact sequence

0→ L2 → NC/X → L1 → 0

such that deg(L1) < 3g(B) < 7g(B) + 3 ≤ deg(L2). As before we write a = H0(C,L1) =
deg(L1) + 1− g(B) ≤ 2g(B) and b = H0(C,L2) = deg(L2) + 1− g(B). By Proposition 3.6
deformations of C can contain a general points of X . Consider a component Σ of the locus
swept out by the curves in M through a general points {x1, . . . , xa}; we may assume that
the normal bundle of the general curve sweeping out Σ has a Harder-Narasimhan filtration
of generic type and {x1, . . . , xa} are general on C. We know that Σ ( X and a dimension
count shows that it is a surface. In fact, since each general point imposes 2 independent
conditions on the moduli space, there is a (b−a)-dimensional family of curves through these
general points which sweep out Σ.

Let φ : Σ̃ → Σ be the minimal resolution. The results in Section 3.4 show that Σ̃ → Σ
is finite on an open neighborhood of a general section C sweeping out Σ and the strict

transforms C̃ will define a dominant family of sections of Σ̃ which have normal bundle L2.

In particular the induced map ψ : Σ̃ → B has connected fibers. Since deg(L2) ≥ g(B) + 2
the usual Bend-and-Break theorem shows that the general fiber of ψ is P1.

Apply Corollary 4.3 to find a ruled surface F and a birational map ρ : Σ̃→ F which is an

isomorphism on a neighborhood of C̃. As in Proposition 4.9 (1) we can write C̃ ≡ C̃0+kF+T
where F is a general fiber of the map to B and

k =
1

2
(−KΣ̃/B · C̃)− 1

2
neg(F,−KF/B).

Since NC̃/Σ̃ = L2 has vanishing H1, the component parametrizing deformations of C̃ in Σ
has the expected dimension. Thus we have

−KΣ̃/B · C̃ + 1− g(B) ≥ −KX/B · C + 2(1− g(B))− 2a
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Then

5g(B)− 1 ≥ 2a+ g(B)− 1

≥ KΣ̃/B · C̃ − φ
∗KX/B|Σ · C̃

= KΣ̃/B · C̃ − φ
∗KX/B|Σ · C̃0 + k(−φ∗KX/B|Σ · F )− φ∗KX/B|Σ · T

≥ KΣ̃/B · C̃ + neg(X ,−KX/B) + k(−φ∗KX/B|Σ · F ) (8.5)

where we have used the fact that −KX/B is relatively nef at the last step. Suppose for

a contradiction that there is an inequality a(Σ̃η,−φ∗KX/B|Σ) < a(Xη,−KX/B). This is
equivalent to saying that −φ∗KX/B|Σ ·F ≥ 3. Rearranging and substituting in our value for
k, we find

1

2
(−KΣ̃/B · C̃)− 3

2
neg(F,−KF/B) ≤ −neg(X ,−KX/B) + 5g(B)− 1.

Using the inequality neg(F,−KF/B) ≤ g(B) from Corollary 4.3, we see that

−KX/B · C ≤ −KΣ̃/B · C̃ + 5g(B)− 1

≤ −2neg(X ,−KX/B) + 18g(B)− 3.

contradicting our height bound. Thus we see that a(Ση,−KX/B|Σ) ≥ a(Xη,−KX/B). Since
the subvarieties Σ with larger generic a-invariant lie in a closed set but C is a member of a
dominant family, we see that we must have equality of generic a-invariants, i.e. −φ∗KX/B|Σ ·
F = 2. Using the arguments in Case 3 we conclude that ρ∗C̃ deforms on F to the sum

of a section C̃1 that is relatively free in Σ̃ and a general fiber F of ψ. When Σ contains

some singular points of X , we may assume that C̃ does not meet with the preimage of these

singular points on Σ̃. This implies that we can assume that C̃1 also avoids this preimage.
Note that since Σ contains a general point of X , the general fiber of Σ→ B will be a nodal

rational curve of anticanonical degree 2 by Lemma 2.15. Applying Lemma 6.8 to C̃ and C̃1

with the surface Σ and the constant c = 5g(B)− 1, we see that

h1(C̃1, NC̃1/X ) = h1(C,NC/X ) = 0.

Hence C̃1 is relatively free in X . �

By applying Movable Bend-and-Break repeatedly, one can prove the following version.

Corollary 8.4. Let π : X → B be a del Pezzo fibration such that −KX/B is relatively
ample. Let M be a component of Sec(X/B) parametrizing a family of relatively free sections
of height ≥ MBBbound(X ). Then the closure M in M g(B),0(X ) contains a point representing
the union of a relatively free section of height < MBBbound(X ) with a chain of π-vertical
free curves of anticanonical degree ≤ 3 contained in a general fiber of π. Furthermore the
section meets the chain of π-vertical curves at a smooth point of the chain.

The argument is very similar to the arguments in [LT19a, Section 7], and so we will only
sketch the proof.

