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12.1 Čech cohomology for sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . 448
12.2 Čech cohomology for quasicoherent sheaves . . . . . . . . . . . . . . . . . . 456
12.3 Cohomology of sheaves on projective space . . . . . . . . . . . . . . . . . . 460
12.4 Cohomology and ample line bundles . . . . . . . . . . . . . . . . . . . . . . 465
12.5 Cohomology of line bundles on curves . . . . . . . . . . . . . . . . . . . . . 469
12.6 Ample line bundles on curves . . . . . . . . . . . . . . . . . . . . . . . . . . 475
12.7 Hilbert polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

13 Derived functors 483
13.1 Injective and projective sheaves . . . . . . . . . . . . . . . . . . . . . . . . . 488
13.2 Global sections functor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
13.3 Higher direct images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
13.4 Cohomology and base change I . . . . . . . . . . . . . . . . . . . . . . . . . 503
13.5 Cohomology and base change II . . . . . . . . . . . . . . . . . . . . . . . . . 507
13.6 Theorem on formal functions . . . . . . . . . . . . . . . . . . . . . . . . . . 513
13.7 Ext functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
13.8 Vector bundles on curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
13.9 Serre duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528



CONTENTS 7

References

I have drawn from/plagarized many sources while writing these course notes; my approach
has been heavily influenced by [Vak17] and [Gat20]. I used [Har95] as a reference for
Chapter III and Chapter VI, [Vak17] for Chapters IV and V, [EO20] for Section 19, [Gat20]
for Sections 24 and 35, and [GW10] for Section 33. I have taken exercises from all of these
references and also Fulton, Hartshorne.



8 CONTENTS



Part I

Schemes over a field

9





Chapter 1

Affine schemes

Our construction of schemes is inspired by the theory of manifolds. A manifold M is a
topological space equipped with an open covering by charts which are isomorphic to open
sets in a vector space. We can obtain different types of manifolds by allowing different
types of “structural functions” on M : continuous, smooth, holomorphic, etc.

In this chapter we will construct affine schemes, the “charts” in the theory of algebraic
geometry. In our setting the “structural functions” will be polynomial functions. There
are a couple distinctive features of the algebro-geometric approach:

(1) Typically one constructs a manifold by first identifying the underlying set and then
imposing a set of functions upon it. In algebraic geometry we view functions as the
foundational objects: we use the ring of functions to construct a set and a topology.
Sections 1-7 are dedicated to this construction.

(2) Any open subset of a manifold is also a manifold in an obvious way. In contrast, an
open subset of an affine scheme need not be an affine scheme. In Sections 8-12 we
analyze how to put open subsets on an equal footing with affine schemes.

Algebraic sets

Let’s briefly review the classical theory of algebraic sets. Fix a field K and consider the
vector space Kn. If we let x1, . . . , xn denote the coordinate functions on Kn, then the
polynomial ring K[x1, . . . , xn] is the set of algebraic functions on Kn. An algebraic set in
Kn is a subset of Kn defined by polynomial equations.

Unfortunately this notion has some serious flaws. The main issue is that an algebraic
set can fail to encapsulate the richness of the equations we used to define it. For example,
suppose we are working in R2. The locus defined by the equation x2 + y2 = 0 is simply a
point, while the equation x2 + y2 + 1 = 0 defines the empty set. In particular there is no
way to recover the defining equation from the set. In this chapter we will to correct these
inadequacies.

11



12 CHAPTER 1. AFFINE SCHEMES

In classical algebraic geometry, a morphism between two algebraic sets X,Y is defined
as follows. First one identifies vector spaces Kn and Km containing X and Y respectively.
A polynomial function from Kn to Km is any map given in coordinates by

(f1(x1, . . . , xn), . . . , fm(x1, . . . , xn))

where each fi is a polynomial function on Kn. A morphism f : X → Y is the restriction of
any polynomial function Kn → Km such that the image of X is contained in Y . Just as we
need to replace algebraic sets with a different construction, we will also need a new notion
of a morphism. Our notion will have the advantage of being “intrinsic”, i.e. independent
of a choice of embedding.

Primer on K-algebras

Throughout the text K will denote a field. A K-algebra is a unital commutative ring R
such that there is a non-zero homomorphism from K into the center of R. We also formally
include the 0-ring in our set of K-algebras. A K-algebra homomorphism is a unital ring
homomorphism that is also a morphism of K-vector spaces. Note that any K-algebra R
admits a unique K-algebra homomorphism K → R which (by necessity) sends the unit in
K to the unit in R.

A finitely generated K-algebra is the same thing as a quotient of a polynomial ring
K[x1, . . . , xn] by an ideal. Every finitely generated K-algebra R will be a Noetherian ring.
This implies that every ideal I ⊂ R admits a finite set of associated primes. (In particular,
each ideal I admits a finite set of minimal primes lying over I.)

An important property of finitely generated K-algebras that is not shared by every
Noetherian ring is that they are Jacobson rings: for any ideal I the radical

√
I is the

intersection of the maximal ideals containing I.
A finitely generated K-algebra R will be an Artinian ring when any of the following

equivalent criteria are satisfied:

(1) R has only finitely many maximal ideals.

(2) Every prime ideal in R is a maximal ideal.

(3) R is a product of finitely many local rings Ri (each of which is a finitely generated
K-algebra).
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1.1 Affine space

As discussed in the introduction, the classical notion of an “algebraic set” should be re-
placed by a different construction. Our first task will be to revisit the vector space Kn from
this new perspective. In accordance with this philosophy that “function rings are the basic
objects,” we start by reinterpreting points in the vector space Kn from the perspective of
functions.

Let ~a = (a1, . . . , an) ∈ Kn be a point. Given any function

f ∈ K[x1, . . . , xn]

we can evaluate f at ~a by taking the image of f under the map K[x1, . . . , xn] → K that
sends xi 7→ ai. In other words, evaluation at ~a corresponds to quotienting K[x1, . . . , xn] by
the maximal ideal (x1 − a1, . . . , xn − an) consisting of polynomials which vanish at ~a.

Conversely, suppose that m is a maximal ideal of K[x1, . . . , xn] such that the quotient
K[x1, . . . , xn]/m is isomorphic to K. Then we claim that m is the ideal of functions which
vanish at some point of Kn. Indeed, if we let ai ∈ K be the image of xi under this quotient
map then xi − ai ∈ m for i = 1, . . . , n. Since m is a maximal ideal, it must coincide with
(x1 − a1, . . . , xn − an). Altogether we see that there is a bijection

Points in Kn ↔ Maximal ideals m ⊂ K[x1, . . . , xn]
such that K[x1, . . . , xn]/m ∼= K

From the ring-theoretic viewpoint, there is no special reason to single out the maximal
ideals in K[x1, . . . , xn] whose quotient is K. Our first construction will enrich the bijection
above to include all maximal ideals.

Definition 1.1.1. Let K be a field. We define affine space AnK to be the set of maximal
ideals in K[x1, . . . , xn]. (We will often suppress the field K in the notation when it is
understood.)

The points of AnK come in two types: the “traditional” points m such that R/m ∼= K, and
the “non-traditional points” m such that R/m 6∼= K. The traditional points are in bijection
with the points of Kn and we will frequently pass back and forth between the algebraic
notation (x1 − a1, . . . , xn − an) and the geometric notation (a1, . . . , an) for these points.
We can derive some intuition for non-traditional points using Hilbert’s Nullstellensatz.

Theorem 1.1.2 (Hilbert’s Nullstellensatz). Let R be a finitely generated K-algebra and
let m be a maximal ideal in R. Then the quotient R/m is a finite field extension of K.

Suppose we are given a point m ∈ AnK. Then we can “evaluate” any function f ∈
K[x1, . . . , xn] at m by taking the image of f in the quotient K[x1, . . . , xn]/m. While eval-
uation at m doesn’t take values in K, perhaps we can agree that taking values in a finite
extension is good enough!

The field K[x1, . . . , xn]/m is called the residue field of m. For example, the points of
AnK which have residue field K are what we have been calling “traditional points.”
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Example 1.1.3. In this example we describe the points of A1
K for various fields K. Recall

that for any field K the ring K[x] is a PID. Thus there is a bijection between the maximal
ideals of K[x] and the monic irreducible polynomials in K[x].

(1) The only irreducible polynomials in C[x] are linear. Thus every point of A1
C is a

traditional point; A1
C can be identified with C via the correspondence (x− a)↔ a.

(2) The irreducible polynomials in R[x] are either linear or quadratic with negative dis-
criminant. Thus A1

R has two types of points: traditional points of the form (x − a)
and non-traditional points of the form (x2 + bx+ c) where b2 − 4c < 0.

(3) The number of monic irreducible polynomials in Fq[x] of degree n can be counted
using the inclusion-exclusion principle: there are 1

n

∑
d|n µ(n/d)qd of them. This is

the number of points of A1
Fq which have residue field Fqn .

(4) The set of monic irreducible polynomials in Q[x] is incredibly complicated; it encodes
the entire richness of Galois theory! Suppose that L is a Galois extension of Q. Then
each point of A2

Q with residue field L defines a surjection Q[x] → L. Furthermore
two surjections f, g : Q[x]→ L have the same kernel if and only if the elements f(x)
and g(x) in L have the same minimal polynomial, or equivalently, lie in the same
Gal(L/Q)-orbit. Thus for any Galois extension the points of A1

Q with residue field L
are in bijection with Galois orbits of primitive elements in L.

1.1.1 Vanishing loci

As mentioned in the introduction, a classical algebraic set is a subset of Kn defined by
polynomial equations. It is traditional to put all the terms of the equation on one side so
that each of our equations has the form f = 0. The resulting subset of Kn is known as the
vanishing locus of the set of polynomials {f}.

In our setting, the analogous construction is as follows:

Definition 1.1.4. Let J ⊂ K[x1, . . . , xn] be a set of polynomials. The vanishing locus of
J is

V (J) := {m ∈ AnK |m ⊃ J}.

Exercise 1.1.5. Show that if J is any set of polynomials and I is the ideal generated by J
then V (J) = V (I). Thus we may (and henceforth will) assume that the set J is an ideal.

The following exercise describes why this construction deserves the appellation “van-
ishing locus”.

Exercise 1.1.6. Let I ⊂ K[x1, . . . , xn] be an ideal. Construct a bijection between V (I)
and the set of points m ∈ AnK such that every function in I evaluates to 0 at m.
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It is important to note that different ideals can have the same vanishing set. More
precisely:

Proposition 1.1.7. Let I and J be two ideals in K[x1, . . . , xn]. Then V (I) = V (J) if and
only if

√
I =
√
J .

Proof. In a Jacobson ring the radical of an ideal I is the same as the intersection of the
maximal ideals which contain I. Thus the information encoded by V (I) is the same as the
information encoded by

√
I.

This is the first instance where we see the value of working with non-traditional points.
If we did not include non-traditional points, then the forward implication of Proposition
1.1.7 would fail.

Exercise 1.1.8. Give an example of a non-algebraically closed field K and two ideals
I, J ⊂ K[x1, . . . , xn] such that V (I) ∩Kn = V (J) ∩Kn but

√
I 6=
√
J .

A key property of V is that it is “inclusion reversing”: large ideals in K[x1, . . . , xn] are
identified with small subsets of AnK and vice versa.

Exercise 1.1.9. (1) Prove that if I and J are ideals in K[x1, . . . , xn] satisfying I ⊂ J
then V (I) ⊃ V (J).

(2) Prove that if I and J are ideals in K[x1, . . . , xn] such that V (I) ⊂ V (J) then
√
I ⊃√

J .

1.1.2 Base change

When K is not algebraically closed the non-traditional points of AnK can look quite com-
plicated. How do mathematicians think of these points in practice? Suppose that K ⊂ L
is a Galois field extension. Then Gal(L/K) admits an action on L[x1, . . . , xn] by acting on
the coefficients. Every point of AnK corresponds to a Gal(L/K)-orbit of points of AnL via
the prescription

m ∈ AnK ↔ V (m) ∈ AnL
where we think of m as an ideal in L[x1, . . . , xn] via the inclusion K[x1, . . . , xn] ⊂ L[x1, . . . , xn].
In particular points on AnK are the same as Gal(K/K)-orbits of traditional points on AnK.

Example 1.1.10. Let’s try to understand the points of A2
R. Using base change, we can

think of points of A2
R as orbits of points of A2

C under the conjugation action.
Concretely, this means the following. Suppose that m ∈ A2

R is a non-traditional point.
Consider the corresponding conjugate pair of points in A2

C. The line between them will
be invariant under conjugation, giving us a linear equation ` with real coefficients that
vanishes along both points. Then the maximal ideal m ∈ A2

R will have the form (`, q)
where q is a quadratic whose restriction to the line V (`) has negative discriminant.
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For example, suppose that m ∈ A2
R corresponds to the Galois orbit of the point (x −

i, y − i) ∈ A2
C. How can we identify m explicitly? In algebraic terms, we are looking for

the preimage of (x − i, y − i) under the inclusion R[x, y] → C[x, y]. Equivalently, since
the conjugate point is (x+ i, y + i) we would like to find R-generators for the intersection
(x − i, y − i) ∩ (x + i, y + i) ⊂ C[x, y]. Since the two maximal ideals are coprime, their
intersection is the same as their product:

(x2 + 1, xy + ix− iy + 1, xy − ix+ iy + 1, y2 + 1).

Taking the difference of the two middle terms we find the R-generators (x − y, x2 + 1).
Note that (x− y) is the equation of the line containing the pair of points (i, i) and (−i,−i)
in C2.

1.1.3 Exercises

Exercise 1.1.11. Let m ∈ A2
Q be a point whose residue field L is Galois over Q of degree

n. Assume that every point in the corresponding Galois orbit of points in A2
L lies on the

same line. Show that m is generated by one linear equation and one irreducible degree n
equation. (In particular this applies to every m ∈ A2 whose residue field has degree 2 over
Q.)

Exercise 1.1.12. Let ξ7 denote a primitive 7th root of unity and let σ = ξ7 + ξ−1
7 . The

minimal polynomial of σ is x3 + x2 − 2x − 1. Q(σ) is a degree 3 Galois extension of Q
and the Galois action sends σ 7→ (σ2 − 2) 7→ (−σ2 − σ + 1). Compute the point m ∈ A2

Q
corresponding to:

(1) The Galois orbit of (x− σ, y − σ) in A2
Q(σ).

(2) The Galois orbit of (x− σ, y − σ2 + 2) in A2
Q(σ).

Exercise 1.1.13. How many points of A2
Fq have residue field Fqn?

Exercise 1.1.14. Suppose that K is an infinite field. Prove that if X ⊂ AnK is an closed
subset that contains every traditional point then X = AnK. In contrast, for the finite field
Fq identify a proper closed subset of AnFq that contains every traditional point.

Exercise 1.1.15. Which ideal defines the union of the three coordinate axes in A3?

Exercise 1.1.16. The best way to visualize a closed subset of A2 or A3 defined by poly-
nomials with integer coefficients is usually to sketch the points in R2 or R3 points where
these polynomials vanish. (Of course, such sketches must be taken with a grain of salt.)
Quickly sketch the following curves:

(1) y2 = x3 − x (an elliptic curve).
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(2) y2 = x3 + x2 (a nodal cubic).

(3) y2 = x3 (a cuspidal cubic).

Which points of the curve look different than the others? How is this reflected in the
algebra of the defining equation?
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1.2 Spectrum of a ring

Suppose R is a finitely generated K-algebra. We would like to construct a geometric set
associated to R. Our discussion from last lecture suggests that we should be looking at
the maximal ideals m ⊂ R such that R/m ∼= K.

Definition 1.2.1. Let R be a finitely generated K-algebra. The max-spectrum of R is

mSpec(R) = {m ⊂ R |m is a maximal ideal }.

Just as with AnK, max-spectrums have both traditional points m such that R/m ∼= K
and non-traditional points m such that R/m 6∼= K.

If we realize R via a surjection K[x1, . . . , xn]→ R with kernel I, then as a set mSpec(R)
can be identified with the vanishing locus V (I) ⊂ AnK. Thus, set-theoretically max-
spectrums are no different from the vanishing loci we saw in the previous chapter. However,
it will be useful to have an “embedding-free” way of working with these sets.

Remark 1.2.2. You may have noticed that it somewhat artificial to work with the maximal
ideals instead of the set of all prime ideals. In this semester we will only work with Jacobson
rings, so we don’t lose any information by focusing only on maximal ideals. But in the future
when we want to expand our theory to include non-Jacobson rings it will be absolutely
essential to work with all prime ideals. The (non-max) spectrum of a ring Spec(R) is
defined to be the set of prime ideals in R.

1.2.1 Zariski topology

We will construct a topology on mSpec(R) using vanishing loci. The definition is the same
as for affine space:

Definition 1.2.3. Let R be a finitely generated K-algebra. Given any subset J ⊂ R, we
define the vanishing locus V (J) ⊂ mSpec(R) as the set of points m ∈ mSpec(R) such that
m ⊃ J . (Note that V (J) is the same as vanishing locus of the ideal 〈J〉 generated by J , so
we will usually just work with ideals.)

Vanishing loci in mSpec(R) will continue to satisfy the properties discussed in Section
1.1.1 (see Exercise 1.2.17). In this section it will be more important to understand how
set-theoretic operations on vanishing loci correspond to algebraic operations on ideals.

Proposition 1.2.4. Let R be a finitely generated K-algebra.

(1) Given two ideals I, J we have

V (I) ∪ V (J) = V (I ∩ J) = V (IJ).
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(2) Given any collection of ideals {Iα}α∈A we have

⋂
α∈A

V (Iα) = V

(∑
α∈A

Iα

)
.

Proof. (1) It is clear that V (I) ∪ V (J) ⊂ V (I ∩ J) ⊂ V (IJ) so we only need to show that
V (IJ) ⊂ V (I)∪V (J). Suppose that m is a maximal ideal containing IJ . Let {fi} be a set
of generators for I and let {gj} be a set of generators for J . Then IJ is generated by the
products {figj}. Suppose that m 6⊃ I. Then there is some fixed generator fi not contained
in m. Since for every j the product figj is in m, by primality we see that m contains all
the generators of J . We conclude that for any m ∈ V (IJ) either I ⊂ m or J ⊂ m.

(2) A maximal ideal m will contain
∑
Iα if and only if it contains each individual Iα.

The statement follows.

Note furthermore that V (0) = mSpec(R) and V (R) = ∅. We conclude:

Theorem 1.2.5. Let R be a finitely generated K-algebra. Sets of the form V (I) form the
closed sets in a topology on mSpec(R).

Definition 1.2.6. The topology on mSpec(R) defined above is called the Zariski topology.
We will denote the Zariski topology by ZarmSpec(R). Unless otherwise specified, we will
always assume it is the underlying topology for our space.

1.2.2 Examples

Let’s work out what the Zariski topology looks like in a few easy examples.

Example 1.2.7. Since K[x] is a PID, every closed subset of A1
K is the vanishing locus of

a single polynomial f . Note that the vanishing locus of a polynomial f is the finite set
of points generated by the monic irreducible factors of f . Conversely, any finite subset
of A1

K is the vanishing locus for the polynomial obtained by multiplying the generators of
the corresponding ideals. Thus the Zariski topology on A1 is the cofinite topology – the
non-trivial closed sets are exactly the finite subsets of A1.

Example 1.2.8. There are two basic types of closed subset of A2
K: points (which are the

vanishing loci of maximal ideals) and hypersurfaces (which are defined to be closed subsets
of the form V (f) for a single polynomial f). We will later see that the non-trivial closed
subsets of A2 are finite unions of sets of this type.

Example 1.2.9. Consider the ringR = K[x, y]/(y−x2). According to our earlier discussion
we can think of mSpec(R) as the locus in A2

K defined by the equation y = x2. Don’t forget
that mSpec(R) can have non-traditional points – for example, if K = R then in addition
to the traditional points (x − a, y − a2) we will have non-traditional points of the form
(x2 + bx+ c, y + bx+ c).
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In fact, there will be a bijection between points in mSpec(R) and points of A1
K since

the rings R and K[x] are isomorphic. Nevertheless it is worth practicing how to identify
the points of mSpec(R) explicitly using the identification as a parabola.

1.2.3 Functions

We will think of the ring R as the space of functions on mSpec(R). As discussed earlier,
we can “evaluate” a function f ∈ R along any point m by taking the image of f under the
quotient map R→ R/m. However, we emphasize that a function is not determined by its
evaluations! For example, let R = K[x]/(x2). Then mSpec(R) has a unique point. The
function x ∈ R evaluates to 0 at this point, but it is not the zero function in R. We will
discuss this issue in more depth in Section 1.4.

We now define the first fundamental geometric object of the course.

Definition 1.2.10. An affine K-scheme consists of a finitely generated K-algebraR equipped
with the set mSpec(R) and the Zariski topology:

(set, topology, functions) = (mSpec(R),ZarmSpec(R), R).

We call K the ground field; we will often omit it from the notation.

There is of course some redundancy in our definition of an affine scheme – one can
recover the set and the topology from the space of functions. Nevertheless it is helpful
conceptually to think of the functions as a “separate” feature of an affine scheme.

Remark 1.2.11. As discussed in Remark 1.2.2 the actual definition of a scheme involves
all the prime ideals in R, not just the maximal ideals. Nevertheless we will continue to use
this mild abuse of notation throughout the semester.

1.2.4 Exercises

Exercise 1.2.12. Let Y ⊂ mSpec(R) be any subset. Prove that the closure of Y is the
vanishing locus of the ideal I of functions which vanish at every point of Y .

Exercise 1.2.13. In contrast to traditional geometry, every open set in the Zariski topol-
ogy is quite “large.” For example, suppose that R is a finitely generated K-algebra which
is a domain.

(1) Show that any two non-empty open subsets of mSpec(R) will have non-empty inter-
section.

(2) Show that every non-empty open subset of mSpec(R) is dense.
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Exercise 1.2.14. Consider mSpec(R[x, y]/(x2 + y2 + 1)). Prove that there is a bijection
between the points of this affine scheme and the set of equivalence classes of non-constant
linear functions ` where we set `1 ∼ `2 if the two equations are the same up to rescaling.
(Hint: by comparing to Example 1.1.10 first show that a point m will contain a non-constant
linear function `. Prove that the quotient R[x, y]/(x2 + y2 + 1, `) is a field.)

Exercise 1.2.15. Let R be a finitely generated K-algebra. Show that mSpec(R) is a finite
set if and only if R is an Artinian ring. (Depending on how much you are willing to assume
from the theory of Artinian rings this exercise may be trivial.)

Exercise 1.2.16. Fix positive integers m and n. We can identify the traditional points of
Amn with the (m × n)-matrices with values in K. Prove that for any integer r there is a
closed subset Zr whose traditional points are the matrices with rank ≤ r.

Exercise 1.2.17. Let R be a finitely generated K-algebra with ideals I, J . Prove the
following statements:

(1) V (I) = V (J) if and only if
√
I =
√
J .

(2) If I ⊂ J then V (I) ⊃ V (J).

(3) If V (I) ⊂ V (J) then
√
I ⊃
√
J .
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1.3 Properties of the Zariski topology

In this chapter we begin exploring some of the oddities of the Zariski topology. You may
have noticed in the previous chapter that the Zariski topology is quite different from the
topologies we usually use in geometry. While it takes some time to adjust to the new
situation, we will soon see that it comes with many benefits.

In a typical geometric situation, the two most important properties of a topology are
the Hausdorff property and compactness. However, these properties are uninteresting for
the Zariski topology:

Exercise 1.3.1. Prove that the Zariski topology on mSpec(R) is Hausdorff if and only if
mSpec(R) is a finite set. (Hint: if R is not Artinian then it contains a prime ideal p which
is not maximal. Show that it is impossible to separate two maximal ideals containing p.)

Exercise 1.3.2. Prove that the Zariski topology on mSpec(R) is always compact.
(Algebraic geometers refer to this fact by saying that the Zariski topology on mSpec(R)

is “quasi-compact.” It is admittedly slightly perverse to introduce this entirely new nota-
tion which means exactly the same thing as the old notation. Nevertheless, the change in
notation helps emphasize that the compactness of the Zariski topology has nothing to do
with “compact geometric spaces.”)

Later on we will discuss the algebro-geometric analogues of these two important prop-
erties. For now we will focus on some new features of the Zariski topology.

1.3.1 Noetherian property

Recall that every finitely generated K-algebra is Noetherian. This translates into a topo-
logical property.

Definition 1.3.3. We say that a topological space X is Noetherian if it satisfies the DCC
for closed sets: any decreasing chain of closed subsets

Z1 ⊃ Z2 ⊃ Z3 ⊃ . . .

eventually stabilizes, i.e. there is some index N such that Zi = Zi+1 for every i ≥ N .

Exercise 1.3.4. Show that if R is a finitely generated K-algebra then mSpec(R) is a
Noetherian topological space.

The Noetherian property is frequently useful for induction arguments. Suppose you
want to prove that some property P holds for affine schemes. Assume that you can prove:

(1) If P holds for every proper closed subset of mSpec(R) then P holds for mSpec(R).

(2) (Base case:) If R is an Artinian ring then P holds for mSpec(R).

Then you can conclude that P holds for all affine schemes. The point is that the DCC
property guarantees that the inductive argument will stop after a finite sequence of steps.
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1.3.2 Irreducible sets

The following definition identifies a vital feature of the Zariski topology.

Definition 1.3.5. We say that a closed subset X of a topological space is irreducible if
it satisfies the following property. Suppose that C1, C2 ⊂ X are closed subsets such that
C1 ∪ C2 = X. Then either C1 = X or C2 = X.

For most topologies you will have worked with before this notion is not useful. (See
Exercise 1.3.18.) However, it is the most fundamental topological property when working
with the Zariski topology. Its importance is clarified by the following result.

Lemma 1.3.6. Let R be a finitely generated K-algebra. A closed subset X of mSpec(R)
is irreducible if and only if there is a prime ideal p with V (p) = X.

We emphasize that there will usually be other (non-prime) ideals whose vanishing locus
is also X. However, the lemma shows that the unique radical ideal whose vanishing locus
is X will be a prime ideal.

Proof. Since X is closed, it is the vanishing locus of some ideal I and we may suppose that
I is radical.

First suppose that I is prime. Suppose that C1, C2 are closed subsets of mSpec(R)
satisfying C1, C2 ⊂ X and X = C1∪C2. Let J1, J2 be ideals defining C1, C2. By Proposition
1.2.4 we have I ⊃ J1J2. Since I is prime we conclude that either J1 ⊂ I or J2 ⊂ I. This
means that either X ⊂ C1 or X ⊂ C2, concluding the proof.

Conversely suppose that I is not prime. Recall that any radical ideal is the intersection
of the prime ideals containing it. Since R is Noetherian there is a finite list p1, . . . , pr of
such primes. Let Ci = V (pi). Then C1 ∪ . . . ∪ Cr = X but X is not contained in any
Ci.

Example 1.3.7. We verify that the irreducible closed subsets of A2 are points and hyper-
surfaces of the form V (f) where f ∈ K[x, y] is an irreducible polynomial. This will follow
from:

Claim 1.3.8. Let f, g ∈ K[x, y] be polynomials with no common factors. Then V (f, g)
consists of a finite set of points.

Proof of claim: Since f, g have no common factors in K[x, y], they also have no common
factors in K(x)[y]. This latter ring is a PID, so there are elements u, v ∈ K(x) such that
uf + vg = 1. Clearing denominators, we find a polynomial hx ∈ K[x] such that there is
an equality u′f + v′g = hx in K[x, y]. In particular, we see that V (f, g) ⊂ V (hx). Arguing
symmetrically, we find a polynomial hy ∈ K[y] such that V (f, g) ⊂ V (hy). Finally, we
claim that V (hx)∩V (hy) is a finite set. Indeed, the quotient K[x, y]/(hx, hy) = K[x]/(hx)×
K[y]/(hy) is a product of Artinian rings and thus has only finitely many maximal ideals.
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Suppose now that Z ⊂ A2 is any irreducible closed set. If Z is the vanishing locus of a
single polynomial f , then f must be irreducible. Otherwise, the claim shows that Z must
be a finite set, hence a single point.

The key theorem governing the Zariski topology is:

Theorem 1.3.9. Let R be a finitely generated K-algebra and let X be a closed subset of
mSpec(R). Then:

(1) X is the union of a finite set {Xi}ri=1 of irreducible closed subsets Xi.

(2) The decomposition X = ∪ri=1Xi of X into irreducible closed subsets is unique (in
the sense that if we assume that for all indices i 6= j we have Xi 6⊂ Xj then the
decomposition is unique up to reordering).

We call the Xi the irreducible components of X.

This is a geometric application of the algebraic theory of primary decompositions – the
irreducible components Xi will be in bijection with the minimal prime ideals lying over
the ideal I defining X. In the exercises you will have the opportunity to give a purely
topological proof.

Proof. Let I be a radical ideal whose vanishing locus is X. From the theory of primary
decompositions we know that there is a finite set of prime ideals {pi} that are minimal
over I (that is, which contain I and are minimal amongst all such primes with respect to
inclusion). Since a radical ideal is the intersection of all the primes that contain it, we see
that ∩ipi = I. Set Xi = V (pi). We know that Xi is irreducible by Lemma 1.3.6 and we
have already shown that X = ∪iXi. Finally, the uniqueness of the Xi follows from the
uniqueness of the associated primes in the theory of primary decomposition.

Example 1.3.10. A prototypical example of Theorem 1.3.9 is the vanishing locus of the
ideal (xy) in A2. The two minimal primes over (xy) are the ideals (x) and (y). Corre-
spondingly the reducible set V (xy) is the union of two irreducible components V (x) and
V (y). This algebra is reflecting the fact that V (xy) is the union of the two coordinate axes.

1.3.3 Exercises

Exercise 1.3.11. Find the irreducible components of V (x− yz, xz − y2) in A3
C.

Exercise 1.3.12. Find the irreducible components of V (x2 + y2 − 1, x2 − z2 − 1) in A3
C.

Exercise 1.3.13. The notion of connectedness is still a well-behaved notion for affine
schemes.

Let R be a finitely generated K-algebra. Prove that the following are equivalent:
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(1) mSpec(R) is disconnected.

(2) There exist non-zero idempotents e1, e2 ∈ R such that e1e2 = 0 and e1 + e2 = 1.

(3) R is isomorphic to a direct product of K-algebras.

We can think of the idempotents e1, e2 as indicator functions for unions of connected
components of X.

Exercise 1.3.14. Prove that every connected component of mSpec(R) is a finite union of
irreducible components of mSpec(R).

Exercise 1.3.15. Let X be a Noetherian topological space. Suppose that Z is an irre-
ducible closed subset of X. Prove that there is some irreducible component Xi of X such
that Z ⊂ Xi. (Is there a unique such Xi?)

Exercise 1.3.16. Some of the properties of the Zariski topology we discussed in this
section will hold more generally for any Noetherian topological space.

(1) Verify that every Noetherian topological space is compact.

(2) Verify the analogue of Theorem 1.3.9: every closed subset can be written as a union
of irreducible closed subsets in an essentially unique way. (Hint: let W denote the
set of closed sets which cannot be written as a union of irreducible sets. Show that if
W is non-empty then it has a minimal element. Use this minimal element to derive
a contradiction.)

Exercise 1.3.17. Prove that if X is an irreducible topological space then every non-empty
open set in X is dense.

Exercise 1.3.18. Let X be a Hausdorff topological space. Prove that X is irreducible if
and only if X is a single point.

Exercise 1.3.19. Let X ⊂ C2 be a subset defined by the vanishing locus of a set of
polynomials. Prove that X is compact in the Euclidean topology if and only if it is a finite
set.

(The analogous statement is true in higher dimensions but is a bit harder to prove. As
a consequence, if we hope to formulate a good algebro-geometric analogue of the notion of
“compactness”, we should expect that this notion fails for every affine scheme that is not
a finite set. Thus we will delay introducing this analogue until we have more examples of
schemes.)
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1.4 Zero divisors

We have declared that R is the “space of functions” on mSpec(R). In this section we
discuss the zero divisors in the function ring R.

1.4.1 Nilpotents

As discussed earlier, for any point m ∈ mSpec(R) we can evaluate a function f ∈ R at m
by taking the image under the quotient map R → R/m. As we saw there, functions are
not determined by how they evaluate at points. In this subsection we give a brief account
of the functions which are “invisible” with respect to the topology.

Recall that the nilradical Nil(R) of a ring R is the radical of the 0 ideal. Since every
finitely generated K-algebra is a Jacobson ring, the nilradical coincides with the intersection
of all maximal ideals in R. This shows that:

Proposition 1.4.1. Let R be a finitely generated K-algebra and let f ∈ R. Then V (f) =
mSpec(R) if and only if f ∈ Nil(R).

In particular, two functions f, g ∈ R have the same evaluation at every point of
mSpec(R) if and only if their difference is nilpotent.

Since nilpotent functions are topologically trivial, it may be tempting to expect that
they do not play an important role in algebraic geometry. This is definitely not the case!
Even when working over an algebraically closed field we can miss out on essential informa-
tion if we insist on working merely with affine schemes which carry no nilpotent functions.

Example 1.4.2. Consider the set of ideals (x2 − a) ∈ R[x] as we vary a ∈ R. For a > 0,
we have (x2− a) = (x−

√
a)∩ (x+

√
a) so the vanishing locus consists of two points, each

with residue field R. When a = 0, we have the ideal (x2) whose vanishing locus consists of
a single point. Finally, if a < 0, the ideal (x2 − a) defines a single point with residue field
C.

Note that in all these situations the quotient R[x]/(x2−a) has dimension 2 as a R-vector
space. This reflects the fact that the ideals defining these schemes fit into a nice family
(even though the quotients look very different). In particular, the nilpotent structure of
mSpec(R[x]/(x2)) is “remembering” the fact that we constructed this scheme as a limit of
pairs of disjoint points.

While this example is relatively innocuous, the extra information recorded using nilpo-
tents will be vital in future constructions. (See Exercise 1.6.14 for a similar phenomenon
in the setting of fibers of morphisms.)

The affine schemes which carry no nilpotent functions have a special name.

Definition 1.4.3. Let R be a finitely generated K-algebra. We say that mSpec(R) is
reduced if Nil(R) = 0.
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1.4.2 Varieties

The following is one of the key definitions in the course.