Proof. First, by applying Movable Bend-and-Break inductively we can find a stable map in
M whose domain is a comb – that is, the union of a curve C0 of genus g(B) with several
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rational curves meeting C0 transversally at distinct points – which maps C0 onto a rela-
tively free section of height < MBBbound(X ) and each rational curve onto a free π-vertical
curve. By deforming and gluing the π-vertical components as in [LT19a, Theorem 7.7] using
Lemma 3.11, one can then find a stable map in M whose domain is the union of a genus g(B)
curve and a single rational curve such that the genus g(B) curve is mapped to a relatively
free section of height < MBBbound(X ) and the rational curve is mapped to a free π-vertical
curve in a general fiber F of π. Moreover we may assume that the intersection of the section
and the vertical rational curve is a smooth point of the vertical curve. Finally, applying
[LT19a, Lemma 2.12] we can deform this π-vertical curve in F to a chain of anticanonical
conics and cubics while fixing the attachment point to C0. �

By regluing all but one of the vertical components to the section, we obtain the following
version:

Corollary 8.5. Let π : X → B be a del Pezzo fibration such that −KX/B is relatively
ample. Let M be a component of Sec(X/B) parametrizing a family of sections of height
≥ MBBbound(X ). Then the closure M in M g(B),0(X ) contains a point representing the
union of a relatively free section with a π-vertical free curve of anticanonical degree ≤ 3.
Furthermore the section meets the π-vertical curve at a smooth point.

We also obtain a statement about the fibers of the evaluation map for the universal family
of sections.

Theorem 8.6. Let π : X → B be a del Pezzo fibration with −KX/B relatively ample.
Suppose that M is a component of Sec(X/B)d where d ≥ MBBbound(X ) + 2 and that M
generically parametrizes relatively free sections. Then any resolution of the evaluation map
of the universal family over M has connected fibers.

The proof is similar to [LT19a, Corollary 7.10]: let Y → X denote the Stein factorization
of the evaluation map. We first use Movable Bend-and-Break to break off some π-vertical
free rational curves on X . By construction these must be the images of some π-vertical free
rational curves on Y . Then by applying [LT17, Theorem 6.2] to the generic fiber of π we see
that Y → X must be birational. We omit the details here, referring the reader to [LT19a,
Corollary 7.10].

9. Batyrev’s heuristic

Suppose that π : X → B is a del Pezzo fibration. Batyrev’s heuristic for Manin’s Con-
jecture indicates that the number of components of Sec(X/B)d should be bounded above
by a polynomial in d. In this section we prove this statement for Fano fibrations of relative
dimension 1 and 2.

Proposition 9.1. Let π : X → B be a Fano fibration of relative dimension 1. Fix a
numerical class α ∈ N1(X ). When the anticanonical degree of α is sufficiently large, there
is at most one component of Sec(X/B) representing α. Equivalently, for d sufficiently large
there are exactly |Λ| components of Sec(X/B)d where Λ denotes the number of intersection
profiles.

In particular this implies that there is a polynomial P (d) such that the number of com-
ponents of Sec(X/B)d is bounded above by P (d).

46



Proof. For each intersection profile λi Lemma 4.5 yields a birational map φi : X → Fi to
a ruled surface Fi. The set of components of Sec(X/B)d with intersection profile λ is in
bijection with the set of components of Sec(Fi/B)d. Thus it suffices to prove the statement
for ruled surfaces.

Let E denote a rank 2 bundle on B defining the P1-bundle Fi. Suppose that the height d
is sufficiently large so that every twist of E by a divisor of degree d is globally generated and
has vanishing H1. Then there is a unique component of Sec(Fi/B) of degree d. This proves
the first statement.

To see the second statement, note that in each intersection profile there is at most one
numerical class of anticanonical degree d. By combining with the argument above we obtain
the second statement. �

We next turn to the del Pezzo fibration case.

Theorem 9.2. Let π : X → B be a del Pezzo fibration such that −KX/B is relatively ample.
There is some polynomial P (d) such that the number of components of Sec(X/B)d is bounded
above by P (d).

The hardest case of the theorem is when the component M parametrizes a dominant
family of sections that is not relatively free so we explain this case separately.

Proposition 9.3. Let π : X → B be a del Pezzo fibration such that −KX/B is relatively
nef. There is an upper bound R = R(X ) on the number of components of Sec(X/B) which
parametrize a dominant family of non-relatively free curves representing a fixed numerical
class.

Proof. Suppose that M parametrizes a dominant family of non-relatively-free sections on X
of sufficiently large height and let q be the maximal number of general points contained in the
sections parametrized by M . Fix the bounded family of surfaces S → N defined by Corollary
6.7. Let M [q] be the space of sections parametrized by M with q marked points. This is

an irreducible variety; we denote its normalization by M̃ [q]. Consider the evaluation map

M̃ [q] → Xq. Theorem 6.6 shows that for any component of a general fiber of this map the
sections parametrized by this component will sweep out an irreducible surface parametrized

by S. Thus the Stein factorization of M̃ [q] → Xq admits a rational map to the parameter
space N . This means that if we let {Ni} denote the stratification of N as in Lemma 5.1
there is a unique stratum Ni which contains the general surface swept out by sections in M
through q general points. Corollary 5.2 shows that in fact for every surface parametrized by
Ni there will be a family of sections on a resolution of the surface which will be parametrized
by some sublocus of M . Thus the sublocus of M swept out by families of sections on the
surfaces parametrized by the stratum Ni will contain a dense open subset of M .

In particular, fix a surface Ỹ parametrized by Ni. The component M is uniquely deter-

mined by the anticanonical degree of the sections in Ỹ and the intersection profile of any

family of sections in Ỹ which are contained in M . Note that if we fix the numerical class

of the sections in X and fix an intersection profile in Ỹ then there is a unique family on Ỹ
which pushes forward to the given numerical class on X because our height is sufficiently
large. Thus we see that there is a universal upper bound on the number of families of curves
that sweep out surfaces in the stratum Ni and which push forward to a given numerical class
on X . Since there are only finitely many strata Ni, we obtain the desired upper bound. �
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Proof of Theorem 9.2: We consider separately non-dominant families, dominant but not rel-
atively free families, and relatively free families. Note that by Lemma 2.2 in each case it
suffices to prove the statement only for those sections whose anticanonical degree is suffi-
ciently large.

Every non-dominant family of sections of sufficiently large height will sweep out a surface
Y in X . By Theorem 5.3 when the height is sufficiently large this surface Y will be a ruled
surface and by Corollary 5.4 only finitely many such surfaces can be obtained in this way. It
suffices to prove the statement for each surface Y separately. This follows from Proposition
9.1. (Note that the height function used here may be different from the height function in
Proposition 9.1. Nevertheless, it is easy to show that a polynomial bound with respect to
one height function will yield a polynomial bound for the other.)

Suppose that M ⊂ Sec(X/B)d is a component parametrizing a dominant family of non-
relatively free sections. Proposition 9.3 proves that there is an upper bound R on the number
of such components representing any fixed numerical class, and this immediately implies the
desired polynomial bound.

Finally, suppose that M ⊂ Sec(X/B)d is a component parametrizing a dominant family of
sections which are generically relatively free. By Corollary 8.4 M can be obtained by gluing
a relatively free section C of height < MBBbound(X ) to a chain of π-vertical free curves
each which has anticanonical degree 2 or 3. By [LT19b, Theorem 5.13] there is a polynomial
Q(r) which bounds the number of components of M0,0(X ) of anticanonical degree r that can
be obtained by smoothing chains of free curves of these types. Let c be the maximal degree
of the Stein factorization of the evaluation map for any family of relatively free sections of
height < MBBbound(X ) and set r = d + KX/B · C. Then by gluing C to a smoothing
of a chain of π-vertical curves of total anticanonical degree r we can get at most cQ(r)
components of M g(B),0(X ). By summing up these contributions over the finite set of families
of relatively free sections of height < MBBbound(X ), we obtain the desired bound. �

10. Geometric Manin’s Conjecture

In this section we recall the definition of the counting function in Geometric Manin’s
Conjecture and clarify its relationship to the structural theorems proved earlier.

Suppose that π : X → B is a del Pezzo fibration such that X is smooth. Recall from
Section 2 that N1(X ) is defined to be the space of real 1-cycles modulo numerical equivalence
and N1(X )Z is the lattice of integral 1-cycles. Similarly, N1(X ) is the space of R-divisors
modulo numerical equivalence and N1(X )Z is the lattice of integral Cartier divisors. Dual
to the restriction map N1(X ) → N1(Xη) we have a pushforward map N1(Xη) → N1(X ).
Henceforth we will identify N1(Xη) with this subspace of N1(X ). Note however that the
lattice N1(Xη)Z may be strictly contained in the lattice N1(Xη) ∩N1(X )Z.

10.1. Counting components. Let π : X → B be a Fano fibration. A key piece of Geo-
metric Manin’s Conjecture is a precise bound on the number of components of Sec(X/B)
representing a fixed numerical class. We expect the following principle to hold:

Principle 10.1. Any “sufficiently positive” algebraic equivalence class of sections on X is
represented by at most one family of relatively free sections.

Here “sufficiently positive” is supposed to be taken with respect to the cone Nef1(Xη) in
N1(X ). We will give a more precise formulation of this statement for del Pezzo fibrations
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below. The best evidence for Principle 10.1 comes from fibrations of the form X ×P1 where
X is a Fano variety: there are many classes of Fano variety for which the components of
Mor(P1, X) have been classified and all examples that we know of are compatible with this
principle (see Section 1.4).

In order to translate this statement to numerical equivalence, one must know how many
algebraic equivalence classes there are representing a fixed numerical class. Let X be a
smooth threefold admitting a morphism π to a curve B whose fibers are connected and
rationally connected. For any section C of π the pushforward map CH0(C) → CH0(X ) is
surjective. Thus by [Voi03, Theorem 10.17] we have H2,0(X ) = 0 so that

Br(X ) ∼= H3(X ,Z)tors.

According to the universal coefficient theorem, we can equally well think of Br(X ) as the
torsion classes of H2(X ,Z). Let Q1(X ) denote the set of algebraic equivalence classes of
curves of X . [BS83, Theorem 1] shows that algebraic and homological equivalence coincide
for curve classes on X and [Voi06, Theorem 2] proves the integral Hodge conjecture for X .
Together these show:

Theorem 10.2 ([BS83], [Voi06]). Let X be a smooth threefold admitting a morphism to a
curve B whose fibers are connected and rationally connected. Then |Br(X )| is the size of the
kernel of the quotient map q : Q1(X )→ N1(X )Z.

Thus, Principle 10.1 can be interpreted as follows:

Conjecture 10.3. Let π : X → B be a del Pezzo fibration with X smooth. Fix an
intersection profile λ and let Nλ denote the affine subset of N1(X ) consisting of curve classes
whose intersection numbers with π-vertical divisors are described by λ. Define Nefλ =
Nef1(X ) ∩ Nλ. There is some translate T of Nefλ in Nλ such that every class in TZ is
represented by exactly |Br(X )| different families of relatively free sections.

10.2. Formulating Geometric Manin’s Conjecture. Throughout this section π : X →
B denotes a del Pezzo fibration such that X is smooth and −KX/B is relatively ample. For
simplicity, we will assume that the general fibers are not isomorphic to P2 or P1 × P1. (In
these two cases one must adjust the counting function slightly to reflect the fact that the
general fiber does not contain any curve class with anticanonical degree 1.)