Definition 1.4.4. Let R be a finitely generated K-algebra. We say that mSpec(R) is an
affine variety if R is a domain.

Recall that we have a containment of ideals

p1 p2 . . . pr

Nil(R) = ∩ipi

0

where the primes pi are the finite set of minimal primes in R. Thus R will be a domain if
and only if Nil(R) = 0 and there is a unique minimal prime in R. In other words:

Corollary 1.4.5. Let R be a finitely generated K-algebra. Then mSpec(R) is an affine
variety if and only if it is both irreducible and reduced.

1.4.3 Support

Recall that for an element f ∈ R the annihilator Ann(f) is the ideal of functions g such
that fg = 0.

Definition 1.4.6. Let R be a finitely generated K-algebra. For any f ∈ R the support of
f is the closed subset Supp(f) ⊂ mSpec(R) which is the vanishing locus of Ann(f).

Loosely speaking, the support of f describes the closed subset where f “lives” – the
function f will vanish identically on the complement of Supp(f). Note that if f is not a
zero-divisor then Supp(f) = mSpec(R), so the support is only an interesting construction
for zero divisors.

Remark 1.4.7. Be careful not to confuse the support Supp(f) and the vanishing locus
V (f). They are very different constructions! The relationship between the two is discussed
in Exercise 1.4.13 and Remark 1.11.12.

It turns out that the support is controlled by the associated primes for the zero ideal.
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Lemma 1.4.8. Let R be a finitely generated K-algebra and let p1, . . . , ps be the associated
primes for the zero ideal. For any zero divisor f ∈ R, there is some subset S ⊂ {1, . . . , s}
such that Supp(f) = ∪i∈SV (pi).

Conversely, for any associated prime pi there is some zero divisor f such that Supp(f) =
V (pi).

In the proof we will need to use the colon ideal construction. Given an ideal I and an
element f ∈ R, we define (I : f) = {g ∈ R|gf ∈ I}. For example Ann(f) = (0 : f).

Proof. Recall that an associated prime for an ideal I is a prime ideal which annihilates
some element in R/I. In particular the last statement is immediate from the definition.

To see the first statement, the theory of primary decompositions shows there are pi-
primary ideals qi such that 0 = ∩iqi. For any f ∈ R we have

Ann(f) = (0 : f) = (∩iqi : f) = ∩i(qi : f).

Thus √
Ann(f) = ∩i

√
(qi : f).

Since qi is primary, if fg ∈ qi then either f ∈ qi or g ∈ √qi. Thus (qi : f) is either R (if
f ∈ qi) or

√
qi (if f 6∈ qi). We conclude√

Ann(f) = ∩f 6∈qi
√
qi = ∩f 6∈qipi

proving the statement.

In Theorem 1.3.9 we showed that the minimal primes correspond to the irreducible com-
ponents of mSpec(R). The embedded (i.e. non-minimal) associated primes will represent
closed sets where there is “extra nilpotent structure.”

Example 1.4.9. Let R = K[x, y]/(xy). The associated primes of the zero ideal are (x)
and (y). The support of the function x is the y-axis, and the support of the function y is
the x-axis.

Example 1.4.10. Let R = K[x, y]/(xy, x2). The associated primes of the zero ideal
are (x, y) and (x). The minimal prime (x) defines the unique irreducible component of
mSpec(R); it is the support of the function y. The embedded prime (x, y) is the support
of the nilpotent function x.

As mentioned above, the complement of Supp(f) is the largest open set U ⊂ mSpec(R)
such that the restriction f |U is identically zero. (Note that being identically zero is stronger
than evaluating to zero at every point.) Unfortunately we do not yet have the tools and
language to explain this claim – we will revisit it in Lemma 1.11.11 after developing the
theory of open sets in affine schemes.
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1.4.4 Exercises

Exercise 1.4.11. Let Y ⊂ A3 be the vanishing locus of the ideal (yz, xz, y3, x2y). Compute
a primary decomposition of the ideal. Use this decomposition to identify the irreducible
components of Y and all possible supports of functions on Y .

Exercise 1.4.12. Let mSpec(R) be an affine K-scheme. For any extension L/K we define
the base change of mSpec(R) by L to be the affine L-scheme mSpec(R⊗K L).

(1) Find an example of affine K-scheme mSpec(R) which is irreducible and a finite ex-
tension L/K such that the base change of mSpec(R) by L is reducible.

(2) Find an example of affine K-scheme mSpec(R) which is reduced and a finite extension
L/K such that the base change of mSpec(R) by L is not reduced. (Hint: you will
need to use a non-perfect field K.)

On the other hand, prove that if mSpec(R⊗KL) is irreducible/reduced then so is mSpec(R)

Exercise 1.4.13. Let R be a finitely generated K-algebra and let f ∈ R. Show that the
complement of Supp(f) is contained in V (f).

Exercise 1.4.14. Let R be a finitely generated K-algebra and let f ∈ R. Prove that
m ∈ Supp(R) if and only if f is in the kernel of the localization map R→ Rm.

Exercise 1.4.15. For any element a ∈ K consider the product Ia of the ideals (x, y) and
(x− a, z). The vanishing locus of Ia is two skew lines for a 6= 0 and two intersecting lines
when a = 0. Show that Ia is a radical ideal for a 6= 0 but that I0 is not. What is the
geometric interpretation of

√
I0/I0?

Exercise 1.4.16. Here is another famous example similar in spirit to Example 1.4.2. For
any element a ∈ K consider the ideal I ⊂ K[x, y, z] defined by (a2(x+ 1)− z2, ax(x+ 1)−
yz, xz − ay, y2 − x2(x+ 1)).

(1) Show that for any value of a the vanishing locus Xa is an irreducible subset of A3.

(2) Prove that when a 6= 0 then Xa is reduced but that X0 is not reduced.

Geometrically, the Xa form a family of curves in A3. When a 6= 0 this curve is smooth
and spans all of A3. (We will later recognize these curves as twisted cubics.) However the
limit X0 is a nodal cubic contained in the plane z = 0 along with some extra nilpotent
structure. The nilpotent structure on X0 is recording the fact that we obtained it as a
“limit” of curves lying outside of the plane.



30 CHAPTER 1. AFFINE SCHEMES

1.5 Morphisms

In a typical geometry one defines a morphism f : X → Y to be a function which is contin-
uous/differentiable/holomorphic (depending upon our choice of “structural functions” in
our category). One then obtains a pullback map from the structural functions on Y to the
structural functions on X by precomposing with f . In fact, one can use this condition to
define morphisms: a morphism f is any set-theoretic function such that composition with
f preserves “structural functions.”

In this section we define morphisms of affine K-schemes. As usual, our definition will
directly refer to ring of polynomial functions. We will then obtain a continuous set-theoretic
map ex post facto.

Definition 1.5.1. Let R and S be affine K-schemes. A K-morphism from mSpec(R) to
mSpec(S) is a K-algebra homomorphism f ] : S → R.

When the ground field K is understood we will frequently drop it from the notation.

Warning 1.5.2. It is also possible to define morphisms of affine schemes without reference
to a base field. We will not attempt to carry this out since we will only work in the setting
of a fixed ground field K (with the exception of the base change operation; see Exercise
1.5.16).

Our first task is to verify that a morphism naturally defines a continuous topological
map.

Proposition 1.5.3. Let R and S be affine K-schemes. Let f ] : S → R be a K-algebra
homomorphism. Then the function f : mSpec(R)→ mSpec(S) defined by f(m) = (f ])−1m
is a continuous topological map.

Remember, f ] is supposed to define the “pullback of functions.” This is compatible
with our definition of f : the image of m should be the vanishing locus of the set of functions
whose pullbacks vanish at m.

Proof. Suppose that m is a maximal ideal in R. We first show that n := (f ])−1(m) is a
maximal ideal in S. Since m is prime, n is also prime. Consider the diagram

S
f] //

��

R

��
S/n

g // R/m

The Nullstellensatz tells us that R/m is a finite extension of K. Since g is an injection, S/n
is a finite K-module, or equivalently, an Artinian K-algebra. Finally, an Artinian K-algebra
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which is a domain is also a field. We conclude that n is a maximal ideal. This defines a
set-theoretic map f : mSpec(R)→ mSpec(S).

We also must show that f is continuous. Let Z be a closed subset of mSpec(S). Then Z
has the form Z = V (I) for some ideal I in S. The preimage of Z will consist of all maximal
ideals m of R such that (f ])−1m contains I. This is the same as the set of maximal ideals
which contain f ](I). Thus f−1(Z) = V (〈f ](I)〉) is a closed set.

Going forward we will denote a morphism from mSpec(R) to mSpec(S) by f : mSpec(R)→
mSpec(S), with the understanding that the “real” data is the ring map f ] implicit in the
notation.

It is absolutely crucial to feel comfortable translating back and forth between the “al-
gebraic” morphism f ] and the “geometric” morphism f . The following exercise is designed
to help you think through this correspondence.

Exercise 1.5.4. Set An = K[x1, . . . , xn] and Am = K[y1, . . . , ym]. We will write traditional
points using coordinates – that is, we will write (a1, . . . , an) ∈ Kn for the point (x1 −
a1, . . . , xn − an) ∈ An and similarly will write (b1, . . . , bm) ∈ Km.

Suppose we define a function f : Kn → Km via the prescription

f(a1, . . . , an) = (f1(a1, . . . , an), . . . , fm(a1, . . . , an))

where each fj is a polynomial on Kn. Show that the morphism f : An → Am defined by
the equation

f ](yj) = fj(a1, . . . , am)

will induce the set map f on traditional points.
Conversely, given a ring morphism f ] : K[y1, . . . , ym]→ K[x1, . . . , xn] describe the map

on traditional points using coordinates.

Of course the correspondence of Exercise 1.5.4 is not limited to affine space; there are
many situations where a morphism is defined by its action on traditional points (but see
Exercise 1.5.5). In such situations it is common to describe a morphism f via its action on
traditional points instead of describing the ring map f ].

Exercise 1.5.5. Show that the Frobenius morphism f : A1
Fq → A1

Fq that sends x 7→ xq

will restrict to the identity map on the set of traditional points but is not the identity as
a map of schemes.

1.5.1 Examples

Let’s work through a few important examples of morphisms of affine schemes.

Example 1.5.6. For any ideal I ⊂ R, consider the quotient map f ] : R → R/I. This
defines a morphism f : mSpec(R/I) → mSpec(R). Note that the image of f is V (I) and
in fact f is a homeomorphism from mSpec(R/I) onto its image.
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This example shows that any closed subset V (I) ⊂ mSpec(R) can naturally be given
the structure of an affine scheme by identifying it with mSpec(R/I). In fact, a closed set
admits many different scheme structures corresponding to the different choices of ideal with
the same vanishing locus. By “a closed subscheme of mSpec(R)” we will mean a closed
subset equipped with the scheme structure induced by an ideal I.

Example 1.5.7. Suppose we fix a subset I ⊂ {1, . . . , n} of size k. Consider the inclusion
K[xi]i∈I → K[xi]

n
i=1 which sends xi 7→ xi. The corresponding map of schemes is the

projection An → Ak onto the coordinates corresponding to I.

Example 1.5.8. Let R be a finitely generated K-algebra and fix an element g ∈ R. We
denote by Rg the localization of R along the set of non-negative powers of g – this is still
a finitely generated K-algebra. The localization map f ] : R → Rg defines a morphism
f : mSpec(Rg) → mSpec(R). Recall that f ] induces a bijection between the maximal
ideals of Rg and the maximal ideals of R not containing g. In other words, the image of f
is the open set in mSpec(R) which is the complement of V (g) and f is a homeomorphism
onto its image.

It is helpful to see the geometry of this map more explicitly. We will focus on a
specific example: the localization of K[x] along the element x. We can identify K[x]x ∼=
K[x, y]/(xy − 1). Note that mSpec(K[x, y]/(xy − 1)) is just the hyperbola xy = 1 in A2.
Then the map f arising from localization is the same as the restriction to the hyperbola
of the projection map A2 → A1. The image of this map is the complement of the origin in
A1.

Example 1.5.9. Let L be a finite extension of the ground field K. A L-point of mSpec(R)
is a morphism f : mSpec(L) → mSpec(R), or equivalently, a (necessarily surjective) K-
algebra homomorphism R→ L.

There is a bijection between K-points of mSpec(R) and the points with residue field K,
and we will use these two terms interchangeably from now on. However, it is important
to note that the residue field of the image of a L-point need not be L. Rather, the residue
field of the image will be a field F that satisfies K ⊂ F ⊂ L.

1.5.2 Exercises

Exercise 1.5.10. Even though a morphism f : mSpec(R) → mSpec(S) is a continuous
set-theoretic function, most continuous set-theoretic functions will fail to be morphisms.
For example, show that every bijective set-theoretic function f : A1 → A1 is continuous in
the Zariski topology.

Exercise 1.5.11. Suppose Fq is a finite field and let L/Fq be a finite extension. It is a
little easier to count L-points than it is points with residue field L. Show that AnFq has |L|n
different L-points. (Compare against Example 1.1.3 and Exercise 1.1.13.)
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Exercise 1.5.12. Show that the ring map f ] : K[x, y]/(y2−x3)→ K[t] sending x 7→ t2, y 7→
t3 induces a bijective homeomorphism of affine K-schemes that is not an isomorphism.
What is the geometric interpretation of this map?

Exercise 1.5.13. Let mSpec(R) be an affine K-scheme. The reduced scheme underlying
mSpec(R) is the closed subscheme mSpec(R)red := mSpec(R/Nil(R)).

Show that mSpec(R)red satisfies the following universal property: if mSpec(S) is any
reduced affine K-scheme, then any morphism f : mSpec(S) → mSpec(R) factors through
mSpec(R)red.

Example 1.5.14. Suppose that p is a prime number and q = pr. Let mSpec(R) be an affine
Fq-scheme. The function f ] : R→ R defined by f ](g) = gq is a Fq-algebra homomorphism,
defining a morphism f : mSpec(R) → mSpec(R) called the Frobenius morphism. Prove
that f is a homeomorphism but need not be an isomorphism.

Exercise 1.5.15. (1) Suppose that f : X → Y is a continuous function between topo-
logical spaces. Show that if X is irreducible then f(X) is also irreducible.

(2) Suppose that f : mSpec(R)→ mSpec(S) is a morphism. Show that the set-theoretic
image of any irreducible component of mSpec(R) is contained in an irreducible com-
ponent of mSpec(S). (See Exercise 1.3.15.)

Exercise 1.5.16. Let K be a field and let L/K be an extension. Suppose that mSpec(R)
is an affine K-scheme. As in Exercise 1.4.12 we define the base change of mSpec(R) by L
to be the affine L-scheme mSpec(R⊗K L).

Prove that the assignment m 7→ m ∩ R yields a well-defined continuous function
mSpec(R ⊗K L) → mSpec(R). Show that the preimage of every K-point in mSpec(R)
consists of a single L-point in mSpec(R⊗K L).

(When L/K is a finite extension then this function fits into our framework of morphisms
of affine K-schemes via the inclusion K ⊂ R⊗KL. But when L/K is an arbitrary extension
then this construction can leave the framework of finitely generated K-algebras.)

Exercise 1.5.17. A conic in A2 is the vanishing locus of a single quadratic equation. The
classification of conics up to isomorphism depends upon the ground field K.

Suppose that the ground field is C. Show that after a linear change of coordinates every
conic will be isomorphic to one of the following schemes:

(1) Parabola: y − x2 = 0.

(2) Irreducible non-parabola: x2 + y2 = 1.

(3) Intersecting lines: xy = 0.

(4) Non-intersecting lines: x(x+ 1) = 0.
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(5) Double line: x2 = 0.

Furthermore prove that no two of the conics above are isomorphic, so we have really
classified all possible types. How does the list change if we work over R instead?

We will see in Section 3.1 that if we “compactify” these conics inside of projective space
P2 then the classification becomes much simpler!
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1.6 Images and preimages

In this section we continue our discussion of morphisms by analyzing images and preimages.

1.6.1 Preimages

Suppose that f : mSpec(R)→ mSpec(S) is a morphism of affine schemes. The set of points
m ∈ mSpec(R) which map to a fixed point n ∈ mSpec(S) are exactly the maximal ideals
in R which contain f ](n). Note that this is the same as the set V (f ](n)), and thus it is
quite natural to give this set the scheme structure coming from the ideal 〈f ](n)〉. More
generally:

Definition 1.6.1. Let f : mSpec(R)→ mSpec(S) be a morphism of affine schemes defined
by f ] : S → R. Let Z be the closed subscheme of mSpec(S) defined by the vanishing of
an ideal I. We define the preimage f−1(Z) to be the vanishing locus in mSpec(R) of f ](I)
equipped with the scheme structure mSpec(R/〈f ](I)〉).

Example 1.6.2. Recall that the K-algebra homomorphism f ] : K[x] → K[x, y] sending
x 7→ x defines the projection f : A2

K → A1
K onto the x-axis. Suppose we fix a point

m ∈ A1
K corresponding to the monic irreducible polynomial g. Then f−1(m) is the vanishing

locus of f ](g). If the residue field of m is L, then the preimage is defined by the ring
K[x, y]/(f ](g)) ∼= L[y]. We conclude that the fiber over m is isomorphic to A1

L.

Note that a morphism f : mSpec(R) → mSpec(S) will be set-theoretically injective
precisely when every maximal ideal m ⊂ S satisfies the property that 〈f ](m)〉 is also a
maximal ideal. We have already seen several examples of such maps in Example 1.5.6, Ex-
ample 1.5.8, and Exercise 1.5.12. Characterizing the injective morphisms of affine schemes
is actually somewhat delicate; see Section 4.2 for a related discussion.

1.6.2 Images

We next discuss the image of a morphism f : mSpec(R)→ mSpec(S). Unfortunately now
the story is not nearly so nice. The set-theoretic image of a morphism can fail to be either
open or closed, and in particular may not admit the structure of an affine scheme.

Example 1.6.3. Consider the function f : A2 → A2 defined by the ring map f ] : K[x, y]→
K[u, v] sending x 7→ u, y 7→ uv. We claim that the set-theoretic image of f is(

A2\V (x)
)
∪ {(x, y)}.

In particular the image of f is neither open nor closed. The claim is easy to see on the
level of traditional points – the set theoretic map is just f(a, b) = (a, ab) – but for the sake
of completeness we will demonstrate the claim using algebra.
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Let’s analyze the image of a point m ⊂ K[u, v]. First suppose that m ∈ V (u), or in
other words, that m contains u. Then (f ])−1(m) contains both x and y. Since we know the
preimage is a maximal ideal the only option is that (f ])−1(m) = (x, y). In other words, the
f -image of any point in V (u) will be the origin in A2. Now suppose that m 6∈ V (u), or in
other words, that m does not contain u. Then we see that (f ])−1(m) also cannot contain
x, that is, (f ])−1(m) 6∈ V (x). Altogether we see that the only point in V (x)∩ f(A2) is the
origin (and the preimage of the origin is V (u)).

Finally we claim that f induces a bijection between the points of A2\V (u) and the
points of A2\V (x). By Example 1.5.8 these points are in bijective correspondence with
mSpec(K[u, v]u) and mSpec(K[x, y]x) respectively. But f ] induces an isomorphism of these
localized rings, implying that f does indeed induce a bijection between the two sets of
maximal ideals.

Algebraic geometers are not willing to leave the realm of schemes when discussing
images of morphisms. Thus we usually use the following convention:

Definition 1.6.4. Let f : mSpec(R) → mSpec(S) be a morphism of affine schemes. The
scheme-theoretic image of f is the smallest closed subscheme mSpec(S/I) of mSpec(S)
such that f factors through mSpec(S/I).

We must be very careful to distinguish the scheme-theoretic image from the set-theoretic
image.

Warning 1.6.5. There are instances where we follow a different convention for images.
For example, as discussed in Example 1.5.8 localization at an element induces a morphism
whose set-theoretic image is an open set and in this case it makes sense to treat this open
set as the “image.” This issue will reoccur several times throughout the notes.

The following lemma explains how to construct the scheme-theoretic image for a mor-
phism of affine schemes.

Lemma 1.6.6. Consider a morphism f : mSpec(R) → mSpec(S) defined by f ] : S → R.
The scheme-theoretic image of f is the closed subscheme mSpec(S/ ker(f ])) of mSpec(S).

In other words, the scheme-theoretic image is the geometric construction corresponding
to the algebraic operation of pullback of ideals.

Proof. Note that f ] factors as S → S/ ker(f ]) → R, and that S/ ker(f ]) is universal
amongst all factorings of f through quotients of S. This yields the desired statement.

If f : mSpec(R) → mSpec(S) is surjective then the discussion above shows that f ]

must be injective. However, injectivity of f ] is not sufficient for f to be surjective; it only
guarantees that the image of f ] is dense (see e.g. Example 1.5.8). This property is useful
enough to earn its own definition.

Definition 1.6.7. A morphism f : mSpec(R)→ mSpec(S) is dominant if the set-theoretic
image f(mSpec(R)) is dense in mSpec(S).
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1.6.3 Constructible sets

We have seen that the set-theoretic image of a morphism of affine schemes need not be
open or closed. Nevertheless, there are some topological constraints on the set-theoretic
images of morphisms. The following definition is the key.

Definition 1.6.8. Let X be a topological space. A constructible subset of X is a finite
union of locally closed subsets. (A locally closed subset is the intersection of an open subset
and a closed subset.)

Note that the set of constructible subsets is closed under the operations of taking finite
unions and taking complements. In fact, if we start with the set of all closed sets and
repeatedly apply the finite union and complement operations the result will be the set of
all constructible subsets.

Exercise 1.6.9. Let X be a topological space and let S ⊂ X be a constructible subset.
Show that S contains a dense open subset of S.

Theorem 1.6.10 (Chevalley’s theorem). Let f : mSpec(R) → mSpec(S) be a morphism
of affine schemes. The set-theoretic image of any constructible set Z in mSpec(R) will be
a constructible set in mSpec(S).

Proof. The proof is by Noetherian induction on mSpec(S). The base case – when S is an
Artinian ring – is clear. Thus we may assume that the statement holds for every proper
closed subscheme of mSpec(S).

It suffices to prove the statement when Z is a locally closed subset. By replacing
mSpec(R) by Z (equipped with its reduced structure) we may suppose that Z is an open
set in mSpec(R). We may also suppose that mSpec(R) is irreducible. If f fails to be
dominant then we can conclude the desired statement by the induction assumption applied
to f(mSpec(R)). So we may assume f is dominant. We then appeal to the most important
special case of the theorem:

Lemma 1.6.11. Let f : mSpec(R) → mSpec(S) be a dominant morphism of irreducible
affine schemes. Let U be any open subset of mSpec(R). Then the set-theoretic image f(U)
contains an open subset of mSpec(S).

Proof. This result takes a bit of work. We will prove it using dimension theory, so we
postpone the proof to Exercise 4.4.12.

Let V ⊂ mSpec(S) be the open subset obtained by applying the previous lemma to
Z. To show that f(Z) is constructible, it suffices to show that f(Z) ∩ (mSpec(S)\V ) is
constructible. This follows from the induction assumption applied to the closed subscheme
mSpec(S)\V .
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1.6.4 Exercises

Exercise 1.6.12. Let f : mSpec(R)→ mSpec(S) be a morphism of affine schemes.

(1) Show that if f ] is surjective then f is injective. (What is an example where the
converse fails?)

(2) Show that if f ] is injective then f is dominant. (What is an example where the
converse fails?)

(3) Show that if the nilradical of S is 0 then f ] is injective if and only if f is dominant.

Exercise 1.6.13. Let f : mSpec(R)→ mSpec(S) be a morphism of affine K-schemes and
let L be a finite extension of K. Prove or disprove the following statements:

(1) If m is a point of mSpec(R) with residue field L, then f(m) is a point of mSpec(S)
with residue field L.

(2) If m is an point of mSpec(S) with residue field L, then some point in f−1(m) is a
point of mSpec(R) with residue field L.

Exercise 1.6.14. Consider the parabola X defined by the equation x2 − y in A2
K. By

projecting onto the y-coordinate we obtain a map f : X → A1
K. Show that the fiber of f

over a K-point will have one of the following three types:

• A disjoint union of two K-points.

• A single point with residue field L where [L : K] = 2.

• A single point with residue field K whose ring of functions R satisfies dimK(R) = 2.

How can you determine which of the three possibilities happens at a given point? (Be
careful if the characteristic is 2.)

Prove more generally that for any point of A1
K with residue field L the ring of functions

of the fiber satisfies dimL(R) = 2.

Exercise 1.6.15. Set X = mSpec(K[x, y, z]/(xy, xz, yz)). Describe all the fibers of the
map f : X → A1 defined by f ] : K[t]→ K[x, y, z]/(xy, xz, yz) sending t 7→ x+ y+ z. What
is the geometric interpretation of this map?

Exercise 1.6.16. Set X = mSpec(K[x, y]/(y2 − x3 − x2)). Describe all the fibers of the
map f : A1 → X defined by f ] : K[x, y]/(y2 − x3 − x2) → K[t] sending x 7→ t2 − 1,
y 7→ t(t2 − 1).

In this example the fibers are not “continuous” as they were in Exercise 1.6.14. What
is the geometric interpretation of this map?
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1.7 Category of affine K-schemes

The goal of this section is to study the category of affine K-schemes.

Definition 1.7.1. The category AffSch/K has as objects all affine K-schemes and as
morphisms the K-morphisms between affine K-schemes.

From now on we will use “categorical” notation instead of the “algebraic” notation we
have used thus far:

• Affine K-schemes will be denoted by letters such as X,Y, Z.

• A K-morphism of affine K-schemes will be written in the form f : X → Y (which
implicitly includes the data of a K-algebra homomorphism f ] from the ring defining
Y to the ring defining X).

• If X is an affine K-scheme and L/K is an extension of fields, we denote by XL the
affine L-scheme obtained by base change to L (i.e. the scheme obtained by tensoring
the K-algebra defining X by L).

The following observation is an immediate consequence of the definitions.

Theorem 1.7.2. There is a contravariant equivalence of categories

AffSch/K ↔
{

finitely generated K-algebras
equipped with K-algebra homomorphisms

}
.

Remark 1.7.3. The category AffVar/K of affine K-varieties is the full subcategory of
AffSch/K whose objects are affine varieties. This category admits a contravariant equiv-
alence with the category of finitely generated K-algebra domains equipped with K-algebra
homomorphisms.

We can use the equivalence of Theorem 1.7.2 to discuss some categorical constructions
for affine schemes. In brief, finite limits exist in AffSch/K but finite colimits need not
exist.

1.7.1 Special objects

Just as every K-algebra R admits a unique K-algebra homomorphism K→ R, every affine
K-scheme X admits a unique morphism f : X → mSpec(K). Thus:

Lemma 1.7.4. mSpec(K) is a terminal object in the category of affine K-schemes.

On the other hand, recall that by our convention the 0 ring is a K-algebra. This is a
terminal object in the category of K-algebras, thus:

Lemma 1.7.5. mSpec(0) is an initial object in the category of affine K-schemes.
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1.7.2 Products

Let’s recall the categorical definition of a product. Given two objects X,Y , the product
of X and Y (if it exists) is an object X × Y equipped with morphisms π1 : X × Y → X
and π2 : X × Y → Y (called projection morphisms) which satisfy the following universal
property: if W is an object equipped with morphisms ψ1 : W → X and ψ2 : W → Y , there
is a unique morphism f × g : Z → X × Y making the following diagram commute:

W

∃!

##

ψ1

&&

ψ2

��

X × Y π1 //

π2

��

X

Y

Under our equivalence of categories, the product of mSpec(R) and mSpec(S) should be
associated with the coproduct of R and S in the category of finitely generated K-algebras.
In other words, the product of affine schemes corresponds to the ring operation ⊗K.

Definition 1.7.6. Let X = mSpec(R) and Y = mSpec(S) be two affine K-schemes. The
product of X and Y is

X × Y := mSpec(R⊗K S).

When we want to emphasize the ground field, we will instead write X ×mSpec(K) Y .

Example 1.7.7. We have mSpec(R)× An ∼= mSpec(R[x1, . . . , xn]).

It is interesting to compare how this construction compares with the product of the
underlying sets or topological spaces.

Exercise 1.7.8. Using mSpec(C) ×mSpec(R) mSpec(C) as an example, show that the set
underlying X × Y need not be the product of the sets underlying X and Y .

It turns out that the product and the set-theoretic product agree for traditional points
– the traditional points of X × Y are in fact the product of the traditional points on X
and the traditional points on Y . (In fact for any finite field extension L/K the L-points of
the product X × Y are the same as the product of the L-points on X and the L-points on
Y – this follows immediately from the universal property of the product.) However:

Exercise 1.7.9. Using AnC×AmC = An+m
C , show that even when the set underlying X × Y

is the product of the sets underlying X and Y the Zariski topology on X × Y need not be
the product of the Zariski topologies on X and Y .
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More generally, given morphisms f : X → Z and g : Y → Z we can construct the
pullback X ×Z Y which will be universal for diagrams of the shape

W

∃!

##

ψ1

&&

ψ2

��

X ×Z Y
π1 //

π2

��

X

f

��
Y g

// Z

Definition 1.7.10. Suppose X = mSpec(R), Y = mSpec(S), Z = mSpec(T ) and we have
morphisms f : X → Z and g : Y → Z. Then the product of X and Y over Z is

X ×Z Y = mSpec(R⊗T S)

where R and S are given the structure of T -modules using f ] and g] respectively.

Remark 1.7.11. Since mSpec(K) is a terminal object we have X × Y ∼= X ×mSpec(K) Y ,
justifying our earlier terminology.

In most circumstances it is best to visualize X ×Z Y via the fibers of the map π2 :
X ×Z Y → Y . Suppose that y ∈ Y has residue field L. Then

π−1
1 (Y ) ∼= FL

where F is the fiber of f : X → Z over g(y). This is a consequence of the following
computation for a maximal ideal m ⊂ S:

(R⊗T S)/〈m〉 ∼= R/〈g],−1(m)〉 ⊗K (S/m)

Thus, in a loose sense we can construct X×Z Y by taking the fibers of f and “pulling them
back” to form a fibration over Y . The following exercise gives our first illustration of this
principle (see Exercise 1.7.22 for another application).

Exercise 1.7.12. Let f : X → Y be a morphism of affine schemes. Let Z ⊂ Y be a closed
subscheme. Show that the preimage f−1(Z) is isomorphic to Z ×Y X.

The existence of products and pullbacks implies that equalizers also exist. Given two
morphisms f, g : X → Y , their equalizer is the same as the relative product X ×Y×Y Y
where the map X → Y × Y is induced by (f, g) and the map Y → Y × Y is induced by
the identity map on both components. Altogether we conclude:

Theorem 1.7.13. Finite limits exist in the category of affine K-schemes.
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1.7.3 Colimits

The coproduct of two affine K-schemes is simply the disjoint union. (Check!) However,
in general pushouts need not exist. Equivalently, pullbacks do not exist in the category of
finitely generated K-algebras.

Example 1.7.14 ([Mon17] Example 1.3). We first construct two finitely generated sub-
rings of K[x, y] whose intersection is not finitely generated. Set R = K[x2, x3, y] and
R2 = K[x2, y − x]. Then the intersection S = R1 ∩R2 is K[x2a(y − x)b](a,b)∈S where

S = {(a, b) ∈ Z2
≥0 | either b = 0 or a ≥ 1}.

Note that S is not finitely generated over K.
We claim that the two inclusion maps i1 : R1 → K[x, y] and i2 : R2 → K[x, y] do not

admit a pullback diagram. In the category of all K-algebras, the pullback is given by S
equipped with the inclusion maps. If i1 and i2 admitted a pullback S′ in the category
of finitely generated K-algebras, then by the universal property any map from a finitely
generated K-algebra T to S would have to factor through S′. This is clearly impossible.

Remark 1.7.15. All finite limits exist in the category of arbitrary rings: for example, the
equalizer is simply the subring where two ring homomorphisms coincide. Dually, all finite
colimits exist in the category of arbitrary affine schemes. However, it turns out that in the
category of arbitrary schemes finite colimits need not exist. This highlights the fact that
the pullback is the most useful and important construction for schemes.

1.7.4 Exercises

Exercise 1.7.16. Suppose X = mSpec(R), Y = mSpec(S), Z = mSpec(T ) and we have
morphisms f : X → Z and g : Y → Z. Prove that X ×Z Y is isomorphic to the closed
subscheme of X × Y defined by the ideal generated by the image of T in R⊗ S.

Exercise 1.7.17. The product does not interact well with the notions of irreducibility or
reducedness.

(1) Show that mSpec(C) is an irreducible R-scheme but that mSpec(C)×R mSpec(C) is
not irreducible.

(2) Set K = Fp(u). Show that mSpec(K[t]/(tp − u)) is a reduced K-scheme but that
mSpec(K[t]/(tp − u))×K mSpec(K[t]/(tp − u)) is not reduced.

Exercise 1.7.18. Let X be an affine scheme. The diagonal ∆ ⊂ X × X is the scheme-
theoretic image of the map X → X×X induced by the identity map on both components.

Suppose that X = mSpec(R). First describe the K-algebra homomorphism that yields
the diagonal embedding X → X ×X. Then find generators for the ideal of ∆ in R⊗K R.



1.7. CATEGORY OF AFFINE K-SCHEMES 43

Exercise 1.7.19. Let f, g : mSpec(R) → mSpec(S) be two morphisms. Show that the
equalizer of f, g is the map mSpec(R/I) → mSpec(R) induced by quotienting R by the
ideal generated by {f ](s)− g](s)}s∈S .

Exercise 1.7.20. Let L/K be a field extension. Show that base change defines a functor
from the category of affine K-schemes to the category of affine L-schemes. (Is this functor
full? Is it faithful?)

Exercise 1.7.21. Suppose given a morphism f : X → Y of affine K-schemes. The identity
map id : X → X and the map f : X → Y together induce a morphism id×f : X → X×Y .
The graph Γ of f is defined to be the scheme-theoretic image of id× f .

(1) Suppose that X = mSpec(R) and Y = mSpec(S). Write down generators for the
ideal of Γ.

(2) Show that Γ is isomorphic to X.