The most general version of Geometric Manin’s Conjecture is formulated using the Fujita
invariant to construct the exceptional set as in [LST18]. For del Pezzo fibrations, the general
construction of the exceptional set in [LST18] has the following simple description.

Definition 10.4 ([LT19c] Theorem 9.1). We say that a component M ⊂ Sec(X/B) is an
accumulating component if either:

(1) the sections sweep out a surface Y whose intersection with a general fiber is an
anticanonical line, or

(2) ρ(Xη) = 1 and the sections sweep out a surface Y whose intersection with a general
fiber is a singular anticanonical conic.

Any component M which is not an accumulating component is called a Manin component.
We let Manini denote the set of Manin components that parametrize sections C satisfying
−KX/B · C = i.
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Remark 10.5. Definition 10.4 (2) is very restrictive. Since the condition ρ(Xη) = 1 implies
that the Picard group is generated by a multiple of −KXη the existence of an anticanonical
conic means that Xη must be a del Pezzo surface of degree ≤ 2.

Remark 10.6. The relationship between Definition 10.4 and families of non-relatively free
sections is a little subtle. We will make this connection precise in the following section.

The counting function in Geometric Manin’s Conjecture encodes the number and dimen-
sion of Manin components representing sections of height at most d.

Definition 10.7. Fix a real number q > 1. For any positive integer d define

N(X ,−KX/B, q, d) :=
d∑
i=1

∑
M∈Manini

qdimM .

Geometric Manin’s Conjecture predicts the asymptotic growth rate of this counting func-
tion as we let d go to ∞. The expected growth rate is

N(X ,−KX/B, q, d) ∼d→∞ Cqddρ(Xη)−1

for some constant C.

Remark 10.8. Given a section C of a del Pezzo fibration π : X → B, we can always

construct a relatively free section as follows. Choose a resolution φ : X̃ → X and let C̃

denote the strict transform of C. By gluing C̃ with suitably chosen free curves in the fibers

of φ◦π we can ensure that after smoothing we obtain a section T̃ through 2g(B) + 1 general

points of X̃ . By Corollary 3.7 a general deformation of the pushforward of T̃ to X will be
relatively free.

By varying the choice of curves we glue on, it is not hard to show that the resulting
relatively free sections generate a translate of a full-dimensional subcone of Nef1(Xη). In
particular, this shows that the asymptotic growth rate of N(X ,−KX/B, q, d) is bounded

below by Cqddρ(Xη)−1 for some constant C.

10.3. Upper bounds on the counting function. As in the previous section π : X → B
denotes a del Pezzo fibration such that X is smooth and −KX/B is relatively ample and (for
simplicity) we assume that the general fiber of π is not isomorphic to P2 or P1 × P1.

In order to verify Geometric Manin’s Conjecture, we first must explicitly identify the
accumulating components of Sec(X/B). We also must bound the contributions of the Manin
components to the counting function. The following claims summarize the roles of each type
of component of Sec(X/B) in Geometric Manin’s Conjecture:

(1) Most non-dominant families of sections will be accumulating components; the ones
which are not will give a negligible contribution to the asymptotic growth of the
counting function N(X ,−KX/B, q, d).

(2) Most dominant families of sections which are not relatively free will give a negligible
contribution to the asymptotic growth of N(X ,−KX/B, q, d); the ones which do not
will be accumulating components.

(3) Dominant families of sections which are generically relatively free will give a contribu-
tion to the asymptotic growth that can be computed using Movable Bend-and-Break.

We will verify these claims in the proof of the following theorem.
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Theorem 10.9. Let π : X → B be a del Pezzo fibration such that X is smooth, −KX/B is
relatively ample, and the general fiber is a del Pezzo surface that is not P2 or P1× P1. Then
there is some non-negative integer r such that

N(X ,−KX/B, q, d) = O(qddr).

Proof. Suppose we fix an intersection profile λ. The set of sections with intersection profile
λ will be contained in an affine translate N of the subspace N1(Xη). We will further restrict
our attention to a fixed coset Ξ of N1(Xη)Z inside of NZ. Since our goal is to prove an upper
bound and since there are only finitely many cosets in all the intersection profiles, it suffices
to prove an upper bound of the desired type for each coset individually.

Fix a coset Ξ and choose a translation ψ : N → N1(Xη) which identifies the coset Ξ with
the lattice N1(Xη)Z. We now analyze separately the three different types of components of
Sec(X/B) which lie in Ξ. Since we only care about the asymptotic behavior, it suffices to
restrict our attention to the families of sections with sufficiently large height.

Case 1: Consider a component M ⊂ Sec(X/B) parametrizing a non-dominant family
of sections of sufficiently large height. By Theorem 5.3 there is a finite set of surfaces Y
satisfying a(Yη,−KX/B) ≥ a(Xη,−KX/B) such that the sections parametrized by M will
sweep out one of these surfaces Y . In the case when the inequality of a-invariants is strict
the component M will be accumulating. If instead we have an equality of a-invariants, there
are two cases to consider. First, suppose that ρ(Xη) > 1. According to Proposition 9.1 the
surface Y can only contain finitely many components of relative anticanonical degree d. On
the other hand, due to the Picard rank assumption the number of components of Sec(X/B)d
will grow at least linearly. So in this case the contributions of Y to the counting function
are negligible. Second, suppose that ρ(Xη) = 1. Note that in this situation the generic fiber
Yη must be geometrically irreducible, yielding an anticanonical conic over the ground field
in Xη. Due to the restriction on the Picard rank, the only option is that Xη is a del Pezzo
surface of degree ≤ 2 and Picard rank 1 and that this conic is either:

(1) a rational curve in | −KX | if Xη has degree 2, or
(2) a rational curve in | − 2KX | if Xη has degree 1.