(3) Show that Γ is the preimage of the diagonal ∆ ⊂ Y ×Y under the map (f ◦π1)×π2 :
X × Y → Y × Y .

Exercise 1.7.22. Consider the morphism f : A2 → A2 defined by the map f ] : K[x, y]→
K[u, v] which sends x 7→ u, y 7→ uv. In Example 1.6.3 we saw that f contracts the u-axis
to a point and defines a bijection on the complement U of the u-axis.

Consider the relative product

X
π1 //

π2
��

A2

f
��

A2
f
// A2

Explicitly compute the ring defining X and the homomorphism defining π2. Use these
computations to prove the following statements:

(1) Show that the restriction of π2 to the preimage of U is bijective.

(2) Show that the restriction of π2 to the preimage of the u-axis is a projection map
A2 → A1.

Geometrically, X looks like the union of two planes: one maps isomorphically onto A2

under π2 and the other is mapped onto the u-axis via a coordinate projection. Think
carefully about how this coheres with the description of the fibers of π2 given in the text.

Exercise 1.7.23. The following exercise shows that the ring of functions on an affine
scheme mSpec(R) can be identified with the set of morphisms f : mSpec(R)→ A1. Let R
be a finitely generated K-algebra.
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(1) Show the set of morphisms f : mSpec(R) → A1 has the structure of a K-algebra,
where:

• We add two morphisms f, g : mSpec(R) → A1 by taking the product map
f × g : mSpec(R)→ A2 and composing it with the map a : A2 → A1 defined by
a](t) = x+ y.

• We multiply two morphisms f, g : mSpec(R) → A1 by taking the product map
f × g : mSpec(R) → A2 and composing it with the map m : A2 → A1 defined
by m](t) = xy.

• The element a ∈ K corresponds to the morphism mSpec(R)→ mSpec(K)→ A1

where the last map is the inclusion of the point (x− a).

(2) Show that the space of functions R on mSpec(R) is isomorphic to the K-algebra of
functions f : mSpec(R)→ A1.
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1.8 Sheaves

In Example 1.5.6 we showed that every closed subset of an affine scheme naturally admits
the structure of an affine scheme. In contrast, it turns out that open subsets may or may
not admit the structure of an affine scheme. (This is perhaps surprising – after all, it’s
easy to see that open subsets of manifolds are still manifolds.)

Our next goal is to put open subsets of affine schemes on an equal footing with affine
schemes. The key idea is to associate a ring of functions OX(U) to any open subset U of
an affine scheme X. However, before we construct the rings of functions OX(U), we will
introduce a new concept: a sheaf of abelian groups. A sheaf is an object that encodes the
function rings for all open subsets U simultaneously. While the study of abstract sheaves
is unfortunately a bit of a distraction, the payoff in convenience will more than compensate
for the time spent.

Warning 1.8.1. Although sheaves play an important role in algebraic geometry, in Part
I we will only ever see one type of sheaf (the structure sheaf on a scheme). For this reason
we defer our discussion of a general theory of sheaves to Part II. For now we will only prove
exactly what we need for applications to the structure sheaf.

1.8.1 Sheaves

Suppose that X is a topological manifold. For any open subset U ⊂ X, let C(U) denote
the space of continuous functions on U . There are two important ways in which these
functions interact as we vary our open set:

(1) Restriction: given an inclusion of open sets V ⊂ U , any function on U also induces
a function on V .

(2) Gluing: given an open cover {Vi} of U and functions fi on Vi which agree on the
common overlaps, we obtain a (unique) function f on U by gluing the fi.

The definition of a sheaf formalizes these two important properties to give us a general
language for discussing “functions”:

Definition 1.8.2. Let X be a topological space. A sheaf F of abelian groups on X consists
of the following data:

(1) for every open subset U , an abelian group F(U) whose elements are known as “sec-
tions of U”, and

(2) for every inclusion of non-empty open subsets V ⊂ U , a homomorphism ρU,V :
F(U)→ F(V ) known as a “restriction map”

satisfying the following conditions:
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(1) (Normalization) F(∅) = 0.

(2) (Compatibility) The assignment U 7→ F(U) and (V ⊂ U) 7→ ρU,V defines a con-
travariant functor from the category of open subsets of X (with morphisms = inclu-
sions) to the category of abelian groups. In other words, ρU,U = id and if W ⊂ V ⊂ U
then ρU,V ◦ ρV,W = ρU,W .

(3) (Identity) Suppose that {Vi} is an open cover of U . Suppose that f1, f2 ∈ F(U)
satisfy ρU,Vi(f1) = ρU,Vi(f2) for every i. Then f1 = f2.

(4) (Gluing) Suppose that {Vi} is an open cover of U . Suppose that for every i we have
an element fi ∈ F(Vi). Furthermore suppose that for every pair of indices i, j we
have ρVi,Vi∩Vj (fi) = ρVj ,Vi∩Vj (fj). Then there exists an element f ∈ F(U) satisfying
ρU,Vi(f) = fi for every i.

Note that the Identity and Gluing axioms together show that given an open cover {Vi}i∈I
of U and a “compatible” set of elements fi ∈ F(Vi) there exists a unique gluing f ∈ F(U).
In other words, there is an exact sequence

0→ F(U)→
∏
i

F(Vi)→
∏
i,j

F(Vi ∩ Vj)

where each morphism is the product of restriction maps. (This is condition is often used
to replace (1),(3),(4) above.)

We will say that a sheaf of abelian groups F is a sheaf of finitely generated K-algebras
if for every non-empty open subset F(U) is a finitely generated K-algebra and if for every
inclusion of non-empty open subsets the restriction map is a K-algebra homomorphism.

Remark 1.8.3. All our sheaves will be sheaves of abelian groups, so we will henceforth
drop the “abelian groups” from our notation.

Example 1.8.4. Let X be a topological (resp. differentiable, holomorphic) manifold. For
each open set U ⊂ X let C(U) denote the set of continuous (resp. differentiable, holomor-
phic) functions on U . Then C is a sheaf.

Example 1.8.5. Let X be a topological (resp. differentiable, holomorphic) manifold and
let π : E → X be a vector bundle over X. For each open set U ⊂ X let F(U) denote
the set of continuous (resp. differentiable, holomorphic) sections of π over U . Then F is a
sheaf.

Example 1.8.6. Let X be a topological space. For every non-empty open U ⊂ X assign
F(U) = Z and let ρU,V be the identity map. This is not a sheaf on X. The issue is that it
fails the gluing axiom: for example, if U, V are disjoint open subsets then the gluing axiom
should imply that F(U ∪ V ) = F(U)×F(V ) but this fails in our example.
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If we want to turn this assignment into a sheaf, we should instead let F(U) denote the
product of copies of Z indexed by the connected components of U . (The restriction map
ρU,V is the identity on the factors corresponding to an inclusion of connected components
and the zero map otherwise.)

1.8.2 Maps of sheaves

Suppose that X is a topological space and that F ,G are sheaves on X. By definition
a morphism of sheaves φ : F → G assigns to each open set U a homomorphism φ(U) :
F(U)→ G(U) in such a way that φ is compatible with restriction: for any open V ⊂ U

F(U)
φ(U) //

ρU,V

��

G(U)

ρU,V

��
F(V )

φ(V ) // G(V ).

is a commuting diagram. An isomorphism of sheaves on X is a morphism with an inverse.
Suppose now we are given a continuous morphism of topological spaces f : X → Y ,

and sheaves OX on X and OY on Y . We would like to construct a map of sheaves from
OY to OX representing the pullback of functions. In accordance with Warning 1.8.1, we
do not explain a general theory but instead specify what such a map should mean in this
special case.

Definition 1.8.7. In the setting above, a pullback map f ] from OY to OX assigns to every
open set V ⊂ Y a homomorphism f ](V ) : OY (V )→ OX(f−1(V )) in such a way that f ] is
compatible with restriction: for open subsets V1, V2 ⊂ Y we require that

OY (V1)
f](V1) //

ρV1,V2

��

OX(f−1(V1))

ρf−1(V1),f
−1(V2)

��
OY (V2)

f](V2) // OX(f−1(V2)).

is a commuting diagram.

Note that given two continuous maps f : X → Y and g : Y → Z and pullback maps of
sheaves f ], g], we can compose the pullback maps in a natural way.

1.8.3 Stalks

The following definition identifies one of the most powerful tools for working with sheaves.
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Definition 1.8.8. Let X be a topological space and let F be a sheaf on X. For any point
x ∈ X the stalk Fx is defined to be the direct limit

Fx = lim−→
U3x
F(U).

In other words, consider the set of pairs (U, f) where U is an open neighborhood of x and
f ∈ F(U). Say that two pairs (U, f) and (V, g) are equivalent if there is some open set
W ⊂ U ∩ V that contains x such that the restrictions of f and g to F(W ) coincide. Then
Fx is the set of equivalence classes of pairs (U, f). We call these equivalence classes germs
of sections.

Since the direct limit of abelian groups receives a map from each group, for any open
neighborhood U of x there is a canonical restriction map ρU,x : F(U)→ Fx.

Conceptually speaking, the stalk Fx records information about all open neighborhoods
of x at once without the need to specify a particular neighborhood. One reason why this
construction is so useful is that sections of a sheaf can be “determined locally.”

Exercise 1.8.9. Let X be a topological space equipped with a sheaf F . Prove that for
any open set U the product of the restriction maps

ρ : F(U)→
∏
x∈U
Fx

is injective.

Construction 1.8.10. Let X be a topological space. Suppose φ : F → G is a morphism
of sheaves on X. Then for every x ∈ X the map φ determines a morphism on stalks
φx : Fx → Gx in the following way. For every open neighborhood U of x consider the
composition

F(U)
φ(U)−−−→ G(U)

ρU,x−−→ Gx.

This collection of homomorphisms determines a homomorphism Fx → Gx using the uni-
versal property of the direct limit.

Similarly, a continuous map f : X → Y and a pullback map of sheaves f ] : OY → OX
yield morphisms OY,f(x) → OX,x for every point x ∈ X.

1.8.4 Exercises

Exercise 1.8.11. Let X be a topological space with a sheaf F . Suppose that U ⊂ X is
an open subset. Show that we can define a sheaf F|U on U by restricting the functor F to
the open sets of X contained in U . This sheaf is called the restriction of F to U .
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Exercise 1.8.12. Let X and Y be topological spaces carrying sheaves OX and OY respec-
tively. Suppose that f : X → Y is a continuous map and that f ] : OY → OX is a pullback
map of sheaves. Explain how for any open set U ⊂ X and restricted map f |U the pullback
map of sheaves f ] induces a pullback map of sheaves f ]|U : OY → OX |U . We will call this
the restriction of the pullback map to U .

(In particular, when we apply this construction to the identity map f : Y → Y we
obtain natural pullback maps OY → OY |V for open sets V ⊂ Y .)

Exercise 1.8.13. Let X be a topological space and let F be a sheaf on X. Suppose that
U is an open subset and f ∈ F(U). The support of f is defined to be

Supp(f) = {x ∈ U | ρU,x(f) 6= 0}.

Prove that Supp(f) is a closed subset of U . (Hint: what does it mean for an equivalence
class to be the zero element in Fx?)

Exercise 1.8.14. Prove carefully the claim in the text that pullback morphisms of sheaves
can be composed in a natural way.
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1.9 Constructing sheaves locally

In this section we discuss a method for constructing sheaves; we will later apply this method
to construct the sheaf of functions on a scheme.

1.9.1 Constructing a sheaf from a base

Let X be a topological space. Suppose that B = {Vi} is a base for the topology of X –
that is, each Vi is open and every open set in X is a union of elements in our base. We
might hope that we can construct a sheaf F on X by first determining its values on the Vi
and then applying the gluing axiom to deduce its value on every open set.

Definition 1.9.1. Let X be a topological space and let B = {Vi} be a base for the topology.
A B-sheaf F̃ assigns to every open set Vi ∈ B an abelian group F̃(Vi) and to each inclusion
Vi ⊂ Vj of open sets in B a restriction map ρ̃Vj ,Vi such that the following properties hold:

(1) F̃(∅) = 0.

(2) The assignments F̃ , ρ̃ define a contravariant functor from the category of open subsets
of X contained in B (with morphisms = inclusions) to the category of abelian groups.

(3) For any open set Vi ∈ B and any open cover of Vi by elements in B the identity and
gluing axioms hold.

Theorem 1.9.2. Let X be a topological space and let B = {Vi}i∈I be a base for the
topology. Suppose that F̃ , ρ̃ are a B-sheaf on X. Then there is a sheaf F on X such that
for every i ∈ I we have an isomorphism φi : F(Vi)→ F̃(Vi) and for every Vj ⊂ Vi we have
φj ◦ ρVi,Vj = ρ̃Vi,Vj ◦φi. Furthermore F is uniquely determined up to isomorphism by these
properties.

Proof. Let U ⊂ X be an open subset. Define IU ⊂ I to be the subset of indices such that
Vi ⊂ U . We define F(U) as a subset of the product

∏
i∈IU F̃(Vi):

F(U) :=
{

(fi ∈ F̃(Vi))i∈IU

∣∣∣ ρ̃Vi1 ,Vi1∩Vi2 (fi1) = ρ̃Vi2 ,Vi1∩Vi2 (fi2) ∀i1, i2 ∈ IU
}
. (1.9.1)

For open sets U2 ⊂ U1 we define the restriction map ρU1,U2 as follows. Note that if
U2 ⊂ U1 then RU2 ⊂ RU1 . Then we define ρU1,U2 as the restriction of the forgetful map∏
i∈IU1

F̃(Vi) →
∏
i∈IU2

F̃(Vi) to the subset F(U). (It is clear that the image of ρU1,U2 is

contained in F(U2).)
We next prove that F is a sheaf. The only axiom that takes some work to verify

carefully is the gluing axiom. Suppose that {Wj}j∈J is an open cover of U and that we
are given elements fj ∈ F(Wj) such that for any j1, j2 ∈ J the restriction of fj1 and fj2
to F(Wj1 ∩Wj2) coincide. This compatibility implies that if i′ ∈ ∪j∈JIWj then there is a

unique element fi′ ∈ F̃(Vi′) obtained by restricting fj from any Wj containing Vi′ .
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We would like to glue to obtain an element f ∈ F(U). Fix any i ∈ IU . Consider the
subset of ∪j∈JIWj consisting of those i′ such that i′ ∈ Vi. By applying the sheaf axioms

for F̃ , we see that the various fi′ ∈ F̃(Vi′) glue to yield a unique element fi ∈ F̃(Vi). As
we vary i, we obtain a well-defined element f ∈ F(U) which has the property that its
restriction to each Wj is fj .

We next show that F(Vi) is isomorphic to F̃(Vi). In fact, the isomorphism is simply the
forgetful map; note that the compatibility condition of Equation (1.9.1) implies that the
forgetful map is an isomorphism. Furthermore, it is clear that under these isomorphisms
ρVi,Vj is identified with ρ̃Vi,Vj .

Finally, we must show that F is uniquely determined by this data. We leave this as an
exercise in the gluing axiom.

Exercise 1.9.3. Prove the uniqueness claim in Theorem 1.9.2.

While Theorem 1.9.2 feels quite technical, in practice it is not so hard to apply: given
the data on a base for the topology, for any open set U one constructs the sections in F(U)
by choosing an open cover from our base and then identifying which systems of sections
are compatible under restriction.

Exercise 1.9.4. Let X be a topological space and let B be a base for the topology. Suppose
that F̃ and G̃ are two B-sheaves. A morphism φ̃ of B-sheaves assigns to each open set Vi ∈ B
a homomorphism φ̃Vi : F̃(Vi) → G̃(Vi) in such a way that the various φ̃Vi commute with
restriction.

Prove that a morphism of B-sheaves φ̃ : F̃ → G̃ induces a morphism of the corresponding
sheaves φ : F → G such that for every Vi ∈ B we have φ̃Vi = φVi .

We will sometimes apply Theorem 1.9.2 to “glue” sheaves on open subsets of X.

Corollary 1.9.5. Let X be a topological space equipped with an open cover {Ui}. Suppose
that for each index i we have a sheaf Fi on Ui. Suppose furthermore that for every pair of
indices i, j we have an isomorphism

φij : Fi|Ui∩Uj → Fj |Ui∩Uj

and that φii is the identity map, φij = φ−1
ji and φjk ◦φij = φik (as isomorphisms of sheaves

on Ui∩Uj ∩Uk). Then there is a sheaf F on X (unique up to isomorphism) such that F|Ui
is isomorphic to Fi.

The conditions on the φij are known as the “cocycle condition.”

Proof. Let B denote the basis of X consisting of open sets that are contained in some open
set Ui in our cover. We define a B-sheaf F̃ as follows. For any open subset V contained in
some Ui, we define F̂(V ) as a subset of

∏
Ui⊃V Fi(V ) via

F̂(V ) = { (fi ∈ Fi(V )) | φij(V )(fi) = fj ∀i, j} .
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The restriction maps are defined coordinatewise. Our compatibility conditions guarantee
that F̂(V ) is isomorphic to Fi(V ) for any i such that Ui ⊃ V and that the restriction maps
in Fi are compatible with the restriction maps in F̂ . Thus Theorem 1.9.2 yields the desired
sheaf F .

1.9.2 Constructing a morphism of sheaves on an open cover

Using the gluing property, we might hope that a morphism of sheaves (or even better, a
pullback morphism of sheaves) can be described locally. Let’s first recall what happens for
continuous maps of topological spaces.

Exercise 1.9.6. Let X and Y be topological spaces. Suppose that we have an open cover
{Ui} of X and for each index i we have a continuous function fi : Ui → Y . Suppose
furthermore that every pair of indices i, j we have fi|Ui∩Uj = fj |Ui∩Uj . Then there is a
unique continuous function f : X → Y such that f |Ui = fi.

When we enrich our spaces with sheaves, the statement is very similar. In keeping with
our philosophy, we will not aim for the most general statement but for the statement we
will need in the immediate future. We will use the “restriction of pullback maps” defined
in Exercise 1.8.12.

Proposition 1.9.7. Let X and Y be topological spaces and let OX and OY be sheaves of
abelian groups on X and Y respectively. Suppose that we have an open cover {Ui}i∈I of

X, continuous maps fi : Ui → Y , and pullback maps f ]i : OY → OX |Ui. For every pair of
indices i, j ∈ I let Uij = Ui ∩Uj. Suppose furthermore that for all i, j ∈ I we have fi|Uij =
fj |Uij as functions and that the two restricted pullback maps of sheaves OY → OX |Uij also
coincide.

Then there is a morphism f : X → Y and a pullback map of sheaves f ] : OY → OX
such that for every i ∈ I we have f |Ui = fi and the restriction of f ] to Ui is f ]i . Furthermore
f and f ] are uniquely determined.

Proof. As in Exercise 1.9.6 we get a continuous map f : X → Y . Suppose that V is an
open subset of Y ; we must describe a map f ](V ) : OY (V )→ OX(f−1(V )). To do this, we
identify OX(f−1(V )) as the subset of

∏
i∈I OX(f−1(V ) ∩ Ui) satisfying compatibility:

OX(f−1(V )) ∼=
(
gi ∈ OX(f−1(V ) ∩ Ui)

∣∣ gi|Uij = gj |Uij∀i, j ∈ I
)

We then set f ](V ) =
∏
i f

]
i (V ) : OY (V )→

∏
i∈I OX(f−1(V )∩Ui). The image of f ] actually

lies in OX(f−1(V )) due to the assumption the the restricted pullback maps coincide on
overlaps.

We then need to verify that f ] commutes with restriction maps. But this follows
from the combination of the gluing axiom for OX and the fact that the f ]i commute with
restriction maps.

Finally we must prove the uniqueness of f and f ]. Again we leave this as an exercise
in the gluing axiom.
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1.9.3 Exercises

Exercise 1.9.8. Let X be a topological space with a sheaf F . Suppose that {Vi} is a base
for the topology on X. Prove that

Fx ∼= lim−→
Vi3x
F(Vi)

where the direct limit is taken over the open sets in our base which contain x.

Exercise 1.9.9. Let X be a topological space and φ1, φ2 : F → G be two morphisms of
sheaves on X. Suppose that {Vi} is a base for the topology on X and that φ1(Vi) = φ2(Vi)
for every i. Prove that φ1 = φ2 as morphisms of sheaves.

Exercise 1.9.10. Let X be a topological space and φ : F → G a morphism of sheaves on
X. Suppose that {Vi} is a base for the topology on X. Prove that φ is an isomorphism if
and only if φVi is an isomorphism for every i.
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1.10 Sheaf of functions: varieties

We now return to our goal of constructing a sheaf of functions on an affine variety. (We
will postpone the discussion of affine schemes to the next section.)

1.10.1 Functions on open subsets

Let X = mSpec(R) be an affine variety. In addition to the polynomial functions on X
defined by R, one can consider the rational functions on X defined by the quotients of
polynomials in R.

Definition 1.10.1. Let X = mSpec(R) be an affine variety. The function field K(X) is
defined to be the fraction field Frac(R).

Note that we may not be able to evaluate a rational function f/g ∈ Frac(R) on all of X
– we will run into trouble at points where g evaluates to 0. However, we can evaluate f/g
on the open subset of X where g does not vanish. It is important to remember that when R
is not a UFD there may be several different ways of writing the same element of Frac(R) as
a quotient of elements of R (see Example 1.10.3) – thus we may be able to “unexpectedly”
evaluate the fraction f/g at a point in V (g) by changing the representative.

Definition 1.10.2. Let X = mSpec(R) be an affine variety. For any open subset U ⊂ X,
the ring of functions on U is denoted by OX(U) and is defined by

OX(U) :=

{
r ∈ K(X)

∣∣∣∣ ∀m ∈ U,∃f, g ∈ R s.t. r =
f

g
and m 6∈ V (g)

}
.

We say that an element r ∈ K(X) is regular along U if it is contained in OX(U).

In other words, OX(U) consists of the elements r ∈ K(X) which are well-defined on all
of U . Note that we allow the representation of r as a quotient of polynomials to change
as we vary the point m; we only require that r have some representation as a fraction f/g
such that g does not vanish at m.

Example 1.10.3. Let X = mSpec(K[x1, x2, x3, x4]/(x1x4 − x2x3)) and let U be the com-
plement of V (x2, x4). In K(X) we have the element x1

x2
= x3

x4
. It is clear that this element

is contained in O(U) since there is no point of U where both x2 and x4 vanish. However,
this element does not admit a representation as a fraction such that the denominator is
well-defined on all of U simultaneously.

Note that the ring of functions increases as the open subset decreases: smaller open
subsets admit more functions. From this perspective, it is natural to think of K(X) as an
object encoding the rings of functions of “all open sets at once”, and this intuition will be
a useful guide in the future.
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Theorem 1.10.4. Let X be an affine variety. For any open sets V ⊂ U define the
restriction function ρU,V to be the inclusion OX(U) ↪→ OX(V ) as subsets of K(X). Then
the assignment U 7→ OX(U) and the restriction maps ρU,V define a sheaf on X.

We call OX the structure sheaf on X.

Proof. The only axiom that needs to be verified carefully is the gluing axiom. Suppose that
{Vi} is an open cover of a set U . Suppose furthermore that we have elements fi ∈ OX(Vi)
such that ρVi,Vi∩Vj (fi) = ρVj ,Vi∩Vj (fj). This means that the functions fi and fj represent
the same element r ∈ K(X). Since r admits local expressions showing that is regular on
each Vi and the Vi cover U we see that r admits local expressions which shows that it is
regular on all of U . The corresponding f ∈ OX(U) represents the gluing of the fi.

1.10.2 Open affine subsets

We next introduce a particular type of open set that plays a key role in the construction
of the sheaf of functions.

Definition 1.10.5. Let mSpec(R) be an affine scheme. For any function f ∈ R we let Df

denote the complement of V (f). Such an open set is called a distinguished open affine in
mSpec(R).

One of the key properties of distinguished open affines is that they form a base for the
Zariski topology.

Proposition 1.10.6. Let mSpec(R) be an affine scheme. The distinguished open affines
form a base for the Zariski topology on mSpec(R).

Proof. First, we must show that the intersection of any two distinguished open affines is a
distinguished open affine. In fact, for any f, g ∈ R we have Df ∩Dg = Dfg.

Second, we must show that any open set U ⊂ mSpec(R) is a union of distinguished
open affines. The complement of U is closed, hence equal to V (I) for some ideal I ⊂ R. If
we choose a finite generating set {fi}ri=1 for I then

r⋂
i=1

V (fi) = V (I).

In other words, {Dfi}ri=1 is an open cover of U .

The ring of functions for a distinguished open affine has a simple description. For any
element f ∈ R we will denote by Rf the localization of R along all non-negative powers of
f .

Theorem 1.10.7. Let X = mSpec(R) be an affine variety and let f ∈ R. Then OX(Df ) =
Rf .
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In particular, applying this theorem with f = 1 we see that OX(X) = R.

Proof. Note that both OX(Df ) and Rf are subsets of Frac(R). Since every element of Rf
can be written as g/fn for some positive integer n it is clear that Rf ⊂ OX(Df ).

Conversely, suppose r ∈ OX(Df ). This means that for any point m ∈ Df we can find
a representation r = a/g such that h does not vanish at m. In fact the representation a/g
will be well-defined on an open subset of Df , so we may identify an open cover {Ui} of Df

and representations r = ai/gi such that for every index i we have V (gi) ⊂ X\Ui. Since
distinguished open affines form a basis for the topology, we may replace each Ui by a union
of distinguished open affines (while using the same representation of r). After relabeling we
may suppose that every open set in our open cover is Dhi for some i and r is represented
by the element ai/gi in Dhi . Since gi does not vanish on Dhi , we have V (hi) ⊃ V (gi).
This implies that

√
(hi) ⊂

√
(gi) so in particular there is a positive integer ki such that

hkii ∈ (gi). Writing hkii = bigi, we will rewrite our fraction as aibi/h
ki
i .

We will need to understand how the fractions aibi/h
ki
i are related as we change i. Since

they each represent the same element in K(X), by definition the cross-products should
yield the same element of R: for every i, j ∈ I we have

aibih
kj
j = ajbjh

ki
i . (1.10.1)

Proposition 1.10.6 shows that there is a finite subcover {Dhi}ni=1 of Df . Then

V (f) ⊂
n⋂
i=1

V (hi) = V ({hi}ni=1)

so just as before we see there is an integer m such that fm ∈ ({hkii }). We write fm =∑n
j=1 cjh

kj
j . Define g =

∑n
j=1 ajbjcj . We claim that the fraction g/fm ∈ Rf represents

r. Indeed, for any index i we check that this fraction agrees with aibi/h
ki
i using the cross

product:

aibif
m =

n∑
j=1

aibicjh
kj
j =

n∑
j=1

ajbjcjh
ki
i = ghkii

where we use Equation (1.10.1) for the middle equality. Thus OX(Df ) ⊂ Rf .

This computation is more important than it appears. Recall from Example 1.5.8 that
the localization map R → Rf defines a homeomorphism from mSpec(Rf ) onto its image
Df ⊂ mSpec(R). The key property of Df is that these two computations match up exactly.
The following definition formalizes this property.

Definition 1.10.8. Let X = mSpec(R) be an affine variety and let U ⊂ X be an open
subset. We say that U is an open affine subset of X if the inclusion R→ OX(U) defines a
map mSpec(OX(U))→ X which has U as its image.
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For an open affine subset U the topology and the ring of functions are in harmony. Thus
it makes sense to say that U is isomorphic to the affine variety mSpec(OX(U)). However
not every open subset of X will be an open affine subset.

Example 1.10.9. Let U ⊂ A2 denote the complement of the origin. Since K[x, y] is a
UFD, every element of K(A2) will admit a unique representation as a fraction f/g where
f, g are relatively prime. However, there is no polynomial in K[x, y] which vanishes only
at the origin – indeed, since any radical ideal is the intersection of the maximal ideals
containing it, any irreducible polynomial g contained in (x, y) must be contained in at
least one other maximal ideal. Combining these two facts we deduce that OX(U) = K[x, y]
even though U ( mSpec(K[x, y]).

1.10.3 Exercises

Exercise 1.10.10. Often the most convenient way to compute the ring of functions on an
open set U is to combine Theorem 1.10.7 and the gluing axiom. For example, let U be the
complement of the origin in A2 and let U1 = Dx, U2 = Dy. Note that U = U1 ∪ U2. Use
Theorem 1.10.7 and the gluing axiom to compute OX(U) in a different way than Example
1.10.9.

Exercise 1.10.11. Example 1.10.9 is just the first instance of a general pattern. For
example, show that if I ⊂ K[x1, . . . , xn] is not contained in any principal ideal and U
is the complement of V (I) in An then the inclusion map K[x1, . . . , xn] → OX(U) is an
isomorphism. (See Theorem 5.6.7 for a general statement.)

Exercise 1.10.12. Let K be a finitely generated field extension of K. Show that there is
an affine K-variety whose function field is K.

Exercise 1.10.13. Let X = mSpec(R) be an affine variety. Suppose that p ⊂ R is a prime
ideal and let Z = V (p). Suppose that U ⊂ X is an open set such that U ∩ Z 6= ∅. Prove
that OX(U) ⊂ Rp as subsets of K(X).
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1.11 Sheaf of functions: schemes

In this section we construct the sheaf of functions on an affine scheme X = mSpec(R). Just
as with affine varieties, we would like the ring of functions of an open set U to reflect the
structure of localizations of R. Unfortunately when working with arbitrary affine schemes
there is no field which contains all localizations of R. Thus we will take a different approach.

We will construct the sheaf of functions on U in the following steps. First, for any
distinguished open affine we will declare by fiat that OX(Df ) ∼= Rf . Since the distinguished
open affines form a base for the topology, this information will be enough to construct a
sheaf of functions via Theorem 1.9.2.

1.11.1 Constructing the structure sheaf

Recall from Theorem 1.9.2 the procedure to construct a sheaf from a topological base {Vi}.
First, we must decide what the sections and restriction maps are for open sets in this base.
Second, we must verify that our choices satisfy conditions (1-4) of Definition 1.8.2 with
respect to open covers consisting of open sets in our base. Third, Theorem 1.9.2 guarantees
that there is a unique sheaf on X that is compatible with this data.

Before continuing, we need a couple exercises concerning the geometry of distinguished
open affines.

Exercise 1.11.1. Fix a set of elements {gi} in R. Show that {Dgi} is an open cover of
mSpec(R) if and only if the gi generate R.

Exercise 1.11.2. Let mSpec(R) be an affine scheme and let f, g ∈ R. Show that Df ⊂ Dg

if and only if the image of g under the localization map R→ Rf is invertible.

Exercise 1.11.3. Let mSpec(R) be an affine scheme and let f ∈ R. Show that the set of
g ∈ R such that Df ⊃ Dg is a multiplicative set.

For any distinguished open affine Df we define OX(Df ) to be the localization of R along
all elements g ∈ R such that V (g) ⊂ V (f). Exercise 1.11.2 proves that this localized ring
is isomorphic to Rf . However, our definition has the advantage that it is defined purely
topologically – if we choose different elements f, g ∈ R with Df = Dg then OX(Df ) =
OX(Dg) (whereas Rf and Rg are only canonically isomorphic).

For any inclusion Df ⊂ Dg we define the restriction map ρDg ,Df to be the canonical
map obtain from the universal property of localization.

We then need to verify conditions (1-4) of Definition 1.8.2 for this base. The key step
is the following proposition.

Proposition 1.11.4. Let R be a finitely generated K-algebra. Fix a finite set of elements
{gi}ri=1 which generate R. Then there is an exact sequence of R-modules

0→ R→
∏
i

Rgi →
∏
i,j

Rgigj



1.11. SHEAF OF FUNCTIONS: SCHEMES 59

where the first homomorphism is the product of the localization maps ρi : R→ Rgi and the
second homomorphism sends the tuple (ri) to the tuple (ρi,jri − ρj,irj) where ρi,j : Rgi →
Rgigj are the localization maps.

The proof is essentially the same as the proof of Proposition 1.11.4 (and for good reason
– the two statements are saying essentially the same thing).

Proof. It is clear that the image of the leftmost map
∏
i ρi is contained in the set of

compatible elements

(fi ∈ Rgi |ρi,j(fi) = ρj,i(fj)∀i, j)

and we must show this map is an isomorphism.

First we show injectivity. Suppose that f ∈ R is mapped to 0. In other words, for
every index i there is some positive integer ki such that fgki = 0. Set N = supi ki. Since
R = (g1, . . . , gr), we also have R = (gN1 , . . . , g

N
r ). We deduce that f = 0.

Next we show surjectivity. Suppose we have a compatible set of elements fi. Write

fi = ai/g
ki
i . By assumption we have ai/g

ki
i = aj/g

kj
j as elements in Rgigj . Thus for any

pair of indices i 6= j there is some non-negative integer tij such that

aig
kj+tij
j g

tij
i = ajg

ki+tij
i g

tij
j .

We define M = supi ki + supj 6=i tij . Then we can rewrite

fi =
ai

gkii
=
aig

M−ki
i

gMi
.

For notational convenience we will write bi = aig
M−ki
i . The advantage of this change is

that for i 6= j we have the simpler relation

big
M
j = aig

kj
j (gM−kii g

M−kj
j ) = ajg

ki
i (gM−kii g

M−kj
j ) = bjg

M
i .

Since R = (g1, . . . , gr), we also have R = (gM1 , . . . , gMr ). In particular we have an equality
1 =

∑r
i=1 cig

M
i for appropriate choices of ci. Define f =

∑r
i=1 cibi. We claim that f ∈ R

maps to fj ∈ Rgj under the localization map. Indeed, we have

fgMj =
r∑
i=1

cibig
M
j =

r∑
i=1

cibjg
M
i = bj .

Exercise 1.11.5. Extend the result of Proposition 1.11.4 by proving that the same state-
ment holds for arbitrary sets of elements {gi}i∈I which generate R.
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Corollary 1.11.6. Let X = mSpec(R) be an affine scheme. Our definitions of OX(Df )
and ρDg ,Df satisfy conditions (1-4) of Definition 1.8.2 with respect to the base of open
affines.

Proof. Note that ∅ = D0 so that OX(∅) = 0, verifying (1). Condition (2) is clear from the
construction. We will show (3) and (4) simultaneously. Let Df be any distinguished open
affine and let {Dgi}i∈I be an open cover. By Exercise 1.11.1 the gi generate Rf . Applying
Exercise 1.11.5 to Rf and {gi}i∈I and using the canonical isomorphisms Rh ∼= OX(Dh) we
obtain both (3) and (4).

We are now in a position to apply Theorem 1.9.2.

Definition 1.11.7. Let X = mSpec(R) be an affine scheme. The structure sheaf OX is
the sheaf obtained by applying Theorem 1.9.2 in the above setting.

In other words, if U ⊂ X is any open subset which is covered by distinguished open
affines Dfi , we define OX(U) via the exact sequence

0→ OX(U)→
∏
i

Rfi →
∏
i,j

Rfi,j .

Exercise 1.11.8. Verify that if X is an affine variety then the structure sheaf as con-
structed in Definition 1.11.7 is the same as the structure sheaf as constructed in Theorem
1.10.4.

1.11.2 Stalks

We next compute the stalks of the structure sheaf.

Proposition 1.11.9. Let X = mSpec(R) be an affine scheme. Then for any point x ∈ X
we have OX,x = Rm where m is the maximal ideal corresponding to x.

Proof. By Exercise 1.9.8 we can compute stalks using the base of distinguished open affines.
Thus we are reduced to the computation

Rm
∼= lim−→

f 6∈m
Rf .

These two rings are isomorphic (as rings, and hence also as K-algebras) because they satisfy
the same universal property. That is, if g : R → S is a ring homomorphism such that the
image of R\m consists of units in S, then g admits a unique factorization through both
of these rings – through Rm due to the universal property of localization, and through Rf
due to the universal properties of localizations and direct limits.
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The main feature of OX,x is its unique maximal ideal which we will denote by mx. (We
will try to avoid the unfortunate but logically consistent notation mm.) We know that mx is
generated by a finite set of functions f1, . . . , fr all of which vanish at x. Loosely speaking,
we can think of the fi as giving “local coordinates” near x. Indeed, for any sufficiently
small open affine neighborhood U of x the fi will be regular functions on U whose common
vanishing locus is only the point x.

Remark 1.11.10. This analogy should be taken with a grain of salt – it works well in
some ways but not in others. For example, a smooth n-dimensional manifold is locally
isomorphic to Rn, but the local rings OX,x usually will look quite different from the local
rings of An. (See Section 5.2 for one aspect in which the analogy does work well.)

It turns out that the closest analogy with the Euclidean situation is if we look not at

the localization OX,x but the completion ÔX(X)m. In other words, if we use formal power
series instead of polynomials we can come closer to capturing the behavior of analytic
functions on small open neighborhoods. We will not pursue this direction in these notes.

We can now finally resolve our previous discussion on the support of a function. Given
an open set U and an element f ∈ OX(U) we define support of f to be the set of points
x ∈ U such that the image of f under ρU,x : OX(U) → OX,x is non-zero. (According to
Exercise 1.4.14 this agrees with our old definition when U is affine.)

Lemma 1.11.11. Let X be an affine scheme. Let U ⊂ X be an open set and let f ∈
OX(U). Then the complement of Supp(f) in U is the largest open subset V of U such that
ρU,V (f) is identically zero.

Proof. This is an immediate consequence of Exercise 1.8.9.

Remark 1.11.12. It is important to be clear on the difference between the support
Supp(f) and the vanishing locus V (f) (as defined in Exercise 1.11.13). Geometrically,
the vanishing locus determines when f evaluates to 0. The complement of the support
is the largest open set where f is identically zero. (Recall that being identically zero is
stronger than evaluating to zero!) Algebraically, the vanishing locus determines when f is
sent to 0 by quotienting. The support determines when f is sent to 0 by localizing.

1.11.3 Exercises

Exercise 1.11.13. Suppose that X is an affine scheme and that U is an open subset. Let
I ⊂ OX(U) be an ideal. The vanishing locus V (I) is defined to be set of points x ∈ U such
that the stalk map ρU,x : OX(U)→ OX,x satisfies the property that ρU,x(I) ⊂ mX,x.

(1) Show that V (I) is a closed subset of U .

(2) Show that if U is an open affine set then V (I) coincides with Definition 1.2.3.
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Exercise 1.11.14. Suppose that f : X → Y is a morphism of affine schemes. Show that
the localizations of f ] induce a pullback morphism of sheaves f ] : OY → OX .

Exercise 1.11.15. Let X = mSpec(R) be an affine scheme. Given any subset Z ⊂ X we
can define

OX,Z = lim−→
U⊃Z
O(U).

Prove that if p is a prime ideal in R then OX,V (p) = Rp.
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1.12 Quasiaffine schemes

We are finally prepared to construct a category of “quasiaffine K-schemes” which puts
open subsets of affine schemes on equal footing. Example 1.10.9 demonstrated that an
open subset U of an affine scheme X need not itself be an affine scheme. For a non-affine
open subset, the ring of functions O(U) is not really sufficient information – instead, we
should keep track of the entire sheaf of functions.

Definition 1.12.1. A quasiaffine K-scheme consists of an open set U ⊂ X of an affine
K-scheme X equipped with the following data:

(set, topology, sheaf of functions) = (U,Zar|U ,O|U ).

Exercise 1.12.10 shows that given any quasiaffine scheme U the map f : U → mSpec(O(U))
is an injection realizing U as an open subset of an affine scheme. Thus one can make
quasiaffineness an “intrinsic” property by requiring that this map f realizes U as an open
subset of an affine scheme and that the sheaf of functions on U is the restriction from
mSpec(O(U)).

Warning 1.12.2. Suppose X is a quasiaffine K-scheme. Although OX(X) is a K-algebra,
it need not be finitely generated. We will see a closely related example in a slightly different
setting in Example 2.4.6.

1.12.1 Morphisms of quasiaffine schemes

Suppose we have two quasiaffine schemes X and Y . Then at the very least a morphism
f : X → Y should consist of the following data:

(1) A continuous set-theoretic map f : X → Y .

(2) A pullback morphism of sheaves f ] : OY → OX .

However, this data is not sufficient to define a morphism. The issue is that we have
unmoored the algebra from the topology. (For example, there is nothing to prevent us
from letting f be any continuous map and setting the morphisms f ] to be identically zero.)
We need to add a condition to ensure that the set-theoretic map is induced by the map of
functions. Our condition will use the vanishing locus as defined in Exercise 1.11.13:

(*) Let V be an open subset of Y and let I ⊂ O(V ) be an ideal. Then we have
f−1(V (I)) = V (〈f ](I)〉) inside of f−1(V ).

Definition 1.12.3. A morphism of quasiaffine schemes f : X → Y consists of a set
theoretic map f and a pullback map of sheaves f ] : OY → OX satisfying condition (*).

These definitions yield a category QAffSch/K of quasiaffine schemes.
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Exercise 1.12.4. Explain carefully how to compose two morphisms of quasiaffine schemes.

Exercise 1.12.5. Show that condition (*) is equivalent to:

(*’) For any point x ∈ X the induced map of stalks f ]x : OY,f(x) → OX,x is a local
homomorphism of local rings. (That is, the image of the maximal ideal in OY,f(x) is
the maximal ideal in OX,x.)

We have finally achieved our goal of putting closed and open subsets on the same footing
as affine schemes. The following definitions explain how to give a closed set or open set
the structure of a quasiaffine scheme.

Definition 1.12.6. A closed embedding is a morphism f : Z → X such that

(1) f takes Z homeomorphically onto a closed subset of X, and

(2) for any open affine subset V ⊂ X the map f ](V ) : O(V )→ O(f−1(V )) is surjective.

Definition 1.12.7. An open embedding is a morphism f : Y → X such that

(1) f takes Y homeomorphically onto an open subset of X, and

(2) for any open subset V ⊂ X contained in f(Y ) the map f ](V ) : O(V )→ O(f−1(V ))
is an isomorphism.

1.12.2 Revisiting affine K-schemes

We currently have two competing definitions of a morphism of affine schemes (Definition
1.5.1 and Definition 1.12.3). The following result resolves this tension.

Proposition 1.12.8. Let X = mSpec(R) and Y = mSpec(S) be affine schemes. Then
there is a bijection between morphisms f : X → Y (in the sense of Definition 1.12.3) and
K-algebra homomorphisms f ] : S → R.

Proof. First suppose given a K-algebra homomorphism f ] : S → R. Proposition 1.5.3
constructs a continuous set-theoretic map f : X → Y from f ]. Exercise 1.11.14 shows
that f ] naturally induces a morphism of sheaves. Finally, the argument of Proposition
1.5.3 shows that the set-theoretic map f is compatible with the behavior of vanishing loci
induced by f ]. Together these define a morphism f : X → Y in the sense of Definition
1.5.1.

Conversely, suppose given a morphism f : X → Y as in Definition 1.5.1. By definition
f includes the data of a K-algebra map f ](Y ) : O(Y )→ O(X).

We need to verify that these are inverse constructions; there is only one non-trivial
direction. Suppose that f : X → Y is a morphism and let f ] : S → R be the induced map
as above. Let f ′ : X → Y be the morphism constructed from f ] and let f ′] denote the
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induced map of sheaves. We must show that f ′ coincides with f . By construction f ] and
f ′] agree as maps S = OY (Y ) → OX(X) = R (but we have not yet shown that the two
sheaf maps coincide for other choices of open sets).

We start by discussing the topology of f ′. Let m be a maximal ideal of S. Then by
applying condition (*) to the open sets X and Y we have

f−1(V (m)) = V (f ](m)) = V (f ′](m)) = f ′−1(V (m)).

This shows that f and f ′ agree set-theoretically.
We then must show that f ′] and f ] are the same pullback maps of sheaves. Suppose

that Dg is a distinguished open affine in X and Dh is a distinguished open affine in Y
such that Dg ⊂ f−1(Dh). Applying condition (*) to the open sets X and Y we see that
f ](h) ∈ √g. By analogous reasoning f ′](h) ∈ √g. Consider the commuting diagram

S

ψh

��

f]=f ′] // R

ψg

��
Sh // Rg

where ψh, ψg are the localization maps. By the universal property of localization there is a
unique homomorphism along the bottom that makes this diagram commute. Thus we see
that f ′](Dh) = f ](Dh) : O(Dh)→ O(Dg).

For arbitrary open sets, the equality of f ] and f ′] follows from the case of distinguished
open affines using the uniqueness in Proposition 1.9.7.

In particular this implies:

Corollary 1.12.9. The category AffSch/K is a full subcategory of QAffSch/K.

We will now retcon our definition of an affine scheme to include the sheaf of functions.

1.12.3 Exercises

Exercise 1.12.10. Suppose that U is a quasiaffine scheme, so in particular U is an open
subset of an affine scheme X. Show that the restriction map ρ : O(X)→ O(U) defines an
open embedding mSpec(O(U))→ X whose image contains U .

Exercise 1.12.11. Consider the affine scheme X defined as V (xy−zw) ⊂ A4
K. Let U ⊂ X

denote the complement of V (y, z). Prove that U is isomorphic to the complement of a line
in A3. Conclude that U is not an affine scheme. (This computation is related to Example
1.10.3 showing that there is an element of K(X) that is defined globally on U but has no
globally defined fraction.)
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Chapter 2

Projective schemes

Let’s quickly review the construction of projective space from a classical viewpoint.
Let K be a field. Projective space Pn over K is the parameter space for the set of

1-dimensional subspaces of Kn+1. We can construct this space as the quotient of the set of
non-zero vectors in Kn+1 by the equivalence relation which identifies any two proportional
vectors:

Pn :=
Kn+1\{0}
~a ∼ λ~a

.

Traditionally one identifies a point of Pn using an (n + 1)-tuple (a0 : a1 : . . . : an) which
represents the coordinates for a point in the corresponding line in Kn+1. We use colons
instead of commas to remind us that any rescaling of this vector represents the same point
of Pn:

(a0 : a1 : . . . : an) = (λa0 : λa1 : . . . : λan) ∀λ ∈ K\{0}

When K = C or R we can equip Pn with the quotient of the Euclidean topology on Kn+1

and with this choice projective space is compact. In algebraic geometry we usually equip Pn
with the quotient of the Zariski topology on Kn+1. Concretely, this means that the closed
sets in Pn are the subsets cut out by homogeneous polynomial equations in K[x0, . . . , xn].
(Although it does not make sense to evaluate a homogeneous polynomial at a point of
projective space, it does make sense to ask whether a homogeneous polynomial vanishes at
a point of projective space since this condition is scaling-invariant.)

Let Di denote the open subset of points ~a ∈ Pn where the ith coordinate does not
vanish. (Note that this condition does not depend upon which representative of ~a we
pick.) After rescaling the vector ~a, we may ensure that the ith coordinate is equal to 1:

Di = {(a0, . . . , ai−1, 1, ai+1, . . . , an) ∈ Pn}

This description gives Di a bijective correspondence with the set Kn. When K = C or R
we use these open sets as charts to give Pn the structure of a manifold. The complement

67
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of Di is isomorphic to projective space of dimension one less:

Pn\Di = {(a0, . . . , ai−1, 0, ai+1, . . . , an) ∈ Pn}.

Thus in geometric situations one can think of Pn as the compactification of Kn obtained
by “adding a Pn−1 at infinity.” By induction we have

Pn = Kn ∪Kn−1 ∪ . . . ∪K ∪ {pt}.

Note that the only polynomial functions on Kn+1 which descend to Pn are the constant
functions. (This is analogous to Liouville’s theorem in complex geometry which guaran-
tees that every holomorphic function on PnC is constant.) Nevertheless, Pn admits many
polynomial maps to other projective spaces. Suppose that f0, . . . , fm ∈ K[x0, . . . , xn] are
homogeneous polynomials of the same degree d. We can then define a map f : Pn → Pm
via the prescription

f(~a) = (f0(~a) : . . . : fm(~a))

If we rescale ~a by λ then f(~a) is rescaled by λd. This guarantees that f is a well-defined
map for any ~a except possibly for the points in the closed set f0(~a) = . . . = fm(~a) = 0. In
other words, homogeneous polynomial functions naturally define maps on open subsets of
Pn.

Primer on graded rings

The only graded rings R we will consider will have Z-gradings. Our standard example is
the polynomial ring K[x0, . . . , xn] given the grading by degree. We denote the dth graded
piece of R by Rd. Each graded piece of R is naturally an R0-module.

An element f ∈ R is said to be homogeneous of degree d if it is contained in Rd. More
generally, given any element f ∈ R the dth homogeneous component of f is the image
of f under the projection R = ⊕dRd → Rd. If S is a multiplicatively closed subset of R
consisting only of homogeneous elements, then RS is a graded ring under the assignment
deg(1/f) = −deg(f).

An ideal I ⊂ R is homogeneous if it satisfies any of the following equivalent conditions:

(1) I is generated by homogeneous elements.

(2) If f ∈ I then every homogeneous component of f is contained in I.

(3) I = ⊕d≥0(I ∩Rd).

If I is a homogeneous ideal then R/I inherits a grading from R. If I, J are homogeneous
ideals, then so are I + J , I ∩ J , IJ , and

√
I. A homogeneous ideal is prime if and only if

for every pair of homogeneous elements f, g ∈ R satisfying fg ∈ I either f ∈ I or g ∈ I.
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A finitely generated graded K-algebra R is a finitely generated K-algebra equipped with
a Z≥0-grading such that the canonical copy of K in R has degree 0. (We also allow the
0 ring.) The main example is the polynomial ring K[x0, . . . , xn] graded by degree. Note
that the quotient of a polynomial ring by a homogeneous ideal will be a finitely generated
graded K-algebra, but not every finitely generated K-algebra has this form. (There are two
potential obstructions – any quotient of a polynomial ring will satisfy R0

∼= K and will be
generated as a K-algebra by its degree 1 elements.)

A graded homomorphism of graded rings R,S is a homomorphism f : R→ S such that
every homogeneous element in R maps to a homogeneous element in S and f(R0) ⊂ S0. In
other words, there will be some integer m such that f(Rd) ⊂ Smd for every d. In particular
pullback under f will preserve the homogeneity of ideals.
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2.1 Projective space: quotient

The first task facing us is to describe projective space as a topological space. Just as for
affine space, we would like to add “non-traditional” points to obtain a tighter link between
algebra and geometry. There are two approaches: we can either construct Pn as a quotient
of An+1\0 or we can construct Pn by gluing together affine spaces An. In this section we
discuss the first approach.

2.1.1 Points

Our strategy for the construction of Pn is to use the “scaling invariant” geometry of An+1.
Note that the vanishing locus in An+1 defined by a homogeneous ideal will be “invariant
under rescaling” in the sense that it will be a union of lines through the origin. Conversely,
any “scaling invariant” subset will be defined by a homogeneous ideal. Thus we will
construct projective space using the homogeneous ideals in K[x0, . . . , xn].

There is a unique homogeneous ideal in K[x0, . . . , xn] which is also a maximal ideal,
namely, the origin (x0, . . . , xn). The lines through the origin are the “next smallest” closed
subsets which are scaling invariant, and these should give us points in projective space.

Definition 2.1.1. We say that a homogeneous ideal m ⊂ K[x0, . . . , xn] is almost maximal
if it is prime, it is properly contained in (x0, . . . , xn), and there is no prime homogeneous
ideal I satisfying m ( I ( (x0, . . . , xn).

The points of projective space PnK are the almost maximal homogeneous ideals m ⊂
K[x0, . . . , xn].

If we have n linearly independent homogeneous linear functions `1, . . . , `n then the ideal
(`1, . . . , `n) is an example of an almost maximal homogeneous ideal in K[x0, . . . , xn]. These
are the “traditional points” of Pn which define 1-dimensional subspaces of Kn+1. However,
there can also be “non-traditional points” where some of the generators have degree larger
than 1.

Exercise 2.1.2. Let K be a field. Show that every almost maximal homogeneous ideal in
K[x, y] will be generated by a single irreducible homogeneous polynomial. (See Example
1.3.7.)

Explain why the assignment

d∑
i=0

cix
iyd−i ↔

d∑
i=0

cit
i

describes a bijection between the set of irreducible homogeneous polynomials in K[x, y]
except for the polynomial y and the set of irreducible polynomials in K[t]. This bijection
gives us an explicit description of the points on P1

K as being equal to A1
K ∪ {(y)}.
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2.1.2 Topology

Definition 2.1.3. Let I ⊂ K[x0, . . . , xn] be a homogeneous ideal. The vanishing locus
V+(I) ⊂ Pn is the set of almost maximal homogeneous ideals which contain I.

Here the “+” in V+ emphasizes that the construction is reflecting the behavior of
homogeneous elements of degree > 0; the degree 0 homogeneous elements don’t behave
in the same way as other homogeneous elements. It also reminds us that homogeneous
functions aren’t really functions on Pn – we save the notation V for honest functions (see
Exercise 1.11.13).

The vanishing locus behaves just like you would expect with respect to radicals (see
Exercise 2.1.16) and with respect to ideal operations.

Exercise 2.1.4. Verify that Pn admits a topology whose closed sets are the vanishing loci
of homogeneous ideals. (Note that the maximal ideal (x0, . . . , xn) will define the empty
set. For this reason the maximal ideal is sometimes called the “irrelevant ideal.”)

The topology on Pn whose closed sets are the vanishing loci of homogeneous ideals is
known as the Zariski topology on Pn.

Example 2.1.5. Suppose f ∈ K[x0, . . . , xn] is a homogeneous equation of degree d. The
vanishing locus V+(f) is called a hypersurface of degree d.

Example 2.1.6. Suppose that `1, . . . , `n−k are homogeneous linear equations that are
linearly independent (as elements of the K-vector space K[x0, . . . , xn]1). The vanishing
locus of these equations is called a k-plane in Pn. In the special case when we have a single
linear equation, the vanishing locus is called a hyperplane – equivalently, a hyperplane is
a degree 1 hypersurface.

On the level of traditional points, a k-plane is just the image of a (k + 1)-dimensional
subspace of Kn+1 under the quotient map to projective space.

2.1.3 Functions

Now that we have constructed Pn as a topological space, we would like to construct a sheaf
of algebraic functions on Pn. In contrast to the situation for affine schemes, homogeneous
functions on K[x0, . . . , xn] do not define functions on Pn in any natural way. Indeed, if we
rescale a traditional point in Pn by a constant λ then the value of a degree d homogeneous
polynomial will be rescaled by λd. (It turns out that degree d homogeneous functions define
sections of a line bundle on Pn.)

However, if we take the quotient of two degree d polynomials, then we do get a well-
defined function on projective space (on the open set where the denominator does not
vanish).
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Definition 2.1.7. Let F denote the field obtained by localizing K[x0, . . . , xn] along all
(non-zero) homogeneous elements. Then the function field K(Pn) is the subfield of F
consisting of fractions whose numerators and denominators have the same degree. More
explicitly,

K(Pn) := K
(
x1

x0
, . . . ,

xn
x0

)
.

Definition 2.1.7 should be compared with the well-known theorem that every meromor-
phic function on complex projective space is a rational function whose numerators and
denominators have the same degree.

Definition 2.1.8. Let U ⊂ Pn be an open subset. We define the function ring OPn(U) to
be

OPn(U) =

{
f

g
∈ K(Pn)

∣∣∣∣V+(g) ⊂ Pn\U
}

Given an inclusion of open subsets V ⊂ U , we define the restriction map ρU,V : OPn(U)→
OPn(V ) as the inclusion as subsets of K(Pn).

Exercise 2.1.9. Prove that OPn is a sheaf of K-algebras.

Remark 2.1.10. Since K(Pn) is the fraction field of the UFD K[x1x0 , . . . ,
xn
x0

] we do not
need to define the sheaf of functions using local expressions like we did in Definition 1.10.2.

Example 2.1.11. According to Definition 2.1.8 we have OPn(Pn) = K. In other words,
the only global functions on projective space are the constant functions. (This should
be compared with Liouville’s theorem showing that the only holomorphic functions on a
compact space are the constant ones.)

2.1.4 Distinguished open affines

The next definition identifies the most important open subsets of projective space.

Definition 2.1.12. Fix a homogeneous element f ∈ K[x0, . . . , xn] of degree ≥ 1. The
distinguished open affine set corresponding to f is the open set D+,f := Pn\V+(f).

Notation 2.1.13. Set S = K[x0, . . . , xn] and consider the localization Sf at a homogeneous
element f . If we assign deg( 1

f ) = −deg(f) then Sf is a Z-graded ring. As usual we let
(Sf )d denote the degree d part.

Proposition 2.1.14. For any homogeneous element f ∈ K[x0, . . . , xn] of degree ≥ 1 we
have

OPn(D+,f ) = (K[x0, . . . , xn]f )0.

Proof. The containment ⊃ is clear, and we just need to show the reverse containment.
Since K[x0, . . . , xn] is a UFD, each element in K(Pn) admits a unique expression g

h in
lowest terms. Then OPn(D+,f ) will consist of those fractions such that h is a factor of
some power of f . If we write f r = ah, then our fraction can also be written as ag

fr . This
shows the containment ⊂.
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2.1.5 Exercises

Exercise 2.1.15. Show that Pn is an irreducible Noetherian topological space.

Exercise 2.1.16. Let I, J be homogeneous ideals properly contained in K[x0, . . . , xn].
Verify that the vanishing locus satisfies the following properties.

(1) V+(I) = V+(
√
I).

(2) V+(I) = V+(J) if and only if
√
I =
√
J .

(3) If I ⊂ J then V+(I) ⊃ V+(J).

(4) If V+(I) ⊂ V+(J) then
√
I ⊃
√
J .

Exercise 2.1.17. Prove that a closed subset X ⊂ Pn is irreducible if and only if there is
a homogeneous prime ideal p ⊂ K[x0, . . . , xn] such that X = V (p).

Exercise 2.1.18. Suppose that I ⊂ K[x0, . . . , xn] is a homogeneous ideal that is not
contained in any homogeneous principal ideal. Let U be the complement of V+(I). Prove
that OPn(U) = K.

Exercise 2.1.19. For any point x ∈ Pn, verify that the stalk OPn,x is isomorphic to
the degree 0 part of the localization of K[x0, . . . , xn] along all homogeneous elements not
contained in m.

Exercise 2.1.20. Prove that the distinguished open affines on Pn form a base for the
Zariski topology.
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2.2 Projective space: scheme

While the construction of Pn given in Definition 2.1.1 is very succinct, it is unfortunately
a bit difficult to identify the points of Pn directly using this description. An alternative
approach is to construct Pn by gluing together copies of affine space An.

In this section we study the distinguished open affines D+,f in Pn in more detail. We
will show that the sets D+,f equipped with the sheaves OPn |D+,f

are examples of the affine
schemes we studied in the previous chapter. The most important example are the “affine
charts” D+,xi , and for simplicity we will focus on this special case.

2.2.1 Distinguished charts

Recall that D+,xi = Pn\V+(xi) is the locus where xi does not vanish. As discussed in the
introduction to the chapter, the traditional points in D+,xi can naturally be identified with
the vector space Kn. This identification is achieved by rescaling by the ith coordinate

(a0 : . . . : an)↔
(
a0

ai
: . . . :

ai−1

ai
: 1 :

ai+1

ai
: . . . :

an
ai

)
In other words, the linear coordinates on D+,xi are the restriction of the functions

aj
ai

on
Pn.

We would like to “upgrade” this identification to show that D+,xi is actually isomorphic
to An (as a topological space equipped with a sheaf). While we now need to argue using
algebra in the place of traditional points, the construction is essentially the same.

The first step is to identify the ring of functions on D+,xi with the polynomial ring
of functions on affine space. According to Proposition 2.1.14, we can identify OPn(D+,xi)
with the degree 0 subring of K[x0, . . . , xn]xi .

Lemma 2.2.1. Set S = K[x0, . . . , xn]. Then (Sxi)0 is isomorphic to

K[y0, . . . , yi−1, yi+1, . . . , yn]

under the identification
xj
xi
↔ yj. More generally, each (Sxi)d is a free (Sxi)0-module

generated by xdi .

Not only does the lemma show that OPn(D+,xi) is isomorphic to a polynomial ring,
it also shows that the identification is the same as the geometric identification described
earlier – we simply invert the ith coordinate.

Exercise 2.2.2. Verify the previous lemma carefully.

The next step is to show that this identification of functions is compatible with the
topology and sheaf structure of Pn. In other words, we must show that the graded algebra
of the ring K[x0, . . . , xn] coincides with the (non-graded) algebra of the ring OPn(D+,xi)
along the open set D+,xi .
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Proposition 2.2.3. Set S = K[x0, . . . , xn]. The function f : D+,xi → An defined via the
rule

m 7→ mxi ∩ (Sxi)0

is a homeomorphism. Furthermore, f identifies the sheaf OPn |D+,xi
with the sheaf OAn.

Proof. We first check that f is a well-defined and bijective function. Recall that pullback
under S → Sxi yields a bijection between the prime ideals of Sxi and the prime ideals of
S which do not contain xi. This bijection preserves the homogeneity of ideals. Thus the
map m↔ mxi gives a bijection between the points of D+,xi and the homogeneous ideals in
Sxi which are maximal amongst all homogeneous ideals. (Note that the irrelevant ideal in
S contains xi and thus becomes identified with the entire ring Sxi , so it is not associated
with a “larger” homogeneous ideal.)

We claim that the homogeneous ideals in Sxi which are maximal amongst all homoge-
neous ideals are exactly the sets of the form

. . . nx−2
i ⊕ nx−1

i ⊕ n⊕ nxi ⊕ nx2
i ⊕ . . . (2.2.1)

for some maximal ideal n in (Sxi)0. Any such set is an ideal, and an ideal of this form is
clearly a homogeneous ideal. It only remains to show that these are the maximal elements
in the set of homogeneous ideals. For any homogeneous ideal I ( Sxi the set I ∩ (Sxi)0

must be a proper ideal of (Sxi)0. Let n be any maximal ideal containing it. If I ∩ (Sxi)d
failed to be contained in n(Sxi)d then by multiplying by x−di we would obtain an element of
I ∩ (Sxi)0 not contained in n, an impossibility. We conclude that every homogeneous ideal
is contained in an ideal described by Equation (2.2.1). On the other hand no two different
sets described by Equation (2.2.1) will contain each other. Altogether we conclude that f
is a well-defined and bijective function.

We next show that f is a homeomorphism. Let I ⊂ S be a homogeneous ideal; its
localization Ixi is still homogeneous. The set of homogeneous ideals in Sxi which are
maximal amongst all homogeneous ideals and which contain Ixi is in bijection with D+,xi ∩
V+(I). By the argument in the previous paragraph, an ideal described by Equation (2.2.1)
will contain Ixi if and only if

n ⊃ Ixi ∩ (Sxi)0.

This shows that f maps V+(I) ∩ D+,xi to V (Ixi ∩ (Sxi)0), finishing the proof that f is a
homeomorphism.

It only remains to check that the sheaves of functions are the same. The easiest way to
make the comparison is to use the base coming from distinguished open affines. Suppose
that D+,g is a distinguished open affine contained in D+,f . This implies that f becomes a
unit when we localize by g, giving us a canonical map K[x0, . . . , xn]f → K[x0, . . . , xn]g and
hence also a canonical map on the degree 0 parts

(K[x0, . . . , xn]f )0 → (K[x0, . . . , xn]g)0
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This latter map agrees with localization along the element gdeg f/fdeg g. In this way we
see that OPn(D+,g) can be obtained from OPn(D+,f ) by localizing along a function which
vanishes along its complement. This is the same description as the ring of functions for a
distinguished open affine inside of an affine scheme. We conclude that these two sheaves are
isomorphic along each distinguished open affine and thus, by Exercise 1.9.10, isomorphic
everywhere.

Since the topology and the sheaf of functions on D+,xi match up, it is fair to say (by
analogy with Definition 1.10.8) that D+,xi is an open affine subset of Pn. It turns out
that the analogous statement is true for any distinguished open affine in Pn, justifying the
terminology.

Proposition 2.2.4. For every homogeneous f ∈ K[x0, . . . , xn] the distinguished open affine
D+,f is homeomorphic to mSpec(OPn(D+,f )) and the homeomorphism identifies the sheaves
of functions on the two spaces.

The map is the same as in Proposition 2.2.3: a point m ∈ D+,f is identified with
mf ∩ (K[x0, . . . , xn]f )0. We will not give the proof here, deferring it to the next section
(Proposition 2.3.8). Proposition 2.2.4 has an important consequence:

Corollary 2.2.5. The complement of a hypersurface in Pn is an affine variety.

2.2.2 Working with affine charts

It is important to be able to pass explicitly back and forth projective space and affine
charts. Let’s review how this correspondence works according to Proposition 2.2.3.

• Let I ⊂ K[x0, . . . , xn] be a homogeneous ideal. Define the ideal J ⊂ K[x0xi , . . . ,
xn
xi

] by

dividing every degree d generator of I by xdi . Then V+(I)∩Di is the vanishing locus
of the ideal J .

Example 2.2.6. Consider the line ax + by + cz = 0 in P2. The intersection of this line
with D+,x is defined by a+ b yx + c zx = 0 in K[ yx ,

z
x ].

More generally, a closed subset X ⊂ Pn will be linear if and only if the intersection of
X with every chart D+,xi is an affine linear subset of An.

• Let J ⊂ K[x0xi , . . . ,
xn
xi

] be an ideal. We define the homogenization of J to be the ideal
I constructed by multiplying every generator of J by the smallest power of xi that
yields a polynomial. The closure of V (J) ⊂ Di in Pn is the vanishing locus of I.

The points added by taking the closure will be given by the intersection of V+(xi) with
V+(I).
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Example 2.2.7. Consider the line ax + by + c = 0 in A2. The closure in P2 is the line
ax+ by + cz = 0. By taking a closure we have added the single point (a : b : 0) recording
the “asymptotic limit” of the line. Note that parallel lines yield the same “limit point” at
infinity.

2.2.3 Exercises

Exercise 2.2.8. For each of the following closed subsets of A2, take the closure in P2 and
identify explicitly which points are added when we take the closure.

(1) x2 + y2 = 1 in A2.

(2) x2 = y in A2.

(3) y2 = f(x) in A2.

Exercise 2.2.9. Let D+,xi , D+,xj be two different affine charts in Pn. We have iso-
morphisms φi : An → D+,xi and φj : An → D+,xj . Let Uij ⊂ An be the preimage of
D+,xi ∩D+,xj under φi and define Uji analogously. What are Uij , Uji explicitly? What is

the map φ−1
j ◦ φi : Uij → Uji?
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2.3 mProj construction

We next describe how to construct a geometric object from an arbitrary finitely generated
graded K-algebra. Our construction will mimic the scheme-theoretic construction of Pn
from the ring K[x0, . . . , xn]. Note that we do not insist that our graded ring R be a quotient
of a polynomial ring, nor do we insist that the degree 0 part be isomorphic to K.

Definition 2.3.1. Let R be a finitely generated graded K-algebra. (Remember this means
that the canonical copy of K is contained in R0.) A homogenous ideal m ∈ R is said
to be almost maximal if it is prime and it is a maximal element of the set of all prime
homogeneous ideals which do not contain R>0. We define mProj(R) to be the set of
almost maximal homogeneous ideals in R.

Given any homogeneous ideal I, we define V+(I) to be the set of almost maximal
homogeneous ideals containing I. The Zariski topology is the topology whose closed sets
are the vanishing loci V+(I).

Exercise 2.3.2. Verify carefully that the proposed definition for the Zariski topology
actually is a topology.

Exercise 2.3.3. Let X ⊂ Pn be a closed subset defined by the vanishing locus of a homoge-
nous ideal I ⊂ K[x0, . . . , xn]. Prove that X is homeomorphic to mProj(K[x0, . . . , xn]/I).

Exercise 2.3.4. Suppose that R = R0[x] where R0 is a finitely generated K-algebra and
x lies in degree 1. Show that mProj(R) ∼= mSpec(R0).

2.3.1 Functions on mProjs

There are several ways to define the sheaf of functions on a mProj. Just like for affine
schemes, we can no longer appeal to the existence of a “function field” and so we will
construct the sheaf of functions via the base of distinguished open affines via a gluing
argument.

Definition 2.3.5. Let R be a finitely generated graded K-algebra. For any homogeneous
f ∈ R with degree > 0 we define the distinguished open affine D+,f in mProj(R) to be the
complement of V+(f).