Note that each curve of these types is singular and thus is included in the exceptional set.
So every component of this type is an accumulating component.

Case 2: Consider the dominant families of non-relatively free sections with sufficiently
large height. Let T1, . . . , Tr denote all the families of rational anticanonical conics on Xη
which are defined over the ground field and let β1, . . . , βr ∈ N1(Xη) denote their numerical
classes (which may coincide). We claim that there is some bounded subset S ⊂ N1(Xη) such
that the ψ-image of a class α of any dominant but not relatively free family is contained in
S+mβj for some index j and some non-negative integer m. This is an immediate consequence
of Theorem 6.6 (3) which shows that any such class α is the sum of the class of a section of
bounded height with some multiple of the class of a π-vertical conic.

We are now ready to analyze the contributions of such families to the counting function.
First, suppose that ρ(Xη) > 1. As demonstrated by Corollary 9.3 there is an upper bound
R on the number of components of dominant families of sections that are not relatively free
which represent any fixed numerical class. Furthermore, Lemma 6.5 proves there is a constant
m(X/B) such that dim(M) ≤ −KX/B · C + 2 − 2g(B) + m(X/B) for all such components
M . Thus, the contribution of all the dominant non-relatively-free families contained in Ξ to
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the counting function is bounded above by

d∑
i=1

R · |S| · r · qi+s

for some constant s. Since we are assuming that ρ(Xη) > 1, this contribution to the counting
function is asymptotically negligible compared to the growth rate as in Remark 10.8. Second,
suppose that ρ(Xη) = 1. As explained in Case 1, in this situation the rational curves on
surfaces swept out by fiberwise conics must be accumulating components.

Case 3: Consider the dominant families of relatively free sections with sufficiently large
height. In order to count the contributions of such components, our plan is to translate into
a sum over lattice points in N(Xη).

We first claim there is some class β ∈ N1(Xη) such that every class α of a dominant family
of sections in our coset satisfies ψ(α) ∈ β + Nef1(Xη). Indeed, by Theorem 8.1 we see that
every dominant family of sections of sufficiently large height is numerically equivalent to a
sum of a π-vertical free rational curve and a section of bounded height. Furthermore, if
we take a π-vertical free rational curve in a general fiber F then its image under the map
N1(F )→ N1(X ) is contained in Nef1(Xη). Thus we deduce that the ψ-image of all dominant
families of sections lies in a finite union of translates of Nef1(Xη), proving the claim.

We now use ψ to translate the sum over to N1(Xη)Z. Let b be the relative anticanonical
degree of the class β and let c denote the constant which is the difference in relative anti-
canonical degrees between any numerical class in Ξ and its image under ψ. By definition
every component M of Sec(X/B) that generically parametrizes relatively free sections has
the expected dimension. Furthermore, Theorem 9.2 gives a polynomial upper bound P (d) on
the number of components representing Sec(X/B)d. Altogether we see that the contribution
of the relatively free sections to the counting function is bounded above by∑

α∈Nef1(Xη)Z
−KX/B ·α≤d−b−c

P (−KX/B · α + b+ c)q−KX/B ·α+b+c+2−2g(B).

Using standard lattice counting techniques this shows the desired result. �

If we assume Conjecture 10.3 then we can compute explicitly the contributions of relatively
free families. By summing up over all cosets as in the proof of [LT19a, Theorem 9.10], we
obtain the following:

Theorem 10.10. Let π : X → B be a del Pezzo fibration such that X is smooth, −KX/B is
relatively ample, and the general fiber is a del Pezzo surface of degree ≥ 2 that is not P2 or
P1 × P1. Assume that Conjecture 10.3 holds. Then

N(X ,−KX/B, q, d) ∼
d→∞

(
τX · α(Xη,−KX/B) · |Br(X )| · q

q − 1

)
qddρ(Xη)−1.

Here the α-constant of Xη is defined by

α(Xη,−KX/B) := dimN1(Xη) · µ(Nef1(Xη) ∩ {γ ∈ N1(Xη) | −KXη · γ ≤ 1})
where the volume is computed with respect to the lattice structure N1(Xη)Z and the τ -
constant of X is defined by

τX = |Λ| · [N1(X )Z ∩N1(Xη) : N1(Xη)Z]
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where Λ denotes the set of allowable intersection profiles for X .

11. Geometric Manin’s Conjecture for certain families

In this section we prove Geometric Manin’s Conjecture for certain special types of del
Pezzo fibrations.

11.1. Singularities of fibers. Suppose that S is a (normal) del Pezzo surface with canonical
singularities over an algebraically closed field of characteristic 0. [HW81] shows that the
minimal resolution of S is a weak del Pezzo surface.

Definition 11.1. Let S be a del Pezzo surface with canonical singularities. We say that a
line bundle L on S defines a system of lines if it satisfies −KS · L = 3 and L2 = 1.

The terminology is motivated by the following description of such L.

Lemma 11.2. Let S be a del Pezzo surface with canonical singularities and let L define a
system of lines on S. Then L is the pullback of O(1) under a birational morphism to P2.