Exercise 2.3.6. Show that distinguished open affines form a base of the topology on
mProj(R).

The following lemma is the key tool for working with distinguished open affines.
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Lemma 2.3.7. Let S be a Z≥0-graded ring and let f be a homogeneous element of S of
degree > 0. The assignment

p ⊂ S localization // pf ⊂ Sf

intersection

��
pf ∩ (Sf )0 ⊂ (Sf )0.

defines a bijection between the homogeneous prime ideals in S not containing f and the
prime ideals of (Sf )0.

Proof. Standard properties of localization yield a bijection between the prime homogeneous
ideals in S not containing f and the prime homogeneous ideals in Sf . It only remains to
show that intersection defines a bijection between the prime homogeneous ideals in Sf and
the prime ideals of (Sf )0. Using the injection (Sf )0 → Sf it is clear that the preimage of
any homogeneous prime ideal is prime. Conversely, given a prime ideal p ⊂ (Sf )0, consider
the subset

. . . Q−2 ⊕Q−1 ⊕Q0 ⊕Q1 ⊕Q2 ⊕ . . .

where Qi is the set of elements h ∈ (Sf )i such that hdeg f/f i ∈ p. By primality Q0 = p. It
is clear that if h ∈ Qi and h′ ∈ (Sf )j then hh′ ∈ Qi+j . Furthermore, if h1, h2 ∈ Qi then

(h1 + h2)2 deg(f)

f2i
=

∑2 deg(f)
i=0 hi1h

2 deg(f)−i
2

f2i
∈ p

since every term of the sum is divisible by either hdeg f
1 or hdeg f

2 . We deduce that (h1+h2)2 ∈
Q2i, and thus by primality of p we have h1 +h2 ∈ Qi. Altogether this shows that the Qi are
the components of a homogeneous ideal q ⊂ Sf . Since primality of a homogeneous ideal
can be detected using only homogeneous elements, the primality of q follows directly from
the primality of p. Thus we have verified that intersection does indeed define a bijection
between the prime homogeneous ideals in Sf and the prime ideals of (Sf )0.

Proposition 2.3.8. Let D+,f be a distinguished open affine in mProj(R). Then D+,f is
homeomorphic to mSpec((Rf )0) via the correspondence

m ⊂ R oo localization // mf ⊂ RfOO

intersection

��
mf ∩ (Rf )0 ⊂ (Rf )0.

Exercise 2.3.9. Prove Proposition 2.3.8 by mimicking the proof of Proposition 2.2.4.
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This homeomorphism allows us to make the following definition.

Definition 2.3.10. Let R be a finitely generated graded K-algebra. For every distin-
guished open affine D+,f in R we let Õ(D+,f ) denote be the degree 0 part of the localization
of R along all homogeneous elements h such that D+,f ∩ V+(h) = ∅. We define ρ̃D+,f ,D+,g

using the universal property of localization.

We then define the structure sheaf OmProj(R) by applying Theorem 1.9.2 using the base

of distinguished open affines equipped with Õ, ρ̃ as constructed above.

Exercise 2.3.11. Verify carefully that the construction above gives a sheaf on mProj(R).
(Hint: show that if D+,f ⊂ D+,g then there is a commutative diagram

D+,f

∼= //

��

mSpec((Rf )0)

��
D+,g

∼= // mSpec((Rg)0).

where the map on the right is induced by localizing (Rg)0 along fdeg g/gdeg f . Then verify
that the desired gluing property matches the sheaf property for affine schemes.)

Exercise 2.3.12. Let R be a finitely generated graded K-algebra. Since an almost maximal
homogeneous ideal m is prime, the set S of homogeneous elements not contained in m is
multiplicatively closed. Show that the stalk of OmProj(R) at a point m is (RS)0.

Warning 2.3.13. Let R be a finitely generated graded K-algebra. In general it is not
possible to recover R from the topology and sheaf of functions on mProj(R): there can
be many different graded rings which have the same mProj. (Note the contrast with the
mSpec construction for affine schemes.)

The key issue is that the mProj construction comes with an extra piece of data: it
actually returns both a scheme X and (if R is generated in degree 1) a line bundle L on
X. (In the example mProj(K[x1, . . . , xn]) this line bundle L is the dual of the tautological
line bundle on Pn.) Even when we fix both the scheme X and the line bundle L, it is still
not true that we can recover the graded ring we started with; however see Remark 2.7.9.

2.3.2 Structural maps

Suppose that R is a finitely generated graded K-algebra. The degree 0 piece R0 plays an
important role in understanding the geometry of mProj(R).

Consider the distinguished open affine D+,f ⊂ mProj(R). Note that the localization
map yields a natural inclusion R0 ↪→ OmProj(R)(D+,f ). Furthermore these maps commute
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with further localizations, in the sense that if D+,g ⊂ D+,f we have commutative diagrams

R0
//

%%

OmProj(R)(D+,f )

restriction

��
OmProj(R)(D+,g).

By the gluing property we conclude that for every open subset U there is an inclusion
R0 ↪→ OmProj(R)(U). In particular:

• R0 injects into the space of global sections on mProj(R).

R0 need not be isomorphic to OmProj(R)(mProj(R)). However, it turns out that the
global sections OmProj(R)(mProj(R)) will always be a module-finite extension of R0. For
now we will only use a weaker property:

Theorem 2.3.14. Let R be a finitely generated graded K-algebra. Then OmProj(R)(mProj(R))
is a finitely generated K-algebra.

Unfortunately I do not know of any easy proof of this statement; we will only see a
proof (much) later in the course.

Here is the geometric interpretation of R0. For any distinguished open affine D+,f the
inclusion R0 ↪→ OmProj(R)(D+,f ) determines a dominant morphism D+,f → mSpec(R0) of
affine schemes. Furthermore, given any two distinguished open affines D+,f , D+,g the two
induced functions on the intersection are the same. Thus we can conclude:

• There is a continuous function p : mProj(R)→ mSpec(R0) with dense image.

After we define morphisms of quasiprojective schemes in the next section, we will recognize
that p is actually a morphism in our category. In fact, it turns out that the function p is
surjective; see Exercise 2.11.9.

Conceptually it is best to think of the map mProj(R) → mSpec(R0) as part of the
data of the mProj construction. In other words, mProj is a “relative construction” over
mSpec(R0). As we will see later on, it is only when we use this perspective that we can
identify the “natural” geometric properties of mProj.

2.3.3 Exercises

Exercise 2.3.15. Consider the distinguished open affine D+,x2+y2+z2 in P2. Identify ex-
plicitly the finitely generated K-algebra R such that D+,x2+y2+z2

∼= mSpec(R) by writing
R as a quotient of a polynomial ring.
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Exercise 2.3.16. Let R be a finitely generated graded K-algebra. Show that a closed
subset X ⊂ mProj(R) is irreducible if and only if there is a homogeneous prime ideal I
such that X = V (I). Conclude that every closed subset in mProj(R) is a finite union of
the vanishing loci of homogeneous prime ideals.

Exercise 2.3.17. Let R be a finitely generated graded K-algebra. Prove that mProj(R)
is a Noetherian topological space.

Exercise 2.3.18. Compute mProj(K[x, y]/(xy)). (Check to make sure that your algebraic
computation matches your geometric intuition concerning V+(xy) in P1.)

Exercise 2.3.19. Compute mProj(K[x, y]) where x lies in degree 1 and y lies in degree
2. (Choose a covering of this Proj by affine charts and describe how these charts glue. Do
you recognize the resulting variety?)

Exercise 2.3.20. Consider X = mProj(K[x0, x1, x2]) where x0, x1 are in degree 1 and
x2 is in degree 2. Prove that X is isomorphic to the quadric cone in P3

K defined by the
equation y2 − xz.

Exercise 2.3.21. Let U ⊂ P2
K be the complement of a K-point. Prove that OP2(U) ∼= K.
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2.4 Quasiprojective schemes and projective schemes

A projective scheme X is a closed set of projective space equipped with a scheme struc-
ture. Just as with affine schemes, we will formulate projective schemes in an “embedding
free” way. Actually, our construction will yield a more general class of schemes than just
projective schemes.

2.4.1 Quasiprojective schemes

The following definition identifies the most general class of geometric object that we will
work with.

Definition 2.4.1. A quasiprojective K-scheme X is an open subset of some mProj(R)
where R is a finitely generated graded K-algebra. It comes equipped with the following
data:

(set, topology, sheaf of functions) = (X,ZarmProj(R)|X ,OmProj(R)|X).

In particular, each mProj(R) is an example of a quasiprojective scheme. (Despite the
notation, mProj(R) need not be a projective scheme; see Section 2.4.2.)

Exercise 2.4.2. Verify that every quasiaffine K-scheme is also a quasiprojective K-scheme.

We say that an open subset U ⊂ X is an open affine if U is homeomorphic to
mSpec(OX(U)) and this homeomorphism identifies OX |U with the sheaf of functions on
the mSpec. Note that every distinguished open affine is an open affine in this sense so that
such opens form a base for the Zariski topology on X.

Definition 2.4.3. Suppose that X is a quasiprojective scheme. For any open subset
U ⊂ X and any element g ∈ OX(U) we define V (g) = {x ∈ U |ρU,x(g) ∈ mx}.

Using Definition 2.4.3, we define morphisms in the same way that we did for quasiaffine
schemes:

Definition 2.4.4. A morphism f : X → Y of quasiprojective schemes consists of the
following data:

• A continuous set-theoretic map f : X → Y .

• A pullback map of sheaves f ] : OY → OX .

which satisfy the following compatibility criterion:

(*) For any open subset V ⊂ Y and for any ideal I ⊂ O(V ) we have f−1(V (I)) =
V (〈f ](I)〉) inside f−1(V ).

Remark 2.4.5. We could also replace (*) by condition (*’) as in Exercise 1.12.5.



84 CHAPTER 2. PROJECTIVE SCHEMES

In this way we get a category QProSch/K. Note that AffSch/K is a full subcategory.

Example 2.4.6. Suppose X is a quasiprojective K-scheme. In contrast to affine schemes
and the mProj construction, it is possible that OX(X) is not finitely generated over K.
For example, suppose that W is the union of two planes P1, P2 in P3 which meet along a
line `. Let `′ be a line in P1 that is different from ` (so ` and `′ meet along a point p) and
set X = W\`′.

We can think of OX(X) as the combination of all functions on P1\`′ ∼= A2 and all
functions on P2\p whose restrictions to `\p agree. (Verify this carefully!) By Exercise
2.3.21, the only functions on P2\p are the constant functions. Thus OX(X) consists of
all functions on A2 which restrict to a constant function on a line in A2. Without loss of
generality we can identify this line as V (y), in which case OX(X) is the subring of K[x, y]
generated as a K-algebra by 1 and by monomials of the form xmy1+n with m,n ≥ 0.

2.4.2 Projective schemes

The most important case of the Proj construction is when the degree 0 piece of R is exactly
K (and not some larger ring).

Definition 2.4.7. A quasiprojective scheme X is projective if there is a finitely generated
graded K-algebra R satisfying R0

∼= K such that X is isomorphic to mProj(R).

More generally, we will see later that for any finitely generated graded K-algebra R
the structural morphism mProj(R)→ mSpec(R0) has projective fibers (Exercise 2.10.16).
In other words, we can think of mProj(R) as being “projective over mSpec(R0)” – this
motivates the notation mProj.

2.4.3 Morphisms to affine schemes

A morphism of affine schemes f : mSpec(R) → mSpec(S) is determined by a K-algebra
homomorphism f ] : S → R. The following important result gives a related statement for
all quasiprojective schemes.

Theorem 2.4.8. Let X be a quasiprojective scheme and mSpec(S) an affine scheme.
There is a bijection between morphisms f : X → mSpec(S) and K-algebra homomorphisms
f ] : S → OX(X).

Proof. Fix an open cover {Ui} of X by open affines. Consider the commutative diagram

Hom(X,mSpec(S)) //

ρ1

��

Hom(S,OX(X))

ρ2

��∏
i Hom(Ui,mSpec(S)) //

∏
i Hom(S,OX(Ui)).
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Since a continuous map is determined by its restrictions to an open cover, the map ρ1 is
injective. It is clear that the image of ρ1 is contained in the set

{ (fi : Ui → mSpec(S)) | fi|Ui∩Uj = fj |Ui∩Uj}

By Exercise 2.4.16 ρ1 is a bijection onto this set.

Consider now the map ρ2. By the gluing property for sheaves we know that OX(X) is
the same as

{ (gi ∈ OX(Ui)) | gi|Ui∩Uj = gj |Ui∩Uj}

Thus, ρ2 takes Hom(S,OX(X)) bijectively to the subset of
∏
i Hom(S,OX(Ui)) defined by

{ (f ]i : S → OX(Ui)) | f ]i ◦ ρij = f ]j ◦ ρji}.

By Proposition 1.12.8 the map along the bottom of the diagram is a bijection. Fur-
thermore, it identifies the image of ρ1 with the image of ρ2. Altogether we see that the
map along the top of the diagram is a bijection.

2.4.4 Open and closed embeddings

Next we discuss how to give open and closed sets of a quasiprojective scheme the structure
of a quasiprojective scheme.

Definition 2.4.9. A morphism f : X → Y of quasiprojective schemes is an open embed-
ding if f defines an isomorphism from X to an open subset of Y and the structure sheaf
of X is isomorphic to the restriction of the structure sheaf to this open subset.

We will call X an open subscheme of Y if additionally f is an inclusion map.

The terminology is slightly confusing, but not in an interesting way: an open embedding
f : X → Y defines an isomorphism between X and an open subscheme of Y . Thus for
many purposes the terms open embedding/subscheme can be used interchangeably.

Exercise 2.4.10. Prove that a composition of open embeddings is an open embedding.

It is somewhat harder to work with closed subsets. Although we give define closed
embedding/subscheme here, we will not have the tools to work with them until Section
2.8.

Definition 2.4.11. A morphism f : X → Y of quasiprojective schemes is a closed embed-
ding if f is a homeomorphism onto a closed subset of Y and for every open affine V ⊂ Y
the map f ](V ) : OY (V )→ OX(f−1(V )) is surjective.

We call X a closed subscheme of Y if additionally f is an inclusion map.
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The relationship between closed embeddings and closed subschemes is the same as
the relationship between open embeddings and open subschemes: a closed embedding
f : X → Y defines an isomorphism between X and a closed subscheme of Y . However, this
relationship is no longer immediate from the definitions and we defer the proof to Section
2.8.

Warning 2.4.12. If f : X → Y is a closed embedding we cannot conclude that f ](U) :
OY (U) → OX(f−1(U)) is surjective for every open set U ⊂ Y . For example, consider
the closed embedding f : X → P1 where X is the disjoint union of two K-points. Then
OP1(P1) ∼= K but OX(f−1(P1)) = OX(X) ∼= K2. Surjectivity does not behave compatibly
with gluing!

While our definition of projective and quasiprojective schemes is very explicit, it has
the disadvantage of obscuring the geometric significance. The following theorem clarifies
the geometric meaning of projectiveness and quasiprojectiveness:

Theorem 2.4.13. A quasiprojective scheme is projective if and only if admits a closed
embedding to some projective space.

Every quasiprojective scheme admits an open embedding to a projective scheme.

The proof will be given in Theorem 2.8.12 and in Theorem 2.10.15.

Remark 2.4.14. Note the definition is exactly analogous to the affine case: an affine
scheme is a closed subscheme of affine space and a quasiaffine scheme is an open subscheme
of an affine scheme.

2.4.5 Exercises

Exercise 2.4.15. Set X = mProj(K[x, y, z]) where x, y lie in degree 1 and z lies in degree
0. Consider the structural morphism p : X → A1. Prove that every fiber of π is isomorphic
to P1

L for some finite extension L/K. (We will later identify X as the product of P1 and
A1.)

Exercise 2.4.16. Let X,Y be quasiprojective schemes. Suppose that we have an open
cover {Ui}i∈I of X and morphisms of quasiprojective schemes fi : Ui → Y . Suppose
furthermore that for all i, j ∈ I we have fi|Ui∩Uj = fj |Ui∩Uj (as functions equipped with
pullback maps of sheaves).

Prove that there is a unique morphism f : X → Y such that for every i ∈ I we have
f |Ui = fi. (Hint: apply Proposition 1.9.7. The main point is to verify the extra condition
(*).)

Exercise 2.4.17. Construct the quotient morphism An+1\{0} → Pn as a morphism of
quasiprojective schemes. (Hint: one way is to define this morphism on affine charts and
show that these morphisms are compatible on the overlaps as in Exercise 2.4.16.)
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Exercise 2.4.18. Use Chevalley’s Theorem for affine schemes to prove that for any mor-
phism f : X → Y of quasiprojective schemes the image of a constructible subset of X is a
constructible subset of Y .

Exercise 2.4.19. Let X be a quasiprojective scheme. Let U ⊂ X be an open subset and
fix f ∈ OX(U). Let Uf denote the complement of the vanishing locus of f in U . Prove
that OX(Uf ) = OX(U)f . (We have already proved this when U is an open affine; the goal
is to extend this property to arbitrary open sets.)
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2.5 Properties of quasiprojective schemes

The goal of this section is to extend several definitions and constructions from the setting
of affine schemes to the setting of quasiprojective schemes.

2.5.1 Local properties

Suppose that P is a property we have defined for affine schemes. We would like to say that
a quasiprojective scheme X satisfies P if X admits an open cover of distinguished open
affines, each of which satisfies property P . In order for this to be a well-behaved notion,
we need to verify that property P is independent of the choice of affine cover.

It turns out that these “well-behaved” properties P are precisely those which are com-
patible with localization. (Since so many properties of rings are compatible with localiza-
tion, we can obtain many properties of schemes in this way!)

Definition 2.5.1. Let P be a property of rings. We say that P is a local property if for
any finitely generated K-algebra R the following conditions are equivalent:

(1) R satisfies P .

(2) Rf satisfies P for every f ∈ R.

(3) There is a finite set of elements fi which generate R such that Rfi satisfies P for
every i.

The following lemma is crucial for passing information from one open affine to another.

Lemma 2.5.2 (Nike’s lemma). Let X be a quasiprojective scheme. Suppose that U and V
are open affines in X. Then U ∩ V admits a cover by open sets which are simultaneously
distinguished open affines in both U and V .

Proof. Fix any point x ∈ U ∩ V . Choose an f ∈ OX(U) such that the corresponding
distinguished open affine W is an open neighborhood of x contained in U∩V . Choose a g ∈
OX(V ) such that the corresponding distinguished open affine D is an open neighborhood
of x contained in W . Let g′ denote the image of g under the restriction map OX(V ) →
OX(W ).

Note that D is the distinguished open affine in W corresponding to g′; indeed, according
to Exercise 1.11.13 the vanishing locus can be detected by restricting to stalks and by
construction the restrictions of g′ and g to every stalk in W agree. We can write g′ = g′′/fn

for some g′′ ∈ R and some integer n. Then D is the distinguished open affine in U which
is the complement of V (fg′′).

As a consequence, we obtain:
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Theorem 2.5.3 (Affine Communication Lemma). Let P be a local property of finitely
generated K-algebras. Let X be a quasiprojective scheme. Then every open affine in X
satisfies P if and only if X admits an open cover by open affines which satisfy P .

Exercise 2.5.4. Prove the Affine Communication Lemma.

There are some properties of rings which satisfy a different chain of equivalences.

Definition 2.5.5. Let P be a property of rings. We say that P is a max-local property if
for any finitely generated K-algebra R the following conditions are equivalent:

(1) R satisfies P .

(2) Rm satisfies P for every maximal ideal m ∈ R.

Proposition 2.5.6. Let X be a quasiprojective scheme. Suppose that P is a max-local
property. Then the following are equivalent:

(1) There is an open cover of X by open affines {Ui} such that each OX(Ui) satisfies P .

(2) Every stalk OX,x satisfies P .

(3) For every open affine {U} we have that OX(U) satisfies P .

In this case we say that X satisfies property P .

Proof. (1) =⇒ (2): Fix a point x ∈ X. Since {Ui} is an open cover, x ∈ Uj for some j.
By Proposition 1.11.9 the stalk OX,x is a localization of OX(Uj) along a maximal ideal.
Thus OX,x satisfies P .

(2) =⇒ (3): Fix an open affine U . For every x ∈ U Proposition 1.11.9 shows that the
stalk OX,x is the localization of OX(U) along the corresponding maximal ideal. Thus P
holds for OX(U).

(3) =⇒ (1): Immediate.

2.5.2 Irreducible and reduced

Exercise 2.5.7. Prove that every quasiprojective scheme is a Noetherian topological space.

In particular, by Exercise 1.3.16 every quasiprojective scheme can be written as a finite
union of irreducible components. When we are working with mProj(R), the irreducible
components will be determined by the minimal homogeneous prime ideals. We say that a
quasiprojective scheme is irreducible if it has a unique irreducible component.

Reducedness takes a little more work. The key is:

Exercise 2.5.8. Let R be a finitely generated K-algebra. The property Nil(R) = 0 is a
stalk-local property.
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As discussed above, this gives us a very clean way to work with the reduced property
for quasiprojective schemes: we define reducedness using local rings.

Definition 2.5.9. Let X be a quasiprojective scheme and let x ∈ X. We say that X is
reduced at x if the nilradical of OX,x is 0.

Exercise 2.5.10. (1) Suppose that X = mSpec(R) is an affine scheme. Let {pi} be the
set of associated primes for the zero ideal such that Rpi is not reduced. Prove that
x ∈ X is non-reduced if and only if it lies in V (pi) for some i.

(2) Suppose that X is an arbitrary quasiprojective scheme. Prove that the set of nonre-
duced points in X is closed.

We say that a quasiprojective scheme X is reduced if it is reduced at every local point.
By Proposition 2.5.6, this is equivalent to saying that X admits an open covering by open
affines which are reduced.

2.5.3 Varieties

Definition 2.5.11. A quasiprojective variety is a quasiprojective scheme that is both
irreducible and reduced.

Exercise 2.5.12. Let X be a quasiprojective scheme. Show that X is a variety if and
only if for every open subset U ⊂ X we have that OX(U) is a domain. (Warning: this
is not equivalent to saying that OX,x is a domain for every point x. Can you think of a
counterexample?)

Exercise 2.5.13. Show that if R is a finitely generated graded K-algebra which is a domain
then mProj(R) is a quasiprojective variety.

For a quasiprojective variety X every local ring OX,x is a domain. Note that if U is
an open affine in X, then for any two points in U the fraction fields of the local rings will
be isomorphic. Using a covering by open affines, we see that the fraction fields of all the
local rings OX,x will be isomorphic, and in particular every open affine U ⊂ X will have
isomorphic function fields.

Definition 2.5.14. Let X be a quasiprojective variety. The function field K(X) is defined
to be the function field of any open affine U ⊂ X.

Just as we saw earlier for projective space in Definition 2.1.7, if X ∼= mProj(R) for a
domain R then the function field will be the degree 0 elements in the localization of R
along all non-zero homogeneous elements.

Exercise 2.5.15. Prove that if X is a quasiprojective variety then we can use Definition
1.10.2 to define the structure sheaf on X.
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2.5.4 Exercises

Exercise 2.5.16. Decide whether the following projective schemes are varieties. If not,
are they reducible or non-reduced (or both)?

(1) mProj(K[x, y, z]/(xy)).

(2) mProj(K[x, y, z]/(x3 − yz2, x2 − yz)).

(3) mProj(K[w, x, y, z]/(xy − zw)).

(4) mProj(K[w, x, y, z]/(xy − zw, x2 − wy)).

It may be helpful to sketch a picture of these vanishing loci in affine charts.

Exercise 2.5.17. Let U ⊂ P2 be the complement of a point. Show that U is not a
quasiaffine scheme. (U is also not a projective scheme because it is not proper; see Section
2.11.)
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2.6 Rational maps

Suppose that X is a quasiprojective variety. Many of the properties of X can be detected
on any non-empty open subset:

• Every non-empty open subset of X is dense.

• For any non-empty open affine subset U ⊂ X we have K(U) = K(X).

Based on these properties, it is reasonable to expect that much of the interesting informa-
tion about X can be detected on a non-empty open subset. Here is another instance of
this principle:

Lemma 2.6.1. Let X,Y be quasiprojective varieties and let f1, f2 : X → Y be two mor-
phisms. Suppose that there is a non-empty open subset U ⊂ X such that f1|U = f2|U .
Then f1 = f2.

Proof. Note that U will intersect every open subset of X. It suffices to prove the theorem if
we replace Y by a dense open set and X by its preimage. Furthermore, by Exercise 2.4.16
we can check the equality of f1 and f2 on any open cover of X. Altogether it suffices to
prove the case when X = mSpec(R) and Y = mSpec(S) are affine varieties.

After shrinking U we may suppose that it is a distinguished open affine Dg of X.

The morphisms f ]1, f
]
2 : S → R become identical if we compose with the localization map

R→ Rg. Since R is a domain, this implies that f ]1 = f ]2.

This lemma indicates that all the interesting information about a morphism of quasipro-
jective varieties can be detected on an open subset. Our next definition codifies this prin-
ciple.

Definition 2.6.2. Consider a tuple (X,Y, U, f) where X and Y are quasiprojective vari-
eties, U is a non-empty open subset of X, and f is a morphism of quasiprojective schemes
f : U → Y . We say that two such tuples (X,Y, U, f) and (X,Y, U ′, f ′) are equivalent if
f |U∩U ′ = f ′|U∩U ′ .

A rational map f : X 99K Y is an equivalence class of tuples (X,Y, U, f).

Exercise 2.6.3. Check carefully that the relation described in Definition 2.6.2 is actually
an equivalence relation.

This definition is particularly useful for projective varieties since (as we will see in
Section 2.7) the natural maps between projective varieties are often only rational maps
and not morphisms.

Remark 2.6.4. One can also define rational maps for arbitrary quasiprojective schemes.
However, a morphism is no longer uniquely determined by its behavior on an arbitrary
open subset. To recover this uniqueness property, we must ensure that the scheme-theoretic
image of inclusion of the open set is the entire scheme; see Construction 2.8.11.
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Note that the ambiguity about the locus U where f is defined is baked into the notation
of a rational map. It turns out that every rational map admits a largest open set U where
f is defined. This set is known as the “locus of definition” of f .

Exercise 2.6.5. Verify that any rational map is represented by a tuple (X,Y, U, f) such
that for any other tuple (X,Y, U ′, f ′) in the same equivalence class we have U ⊃ U ′. (Hint:
see Exercise 2.4.16.)

Example 2.6.6. Recall that P1 parametrizes the space of lines in A2 through the origin.
By sending any non-zero point in A2 to the unique line containing it, we get a rational
map φ : A2 99K P1 defined away from the origin.

This rational map is known as projection away from the origin. In terms of K-points,
this is exactly the map (a, b) 7→ (a : b). (In other words, the coordinates on P1 record the
slope of the line connecting the point to the origin.)

We can define this function in a rigorous way using charts. Let’s use coordinates x0, x1

on A2 (note the unusual indexing!) and y0, y1 on P1. Then the map Dx0 → D+,y0 is defined
by sending y0

y1
7→ x0

x1
, and the map Dx1 → D+,y1 sends y1

y0
7→ x1

x0
.

2.6.1 Rational maps and function fields

We would like to build a category whose morphisms are rational maps. However, in general
it is not possible to compose rational maps – the image of the first map might be contained
in the locus where the second map is undefined. Instead we must restrict our attention to
a particular type of rational map:

Definition 2.6.7. We say that a rational map f : X 99K Y of quasiprojective varieties is
dominant if it is represented by a morphism f : U → Y such that the set-theoretic image
of U is dense in Y .

Exercise 2.6.8. Show that if f : X 99K Y is dominant then any representative f : U → Y
will have the property that the set-theoretic image contains an open subset of Y .

Dominant rational maps have the key advantage that they can be composed.

Lemma 2.6.9. Suppose that f : X 99K Y and g : Y 99K Z are rational maps of quasipro-
jective varieties. Then there is a representative (Y, Z, V, g) of g and a representative
(X,Y, U, f) of f such that f−1(V ) = U .

Thus we can define the composition g ◦ f : X 99K Z using (X,Z,U, g ◦ f).

Proof. Follows immediately from Exercise 2.6.8.

Given a dominant rational map f : X 99K Y , one obtains a map f ] : K(Y ) → K(X)
representing pullback of rational functions. To define this map carefully, we choose open
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affines Spec(R) ⊂ X, Spec(S) ⊂ Y such that f yields a dominant morphism f : Spec(R)→
Spec(S). Since f is dominant, the ring map f ] : S → R is injective. After localizing we
obtain a map f ] : Frac(S)→ Frac(R). One can check without too much trouble that this
map K(Y )→ K(X) is independent of our choices.

Theorem 2.6.10. There is a contravariant equivalence of categories
quasiprojective K-varieties

equipped with dominant
rational maps

 ↔


finitely generated field extensions

of K equipped with
K-algebra homomorphisms


defined by the functor that sends X 7→ K(X) and f : X 99K Y to f ] : K(Y )→ K(X).

We could equally well use affine K-varieties in place of quasiprojective K-varieties in
our category on the left.

Proof. To check that this functor defines an equivalence of categories, we must ensure that
it is full, faithful, and essentially surjective.

Essential surjectivity was done in Exercise 1.10.12: suppose we write K = K(g1, . . . , gr).
The subring R := K[g1, . . . , gr] is a domain so that mSpec(R) is a variety, and the function
field of mSpec(R) is isomorphic to K.

We next check faithfulness. Suppose that f1, f2 : X 99K Y are two rational maps. There
are open affines mSpec(R) ⊂ X and mSpec(S) ⊂ Y such that f1, f2 define morphisms

mSpec(R) → mSpec(S). If the localized maps f ]1, f
]
2 : Frac(S) → Frac(R) are the same,

then by restricting these maps to S ⊂ Frac(S) we see that the ring maps f ]1, f
]
2 are also

the same.

Finally, we check full. Suppose X,Y are quasiprojective varieties and we are given a
map f ] : K(Y )→ K(X). Choose open affines mSpec(R) ⊂ X, mSpec(S) ⊂ Y , so we obtain
a map f ] : Frac(S)→ Frac(R). Suppose that S = K[g1, . . . , gr]. We can write f ](gi) = ai

bi
for some ai, bi ∈ R. Thus the image of S in Frac(R) is contained in the localization
Rb1b2...br . In other words, f ] defines a morphism f : mSpec(Db1b2...br) → mSpec(S), and
hence a rational map f : X 99K Y . It’s clear that f induces our original map f ] on the
level of function fields.

2.6.2 Birational maps

We conclude by studying the isomorphisms in the categories of Theorem 2.6.10.

Theorem 2.6.11. Let f : X 99K Y be a dominant rational map of quasiaffine K-varieties.
The following are equivalent:

(1) f induces an isomorphism of function fields f : K(X) ∼= K(Y ).
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(2) There is a dominant rational map g : Y 99K X such that the compositions f ◦ g and
g ◦ f are both the identity map on their locus of definition.

(3) There are open subsets U ⊂ X and V ⊂ Y such that f |U : U → V is an isomorphism.

In this situation we say that f is a birational map. More generally, we say that X and Y
are birationally equivalent if we want to assert that there is some birational map between
them.

Proof. By Theorem 2.6.10 (1) is equivalent to saying that f is an isomorphism in the
category of affine K-varieties equipped with dominant rational maps. In other words, (1)
is equivalent to the existence of an inverse map g : Y 99K X such that the compositions
f ◦ g and g ◦ f are in the equivalence class of the identity map. By Lemma 2.6.1 this is
equivalent to (2).

The equivalence of (2) and (3) is clear.

Warning 2.6.12. The open subsets U in Theorem 2.6.11.(3) need not coincide with the
locus of definition of f . Example 2.6.13 shows that the locus of definition can be strictly
larger than the set U in Theorem 2.6.11.(3).

Example 2.6.13. Consider the morphism f : A2 → A2 defined by the ring map f ] :
K[x, y] → K[u, v] sending x 7→ u, y 7→ uv. This function was considered in Example 1.6.3.
We showed that f is not an isomorphism but that we do obtain an isomorphism after
passing to the open subsets Dx and Du. In particular we see that f is a birational map.

2.6.3 Exercises

Exercise 2.6.14. Show that the cuspidal curve mSpec(K[x, y]/(y2 − x3)) is birational to
A1
K, but the two spaces are not isomorphic. Write down an open set and an isomorphism

realizing the birational equivalence. Identify the induced isomorphism of function fields
explicitly.

Exercise 2.6.15. Show that the morphism f : A1
K → mSpec(K[x, y]/(y2 − x3 − x2)) is

birational to A1
K, but the two spaces are not isomorphic. Write down an open set and

an isomorphism realizing the birational equivalence. Identify the induced isomorphism of
function fields explicitly.

Exercise 2.6.16. Consider the Cremona transformation f : P2 99K P2 defined by the map
of homogeneous coordinate rings K[x, y, z]→ K[u, v, w] sending x 7→ vw, y 7→ uw, z 7→ uv.
Show that f is a birational map. Identify the largest open locus where f is defined. Identify
the largest open locus where f is an isomorphism.

Exercise 2.6.17. A quasiprojective variety X is said to be rational if it is birationally
equivalent to a projective space Pn for some n. Show that the hypersurface V+(wz−xy) ⊂
P3 is birational to P2.
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2.7 Graded homomorphisms

Let R,S be finitely generated graded K-algebras. Given a graded K-algebra homomorphism
f † : S → R we might hope to construct a morphism f : mProj(R) → mProj(S). This is
too optimistic – as discussed in the beginning of the chapter, such a morphism can only
be defined on the complement of the locus where the defining polynomials vanish.

The following propositions show that a graded K-algebra homomorphism f † : S → R
defines a morphism from an open subset of mProj(R) to mProj(S). In particular, graded
homomorphisms give us a rich source of rational maps.

Proposition 2.7.1. Let f † : S → R be a graded homomorphism of finitely generated
graded K-algebras. Let U ⊂ mProj(R) be the complement of V+(f †(S>0)). Then f † defines
a morphism f : U → mProj(S).

Proof. By Exercise 2.4.16, we can construct f by defining its restriction to the sets in a base
of U consisting of open affines (and ensuring these maps are compatible with restriction).
Fix any homogeneous element g ∈ S. Then by localizing f † and passing to degree 0 parts
we obtain a map (Sg)0 → (Rf†(g))0. This induces a morphism f : mSpec(D+,f†(g)) →
mSpec(D+,g).

To ensure these maps glue, we must check they are compatible under restriction. Note
that if V+(g) ⊂ V+(h) then g defines an invertible element in Sh. Thus we have a canonical
map (Sg)0 → (Sh)0 obtained by localizing (Sg)0 along hdeg g/gdeg h. This shows that the
map of affine varieties induced by the ring map (Sh)0 → (Rf†(h))0 agrees with the restriction
of the map of affine varieties mSpec(D+,f†(g))→ mSpec(D+,g) to the open set D+,h. This
finishes the proof.

Example 2.7.2. Fix some subset I ⊂ {0, . . . , n} of size k + 1. Let L be the (n − k − 1)
dimensional hyperplane defined as the common vanishing locus of the xi. The inclusion
K[xI ]i∈I → K[x0, . . . , xn] induces a morphism π : Pn\L → Pk. On each coordinate chart
D+,xi for i ∈ I the restriction of π is simply a coordinate projection An → Ak. The closure
of each fiber of π will be a hyperplane of dimension n−k which is defined by k independent
homogeneous linear equations in the variables xI .

Let’s discuss the geometry of this important construction. Starting from the fixed
(n − k − 1)-plane L, we have assigned to any point x ∈ Pn the n − k plane spanned by
x and L. In particular, we are thinking of the points Pk as the parameter space for the
(n− k)-planes containing L. The corresponding morphism Pn\L→ Pk sends a point of Pn
to the unique (n − k)-plane which contains it. Any map of this type is called projection
away from the (n− k − 1)-plane L.

Warning 2.7.3. Suppose that f † : S → R is graded homomorphism of finitely generated
graded K-algebras. While Theorem 2.7.1 guarantees that we obtain a morphism f that is
defined away from the common vanishing locus of the defining functions, it is possible that
f can actually be defined on a larger open subset in mProj(R).
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Consider for example the map f † : C[s, t]→ C[x, y, z]/(x2 +y2−z2) sending s 7→ x, t 7→
z − y. Geometrically, this is the composition of the inclusion X := V+(x2 + y2 − z2) ⊂ P2

with projection away from the point x = y − z = 0. Theorem 2.7.1 yields a map f :
X\{(x, z − y)} → P1. We claim that we can extend f to be a morphism on all of X by
sending (x, z − y) 7→ (t).

We prove this carefully using affine charts. X is covered by the two affine charts
X ∩ D+,z−y and X ∩ D+,z+y in P2. P1 admits the two affine charts D+,s and D+,t. By
localizing f † we obtain the morphism X ∩D+,z−y → D+,t defined by s

t 7→
x
z−y .

On the other charts we define X ∩D+,z+y → D+,s via t
s 7→

x
z+y . The key point is that

this morphism agrees with our original map on the locus X ∩ D+,(z+y) ∩ D+,(z−y) where
both maps are defined. This follows from the computation

z − y
x

=
z2 − y2

x(z + y)
=

x

z + y
.

By gluing the maps on these two charts we extend f to all of X.

Warning 2.7.4. Just as many different graded rings can define isomorphic mProjs, many
different graded homomorphisms can define the same map of schemes. Even worse, if we fix
finitely generated graded K-algebras R and S there may be a morphism f : U → mProj(S)
from an open subset U ⊂ mProj(R) which is not induced by any graded homomorphism
involving S and R.

(One example is to take an elliptic curve E ⊂ P2
C defined by a cubic equation and

define f : E → E to be translation by a non-torsion point. Unfortunately we don’t yet
have the tools to analyze this example, but as you might guess it arises from some kind
of incompatibility of the line bundles L arising from the mProj construction with the
geometry of the map f .)

2.7.1 Veronese subrings

As mentioned in the introduction to the chapter it is not true that every finitely generated
graded K-algebra R with R0

∼= K is a quotient of a polynomial ring. Thus it is not
immediately clear whether every projective scheme is homeomorphic to a closed subset of
projective space. In this subsection we will address this issue using the following special
example of a graded homomorphism.

Definition 2.7.5. Given a Z-graded ring R, we define the degree d Veronese subring R(d)

to be the Z-graded ring such that R
(d)
k = Rdk (equipped with the natural addition and

multiplication structures).

Exercise 2.7.6. Prove that if R is a finitely generated graded K-algebra then R(d) is as
well for any positive integer d.
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Proposition 2.7.7. Let R be a finitely generated graded K-algebra and fix a positive integer
d. Then mProj(R(d)) and mProj(R) are isomorphic.

We will study the geometry of this map in Section 3.2.

Proof. Consider the natural inclusion i : R(d) → R. The i-pullback of a homogeneous ideal
is a homogeneous ideal. We claim that if p is a homogeneous prime ideal in R and I is
any homogeneous ideal in R then p ⊃ I if and only if p ∩ R(d) ⊃ I ∩ R(d). The forward
implication is obvious. To see the reverse implication, suppose that p∩R(d) ⊃ I ∩R(d) and
let f be any element in I. Then fd ∈ I ∩R(d) ⊂ p ∩R(d) so that f ∈ p.

Conversely, suppose that q is a homogeneous prime ideal in R(d). We claim that
√
q is

a prime ideal in R. It suffices to check that if a product of homogeneous elements f, g ∈ R
lies in

√
q then either f or g lie in

√
q. Choose some positive integer j such that fdjgdj ∈ q.

Due to the primality of q in R(d) we see that either fdj or gdj lies in q. This proves the
desired statement.

The previous two paragraphs show that pullback by i induces a bijection between
homogeneous prime ideals in R and in R(d) and that this bijection preserves the inclusion
relation. In particular we obtain a bijection between the almost maximal homogeneous
ideals of R and the almost maximal homogeneous ideals of R. Furthermore, since the
topology of R and R(d) is controlled by homogeneous prime ideals (see Exercise 2.3.16) we
see that the induced set-theoretic map mProj(R)→ mProj(R(d)) is a homeomorphism.

Finally, we must show an equality of sheaves of functions. Fix f ∈ R. We claim that

(Rf )0 is isomorphic to (R
(d)

fd
)0. The inclusion morphism

i : (R
(d)

fd
)0 → (Rf )0

a/fdr 7→ a/fdr

is injective. It is also surjective: any element b/fa ∈ (Rf )0 with a = qd+ t is equivalent to
the element bfd−t/fd(q+1) which is in the image of i.

The computation shows that for every distinguished open affine D+,f ⊂ mProj(R)
and for the corresponding distinguished open affine D+,fd ⊂ mProj(R(d)) we have that
OmProj(R)(D+,f ) and OmProj(R(d))(D+,fd) are isomorphic. Using the gluing property of
sheaves this implies that that OmProj(R) and OmProj(R(d)) are the same.

Exercise 2.7.8. Verify carefully the last sentence in the proof of Proposition 2.7.7.

Remark 2.7.9. Let R,R′ be finitely generated graded K-algebras that are generated in
degree 1. Suppose that mProj(R) and mProj(R′) are isomorphic and that under this
isomorphism the line bundles L,L′ from Warning 2.3.13 are identified. Then there is some
positive integer d such that R(d) and R′(d) are isomorphic. In other words, even though
one cannot recover R from mProj(R) equipped with the line bundle L, one can recover its
“Veronese equivalence class”.



2.7. GRADED HOMOMORPHISMS 99

The following exercise is a key step in showing that projective schemes are indeed closed
subschemes of projective space.

Exercise 2.7.10. Let R be a finitely generated graded K-algebra. Prove that there exists
a sufficiently large d so that R(d) is generated as a K-algebra by its degree 1 piece. Deduce
that this R(d) is a quotient of a polynomial ring by a homogeneous ideal. (Hint: suppose
that the degrees of the generators g1, . . . , gs of R are d1, . . . , ds. Show that d = sd1 . . . ds
works.)

Deduce that if R is a finitely generated graded K-algebra such that R0
∼= K then

mProj(R) is isomorphic to the Proj of a quotient of a polynomial ring.

2.7.2 Exercises

Exercise 2.7.11. Prove that any element of PGLn+1(K) defines an automorphism of Pn
via multiplication. (In Theorem 6.4.8 we will show that these are the only automorphisms
of Pn, at least if K is algebraically closed.)

Prove that the action of PGLn+1(K) on the K-points of Pn is 2-transitive and faithful.

Exercise 2.7.12. Let R = K[x, y, z]/(xz, yz, z2). Show that the two maps f †, g† : R→ R
defined by

f †(x) = x f †(y) = y f †(z) = z

g†(x) = x g†(y) = y g†(z) = 0

define the same morphism mProj(R)→ mProj(R). (This is simply reflecting the map that
f † and g† are identified after passing to the 2-Veronese subring of R.)

Exercise 2.7.13. Consider the graded ring K[s, t] where s has degree a ≥ 1, t has degree
b ≥ 1 and gcd(a, b) = 1. Prove that mProj(K[s, t]) is isomorphic to P1. (Hint: show that
the Veronese subring K[s, t](ab) is isomorphic to K[x, y] where we assign both x and y the
degree ab.)

Exercise 2.7.14. Just as different graded rings can define the same mProj, different ideals
can define the same closed subset of a mProj. This exercise explores this ambiguity.

Let R be a finitely generated graded K-algebra which is generated by R1. Let I ⊂ R
be a homogeneous ideal. The saturation Isat is defined to be

Isat = {g ∈ R | ∃j ∈ Z≥0 s.t. gRj ⊂ I}.

(1) Show that Isat is a homogeneous ideal and that the degree m pieces satisfy Isat,m = Im
for m sufficiently large. Show that V (I) = V (Isat) as closed subsets of mProj(R).

(2) Show that mProj(R/I) is isomorphic to mProj(R/Isat).
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(3) Suppose that J is any homogeneous ideal such that V (J) = V (I) and the induced
homeomorphism between mProj(R/I), mProj(R/J) yields an isomorphism of sheaves
of functions. Prove that Jsat = Isat.

Remark 2.7.15. When R is not generated by R1 the analogous statements are no longer
true if one uses saturated ideals. Instead, let m denote the lcm of the generators of R. If
one defines the “weak saturation”

Iwsat := {g ∈ R |Rg ∩Rdm ⊂ I ∀d� 0}

then one can develop an analogous theory.
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2.8 Closed embeddings

In this section we systematically develop the theory of closed embeddings. Let’s recall the
definition:

A morphism f : X → Y of quasiprojective schemes is a closed embedding if f is a
homeomorphism onto a closed subset of Y and for every open affine V ⊂ Y the map
f ](V ) : OY (V )→ OX(f−1(V )) is surjective.

Exercise 2.8.1. Suppose X = mSpec(R) is an affine scheme. Show that every closed
subscheme of X is an affine scheme and is defined by the vanishing locus of an ideal in R.

Since the definition involves every open affine in Y , it can be challenging to check
directly. The following result shows we only need to check surjectivity for a cover by open
affines.

Proposition 2.8.2. Let f : X → Y be a morphism of quasiprojective schemes. Suppose
that f is a homeomorphism onto a closed subset of Y and there exists an open cover of
Y by open affines V such that f ](V ) : OY (V ) → OX(f−1(V )) is surjective. Then f is a
closed embedding.

Proof. Suppose we fix an open affine U of Y . By Lemma 2.5.2, U is covered by distinguished
open affines Dg each of which is also a distinguished open affines inside an open affine V in
our cover. Since surjectivity of a ring homomorphism is preserved by localization, for each
Dg the map f ](Dg) : OY (Dg) → OX(f−1(Dg)) is surjective. Since surjectivity of a ring
homomorphism can be checked locally, we deduce that f ](U) : OY (U) → OX(f−1(U)) is
surjective.

Exercise 2.8.3. Let R be a finitely generated graded K-algebra and let I be a homogeneous
ideal. Show that the quotient map R → R/I induces (via Proposition 2.7.1) a closed
embedding mProj(R/I)→ mProj(R).

2.8.1 Ideal sheaves

When working with closed embeddings it is often more convenient to focus on the kernel
of f ]. The following definition describes the relevant construction.

Definition 2.8.4. LetX be a quasiprojective scheme. A quasicoherent ideal sheaf {IU}U⊂X
on X assigns to each open affine U ⊂ X an ideal IU ⊂ OX(U) such that the following
property holds:

♣ For any open affine U and any f ∈ OX(U) we have IDf = (IU )f .

Remark 2.8.5. Using the gluing property for local sections of OX , a quasicoherent ideal
sheaf (as defined above) allows us to construct a “subsheaf” I ⊂ OX . We will not need
this perspective.
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Recall that for any quasiprojective scheme X the structure sheaf OX is compatible with
the structure induced by localization maps. Thus, if we have any morphism of quasipro-
jective schemes f : X → Y , the kernel of f ] will also be compatible with localizations and
will thus be a quasicoherent ideal sheaf. This motivates the condition (♣).

Our next goal is to prove a converse statement: any quasicoherent ideal sheaf must
come from a closed embedding. We start by considering the mProj construction.

Theorem 2.8.6. Let R be a finitely generated graded K-algebra and let X = mProj(R).
Suppose we fix a quasicoherent ideal sheaf {IU}U⊂X on X. Then there is a closed subscheme
Z ⊂ X such that for every open affine U ⊂ X the kernel of OX(U)→ OZ(U ∩ Z) is equal
to IU .

The strategy is to recombine the various IU to obtain a homogeneous ideal J ⊂ R. We
will then verify that Z = mProj(R/J) has the desired properties.

Proof. Consider a distinguished open affine U = D+,g inside of X = mProj(R). The
quasicoherent ideal sheaf gives an ideal IU ⊂ (Rg)0. We define the ideal JU ⊂ R by taking
the preimage of the ideal generated by IU under the localization map R → Rg. We then
define J = ∩UJU as we vary over all distinguished open affines U in X.

Set Z = mProj(R/J). According to Exercise 2.8.3, the quotient R → R/J yields a
closed embedding Z → X. We claim that this closed embedding has the desired property:
the kernel of f ] on open affines is determined by our given quasicoherent ideal sheaf.

We first check this for distinguished open affines U = D+,g. Since Z ∩ U is defined
by the ideal (Jg)0, we must verify that (Jg)0 = IU . Since J ⊂ JU and by construction
(JU,g)0 = IU , we have the containment ⊂. Conversely, given any distinguished open affine
V = D+,g of X consider the diagram of localizations

R //

��

Rg′

��
Rg // Rgg′ .

By the condition (♣) the ideal generated by IV in Rg′ extends to the ideal generated by
IU∩V in Rgg′ . In other words, for any element h in the ideal generated by IV in Rg′ there is
some power k of g such that hgk is contained in the contraction of the ideal generated by
IU∩V to Rg′ . Taking preimages, we see that for any element h′ of JV there is some power
k of g such that h′gk is contained in JU∩V . Thus JV and JU∩V have the same extension to
Rg. Since the extension of JU∩V to Rg contains the ideal generated by IU , JV also has this
property. Since V was an arbitrary distinguished open affine, we conclude that Jg contains
the ideal generated by IU .

It only remains to verify the desired property for open affines U ⊂ X which are not
distinguished. Conceptually, this follows from the fact that both IU and the structure sheaf
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for Z ∩U are determined by gluing sections for the distinguished open affines contained in
U . We leave the details to the motivated reader.

One consequence of our argument is the following important corollary. It shows the
converse to Exercise 2.8.3.

Corollary 2.8.7. Let R be a finitely generated graded K-algebra and let X = mProj(R).
For any closed subscheme Z ⊂ X, there is a homogeneous ideal I ⊂ R such that Z ∼=
mProj(R/I) and the inclusion map is induced by the quotient R→ R/I.

Warning 2.8.8. While every closed subscheme of mProj(R) is defined by a surjection
R 7→ R/I, this is not true for every closed embedding of mProj(R). As discussed in
Warning 2.7.4, an elliptic curve in P2 admits automorphisms which cannot be induced by
any graded homomorphism of its homogeneous coordinate ring.

Finally, we extend Theorem 2.8.6 to arbitrary quasiprojective schemes.

Theorem 2.8.9. Let X be a quasiprojective scheme. Suppose we fix a quasicoherent ideal
sheaf {IU}U⊂X on X. Then there is a closed subscheme Z ⊂ X such that for every open
affine U ⊂ X the kernel of OX(U)→ OZ(U ∩ Z) is equal to IU .

Proof. Since X is a quasiprojective scheme, by definition it admits an open embedding
X ⊂ Y ∼= mProj(R) for some finitely generated graded K-algebra R. Our first goal is to
extend the quasicoherent ideal sheaf to Y .

Suppose V is an open affine in Y . If V ∩ X = ∅, we define JV = OX(V ). Next
suppose that V ∩ X 6= ∅. Choose an open affine W that is a distinguished open affine
in V and is contained in X. The quasicoherent ideal sheaf on X yields an ideal IW ⊂
OX(W ) = OY (W ). We let JV,W denote the preimage of IW under the localization map
OY (V )→ OY (W ). We then define JV =

⋂
W IV,W as W varies over all distinguished open

affines of V contained in X.
We first verify that if V ⊂ X is an open affine then IV = JV (so this construction does

not change the structure of the quasicoherent ideal sheaf for open affines in X). Suppose
that W ⊂ V is a distinguished open affine. Then (♣) guarantees that IW is obtained by
localizing IV . Thus JV,W ⊃ IV and so IV is the unique minimal element amongst all the
ideals whose intersection defines JV .

We next verify that the various {JV }V⊂Y yield a quasicoherent ideal sheaf on Y . Sup-
pose given an open affine V ⊂ Y and a distinguished open affine W in V . For any smaller
open affine W ′ that is distinguished in W (and hence also in V ) and is contained in X,
both JV,W ′ and JW,W ′ are the pullbacks of the same ideal under the localization maps.
Thus JW,W ′ is the localization of JV,W ′ . By varying W ′ and taking intersections we obtain
the compatibility of JV and JV with localization.

By Theorem 2.8.6 the quasicoherent ideal sheaf on Y defines a closed subscheme ZY
of Y . We define the quasiprojective scheme Z = ZY ∩X. Using JV = IV for open affines
V ⊂ X it is straightforward to verify that Z has the desired property.
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Exercise 2.8.10. Suppose that f : X → Y is a closed embedding of quasiprojective
schemes. Let {IU}U⊂Y be the quasicoherent ideal sheaf defined via the kernel of f ]. By
Theorem 2.8.9 this quasicoherent ideal sheaf defines a closed subscheme Z ⊂ Y . Prove
that X is isomorphic to Z.

2.8.2 Scheme theoretic image

The argument used in the proof of Theorem 2.8.9 is a special case of a more general
construction.

Construction 2.8.11. Let f : X → Y be a morphism of quasiprojective schemes. We
define the scheme-theoretic image of f as follows. For every open affine U ⊂ Y , we have a
map f ](U) : OY (U)→ OX(f−1U). We define IU to be the kernel of this map.

Suppose that g ∈ OY (U) and let V = Dg be the corresponding distinguished open
affine. Using Exercise 2.4.19, we see that OX(f−1V ) = OX(f−1U)f](U)(g). Thus the
{IU}U⊂Y form a quasicoherent ideal sheaf on Y . Then Theorem 2.8.9 yields a closed
subscheme Z ⊂ Y . We call Z the scheme-theoretic image of f .

It is straightforward to check that f factors through the inclusion Z ⊂ Y and that the
set-theoretic image of f is dense in Z. In some sense Z is the “smallest” closed subscheme
of Y which has this factoring property.

2.8.3 Projective schemes

We are now equipped to verify “half” of Theorem 2.4.13.

Theorem 2.8.12. Let X be a quasiprojective scheme. Then X is projective if and only if
it admits a closed embedding into Pn for some n.

Proof. First suppose that X is projective. By definition X is isomorphic to mProj(R) for
some finitely generated graded ring R with R0

∼= K. By Exercise 2.7.10 X is isomorphic to
the mProj of a quotient of a polynomial ring by a homogeneous ideal. By Exercise 2.8.3
we see that X admits a closed embedding into projective space.

Conversely, suppose that X admits a closed embedding into projective space. Then
Corollary 2.8.7 shows that X is the mProj of the quotient of a polynomial ring by a
homogeneous ideal. Note that the 0th graded piece of a such a ring will be isomorphic to
K.

2.8.4 Exercises

Exercise 2.8.13. Prove that a composition of closed embeddings is a closed embedding.

Exercise 2.8.14. Suppose that f : X → Y is both an open embedding and a closed
embedding. Prove that f is an isomorphism.
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Exercise 2.8.15. Let X be a quasiprojective scheme. Show that the nilpotent functions
on open affines in X form a quasicoherent ideal sheaf. Use this quasicoherent ideal sheaf
to construct a closed embedding i : Xred → X such that i is a homeomorphism and Xred

is reduced.
Prove that if f : Y → X is any morphism from a reduced quasiprojective scheme Y then

f factors through i. In particular the scheme-theoretic image (in the sense of Construction
2.8.11) of a morphism from a reduced variety will always be reduced.

Exercise 2.8.16. Let X be a projective K-scheme.

(1) Prove that for any finite set of points in X there is an open affine U ⊂ X containing
the entire set.

(2) Suppose that Z ⊂ X is a closed subscheme. Prove that there is an open affine U in
X such that Z ∩ U is dense in Z.

(Hint: embed X into a projective space Pn and find hypersurfaces in Pn which do not
contain the components of the given closed subsets in X.)
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2.9 Products

The most important construction in algebraic geometry is the (relative) product. As with
affine schemes, by “product” we will always mean the categorial product defined via a
universal property.

In this section we will construct the product of two quasiprojective schemes. Our
strategy is to reduce the question to the affine case using open covers.

2.9.1 Products and open sets

We first need to know how taking products interacts with taking open sets. The following
sequence of lemmas explains this relationship.

Lemma 2.9.1. Let X,Y, Z be quasiprojective schemes with morphisms f : X → Z, g :
Y → Z. Let U ⊂ X be an open subset. Suppose that the product X ×Z Y exists in the
category of quasiprojective schemes. Then the product U ×Z Y exists and is equal to the
preimage of U under the projection map π1 : X ×Z Y → X.

Exercise 2.9.2. Prove Lemma 2.9.1. (The key point is that if X is a quasiprojective
scheme, i : U → X is an open embedding, and f, g : W → U are two morphisms such that
i ◦ f = i ◦ g, then f = g. Everything else is a diagram chase using the universal property
of X ×Z Y .)

Lemma 2.9.3. Let X,Y, Z be quasiprojective schemes with morphisms f : X → Z, g :
Y → Z. Let {Ui}i∈I be an open cover of X. Assume that each relative product Ui ×Z Y
exists in the category of quasiprojective schemes.

Suppose that P is a quasiprojective scheme admitting morphisms π1 : P → X, π2 :
P → Y that fit into a commutative diagram

P
π1 //

π2

��

X

f

��
Y

g // Z.

Suppose also that for every i the open set π−1
1 (Ui) is isomorphic to Ui×Z Y when equipped

with the restrictions of the maps π1, π2. Then the product X×Z Y exists and is isomorphic
to P (equipped with the maps π1, π2).

Proof. We must show that P satisfies the universal property of a product. Suppose that
M is any quasiprojective scheme equipped with maps h1 : M → X and h2 : M → Y which
make a commuting diagram with the maps to Z. For each open subset Ui, let Ni = h−1

1 (Ui).
By the universal property of products, we have a system of maps φi : Ni → Ui ×Z Y .
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To verify that the φi glue we must check that they agree on overlaps. Let Uij = Ui∩Uj .
By applying Lemma 2.9.1, we see that Uij×Z Y is the same as π−1

1 (Uij). Let Nij = Ni∩Nj .
By applying the uniqueness of factorings for products, we see that

φi|Nij = φj |Nij .

By applying Exercise 2.4.16 we deduce that the φi glue together to give a morphism φ :
M → P making all the diagrams commute.

Finally, we must verify that φ is the unique such map. If there were two such maps
φ, ψ then by applying uniqueness of products we see φ|Ni = ψ|Ni . We deduce that φ = ψ
everywhere.

To construct the product X×Z Y , Lemma 2.9.1 and Lemma 2.9.3 allow us to reduce to
open affine covers of X and Y . The final step is to allow us to also replace Z by an open
affine cover. This is accomplished in the next lemma.

Lemma 2.9.4. Let X,Y, Z be quasiprojective schemes with morphisms f : X → Z, g :
Y → Z. Suppose that W ⊂ Z is an open subset. Suppose U ⊂ f−1(W ) and V ⊂ g−1(W )
are open subsets. If U×W V exists in the category of quasiprojective schemes, then U×Z V
does as well and is isomorphic to it.

Exercise 2.9.5. Prove Lemma 2.9.4 by chasing arrows around.

2.9.2 Constructing the product

The basic idea is to construct products by passing to open covers consisting of open affine
sets. We already know how to construct the relative product for affine schemes inside of
AffSch/K. In fact, the construction of the product inside of QProSch/K is exactly the
same.

Exercise 2.9.6. Suppose given affine schemes mSpec(R),mSpec(S),mSpec(T ) equipped
with K-algebra homomorphisms f ] : T → R and g] : T → S. Using Theorem 2.4.8, prove
that mSpec(R ⊗T S) satisfies the universal property needed to be the relative product
mSpec(R)×mSpec(T ) mSpec(S) in the category of quasiprojective schemes.

We next turn to the product of mProjs. We start by constructing the absolute product.

Construction 2.9.7. Suppose that X = mProj(R) and Y = mProj(S). Let Q denote the
finitely generated graded K-algebra

Q =
⊕
d≥0

(Rd ⊗K Sd).

We set P = mProj(Q). We claim that P is the product of X and Y . We first need to
construct morphisms π1 : P → X and π2 : P → Y . Given any homogeneous y ∈ Y of
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degree d, we define a graded homomorphism π†1,y : R(d) → Q by sending r 7→ r ⊗ ydeg(r)/d.

This defines a morphism from an open subset of P to mProj(R(d)) ∼= X. As we vary y,
these maps agree on the overlaps and thus define a morphism π1 : P → X. We construct
π2 in an analogous way.

To verify the universal property we will apply Lemma 2.9.3. Fix homogeneous elements
f ∈ R and g ∈ S. After replacing both f and g by suitable powers, we may assume that
both have the same degree d in R and S respectively. Then the degree 0 part of the
localization of Q at f × g is

(Qf×g)0
∼=
⊕
m≥0

(Rmd ⊗K Smd) · (f ⊗ g)−m

∼= (Rf )0 ⊗K (Sg)0.

Varying f and g, we see that P admits a cover by open affines which are products of the
corresponding open affines in X and Y . Then by applying Lemma 2.9.3 first in one factor,
then the other, we deduce that P ∼= X × Y .

In particular:

Corollary 2.9.8. If X and Y are projective schemes then X × Y is a projective scheme.

Proof. Write X ∼= mProj(R), Y ∼= mProj(S) with R0
∼= S0

∼= K. Then X × Y is also
projective since R0 ⊗ S0

∼= K.

We will study the geometry of the product of projective schemes in more detail in
Section 3.3.

Since a morphism mProj(R) → mProj(S) need not be induced by a graded homo-
morphism S → R (see Warning 2.7.4) we need to take a different approach for relative
products.

Exercise 2.9.9. Let X and Y be projective schemes equipped with morphisms f : X → Z
and g : Y → Z where Z is a quasiprojective scheme. Suppose that W ⊂ Z, U ⊂ f−1(W ),
V ⊂ f−1(W ) are open affine subsets in their respective schemes. From Exercise 1.7.16 we
know that U ×W V is a closed subscheme of U × V . Show that as we vary U, V,W the
various ideals defining the closed subsets U ×W V define a quasicoherent ideal sheaf on
X × Y .

By Theorem 2.8.9 this quasicoherent ideal sheaf corresponds to a closed subscheme Q
of X×Y . Use Lemma 2.9.3 and Lemma 2.9.4 to verify that Q is isomorphic to the relative
product X ×Z Y . (In particular this shows that X ×Z Y is a projective scheme.)

Finally, by applying Lemma 2.9.1 and Lemma 2.9.4 we deduce the existence of relative
products for all quasiprojective schemes:
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Theorem 2.9.10. Let f : X → Z and g : Y → Z be morphisms of quasiprojective schemes.
Then the product X ×Z Y exists in the category of quasiprojective schemes.

This construction is also known as the pullback of f by Y → Z, or the base change of
f by Y → Z. This language is often used when we are thinking of X → Z as a “family of
schemes”, so that X ×Z Y represents “pulling the fibers back over Y → Z”.

2.9.3 Exercises

Exercise 2.9.11. Suppose that X = mSpec(R) is an affine scheme. Show that X × Pn is
isomorphic to mProj(R[x0, . . . , xn]) with the grading given by the degree in the xi variables.

More generally, suppose that X = mSpec(R) is an affine scheme and Y = mProj(S) is
a projective scheme. Show that X × Y is isomorphic to mProj(R⊗K S) where the grading
is only in the S factor.

Exercise 2.9.12. Let X and Z be quasiprojective schemes.

(1) Suppose that f : X → Z is a closed embedding. Show that for any morphism
g : Y → Z the projection map X ×Z Y → Y is a closed embedding.

(2) Suppose that f : X → Z is an open embedding. Show that for any morphism
g : Y → Z the projection map X ×Z Y → Y is an open embedding.

We refer to these important properties by saying closed embeddings and open embeddings
are “stable under base change.”

Exercise 2.9.13. By arguing locally on affine charts, show that the map (id, id) : X →
X ×X is a closed embedding. The image of this map is called the diagonal ∆.

Exercise 2.9.14. Let f : X → Y be a morphism of quasiprojective schemes. Show that
(f, id) : X → X × Y is a closed embedding. The image of this map is called the graph Γ
of f .
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2.10 Applications of products

In the previous section we constructed the relative product for quasiprojective schemes. In
this section we continue our discussion of products by focusing on geometric applications.

2.10.1 Constructions

Certain constructions in algebraic geometry are best formulated using the relative product.

Definition 2.10.1. Let f : X → Y be a morphism of quasiprojective schemes. Suppose
that i : Z → Y is any morphism. The fiber of f over i is X ×Y Z.

Of course, we normally think of “fibers” when i : Z → Y is the inclusion of a point.
However, it is useful to make this more general definition. Note that this definition coincides
with Definition 1.6.1 when X,Y are affine schemes and i : Z → Y is a closed embedding.

Exercise 2.10.2. Show that the definition of the fiber is compatible with set-theoretic
fibers. That is, given a morphism f : X → Y of quasiprojective schemes and a point y ∈ Y
the fiber of f over y is homeomorphic to the closed subset f−1(y) as a topological space.

The fiber product can also be used to define intersections. The advantage of using
the fiber product is that it automatically gives us the “correct” scheme structure on the
underlying topological space.

Definition 2.10.3. Let X be a quasiprojective scheme. Suppose that U, V are closed or
open subschemes of X. We define the intersection of U and V to be U ×X V .

Exercise 2.10.4. Prove that if U, V are closed or open subschemes of X then the under-
lying set of U ×X V is homeomorphic to U ∩ V .

2.10.2 Base change and products

Suppose we have an extension of fields L/K. In Exercise 1.4.12 we discussed the base change
operation for affine schemes: to any affine K-scheme X = mSpec(R) we can associate the
affine L-scheme XL := mSpec(R ⊗K L). This operation naturally extends to the mProj
construction, and hence also to arbitrary quasiprojective schemes.

When L/K is a finite extension, the product gives us an alternative way of describing
base change. Let X be a quasiprojective K-scheme. Note that both X and mSpec(L)
admit a canonical morphism to mSpec(K), allowing us to define the product X ×mSpec(K)

mSpec(L).

Exercise 2.10.5. Let L/K be a finite extension. Suppose that R is a finitely generated
graded K-algebra. Prove that mProj(R⊗L) is isomorphic (as a quasiprojective L-scheme)
to the product mProj(R)×mSpec(K)mSpec(L). Deduce that the base change of any quasipro-
jective scheme can be defined using the product construction.
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Remark 2.10.6. The only issue with non-finite extensions L/K is that we leave the realm
of finitely generated K-algebras. In the setting of arbitrary schemes, it is always true that
XL = X ×mSpec(K) mSpec(L).

2.10.3 Geometric properties and products

It is important to remember that the product does not interact well with the notions of
irreducibility or reducedness (Exercise 1.7.17). However, there is a way to correct this
deficiency.

Definition 2.10.7. Fix an algebraic closure K of K. We say that a quasiprojective K-
scheme X is:

• geometrically irreducible, if the base change XK is irreducible.

• geometrically reduced, if the base change XK is reduced.

Exercise 2.10.8. Prove that geometrically irreducible implies irreducible and geometri-
cally reduced implies reduced, but that the converse implications are false. (Exercise 1.4.12
asks you to prove this for affine schemes.)

The following results (which we will not prove) are crucial for understanding these two
concepts.

Theorem 2.10.9. Let R be a finitely generated K-algebra. Fix a separable closure Ksep of
K. If R ⊗K Ksep has a unique minimal prime, then for every field extension L/K there is
a unique minimal prime in R⊗K L.

Theorem 2.10.10. Let R be a finitely generated K-algebra. Fix a perfect closure Kper

of K. If R ⊗K Kper has no nilpotents, then for every field extension L/K there are no
nilpotents in R⊗K L.

Exercise 2.10.11. Using Theorem 2.10.9 and Theorem 2.10.10 show that geometric ir-
reducibility can be checked on any separable closure and geometric reducedness can be
checked on any perfect closure. In particular, a reduced scheme over a perfect field is
geometrically reduced.

Theorem 2.10.12. Let X and Y be quasiprojective K-schemes.

(1) If X and Y are geometrically irreducible, then X × Y is (geometrically) irreducible.

(2) If X and Y are geometrically reduced, then X × Y is (geometrically) reduced.

Proof. It suffices to prove the statement when X = mSpec(R) and Y = mSpec(S) are
affine and our ground field K is algebraically closed.
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(1) Suppose that R ⊗K S had a non-nilpotent zero divisor. Since this property is
preserved upon quotienting by a nilpotent ideal, the ring R ⊗K S/Nil(S) would also have
a non-nilpotent zero divisor. But this latter ring injects into R ⊗K Frac(S/Nil(S)) which
has no non-nilpotent zero divisors by Theorem 2.10.9.