Proof. Let φ : S ′ → S be a minimal resolution so that S ′ is a weak del Pezzo surface. We
have h0(S, L) = h0(S ′, φ∗L) = 3 by Riemann-Roch. By [ADHL15, Proposition 5.2.2.4] we
see that |φ∗L| is basepoint free. Thus the linear series defines a morphism to P2 and since
L2 = 1 this morphism must be birational. We claim that |L| is also basepoint free. Indeed,
let s be any point in S and let s′ denote a preimage in S ′. We can find an irreducible rational
curve in |φ∗L| that avoids s′. This divisor has vanishing intersection with every (−2)-curve,
so it cannot intersect any such curve. Thus this divisor avoids the entire fiber over s. In this
way we see that L defines a birational morphism to P2. �

Corollary 11.3. Let S be a del Pezzo surface with canonical singularities and let L denote
a system of lines on S. Fix a general point s and let |L|s ⊂ |L| denote the sublinear series of
divisors through s. Then the general member of |L|s is a smooth rational curve which avoids
Sing(S). Any divisor parametrized by |L|s which avoids Sing(S) will be one of the following:

(1) a smooth anticanonical cubic,
(2) a (−1)-curve and a smooth anticanonical conic meeting transversally, or
(3) a chain of three (−1)-curves meeting transversally.

Proof. The first statement follows from the fact that |L| defines a birational morphism ψ :
S → P2. We still must classify the possible types of divisors D ∈ |L|s which avoid Sing(S).
Note that every component will be a (−1)-curve, an anticanonical conic, or an anticanonical
cubic. Since D avoids Sing(S), the image of D in P2 is a line such that there are at most 2
ψ-exceptional centers along D. The three cases in the theorem occur when D meets 0, 1, or
2 of these points. �

11.2. Global systems of lines. We now globalize our discussion from the previous section.

Definition 11.4. Let π : X → B be a del Pezzo fibration. We say that π admits a global
system of lines if:

(1) Every fiber of π is a normal del Pezzo surface with canonical singularities.
(2) There is a line bundle L on X such that for every fiber F of π the restriction L|F is

a system of lines.
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[Ish82] constructs a coarse moduli space parametrizing families of smooth del Pezzo sur-
faces which admit a global system of lines. By [Ish82, Theorem 3] this space can be com-
pactified by allowing the surfaces to acquire A1-singularities on the boundary. Thus there
are many del Pezzo fibrations satisfying the conditions of Definition 11.4.

Suppose that π : X → B is a del Pezzo fibration such that every fiber is a del Pezzo
surface with canonical singularities. If X admits a line bundle L as in Definition 11.4 (2)
then the restriction L|Xη defines a system of lines on the generic fiber that is defined over
the ground field. Conversely, suppose that Xη admits a birational morphism over k(B) to
projective space. By taking the closure of an element of this linear system in X , we obtain
a Weil divisor D on X whose restriction to a general fiber is a system of lines. This is not
quite enough to verify Definition 11.4, since D might not be Cartier. If X is Q-factorial, then
since it is terminal Gorenstein [Kaw88, Lemma 5.1] implies every divisor on X is Cartier. In
summary:

Lemma 11.5. Let π : X → B be a del Pezzo fibration such that every fiber is a del Pezzo
surface with canonical singularities. Suppose that X is Q-factorial and that Xη admits a
birational morphism to P2

k(B) over k(B). Then π admits a global system of lines.

The key idea in this section is the following. Suppose that C1, C2 are numerically equivalent
sections on X . We would like to show that after adding some π-vertical free curves to C1

and C2 we can obtain stable maps which lie in the same component of M g(B),0(X ). Our
strategy is to first find a well-behaved surface Y containing C1 and C2 and then to construct
the desired stable maps inside of Y .

The first step is to identify this well-behaved surface Y .

Proposition 11.6. Let π : X → B be a del Pezzo fibration which admits a global system
of lines L. Suppose that M1,M2 are components of Sec(X/B) which generically parametrize
relatively free sections which contain ≥ 2g(B) + 1 general points of X . Then for general
sections C1 parametrized by M1 and C2 parametrized by M2 there is a surface Y ⊂ X
satisfying the following properties.

(1) Y contains C1 and C2.
(2) Y is contained in the smooth locus of X and its intersection with any fiber F is

contained in the smooth locus of F .
(3) The restriction of Y to any fiber F of π is a member of a system of lines on F .

Proof. Let Z denote the union of the singular loci of all singular fibers of π (so in particular
Z contains the singular locus of X ). Note that Z has codimension 3 in X . Thus by Lemma
3.10 general choices of C1 and C2 will avoid Z.

Suppose we fix a singular fiber F0 and fix a general section C2. In particular by Lemma
3.10 we may ensure that there are only finitely many divisors in the system of lines |L|F0|
which contain F0 ∩ C2 and meet Z. As we take the union of these divisors as we vary over
all fibers F0, we obtain a codimension 2 subset W of X . In particular, a general C1 will not
intersect W .

Consider the rational points on Xη corresponding to the general C1, C2 as described in
the previous paragraph. There is a unique line in Xη in the system of lines L|Xη which
contains these two points, and this line will be defined over the ground field. Let Y denote
the corresponding surface in X . Then the restriction of Y to any fiber F will be the unique
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element in the system of lines L|F connecting these two points. In particular this Y satisfies
all the desired properties. �

The next lemma enables us to “connect” two sections of a fibration π : Y → B of relative
dimension 1.

Lemma 11.7. Let Y be a smooth projective surface equipped with a morphism π : Y → B
whose general fiber is P1. Suppose that C1 and C2 are two sections of π. Then there are
stable maps f1 : Z1 → Y and f2 : Z2 → Y such that:

(1) Both Z1 and Z2 consist of one genus g(B) curve attached to trees of rational curves.
(2) The map fi maps the genus g(B) curve in Zi isomorphically to Ci and the trees of

rational curves to π-vertical curves.
(3) Fix any point b ∈ B and let Z1,b denote the part of Z1 whose support maps to the fiber

Fb over b. If Fb is reducible then f1∗Z1,b < Fb. We also have the analogous statement
for f2.

(4) f1 and f2 lie in the same component of M g(B),0(Y ).

Proof. Choose any birational contraction ρ : Y → F where F is a ruled surface. There are
π-vertical effective curves T1, T2 such that ρ∗ρ∗C1 = C1 + T1 and ρ∗ρ∗C2 = C2 + T2. An easy
induction on the relative Picard rank of ρ shows that T1 is supported on reducible fibers
and that the component of T1 supported on any fiber is less effective than that fiber. An
analogous statement holds for T2.

If we add on sufficiently many general fibers to ρ∗C1 and ρ∗C2 we can guarantee that
the resulting curves are contained in the closure of the same component of Sec(F/B) (see
Proposition 4.9). Note that a general section in this component will miss the ρ-exceptional
centers, so that the strict transform will be the same as the pullback. Thus we see that ρ∗ρ∗C1

and ρ∗ρ∗C2 are algebraically equivalent and both lie in the closure of a single component of
Sec(Y/B). By construction the portion of these 1-cycles supported on any reducible fiber Fb
is less effective than the entire fiber.

Recall that Sec(Y/B) admits an embedding into M g(B),0(Y ). By taking limits as the image
curve approaches ρ∗ρ∗C1 and ρ∗ρ∗C2, we obtain stable maps f1 : Z1 → Y and f2 : Z2 → Y
whose corresponding cycles are ρ∗ρ∗C1 and ρ∗ρ∗C2. These stable maps satisfy all the desired
properties. �

Finally, we prove that we can “connect” two sections in a del Pezzo fibration with a global
system of lines.

Lemma 11.8. Let π : X → B be a del Pezzo fibration that admits a global system of
lines. Let M1,M2 be components of Sec(X/B) which generically parametrize relatively free
sections which can contain ≥ 2g(B) + 1 general points of X . Let C1, C2 be general sections
parametrized by M1,M2 respectively. There are stable maps f1 : Z1 → X and f2 : Z2 → X
such that

(1) the image of f1 and the image of f2 do not intersect the singular locus of X or the
singular locus of any fiber F ,

(2) both f1 and f2 are smooth points of M g(B),0(X ),
(3) the domain of f1 is a comb which maps the handle to C1 and the teeth to π-vertical

free curves, and similarly for f2, and
(4) f1 and f2 lie in the same component of M g(B),0(X ).
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Proof. Using Proposition 11.6 we obtain a surface Y containing both C1 and C2. Note that
Y is contained in smooth locus of X and does not intersect the singular locus of any fiber of
π. Furthermore, the restriction of Y to any fiber yields a system of lines. Let Y ′ denote a
minimal resolution of Y . By Corollary 11.3 the singular fibers of the map Y → B consist of a
chain of two or three rational curves meeting transversally. Thus Y has only An singularities.
This means that every fiber of Y ′ → B is a chain of rational curves. Furthermore, the two
curves on the end of this chain are not contracted by the birational map to Y .

Apply Lemma 11.7 to the strict transforms of C1 and C2 on Y ′ to find stable maps f ′1
and f ′2 and let f̃1, f̃2 be the corresponding stable maps to X . We claim that f̃1 and f̃2

represent smooth points of M g(B),0(X ). Indeed, by combining Lemma 11.7 (3) with the
explicit description of the fibers of Y ′ → B as chains of rational curves we see that the

part of the image of f̃1 supported on any fiber of Y → B is less effective than the fiber

itself, and the same is true of f̃2. The classification of Corollary 11.3 yields the following

possibilities for the vertical components of f̃1, f̃2 contained in a fiber: a smooth anticanonical
cubic, a smooth anticanonical conic, a (−1)-curve, or a union of two (−1)-curves meeting
transversally. Furthermore, since the locus of intersection points of (−1)-curves in fibers has
codimension 2 in X a general section in our families will avoid it. Thus in each of these

cases f̃1, f̃2 are local immersions near the neighborhood of any node and [GHS03, Lemma
2.6] applies to show the smoothness of the stable map.

The last step is to improve the properties of f̃1 and f̃2. Consider the part of the image of

f̃1 that is supported in a given fiber F0. We know that it is contained in the smooth locus
of F0. In fact, since F0 admits a system of lines there are many very free curves contained
in the smooth locus of F0. By successively gluing on general very free curves in the smooth

locus of F0 to the various components of f̃1, we obtain another stable map f̂1 such that the
components in F0 can be smoothed to a free curve while keeping the intersection point with
the section fixed (see [Kol96, II.7.9 Theorem]). We simultaneously glue members of these

families of vertical free curves to general points of f̃2 to get f̂2. Since the original stable
maps were smooth points of M g(B),0(X ) which lie in the same component, we can ensure

that f̂1 and f̂2 will again be smooth points of M g(B),0(X ) which lie in the same component.

We then replace f̃2 by f̂2 and f̃1 by a deformation of f̂1 which smooths the part supported
in F0. Repeating this process several times we obtain the desired statement. �

11.3. Geometric Manin’s Conjecture for del Pezzo fibrations with global systems
of lines. Let π : X → B be a del Pezzo fibration. We start by discussing a monoid action
on the set of relatively free sections which comes from Movable Bend-and-Break.