(2) Since S is nilpotent free, it admits an injection into
∏
i S/pi where we let pi vary

over the finitely many minimal primes in S. Thus R⊗K S admits an injection into
∏
iR⊗

Frac(S/pi). Since the latter ring has no nilpotents by Theorem 2.10.10, R ⊗K S also has
no nilpotents.

Warning 2.10.13. A relative product of geometrically irreducible/reduced schemes need
not be irreducible/reduced, see e.g. Exercise 1.7.22.

2.10.4 Quasiprojectives are open in projectives

We are finally equipped to prove the remaining “half” of Theorem 2.4.13. The first step is
to show that we can switch the order of open and closed embeddings.

Proposition 2.10.14. Suppose that f : X → Y is a closed embedding and g : Y → Z is an
open embedding. Let W denote the scheme-theoretic image of the composition g◦f : X → Z.
Then the induced map X →W is an open embedding.

Proof. Let p1 : Y ×Z W → Y and p2 : Y ×Z W →W be the projection maps. By Exercise
2.9.12 we see that p1 is a closed embedding and p2 is an open embedding. In particular it
suffices to show that X is isomorphic to Y ×Z W .

Using the universal property of the relative product we have a morphism h : X →
Y ×Z W . Since f and p1 are closed embeddings and f factors through p1, we see that h is
injective and has closed image. Since p2 is an open embedding and the image of X in W
is dense, we see that h has dense image. Altogether we see that g is a homeomorphism of
the underlying sets.

Since the map f ](U) : OY (U) → OX(f−1U) is surjective for every open affine in Y ,
we see that Y ×Z W is covered by open affines for which h] is surjective. Since W is the
scheme-theoretic image of g ◦ f , for every open affine in W the map on sheaves induced by
X →W is injective. Since this map factors through h, we see that Y ×Z W is covered by
open affines for which h] is injective. Since localization is exact, we can refine these two
open covers to find a cover by open affines for which h] is an isomorphism. This implies
that h] induces an isomorphism of sheaves.

Theorem 2.10.15. Every quasiprojective scheme X admits an open embedding into a
projective scheme.

Proof. By definition X admits an open embedding into mProj(R) for some finitely gen-
erated graded ring R. By Exercise 2.7.10 and Exercise 2.8.3, mProj(R) admits a closed
embedding into mSpec(R0) × Pn for some positive integer n. Since mSpec(R0) admits a
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closed embedding into some affine space Am, by Exercise 2.9.12 the scheme mSpec(R0)×Pn
admits a closed embedding into Am × Pn. Finally, Am × Pn admits an open embedding
into Pm × Pn.

Altogether, we have found a morphism f : X → Pm×Pn which is a composition of closed
embeddings and open embeddings. Applying Proposition 2.10.14 repeatedly, we can factor
f as an open embedding f1 : X → Y followed by a closed embedding f2 : Y → Pm × Pn.
Since Pm × Pn is projective, Theorem 2.8.12 shows that Y is also projective.

2.10.5 Exercises

Exercise 2.10.16. Show that for a finitely generated graded K-algebra R the fibers of the
structural map p : mProj(R)→ mSpec(R0) are projective. (Hint: show that the fiber over
a point m ∈ mSpec(R0) will be mProj(R/m).)

Exercise 2.10.17. Compute some fibers...

Exercise 2.10.18. Set X = mProj(K[w, x, y, z]/(wz − yx)). Consider the graded homo-
morphism f † : K[s, t, u]→ K[w, x, y, z]/(wz − yx) sending s 7→ w, t 7→ x− y, u 7→ z.

(1) Prove that f † induces a morphism f : X → P2.

(2) Show that the set-theoretic fibers of f are the same as the orbits of the involution on
X defined by the coordinate map x↔ y.
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2.11 Properness

In this section we develop the algebraic geometer’s version of “compactness”. In order to
motivate our construction, we briefly review the topological situation. Suppose that X
and Y are topological spaces that are locally compact and Hausdorff. If X is compact and
f : X → Y is a continuous map, then:

(1) f is closed – that is, the f -image of any closed set in X is a closed set in Y – and

(2) the f -preimage of any closed subset of Y is compact in X.

More generally, a morphism f : X → Y is said to be proper if it is a closed map and
every fiber of f is compact. (Note that X is compact iff the map from X to a point is
proper iff every f : X → Y is proper. Thus properness is a generalization of the notion of
compactness that applies to morphisms instead of spaces.)

Our analogue is:

Definition 2.11.1. Let f : X → Y be a morphism of quasiaffine schemes. We say that
f is proper if it is universally closed, i.e. for every morphism g : Z → Y the induced map
f̃ : X ×Y Z → Z is a closed topological map.

We say that X is proper if the map X → mSpec(K) is proper.

Remark 2.11.2. It turns out that a map of locally compact second-countable Hausdorff
topological spaces is proper if and only if it is universally closed, so that our definition
really is a close analogue of the geometric notion.

Example 2.11.3. The affine line A1 is not proper. (Remember, we interpret this to mean
that the map A1 → mSpec(K) is not proper.)

To see that A1 → mSpec(K) is not proper, we base-change over the map A1 →
mSpec(K) to obtain the projection map A2 → A1. This map is very far from being
closed; for example, the image of the closed set V (xy − 1) in A2 is an open set in A1.

Our first example of a proper map is:

Lemma 2.11.4. Suppose that f : X → Y is a closed embedding. Then f is proper.

Proof. Let g : Z → Y be any morphism. Then Exercise 2.9.12 shows that the map
X ×Y Z → Z is also a closed embedding. Since any closed embedding is a closed map, we
conclude that f is universally closed.

Exercise 2.11.5. Suppose that f : X → Y and g : Y → Z are proper morphisms of
quasiprojective K-schemes. Show that g ◦ f is proper.

Exercise 2.11.6. Prove that properness is stable under base change (in the sense of
Exercise 2.9.12).
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The main result of this section is:

Theorem 2.11.7. If X is a projective scheme then every map f : X → Y of quasiprojective
schemes is proper. In particular X itself is proper.

This should be no surprise – after all, every closed subset of PnC is compact in the
Euclidean topology. The argument is known as the Fundamental Theorem of Elimination
Theory.

Proof. We start by making several reductions. By assumption X admits a closed em-
bedding i : X → Pn. We will consider the map f : X → Y as the composition of the
morphisms

X
(id,f)//

f
**

X × Y
(i,id) // Pn × Y

π2
��
Y

As shown in Exercise 2.9.14 the map (id, f) : X → X × Y is a closed embedding.
Lemma 2.11.4 shows that (id, f) is proper. By assumption the inclusion map i : X → Pn
is a closed embedding, thus Exercise 2.11.4 and Exercise 2.11.6 show that i is proper.
Since properness is closed under composition by Exercise 2.11.5, it suffices to show that
the projection map π2 : Pn × Y → Y is proper.

Note that if g : Z → Y is any morphism then Pn ×Y Z is the same as the projection
map Pn×Z → Z. Thus by varying Y it suffices to prove that Pn×Y → Y is closed for any
quasiprojective scheme Y . Suppose we take an open cover of Y by open affines {Ui}. Then
the projection map Pn × Y → Y will be a closed map if and only if each projection map
Pn × Ui → Ui is a closed map. Thus it suffices to consider the case when Y is affine. By
arguing on each component of Y separately we may suppose that Y is irreducible. Finally,
since we only care about the topology of the map we may suppose that Y is reduced. Thus
we have reduced to the case when Y = mSpec(R) is an affine variety so that R is a domain.

By Exercise 2.9.11 we know that Pn×mSpec(R) is isomorphic to mProj(R[x0, . . . , xn]).
For convenience we denote the ring R[x0, . . . , xn] by S. Fix a homogeneous ideal I =
(h1, . . . , hr). Then we have a map

ψm : Sm−deg(h1) ⊕ . . .⊕ Sm−deg(hr)
(·h1,...,·hr)−−−−−−−→ Sm.

whose image is the mth homogeneous part of I. Note that ψm is a map of finitely generated
free R-modules and thus defined by a matrix Mm with entries in R. Given any maximal
ideal m, the tensor product of ψm with R/m will be surjective if and only if none of the
dimR(Sm)-minors of Mm vanish at m.
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We want to show that f(V+(I)) is closed in mSpec(R) for any homogeneous ideal I in
R[x0, . . . , xn]. Note that for a maximal ideal m ⊂ R we have

m ∈ f(V+(I)) ⇔ I/m ⊂ (R/m)[x0, . . . , xn] has non-empty vanishing locus

⇔
√
I/m 6= (x0, . . . , xn)

⇔ (I/m)m 6⊃ (R/m)[x0, . . . , xn]m for any m > 0

As discussed earlier, for any fixed m the locus of m such that ψm⊗R/m fails to be surjective
will be a closed subset of mSpec(R). The set of m such that ψm⊗R/m fails to be surjective
for all m will be an intersection of an infinite number of closed subsets of mSpec(R), hence
closed. As shown above f(V+(I)) is precisely this closed subset.

Remark 2.11.8. It is natural to wonder whether the projective schemes are the only
proper schemes. In the setting of quasiprojective K-schemes the answer is yes. Indeed,
Theorem 2.10.15 shows that every quasiprojective scheme admits an open embedding i :
U → X to a projective scheme. If U is not projective then the image of i is not closed so
that i is not proper.

However, in the more general setting of arbitrary schemes there are proper schemes
which are not projective.

Exercise 2.11.9. Let R be a finitely generated graded K-algebra. Prove that the canon-
ical morphism mProj(R) → mSpec(R0) is proper. This is the correct generalization of
Theorem 2.11.7 for the mProj construction. (Hint: first show that mProj(R) admits a
closed embedding into Pn×mSpec(R0) for some n that forms a commutative diagram with
the structural maps to mSpec(R0).)

We give a couple applications of Theorem 2.11.7.

Corollary 2.11.10. Let X be a projective scheme and let f : X → Y be a morphism of
quasiprojective schemes. Then the scheme-theoretic image of f is a projective scheme.

Recall that the scheme-theoretic image was constructed in Construction 2.8.11.

Proof. Since Y is quasiprojective it admits an open embedding i : Y → Z into a projective
scheme Z. The scheme-theoretic image of i◦f is a closed subscheme of Z, hence a projective
scheme. But by Theorem 2.11.7 i ◦ f is a closed map, so that every point of Z is in the
set-theoretic image of i ◦ f . In particular Z is contained in the set-theoretic image of f .
Thus the scheme-theoretic image of f is also equal to Z.

Corollary 2.11.11. Let X be a projective K-scheme. Then OX(X) is a finite dimensional
algebra over K.
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Proof. The hard part of the argument is that OX(X) is a finitely generated K-algebra,
which we will assume for now. Suppose for a contradiction that OX(X) fails to be an
Artinian ring. Thus there is a function f ∈ OX(X) which is not a unit and not a zero
divisor.

By Theorem 2.4.8 there is a function f : X → A1 defined by the ring map K[t] →
OX(X) sending t 7→ f . We claim that f is dominant. Indeed, if we choose any open
affine U ⊂ X such that f does not vanish on U then the map f |U is defined by K[t] →
OX(X)

ρX,U−−−→ OX(U). Since this ring morphism is injective, the map f |U is dominant.
Since X is projective, the dominant map f : X → A1 must be surjective. However, if we

then compose f with the inclusion A1 ↪→ P1 we get a morphism from X to a quasiprojective
scheme whose image is not closed. By Theorem 2.11.7 this gives us a contradiction.

2.11.1 Exercises

Exercise 2.11.12. Suppose that X is a projective variety over an algebraically closed field
K. Prove that OX(X) = K. (What is the correct analogue over an arbitrary ground field?)

Show that the converse fails: a scheme X can be reducible or non-reduced and still
have OX(X) = K. (Hint: consider either the union of two lines or the double line in P2.)

Exercise 2.11.13. Prove that the following are equivalent:

(1) X is a quasiprojective scheme with finitely many points.

(2) X is both projective and affine.

Exercise 2.11.14. Let H ⊂ Pn be a hypersurface. Suppose that X ⊂ Pn does not have
only finitely many points. Show that H ∩X 6= ∅.
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Chapter 3

First examples

In this chapter we will study some first examples of projective varieties. The most fun-
damental examples of algebraic varieties are all motivated by linear algebra. (These are
also the examples which can be studied without using more advanced tools from scheme
theory.) All the examples we will see in this chapter are still being actively studied by
mathematicians today.

Suppose that we are given a closed subscheme X ⊂ Pn. There are three different ways
in which an ideal I could be associated to X:

(1) The ideal I could define X set-theoretically, i.e. V+(I) = X as closed subsets.

(2) The ideal I could define X scheme-theoretically, i.e. mProj(K[x0, . . . , xn]/I) ∼= X.

(3) The ideal I could be the saturated ideal defining X, i.e. every homogeneous function
that vanishes along X is contained in I.

These three possibilities successively tell us more about X but are successively harder to
prove rigorously.

3.0.1 Algebraic preliminaries

When we study the Grassmannian, we will need to know some properties of the exterior
product. Suppose that V is an n-dimensional K-vector space. Fix an integer k satisfying
0 < k < n. We have two perfect pairings

n−k∧
V ∨ ×

n−k∧
V → K

k∧
V ×

n−k∧
V →

n∧
V

Choosing an isomorphism
∧n V → K we can identify

∧k V and
∧n−k V ∨. This isomor-

phism is only natural up to scaling, but when we projectivize this ambiguity won’t matter.

119
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Suppose we choose a basis v1, . . . , vr of V with dual basis v∨1 , . . . , v
∨
r . For any subset

I ⊂ {1, . . . , r} of size k our isomorphism identifies

vi1 ∧ . . . ∧ vik ↔ ±v
∨
j1 ∧ . . . ∧ v

∨
jn−k

where J is the complement of I. Given an element ω ∈
∧k V we will denote the corre-

sponding element in
∧n−k V ∨ by ω∗.

Given any element ω ∈
∧k V we will associate two subspaces Dω, Lω of V . The goal of

this subsection is to define and analyze these two subspaces.

Definition 3.0.1. Given any ω ∈
∧k V , we define Dω to be the set of elements v ∈ V

such that v ∧ ρ = ω for some ρ ∈
∧k−1 V .

The following result verifies that Dω is actually a subspace.

Lemma 3.0.2. Let V be a K-vector space of dimension n and fix 0 < k < n. Suppose that
ω ∈

∧k V . Then Dω is the kernel of the map

ϕω : V →
k+1∧

V

v 7→ v ∧ ω

Proof. Certainly Dω is in the kernel of ϕω. Conversely, if v ∈ ker(ϕω), then we can choose
a basis {v1, v2, . . . , vn} of V with v = v1. If we write ω in this basis, we get an expression
ω =

∑
I aIvI where I varies over strictly increasing k-tuples of integers in the set {1, . . . , n}.

By assumption

0 = v1 ∧ ω =
∑
I

aI(v1 ∧ vI).

It is clear that no canceling is possible for the indices I which do not contain 1. Thus the
coefficients for such indices I must vanish, showing that every summand of ω must involve
v1 somewhere. This implies that v ∈ Dω.

Corollary 3.0.3. Let V be a K-vector space of dimension n and fix 0 < k < n. Suppose
that ω ∈

∧k V . Choose a basis {v1, . . . , vn} of V such that v1, . . . , vs span Dω. Then
ω = v1 ∧ . . .∧ vs ∧ ρ for some ρ ∈

∧k−s V . Furthermore any other subspace of V satisfying
this property will be contained in Dω.

Proof. Suppose we expand ω =
∑
aIvI in our chosen basis. The proof of Lemma 3.0.2

shows that for i = 1, . . . , s the vector vi must appear in every summand of ω which has
a non-zero coefficient. The first statement follows. The last property is clear from the
definition of Dω.

We will define our next subspace using duality.
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Definition 3.0.4. We define Lω to be the annihilator of Dω∗ ⊂ V ∨.

By Lemma 3.0.2 Lω is the image of the map (ϕω∗)
∨ :
∧n−k+1 V → V dual to the map

ϕω∗ : V ∨ →
∧n−k+1 V ∨. The following result clarifies the significance of Lω.

Lemma 3.0.5. Let V be a K-vector space of dimension n and fix 0 < k < n. Suppose that
ω ∈

∧k V . Then ω is in the image of
∧k Lω →

∧k V . Furthermore any other subspace of
V satisfying this property will contain Lω.

Proof. Fix a basis {v1, v2, . . . , vn} of V such that {v∨i }si=1 is a basis for Dω∗ . By Corollary

3.0.3 we can write ω∗ = v∨1 ∧ . . . ∧ v∨s ∧ v∨ for some v∨ ∈
∧n−k−s V ∨. Using the coordi-

nate description of the identification ω ↔ ω∗, we see that no summand of ω can involve
v1, v2, . . . , vs. In other words, ω is contained in the kth exterior product of the annihilator
Span{vs+1, . . . , vn} of Dω∗ .

To see the final statement, suppose that L is any subspace of V satisfying the desired
property. Choose a basis {v1, . . . , vn} of V so that L is the span of {vi}si=1. Using the
coordinate description of the identification ω ↔ ω∗ we see that the annihilator of L is
contained in Dω∗ .

The duality between Dω and Lω can be emphasized in the following way. We say that
ρ ∈

∧a V divides ψ ∈
∧b V if a ≤ b and there exists some ξ ∈

∧b−a V such that ρ∧ ξ = ψ.
Then

• Dω is the largest subspace of V such that
∧dimDω Dω divides ω.

• Lω is the smallest subspace of V such that ω divides
∧dimLω Lω.

It is not a priori obvious that there must be a largest or a smallest such subspace, but this
follows from the proofs above. Altogether we have:

Proposition 3.0.6. Let V be a K-vector space of dimension n and fix 0 < k < n. Suppose
that ω ∈

∧k V . Then the following are equivalent:

(1) ω is a pure wedge product, i.e. ω = v1 ∧ . . . ∧ vk for a set of linearly independent
vectors {vi} in V .

(2) Dω has dimension k.

(3) Lω has dimension k.
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3.1 Quadric hypersurfaces

Recall that a hypersurface in projective space is the vanishing locus of a single homogeneous
equation f ∈ K[x0, . . . , xn]. We say that the hypersurface X has degree d if the defining
equation f has degree d. Hypersurfaces of degree 1 are the (codimension 1) hyperplanes
in Pn and each is isomorphic to Pn−1.

In this section we will study the next simplest example. Throughout we will assume
that char(K) 6= 2.

Definition 3.1.1. A quadric hypersurface X ⊂ Pn is a degree 2 hypersurface.

Example 3.1.2. The most familiar examples of quadric hypersurfaces are the conics C ⊂
P2. Note that the intersection of C with each affine chart D+,xi will be the vanishing locus
in A2 of an equation of degree at most 2. Furthermore, there will be at least one chart
such that C ∩D+,xi is the vanishing locus of an equation of degree exactly 2.

The classification of conics in A2
C was discussed in Exercise 1.5.17. The classification

becomes much simpler when we work in P2 instead.

Quadric hypersurfaces have a close relationship with symmetric bilinear forms. Suppose
that

f =

n∑
i=0

aix
2
i +

∑
i<j

aijxixj .

We associate to f the symmetric bilinear form Q on Kn+1 defined by Q(~v, ~w) = 1
2(f(~v +

~w) − f(~v) − f(~w)). If we define the symmetric matrix M which has diagonal entries ai
and off-diagonal entries aij/2, then Q(~v, ~w) = ~vt ·M · ~w. Note that we can recover the
hypersurface from M .

We next turn to the problem of classifying the isomorphism classes of quadric hypersur-
faces. Note that the isomorphism type of a quadric hypersurface X is unchanged by a linear
change of coordinates. Furthermore, the action of coordinate changes on quadric hyper-
surfaces is equivalent to the action of coordinate changes on the corresponding symmetric
bilinear forms. (Check!) Since every symmetric matrix over a field K is diagonalizable, we
see:

Lemma 3.1.3. Every quadric hypersurface X ⊂ PnK is isomorphic to the vanishing locus
of an equation of the form

f =
n∑
i=0

aix
2
i

for some ai ∈ K.

This isn’t yet quite enough to determine the isomorphism types – for example, the
behavior of K×/(K×)2 will need to be accounted for. Depending on the ground field the
classification can be a bit complicated.
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Example 3.1.4. Suppose that K is an algebraically closed field (with char(K) 6= 2). Then
any quadric hypersurface Q in PnK is isomorphic to the vanishing locus of an equation of
the form

f =
r∑
i=0

x2
i

for some 0 ≤ r ≤ n. In this setting the number (r + 1) is called the rank of the quadric
hypersurface.

It turns out that two quadrics are isomorphic if and only if they have the same rank.
The easiest way to prove this is to use the notion of “singular points” from later in the
course: the singular locus of Q is the (n−r−1)-dimensional plane L contained in Q defined
by the equations x0 = . . . = xr = 0. For example, there are four isomorphism types of
quadrics in P3 – the “smooth” quadric (rank 4), the quadric cone (rank 3), the union of
two planes (rank 2), and the double plane (rank 1).

Here is a geometric description of Q when 0 < r < n. Let T denote the r-dimensional
plane xr+1 = . . . = xn = 0. Note that T ∩ Q is a full rank quadric hypersurface in T .
Then Q is the cone over T ∩ Q with vertex L – in other words, Q is the union of the
(n− r)-dimensional planes which are spanned by L and a point of T ∩Q.

Example 3.1.5. Every quadric hypersurface in PnR can be described by an equation of the
form

f =
r∑
i=0

x2
i −

s∑
j=r+1

x2
j .

Example 3.1.6. Over an algebraically closed field (with char(K) 6= 2) there are three
isomorphism classes of conic in P2 – the irreducible reduced conics, the unions of two lines,
and the double lines – corresponding to the three equations x2

0 + x2
1 + x2

2, x2
0 + x2

1, and x2
0.

Over other fields the classification becomes more complicated. We will just focus on
the irreducible reduced conics. It turns out that the K-isomorphism classes of such conics
are in bijection with the K-isomorphism classes of generalized quaternion algebras (or
equivalently, the 2-torsion elements in the Brauer group Br(K)). Precisely, the generalized
quaternion algebra Q(a, b) corresponds to the conic ax2

0 + bx2
1 = x2

2. For example, over
R we have the trivial matrix algebra and the usual quaternions, and these correspond
respectively to the conic V+(x2

0 + x2
1 − x2

2) and the conic V+(x2
0 + x2

1 + x2
2). We can see

directly that these two conics are not isomorphic because the first admits many R-points
and the second does not admit any R-points.

For a number field K the Brauer-Hasse-Noether theorem describes an exact sequence

0→ Br(K)→
⊕

places v

Br(Kv)→ Q/Z→ 0.

Each local field at a finite place has Brauer group Q/Z and the map on the right is the
addition map. Thus there are infinitely many different isomorphism types of irreducible
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conics over a number field. In Exercise 3.1.12 and Exercise 3.1.13 we will see some examples
of non-isomorphic conics over Q.

It turns out that the classification of quadrics over K is the same as the classification
of symmetric bilinear forms:

Theorem 3.1.7. Two quadric hypersurfaces in Pn are isomorphic if and only if they can
be identified under a linear change of variables.

We do not yet have the tools to prove this result.

Remark 3.1.8. It turns out that the classification of quadric hypersurfaces up to birational
equivalence is much trickier! Apparently this is still unsolved for general fields K.

3.1.1 Moduli of quadric hypersurfaces

Note that a quadric hypersurface in Pn is determined by a choice of
(
n+2

2

)
coefficients up

to rescaling. In other words, the quadric hypersurfaces are parametrized by the traditional
points of a P(n+2)(n+1)/2−1. Thus it makes sense to think of this projective space as the
“moduli space” parametrizing quadric hypersurfaces. For clarity we will write M to denote
this moduli space.

It is natural to ask for the meaning of the non-traditional points on M . Recall that a
non-traditional point corresponds to a Gal(K/K)-orbit of points on the base change MK.
Thus, the non-traditional points of MK define the hypersurfaces defined over K which are
unions of the Galois conjugates of a K-quadric.

Example 3.1.9. The moduli space of conics on P2
R is M ∼= P5

R. We will use coordinates
y0, . . . , y5 on M and will associate the traditional point (a : b : c : d : e : f) with the
equation ax2 + bxy + cy2 + dxz + eyz + fz2.

Note that x2 + y2 + iz2 = 0 defines a conic over C but not over R; its Galois conjugate
is x2 + y2 − iz2 = 0. The union of these two hypersurfaces is given by the equation

(x2 + y2 + iz2)(x2 + y2 − iz2) = x4 + 2x2y2 + y4 + z4.

This hypersurface is defined over R and corresponds to the non-traditional point (y1, y3, y4, y2−
y0, y

2
5 + y2

0) of M .

3.1.2 Exercises

Exercise 3.1.10. Let Q ⊂ A2
Q be the conic defined by x2 + y2 = 1. Write down the

equations for the map Q 99K P1 obtained by projecting away from x = (−1, 0). Show
that this map induces a bijection on the Q-points in Q\{x} and the Q-points in P1\{∞}.
Explain how the formula you wrote down describes all primitive Pythagorean triples.
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Exercise 3.1.11. Suppose that Q ⊂ P2
K is an irreducible conic which has a K-point x.

Projection away from the point x in P2 defines a rational map φ : Q 99K P1.

(1) Let U = Q\{x}. Show that φ is an isomorphism from U to its image, and in particular
is a birational map.

(2) Prove that φ extends to an isomorphism on all of Q.

(We saw an example of this behavior in Warning 2.7.3.)

Exercise 3.1.12. Let Q1 be the conic x2+y2+z2 = 0 and let Q2 be the conic x2+y2 = 3z2

in P2
Q.

(1) Show that neither Q1 nor Q2 have any Q-points. (Thus we cannot use rational points
to distinguish these two conics.)

(2) Prove that Q2 has Q(
√

3)-points but that Q1 does not. Deduce that Q1 and Q2 are
not isomorphic.

Exercise 3.1.13. As discussed in Example 3.1.6, one can also show that two conics over a
number field are non-isomorphic by base-changing to local fields. (See Section 2 of Serre’s
book “A course in arithmetic.”)

Let Q1 be the conic 2x2 + 5y2 = z2 and let Q2 be the conic x2 + y2 = 3z2 in P2
Q. Show

that the base changes of Q1 and Q2 to Q5 are not isomorphic by showing that Q2 admits
Q5-points but that Q1 does not.

Deduce that Q1 and Q2 are not isomorphic over Q.

Exercise 3.1.14. Suppose that Fq is a finite field of characteristic 6= 2.

(1) Show that for non-zero a, b ∈ Fq the equation ax2 + by2 = 1 always has a solution
(x, y) ∈ F2

q by using a counting argument.

(2) Apply Exercise 3.1.11 to deduce that every irreducible conic over Fq is isomorphic to
P1.

Exercise 3.1.15. In this exercise and the next we study the lines on quadrics in P3
C. (The

rank 1 and rank 2 cases are both unions of planes, so the lines are easy to understand.)

Consider the quadric Q ⊂ P3
C defined by the equation wz − xy = 0. Check that this

quadric has full rank.

For any (s : t) ∈ P1 consider the line in P3 defined by the equations tw = sy and
tx = sz. Prove that for any choice of s, t the corresponding line is contained in Q. In other
words, in this way we obtain a one-dimensional family of lines parametrized by P1.

Similarly, for any (a : b) ∈ P1 consider the line given by bw = ax and by = az. Prove
that this gives a different family of lines on Q.
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Exercise 3.1.16. Consider the quadratic cone Q defined by the equation x2 + y2 = z2.
Prove that the intersection of Q with a hyperplane P is either:

• a irreducible reduced conic in P if P does not contain the cone point (1 : 0 : 0 : 0), or

• a union of lines or a double line if P does contain the cone point.

In particular, deduce that every line in Q contains the cone point.
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3.2 Veronese embeddings

Suppose that V is a vector space and consider the map

V → Symd(V )

v 7→ vd

This function is known as the dth Veronese map. It is natural to wonder what the image
looks like: which elements of Symd(V ) are dth powers? It is more convenient to work with
the projectivized version P(V ) → P(Symd(V )). In this section we will identify the image
of this map as a projective variety and study its properties.

3.2.1 Rational normal curves

We start with the case when V is two-dimensional. In practice it is a little easier to fix
coordinates: if we fix a basis e1, e2 of V then Symd(V ) is spanned by ed1, e

d−1
1 e2, . . . , e

d
2.

Thus on traditional points the Veronese map can be described via

f : P1 → Pd

(s : t) 7→ (sd : sd−1t : sd−2t2 : . . . : std−1 : td)

The corresponding map of projective varieties is defined by

K[y0, . . . , yd]→ K[x0, x1]

sending yi 7→ xi0x
d−i
1 . In other words, the Veronese map is the geometric counterpart of

passing to a degree d Veronese subring.

Note that we could equally well have used a different basis for Symd(V ) without fun-
damentally changing the nature of this map. Thus we define:

Definition 3.2.1. A rational normal curve X of degree d in Pd is the image of the Veronese
map described above or its translate under any linear change of coordinates.

For simplicity we will focus on the rational normal curve X which is the image of the
original map.

Proposition 3.2.2. The dth Veronese map f : P1 → Pd is an isomorphism from P1 onto
the vanishing locus X of the ideal

I = {yiyj − ykyl | i+ j = k + l } .

Furthermore I is the saturated ideal defining X.
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Note that I is generated by the quadratic equations which “obviously” vanish along X.
The main point is to show that there are no other functions which vanish on X.

On the level of traditional points the inverse rational map X 99K P1 is given by choosing
an index i < d and sending (a0 : . . . : ad) 7→ (ai : ai+1). As we vary i, the resulting maps
all lie in the same equivalence class of rational maps and are naturally defined on different
open subsets of X. Together the domains cover X so that this rational map is actually a
morphism.

Proof. The map on homogeneous coordinate rings is the composition of K[y0, . . . , yd] →
K[x0, x1](d) and the dth Veronese inclusion K[x0, x1](d) → K[x0, x1]. By Proposition 2.7.7
the second map defines an isomorphism P1 → mProj(K[x0, x1](d)). The first map is a
surjection, so by Exercise 2.8.3 it defines a closed embedding mProj(K[x0, x1](d)) → Pd.
Thus the map takes P1 isomorphically to its image.

We next verify that the vanishing locus of I defines the image of the Veronese map.
It is clear that I vanishes along this subscheme. To check that it actually defines this
subscheme we restrict our attention to the distinguished open affine D+,yi . The preimage
of this open subset is D+,x0x1 and the map f : D+,x0x1 → D+,yi is defined by

f ] : K
[
y0

yi
, . . . ,

yd
yi

]
→ K

[
x0

x1
,
x1

x0

]
yj
yi
7→ xj−i0 xi−j1

As we observed earlier the localization of I is contained in the kernel of this map. In
fact using the relations determined by the generators of I we see that in the quotient
K[y0yi , . . . ,

yd
yi

]/Iyi we have

yi−1

yi
=

(
yi+1

yi

)−1 yi+j
yi

=

(
yi+1

yi

)j yi−k
yi

=

(
yi−1

yi

)k
.

Together these relations show that after quotienting by the localization of I the map f ]

becomes an isomorphism, so the kernel of f ] is the localization of I. By varying the chart,
we see that I defines the image of X as a closed subscheme of Pd.

It is a little trickier to prove that I is saturated. It suffices to prove that any homoge-
neous polynomial that vanishes on X is contained in I. By induction on degree one can
show that any homogeneous polynomial P (y0, . . . , yd) can be written as

P (y0, . . . , yd) = R0(y0, yd) +R1(y0, yd)y1 + . . .+Rd−1(y0, yd)yd−1 + T

for some polynomials R0, . . . , Rd−1 and some polynomial T ∈ I. If P vanishes on X,
then P (sd, sd−1t, . . . , td) is identically zero. In the expression above, T (sd, . . . , td) is also
identically zero. Furthermore, the exponents of s, t occurring in R0, R1, . . . , Rd−1 will be
different modulo d. In order for this function to vanish identically we must have that
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R0 = . . . = Rd−1 = 0 identically. We conclude that P lies in I. (In other words, I is the
kernel of the map f †, thus a prime ideal, thus saturated.)

Remark 3.2.3. Proposition 3.2.2 describes the saturated ideal defining the image of the
Veronese map, but there can be ideals with fewer generators whose vanishing locus is the
same set. For example, when d ≥ 4 some of the quadratic generators are redundant for
defining the closed subscheme X.

Example 3.2.4. A rational normal curve in P3 is known as a twisted cubic. In the
coordinates w, x, y, z the image X of the Veronese map is defined by the ideal

I = (wz − xy, x2 − wy, y2 − xz)

We will verify in Proposition 6.3.6 that there is no homogeneous ideal I with two generators
such that X = V+(I). This is traditionally the first example demonstrating a general
phenomenon: a “codimension k set” in Pn may require more than k equations to define it.

3.2.2 Veronese varieties

The picture in higher dimension is essentially the same. It will be convenient to write

coordinates on the target P(n+dd )−1 in a slightly unusual way: we let K[yI ] be the polynomial
ring whose generators are indexed by the n-tuples I = (i0, . . . , in) of non-negative integers
satisfying i0 + . . .+ in = d. Define the map K[yI ]→ K[x0, . . . , xn] sending yI 7→ xI .

Proposition 3.2.5. The dth Veronese map f : Pn → P(n+dd )−1 defines an isomorphism
from Pn to a closed subvariety X. The saturated ideal defining X has generators

{yIyJ − yKyL | I + J = K + L as vectors } .

As in Proposition 3.2.2 the main point is to show that this ideal defines X and that it
is saturated. The first step is similar to what we did for Proposition 3.2.2.

Exercise 3.2.6. Check that the ideal defines the closed subscheme X by passing to affine
charts. (If you prefer, you may suppose K is algebraically closed and argue using K-points.)

To prove that the ideal is saturated, one could use Gröbner basis techniques. Here is
an alternative approach based on representation theory:

Exercise 3.2.7. Define the map f † : K[yI ] → K[x0, . . . , xn](d) sending yI 7→ xI . Let V
denote the vector space of homogeneous linear functions in the xi. The linear homogeneous
functions in the yI can be identified with Symd(V ). Thus, on the degree n level f † is defined
as

φn : Symn(Symd(V ))→ Symnd(V ).