Fix a general fiber F of π and let R denote the set of components of M0,0(F ) which
generically parametrize birational maps onto free rational curves. If F is a del Pezzo surface
of degree ≥ 2 then [Tes09, Theorem 5.1] combined with [LT19a, Lemma 2.13] shows that
every class in Nef1(F )Z is represented by at most one element of R. Furthermore, two
free curves on F are guaranteed to intersect unless they are both fibers of the same map
to P1. With this one exception, if we choose two components of R then by gluing and
smoothing general curves in this component we obtain a unique component of R. To handle
the exception, for each family R of anticanonical conics with square 0 and for each integer
k ≥ 2 we formally add the element kR to R – conceptually, we think of these classes as
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“gluing curves from R k times”. With this addition and by formally adding in a 0 class
which acts trivially the gluing operation gives R the structure of a commutative monoid.

LetM denote the set of components of Sec(X/B) which generically parametrize relatively
free sections with height ≥ MBBbound(X ) + 2. By Theorem 8.6 the universal map over any
component of M has connected fibers. Thus if we choose any component in M and any
component of R then by gluing and smoothing we obtain a unique new component of M.
Furthermore by [LT19b, Lemma 5.11] if we perform this operation twice with two different
families in R then the resulting component does not depend on which order we glue. In this
way M is given the structure of an R-module.

Lemma 11.9. There are finitely many components M1, . . . ,Ms ∈ M such that every com-
ponent of M can be obtained by gluing π-vertical free curves to some Mi and smoothing.

Proof. Let M be any component of M. By Corollary 8.5 the closure of M in M g(B),0(X )
contains a point representing the union of a relatively free section with a π-vertical curve
of anticanonical degree 2 or 3. By repeatedly breaking off such components, we see that we
may define the Mi to be the finite set of components ofM which have anticanonical degree
at least MBBbound(X ) + 2 and no more than MBBbound(X ) + 5. �

It will be useful to reinterpret this lemma using the monoid action. Let S denote the
disjoint union of s copies of R. Define the map ξ : S → M which sends a component R in
the jth copy of R to R ·Mj. Then the lemma shows that this map is surjective.

We are now prepared to prove Geometric Manin’s Conjecture for certain types of families.
Suppose that π : X → B is a del Pezzo fibration which admits a global system of lines. Then
the relative Picard rank of π is ρ(Xη). As in the discussion after Definition 10.7 there is a
translate of N1(Xη) ⊂ N1(X ) which contains all the classes of sections of π; we denote this
translate by NF .

Theorem 11.10. Let π : X → B be a del Pezzo fibration such that:

(1) Xη is a del Pezzo surface of degree ≥ 2 such that ρ(Xη) coincides with the geometric
Picard rank of Xη, and

(2) π admits a global system of lines.

There is a numerical class α ∈ NF such that for any numerical class β ∈ α+ Nef1(Xη) there
is exactly one component of Sec(X/B) which both represents β and generically parametrizes
relatively free sections.

Combined with Lemma 11.5 this proves Theorem 1.15.

Proof. Let i : F → X denote the inclusion of a general fiber. By our assumption on the
monodromy action we see that X has Picard rank ρ(F ) + 1. Thus as demonstrated earlier
every class in Nef1(Xη) ⊂ N1(X ) is represented by a unique family of free rational curves.
In particular, by gluing such curves onto a relatively free section and smoothing we obtain
the existence of components of Sec(X/B) representing numerical classes in a translation of
Nef1(Xη), and it only remains to prove the uniqueness.

LetM denote the set of components of Sec(X/B) which generically parametrize relatively
free sections with height ≥ MBBbound(X ) + 2. Consider the map µ :M→ N1(X )Z which
sends a component to its numerical class. We would like to show that for some class α as in
the statement of the theorem the fibers of µ over α + Nef1(Xη) are singletons.
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Let M1, . . . ,Ms be a finite set of components in M as in Lemma 11.9 and let S denote
the corresponding R-module as defined above. We have a surjective map ξ : S → M. Our
strategy for understanding the fibers of µ is to study the fibers of ξ and µ ◦ ξ and to prove
that they are often the same.

The first step is to better understand the fibers of ξ. Suppose we fix our attention on the
ith copy of R in S, so that the restriction of ξ sends R 7→ R ·Mi. Recall that there is a
unique component of R representing any class of Nef1(F ). Thus, the restrictions of both ξ
and µ ◦ ξ to this subset of S are injective. Since S consists of s copies of R, we deduce that
the fibers of ξ and of µ ◦ ξ have size at most s.

We will use the following claim to show that these fibers often are as large as possible.

Claim 11.11. Suppose that M,M ′ ∈M. Then there are elements R,R′ ∈ R such that

R ·M = R′ ·M ′.

Proof of claim: First, by adding on suitable elements of R and smoothing we may assume
that M,M ′ generically parametrize relatively free curves which can go through ≥ 2g(B) + 1
general points of X . (Note that if we prove our statement for these new components, the
claim for the original components follows.) We then apply Lemma 11.8, which immediately
implies the desired claim. �

We now apply the claim to all possible pairs of elements from M1, . . . ,Ms. In this way we
obtain R1, . . . , Rs in R such that

R1 ·M1 = R2 ·M2 = . . . = Rs ·Ms.

Let M ′ be this common family in M and let α be its numerical class. Then for any R ∈ R
the fiber of ξ over R ·M ′ is as large as possible: it contains s elements, one in each component
of S. (Precisely, the ith copy of R in S contributes the element R · Ri to this fiber.) This
of course means that the fibers of µ ◦ ξ over α+R also have the maximal size s. These two
statements together show that for any R ∈ R the map µ is injective over the class α + R.
Since the numerical class map from R to Nef1(F )Z is surjective, we have proved the desired
statement. �
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