130 CHAPTER 3. FIRST EXAMPLES

We can write the kernel as a direct sum of Schur functors Sλ(V ); for example, we have

ker(φ2) =

d⊕
i=1

S(2d−2i,2i)(V ).

Show that each irreducible summand of ker(φn) is contained in ker(φ2)⊗Symn−2(Symd(V )).
Use this to prove Proposition 3.2.5.

One of the main applications of the Veronese embedding is to “linearize” the space of
homogeneous degree d polynomials on Pn. For example, the image of a degree d hyper-
surface under the Veronese map is simply a hyperplane section of the Veronese variety. In
particular, Exercise 3.2.12 uses “linearizing” to show that any projective scheme is isomor-
phic to a subscheme of some projective space defined by linear and quadratic equations.
(This result is interesting but not particularly useful.)

3.2.3 Exercises

Exercise 3.2.8. Prove that any (n+ 1) distinct K-points of the rational normal curve in
Pn are linearly independent.

Exercise 3.2.9. Show that the rational normal curve in Pn is isomorphic to the intersection

of the image of the 2nd Veronese embedding of Pn → P(n+2
2 )−1 with a linear subspace.

Exercise 3.2.10. Let K be an algebraically closed field of characteristic 0.
As we saw when discussing rational normal curves, we can identify the coordinates

y0, . . . , yd on Pd with a basis for the dth symmetric powers of the coordinates x0, x1 on P1.
Under this identification Pd obtains an action by the group PGL2(K).

(1) Show that the action of PGL2 on P2 has two orbits: the conic C = V+(xz − y2) and
P2\C.

(2) Show that the action of PGL2 on P3 has three orbits: a twisted cubic C, the com-
plement Y \C in a degree 4 hypersurface Y containing C, and P3\Y .

Exercise 3.2.11. Consider the 2-Veronese map P2 → P5 defined by f † : K[y0, . . . , y5] →
K[x0, x1, x2] sending

f †(y0) = x2
0 f †(y1) = x0x1 f †(y2) = x0x2

f †(y3) = x2
1 f †(y4) = x1x2 f †(y5) = x2

2

Consider the rational map φ : P5 99K P4 away from the point defined by the ideal
(y0, y3, y5, y1 − y4, y2 − y4). Prove that the composition φ ◦ f defines a morphism from
P2 to P4 which is an isomorphism onto its image.

(A famous theorem of Steiner shows that the 2-Veronese surface in P5 is the only smooth
surface S in P5 such that projection away from a point defines an isomorphism from S to
its image in P4.)
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Exercise 3.2.12. Let I ⊂ K[x0, . . . , xn] be a homogeneous ideal defining a projective
scheme X. Show that for some sufficiently large d the ideal J = 〈Id〉 will have the same
saturation as I.

Prove that the image of V+(J) under the dth Veronese map f : Pn → P(n+dd )−1 will be
the intersection of the image of f with a linear subspace. Conclude that every projective
scheme X admits an embedding into some projective space such that the homogeneous
ideal of X is generated by linear and quadratic equations.
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3.3 Segre varieties

Suppose that V,W are vector spaces and consider the map

V ⊕W → V ⊗W
(v, w) 7→ v ⊗ w

The image will be the elements of V ⊗ W which are pure tensors. Again, it is more
convenient to pass to the projectivized version P(V )×P(W )→ P(V ⊗W ). If we introduce
coordinates, the map is defined as

(a0 : . . . : an)× (b0 : . . . : bm) 7→ (a0b0 : . . . : aibj : . . . : anbm)

We will show that this map defines a morphism f : Pn×Pm → Pnm+n+m giving the product
the structure of a projective variety.

Just as with the Veronese map, it will be useful to index the coordinates of Pnm+n+m a
non-traditional way. We define the ring K[zij ] with coordinates indexed by 0 ≤ i ≤ n and
0 ≤ j ≤ m. If we picture these coordinates in a (n + 1 ×m + 1)-matrix, then the image
of the K-points under the map f will consist precisely of those (non-zero) matrices which
have rank 1. In other words, we should expect X to be the vanishing locus of the ideal I
generated by the 2× 2 minors:

I = {zijzkl − zilzkj | 0 ≤ i, k ≤ n and 0 ≤ j, l ≤ m}.

Definition 3.3.1. The Segre variety Σn,m is defined to be mProj(K[zij ]/I).

We next equip Σn,m with morphisms to the projective spaces Pn and Pm. The rational
map Σn,m → Pn is given by fixing an index l and defining the graded homomorphism
K[xi] → K[zij ]/I that sends xi 7→ zil. As we vary l to get different rational maps, we
see that these maps agree on the overlaps by using the defining equations of I. Together
these rational maps define a morphism we call p1 : Σn,m → Pn. Analogously we define a
morphism p2 : Σn,m → Pm by fixing k and sending yj 7→ zkj .

Proposition 3.3.2. Σn,m (equipped with p1, p2) is isomorphic to Pn × Pm (equipped with
the projection maps).

Proof. Let R = K[x0, . . . , xn] and S = K[y0, . . . , ym]. Recall that Pn × Pm is the mProj of
the graded ring

Q =
⊕
d≥0

(Rd ⊗K Sd).

Consider the map of graded rings f † : K[zij ] → Q sending zij 7→ xi ⊗ yj . We claim that
this induces an isomorphism f : Pn × Pm → Σn,m that is compatible with the projection
maps.
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We will verify this on affine charts. Fix indices k, l and consider the chart D+,zkl on
Σn,m with ring of functions K[zij/zkl]/I. Using the defining equations for I we see that for
any i 6= k, j 6= l we can write

zij
zkl

=
zil
zkl
·
zkj
zkl

.

Thus the quotient ring is isomorphic to K[zkj/zkl]⊗K[zil/zkl].
The preimage of this affine chart in Pn×Pm is defined by localizing the element xi⊗yj in

Q. We have already shown in Construction 2.9.7 that this open affine has ring of functions
(Rxi)0⊗ (Syj )0. It is then clear that the two affine charts are both isomorphic to An×Am
and that the product structure on each is preserved by f . Furthermore this identification
is compatible when restricted to the intersection of two charts. We conclude that f is an
isomorphism.

Example 3.3.3. The Segre variety Σ1,1
∼= P1×P1 is a subvariety of P3. Switching from the

coordinates {zij}1i,j=0 to the more traditional coordinates {xk}3k=0 we see that it is defined
by the equation x0x3 − x1x2 = 0. In other words, it is a quadric hypersurface. Exercise
3.1.15 explicitly identifies the two families of P1s inside of this quadric corresponding to
the fibers of the projection maps.

If K is an algebraically closed field (with char(K) 6= 2) then Example 3.1.4 implies that
every full rank quadric in P3 is isomorphic to P1 × P1.

Example 3.3.4. The Segre variety Σ2,1
∼= P2 × P1 is the subvariety of P5 defined by the

equations
y0y3 − y1y2 = y0y5 − y1y4 = y2y5 − y3y4 = 0.

If we choose any pair of these equations then the vanishing locus will be the union of Σ2,1

with a three-dimensional plane. For example, the first two equations define the union of
Σ2,1 with the plane y0 = y1 = 0. (Verify this carefully!)

It is also true that the ideal I is the saturated ideal defining Σn,m. You can show this
using either of the following exercises.

Exercise 3.3.5. Consider the map f † : K[zij ] → Q sending zij 7→ xiyj as above. Prove
that I is the kernel of this map as follows. Suppose that f ∈ K[zij ] becomes identically zero
upon setting zij = xiyj . By looking at some “highest degree” terms explain how you can
repeatedly subtract the product of a monomial and a generator of I to eventually bring f
down to 0.

Exercise 3.3.6. Let V and W denote the vector space of homogeneous linear functions
in the xi and yj respectively. Then the homogeneous linear functions in the zij can be
identified as V ⊗W . Thus, we can identify

K[zij ]d = Symd(V ⊗W ) ∼=
⊕
λ`d

Sλ(V )⊗ Sλ(W )
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as λ varies over all partitions of d and Sλ denotes the corresponding Schur functor. Simi-
larly, we can identify

Qd = Symd(V )⊗ Symd(W ).

The map on degree d components f †d : K[zij ]d → Qd is just the projection map. For

example, the kernel of f †2 corresponds to the summand
∧2(V ) ⊗

∧2(W ). Prove that for

any d > 2 the kernel of f †d is a subrepresentation of (
∧2(V ) ⊗ Sym(V )⊗d−2) ⊗ (

∧2(W ) ⊗
Sym(W )⊗d−2) and deduce that it lies in the ideal I.

3.3.1 Subschemes of products of projective space

We have now seen two ways of thinking about Pn × Pm, but the most convenient way
to work with this variety requires a third approach. We write {xi}ni=0 for the projective
coordinates on Pn and {yj}mj=0 for the projective coordinates on Pm.

Definition 3.3.7. We say that a polynomial f in the variables {xi, yj} is bihomogeneous
of degree (d, e) if it is homogeneous of degree e in the variables xi and homogeneous of
degree e in the variables yj .

For example, the polynomial x0y
2
0 + x1y

2
1 + x2y

2
2 is bihomogeneous of degree (1, 2).

When we defined Pn × Pm we only used polynomials which were bihomogeneous of equal
degree (d, d). (In other words, under the Segre embedding a degree d equation on the
ambient projective space will become a bihomogeneous equation of bidegree (d, d).) How-
ever, we can equally well make sense of closed subschemes defined by the vanishing locus
of bihomogeneous polynomials of unequal degree. Indeed, a bihomogeneous equation of
bidegree (d, e) with d > e can be identified with the system of equations of bidegree (d, d)
obtained by multiplying against every polynomial in the {yj} of degree d − e. It is often
more convenient to work directly with bihomogeneous coordinates due to their increased
flexibility.

Example 3.3.8. The twisted cubic X in P3 that is the image of the Veronese map lies on
the Segre surface Σ1,1 because the equation wz − xy is one of the generators of its ideal.
Let’s see how to write X in bihomogeneous equations using coordinates s, t and u, v on the
two P1 factors and identifying w = su, x = sv, y = tu, z = tv.

The equation x2 −wy is also in the ideal of X. When we restrict to Σ, it becomes the
bidegree (2, 2) polynomial s2v2 − stu2. This factors into s and sv2 − tu2, reflecting the
fact that V+(x2 − wy) ∩ Σ1,1 is the union of a line and X. Similarly, the other equation
y2 − xz factors into t and tu2 − sv2. Altogether this shows that X is defined by the single
bihomogeneous equation tu2 − sv2 in Σ1,1.

(It is also defined by the two equations s2v2−stu2, t2u2−stv2 pulled back from P3. As
discussed above, these equations have equal degree in each coordinate system. However it
is much easier to work with a single equation.)
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3.3.2 Exercises

Exercise 3.3.9. Consider the Segre variety Σ2,1 ⊂ P5.

(1) We know that Σ2,1
∼= P2 × P1. Write down the equations describing the subvarieties

which are the fibers over a K-point for one of the projection maps. (Since there
can be infinitely many fibers, the equations will depend upon some parameters; see
Exercise 3.1.15 for the analogous construction for Σ1,1.)

(2) Suppose that ` is a line in P5 that is contained in the Segre variety Σ2,1. Show that
` must be contained in a fiber of one of the projection maps.

Exercise 3.3.10. Identify a linear subspace L ⊂ Pn2+2n of dimension
(
n+2

2

)
− 1 such that

the image of the diagonal ∆ ⊂ Pn×Pn under the Segre embedding in Pn2+2n is isomorphic
to the 2-Veronese variety of Pn lying inside of L.

Exercise 3.3.11. Fix a non-negative integer r. Consider the subvariety Sr ⊂ P2 × P1

defined by the bihomogeneous equation

srx+ try = 0

where s, t are coordinates on P1 and x, y, z are coordinates on P2. Sr is known as the rth
Hirzebruch surface.

(1) Show that the fiber of the projection map p : Sr → P1 over a point of residue field L
is isomorphic to P1

L.

(2) Show that there is a section σ : P1 → Sr whose image is the point x = y = 0 in
every fiber. Show that the image of this section is the only curve contracted by the
projection map Sr → P2.

(3) Show that Sr is covered by four charts {Ui}4i=1 each isomorphic to A2. If we write
ψi : A2 → Ui for this isomorphism, identify the “overlap maps” ψij : ψ−1

i (Ui ∩Uj)→
ψ−1
j (Ui ∩ Uj).
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3.4 Blow-ups

The blow-up is one of the fundamental constructions in algebraic geometry. It is a basic
tool for understanding birational maps and birational equivalence.

Let X = mSpec(R) be an affine scheme. Fix an ideal I = (g0, . . . , gr) in R. (Note that
we do not insist that the gi are a minimal set of generators of I.) We can define a rational
map φ : X 99K Pr by sending x 7→ (g0(x) : . . . : gr(x)). More precisely, if use coordinates
y0, . . . , yr on Pr−1, then we can define the map on charts Dgi → D+,yi by sending

yj
yI
7→ gj

gi
,

and one can verify that these maps glue to yield a morphism on the complement U of V (I).
In particular, we can define the graph Γφ ⊂ U × Pr.

Definition 3.4.1. The blow-up BlI(X) of X along I is the closure of Γφ inside of X × Pr
(or more accurately, the scheme-theoretic image of the inclusion Γφ → X × Pr).

For convenience we will focus on the case when X is an affine variety. In this case
BlI(X) will also be a variety since the closure of an irreducible subset is irreducible and
the scheme-theoretic image of a reduced scheme is reduced.

Note that the two projection maps induce a diagram

BlI(X)
π1

{{

π2

##
X

φ // Pr

such that π2 = φ ◦ π1 as rational maps. By construction, the map BlI(X)→ X will be an
isomorphism over U , and in particular will be birational. The locus in BlI(X) where π1 is
not an isomorphism is known as the “exceptional locus” and is often denoted by E.

The key perspective is that the blow-up turns the rational map φ into a morphism at
the cost of replacing X by a birationally equivalent variety. (This construction is more
general than it might appear – any rational map can be written in the form φ above.)
There are other ways of thinking about blow-ups which we will see later on.

It is not difficult to identify the blow-up using explicit equations:

Theorem 3.4.2. The blow-up of X = mSpec(R) along I = (g0, . . . , gr) is the closed sub-
scheme of X ×Pr defined by the homogenous ideal in R[y0, . . . , yr] defined by the equations

giyj = gjyi

for i, j ∈ {0, . . . , k} with i 6= j.

Here we are implicitly using the identification X×Pr ∼= mProj(R[y0, . . . , yr]) of Exercise
2.9.11.
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Proof. As discussed earlier, the rational map φ restricts to a morphism φi : Dgi → D+,yi

for any i. The graph of φi is the affine subscheme of mSpec(Rgi [
y0
yi
, . . . , yryi ]) defined by the

equations
yj
yi

=
gj
gi

as we vary j. It is clear that these affine charts also describe the vanishing locus of the
homogeneous ideal in the statement.

3.4.1 Examples

Example 3.4.3. Suppose that I = (g) is a principal ideal. Since P0 ∼= mSpec(K) the map
φ : X 99K P0 is just the structure map and X × P0 ∼= X. By definition, BlI(X) will be the
closure of the complement of V (g) in X. If g is not a zero-divisor then BlI(X) ∼= X, but
if g is a zero divisor then BlI(X) will be the closure of the complement of the components
of X where g vanishes.

Example 3.4.4. In this example we blow-up the origin in A2. We will write x0, x1 for the
coordinates on A2. (Note the unusual indexing!) The ideal for the origin is I = (x0, x1),
and the map φ : A2 99K P1 will be projection away from the origin discussed in Example
2.6.6. We let U denote the complement of the origin where φ is defined.

The blow-up is defined by the single equation x0y1 = y0x1. Over the complement of the
origin, the map BlI(A2) → A2 will be an isomorphism. On the other hand, the preimage
of the origin will be the entire P1 fiber. We can check these claims very explicitly using the
two affine charts A2 ×D+,yi of A2 × P1. On the chart where y0 does not vanish, BlI(A2)
is defined by the equation

x0 ·
y1

y0
= x1 in K

[
x0, x1,

y1

y0

]
.

Abstractly this chart is isomorphic to A2 (in the coordinates x0 and y1/y0). Under this
identification with A2, the projection map from this chart of X to the D+,y0 factor is
just a coordinate projection A2 → A1. The projection map from this chart of X to A2 is
the birational map discussed in Example 1.6.3. As discussed there, the map will contract
the locus V (x0) down to a point and will be an isomorphism on the complement of this
vanishing locus. In particular, we see that on this chart the exceptional locus E is the
vanishing locus of x0. The situation for the other chart is completely symmetric.

Let’s discuss the geometry of this construction. The fibers of φ are the lines through the
origin in A2 intersected with U . When we blow-up, we “separate” these lines by replacing
the origin by the P1 representing tangent directions at the origin. The resulting surface
will now admit a map to P1 with fibers isomorphic to A1. In summary:

• the fiber of BlI(A2) → P1 over a K-point q is the line ` corresponding to q (as a
subvariety of A2 × {q}),
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• the fiber of BlI(A2) → A2 over 0 is P1 (representing the family of lines through 0),
and the map BlI(A2)→ A2 an isomorphism over the complement of 0.

Remark 3.4.5. One should think of the blow-up of the origin in A2 as “separating the
tangent directions” at the origin. We will revisit this idea in Section 5.5.

Example 3.4.6. Let X denote the blow-up of the line L defined by x0 = x1 = 0 inside of
A3. If Y denotes the blow-up of A2 at the origin, then it is easy to see that X ∼= Y × A1

(where the A1 factor corresponds to the x2-coordinate). Here the exceptional locus E is
isomorphic to P1 × L and the birational map X → A3 restricts to the second projection
map on E.

In this case, one should think of the blow-up as “separating the directions in the normal
bundle of L”. For example, suppose that `1, `2 are two lines in A3 that intersect at a point
in L. Then the strict transforms of `1 and `2 will intersect in X precisely when their
tangent directions map to the same quotient in the normal bundle of L at the point.

3.4.2 Compatibility of blow-ups

The blow-up satisfies several important compatibility properties which makes it easier to
think about and work with. The most fundamental property is that the blow-up BlI(X)
does not depend upon the choice of generators of I. (Note that this property is implicit in
our notation.)

Proposition 3.4.7. Let X = mSpec(R) be an affine scheme and let I be an ideal. Suppose
we choose different sets of generators (g0, . . . , gr) and (g′0, . . . , g

′
s) for I. Let Y and Y ′ be

the blow-up with respect to these two sets of generators equipped with the projection maps
p : Y → X and p′ : Y ′ → X. Then there is an isomorphism ψ : Y ∼= Y ′ such that p = p′◦ψ.

Proof. Write g′k =
∑r

i=0 hi,kgi. Let {yi}ri=0 be coordinates on Pr and let {zk}sj=0 be co-
ordinates on Ps. Then we define a rational map X × Pr 99K X × Ps using the graded
homomorphism f † : R[zk] 7→ R[yi] sending zk 7→

∑r
i=0 hi,kyi.

We first claim that this rational map restricts to a morphism on Y . Indeed, the ra-
tional map X × Pr 99K X × Ps is defined away from the locus defined by the equations
{
∑r

i=0 hi,kyi}sk=0. On the other hand Y is defined by the equations giyj − gjyi. The
intersection is given by taking the sum J of the ideals. The relation

gj

r∑
i=0

hi,kyi − (giyj − gjyi)
r∑
i=0

hi,k =
r∑
i=0

hi,kgiyj = g′kyj

shows that the ideal I(y0, . . . , ys) is contained in J . Since V+(I(y0, . . . , ys)) = ∅, we also
have V+(J) = ∅ so that the rational map defines a morphism on Y .



3.4. BLOW-UPS 139

We next need to check that the image of Y is Y ′. Indeed, in the quotient ring of R[yi]
by the homogeneous ideal of Y we have the relation

g′k

r∑
i=0

hi,lyi − g′l
r∑
i=0

hi,kyi =
r∑
j=0

r∑
i=0

hj,khi,lgjyi −
r∑
j=0

r∑
i=0

hj,lhi,kgjyi

= 0

since giyj = gjyi in this quotient ring. This shows that the homogeneous ideal for Y ′ is in
the kernel of f †.

Finally, we can construct a map Y ′ → Y in the opposite way using the analogous
construction from a relation gi =

∑s
k=0 h

′
k,ig
′
k. It is clear that the composition of the

two maps on the homogeneous coordinate rings of Y and Y ′ is the identity, showing that
the induced maps are isomorphisms. The compatibility of the projection maps to X =
mSpec(R) follows from the fact that the maps R[zk] → R[yi] and R[yi] → R[zk] are
isomorphisms on the 0-graded piece R.

The blow-up operation also satisfies two “geometric” compatibilities. First, blow-ups
are compatible with taking closed sets. To make sense of this, we need the following
definition:

Definition 3.4.8. Let X = mSpec(R) be an affine scheme and let I = (g0, . . . , gr) be an
ideal in R. Let Z = V (J) be a closed subscheme of X. Suppose that no associated prime
for J contains I. The strict transform of Z in BlI(X) is the closure of Z ∩ (X\V (I)), or
more precisely, the scheme-theoretic image of Z ∩ (X\V (I)) in BlI(X) under the inclusion
map.

Exercise 3.4.9. Let X = mSpec(R) be an affine scheme and let I = (g0, . . . , gr) be an
ideal in R. Consider a closed subscheme Z = V (J) in X. Then the blow-up of Z along the
quotient ideal I in R/J (with the same generators) is the same as the strict transform of
Z in BlI(X).

This compatibility is quite useful for computations. For example, if we would like to
blow-up a plane curve along an ideal I, we can instead blow-up A2 along the corresponding
ideal and take the strict transform of the curve (see Exercise 3.4.11).

The second geometric compatibility is with taking open sets.

Exercise 3.4.10. Let X = mSpec(R) be an affine scheme and let I = (g0, . . . , gr) be an
ideal in R. Consider a distinguished open affine Df in X. Then the blow-up of Df along
the localized ideal If (with the same generators) is the same as

π−1
1 (Df ) ∩ BlI(X) ⊂ X × Pr.

This exercise indicates that one can blow-up a quasiprojective scheme along a sheaf of
ideals by doing the blow-up on affine charts and gluing (see Exercise 3.4.13).
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3.4.3 Exercises

Exercise 3.4.11. Compute the blow-ups of the following curves in A2 along the ideal
(x, y). What is the preimage of the origin? If E denotes the exceptional locus for Bl0(A2),
how does the strict transform of the curve in Bl0(A2) intersect E?

(1) The curve x = 0.

(2) The curve xy = 0.

(3) The curve y2 = x3 + x2.

(4) The curve y2 = x3.

(5) The curve y2 = x4.

Exercise 3.4.12. Let An have coordinates x0, . . . , xn−1 and let I = (x0, . . . , xk) for some
k ≤ n− 1. Describe the fibers of the maps BlI(An)→ An and Bli(An)→ Pk.

Exercise 3.4.13. Let X be a projective scheme and let Y ⊂ X be a closed subscheme.
For every open affine U ⊂ X, the intersection U ∩ Y is a closed subscheme of U which
identifies an ideal IU ⊂ OX(U). Show that as we vary U the various blow-ups BlI(U) can
be glued together to define a projective variety BlY (X).

For example, show that the blow-up of Pn along a linear space L is the closure of the
graph of the projection Pn 99K Pk away from L. If L is the coordinate plane x0 = . . . =
xk = 0, show that the blow-up is defined in Pn × Pk by the bihomogeneous equations
xiyj = xjyi for 0 ≤ i, j ≤ k.

However, in contrast to the blow-up of An along a linear space the exceptional locus E
is no longer a product of two varieties!

Exercise 3.4.14. Let X,Y ⊂ An be closed subvarieties defined by ideals I, J . Recall that
the intersection is defined by I + J . Assume that V (I + J) is strictly contained in X and
strictly contained in Y . Prove that the strict transforms of X and Y in the blow-up of
I + J are disjoint.

Exercise 3.4.15. Let X be an affine variety and consider the blow-up BlI(X) along an
ideal I. Let Z denote the preimage of V (I). Prove that BlI(X) is covered by open affine
subsets U such that Z ∩U is the vanishing locus of a single equation. (One sometimes says
that the blow-up “principalizes” the ideal I.)
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3.5 Grassmannians: projective structure

The Grassmannian G(k, n) is the parameter space for k-dimensional subspaces of an n-
dimensional vector space. Similarly, G(k, n) denotes the parameter space for k-dimensional
planes in Pn. Note that G(k, n) = G(k+1, n+1). In this section we give the Grassmannian
G(k, n) the structure of a projective variety whose K-points represent the corresponding
k-dimensional subspaces.

Example 3.5.1. We have G(1, n) = Pn−1. The Grassmannian G(n−1, n) can be identified
with the dual projective space (Pn−1)∨.

We will construct the Grassmannian as a closed subscheme of P(nk)−1. The embedding

G(k, n) ↪→ P(nk)−1 is known as the Plücker embedding and can be described set theoretically
as follows. Suppose W ∈ G(k, n) is a k-dimensional subspace. Fix any basis v1, . . . , vk of
W and consider the map

φ : G(k, n)→ P

(
k∧
Kn

)
W 7→ v1 ∧ . . . ∧ vk

Note that φ(W ) does not depend upon the choice of basis. The K-points in the image of

the Plücker embedding will be the K-points in P
(∧kKn

)
which are the projectivizations

of decomposable vectors (i.e. which can be written as a pure wedge product).

3.5.1 Defining a closed subset

To identify the ideal that defines the Plücker embedding, we need to think more carefully
about what it means for an element of the exterior algebra to be a pure wedge product.
For clarity we will write V for the vector space Kn. Fix an element ω ∈

∧kKn and consider
the linear map

ϕω : V →
k+1∧

V

v 7→ v ∧ ω

Then ω will be a pure wedge product if and only if the rank of this map is ≤ n− k. This
is a consequence of Lemma 3.0.2 and Proposition 3.0.6.

The map P(
∧k V ) → P(Hom(V,

∧k+1 V )) which sends ω to the map ϕω is a linear
function. By Exercise 1.2.16 the subset of P(Hom(V,

∧k+1 V )) which corresponds to maps
of rank ≤ n− k is a closed subset defined by the vanishing of the (n− k+ 1)× (n− k+ 1)
minors of a matrix of linear functions in the homogeneous coordinate ring. By pulling these
functions back under the linear map defined above, we obtain an ideal whose vanishing locus
is the Grassmannian. This shows how to define the Grassmannian as a projective scheme.
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3.5.2 Plücker relations

Unfortunately, the ideal we have constructed is very far from the ideal I of all homoge-
neous functions which vanish on the Grassmannian. The saturated ideal I defining the
Grassmannian is generated by certain quadratic functions known as Plücker relations. The
construction is similar, but a little more complicated.

Note that we have two perfect pairings

n−k∧
V ∨ ×

n−k∧
V → K

k∧
V ×

n−k∧
V →

n∧
V

Choosing an isomorphism
∧n V → K, we can identify

∧k V and
∧n−k V ∨. This isomor-

phism is only natural up to scaling, but when we projectivize this ambiguity won’t matter.
Suppose we choose a basis v1, . . . , vr of V with dual basis v∨1 , . . . , v

∨
r . For any subset

I ⊂ {1, . . . , r} of size k we have

vi1 ∧ . . . ∧ vik ↔ ±v
∨
j1 ∧ . . . ∧ v

∨
jn−k

where J is the complement of I.
Fix any ω ∈

∧k V and let ω∗ denote the corresponding element in
∧n−k V ∨. Consider

the composition

ψ :
n−k+1∧

V
(∧ω∗)∨−−−−→ V

∧ω−−→
k+1∧

V

We show that ψ is the zero map if and only if ω is a pure wedge power. By Lemma
3.0.5 the image of the first map is the smallest subspace W such that ω is in the image of∧kW →

∧k V . If ω = v1 ∧ . . . ∧ vk is a pure wedge product then the image W of the first
map is the span of the vi and the vanishing of the map follows. If ω is not a pure wedge
product then there is some element in W which does not have vanishing wedge power with
ω and so ψ does not vanish identically. Note that the two functions whose composition
is ψ have entries which are linear in the coordinates on P(

∧k V ); thus, the vanishing of
the composed function ψ will be described by a quadratic equation in the coordinates of
P(
∧k V ).
By choosing a basis of V we can impose coordinates K[xI ] on P(

∧k V ) where I = i1 <
i2 < . . . < ik is a size k subset of {1, . . . , n} written in increasing order. It is useful to
allow indices which are ordered k-tuples of different elements in {1, 2, . . . , n} that are not
necessarily increasing: by xi1i2...ik we will mean

xi1...ik := (−1)sgn(σ)xI

where I is the corresponding increasing ordered subset of {1, . . . , n} and σ is the permuta-
tion rearranging the ij into increasing order. One can write the Plücker relations concretely
in this basis:
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Definition 3.5.2. Fix a pair of positive integers (k, n) with k < n. Fix an ordered subset
i1 < . . . < ik−1 and an ordered subset j1 < . . . < jk+1 of {1, . . . , n}. For each such choice,
we obtain a corresponding Plücker relation

k+1∑
`=1

(−1)`xi1,...,ik−1,j`xj1,...,ĵ`,...,jk+1
= 0

Here we interpret a coordinate as 0 if it has a repeated index.

We define the Grassmanian G(k, n) to be the vanishing locus of the ideal I generated
by all Plücker relations for (k, n). We will show in the next section that I defines a variety.
It is also true that I is the saturated ideal that defines the Grassmannian, but we will not
prove this.

The K-points of G(k, n) will parametrize k-dimensional subsets of Kn. The non-
traditional points will parametrize Galois orbits of planes defined over extensions of K;
see Example 3.1.9 for a similar phenomenon in a different setting.

Example 3.5.3. The Plücker embedding realizes the Grassmannian G(2, 4) as a subvariety
of P5. Using the coordinates xI indexed by pairs of elements in {1, 2, 3, 4}, all the Plücker
relations yield a single non-trivial equation

x12x34 − x13x24 + x14x23 = 0.

In other words, G(2, 4) is a quadric hypersurface in P5.

Example 3.5.4. The Plücker embedding realizes the Grassmannian G(2, 5) as a subvariety
of P9. Using the coordinates xI indexed by pairs of elements in {1, 2, 3, 4, 5}, the Plücker
relations are

x12x34 − x13x24 + x14x23 = 0

x12x35 − x13x25 + x15x23 = 0

x12x45 − x14x25 + x15x24 = 0

x13x45 − x14x35 + x15x34 = 0

x23x45 − x24x35 + x25x34 = 0

3.5.3 Exercises

Exercise 3.5.5. Show that the Plücker relations for G(2, n) span an
(
n
4

)
dimensional

subspace of the vector space of homogeneous quadrics on P(n2)−1.

Exercise 3.5.6. Suppose V has basis e1, . . . , en. As above we let K[xI ] denote the ho-
mogeneous coordinate ring on P(

∧k V ) as I varies over all subsets of {1, . . . , n} of size k.
Explain why the K-points of the intersection V+(xI)∩G(k, n) represent the k-planes in V
which fail to intersect the subspace Span{ei}i∈{1,2,...,n}\I transversally.
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Exercise 3.5.7. Consider the Plücker embedding G(k, n) ↪→ P(
∧(nk) V ). Fix two k-planes

L1, L2. Show that the line between the corresponding points of P(
∧(nk) V ) is contained in

G(k, n) if and only if L1 ∩L2 has dimension k− 1. In this case, the line ` parametrizes the
family of k-planes which contain this (k − 1)-dimensional plane.

Exercise 3.5.8. Let K be an algebraically closed field. Consider the Plücker embedding
G(1, 3) ↪→ P5.

(1) Fix a point p ∈ P3. Let Σp ⊂ G(1, 3) denote the set of lines in P3 which contain p.
Prove that the Plücker embedding sends Σp to a 2-plane in P5.

(2) Fix a hyperplane H ⊂ P3. Let ΣH ⊂ G(1, 3) denote the set of lines in P3 which are
contained in H. Prove that the Plücker embedding sends ΣH to a 2-plane in P5.

(3) Prove that every 2-plane in P5 that is contained in G(1, 3) has one of the two forms
above.
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3.6 Grassmannians: chart structure

We continue our study of the Grassmannian G(k, n) building upon our definition of the
Plücker embedding G(k, n) ↪→ P(

∧kKn) in the previous section.

3.6.1 Affine charts set-theoretically

Our next goal is to describe a covering of G(k, n) by affine varieties. We first explain the
construction set-theoretically.

Fix a basis e1, . . . , en of Kn. Let U ⊂ G(k, n) be the set of planes which meet the
subspace Span(ek+1, . . . , en) transversally. Equivalently, U is the set of planes W such that
if we write a basis for W as the columns of an n× k matrix M then the top k × k minor
will not vanish. Any such W admits a unique basis such that the matrix M has the form

M =



1 0 . . . 0
0 1 . . . 0
0 0 . . . 1
a1,1 a1,2 . . . a1,k

a2,1 a2,2 . . . a2,k
...

...
. . .

...
an−k,1 an−k,2 . . . an−k,k


.

By assigning to W the coordinates (a1,1, . . . , an−k,k) we obtain a bijection U ↔ Kk(n−k).
As we choose different subsets of k vectors in our basis {ei}ni=1 then the corresponding open
sets form an open cover of G(k, n).

Let’s analyze how this description interacts with the Plücker embedding. Recall that
P(
∧kKn) has homogeneous coordinates given by xI as I varies over all subsets of {1, . . . , n}

of size k. The subset U is the sublocus of G(k, n) where the homogeneous coordinate x12...k

does not vanish. Thus each quotient xI/x12...k yields a well-defined function on U . Up to
a sign change this function is the k× k minor of the matrix M corresponding to the choice
of rows defined by I. Note that each coordinate ai,j is defined by one of these minors: take
the first k rows of M and replace the jth row by the ith row of M . Explicitly,

ai,j = (−1)k−j
x12...̂j...k(k+i)

x12...k
=
x12...(k+i)...k

x12...k

where we are using our usual sign convention when the indices are not in increasing order.
In particular, this means that the affine coordinates on U are (up to sign) defined by the
restriction of the functions xI/x12...k from P(

∧kKn) where I ∩ {1, 2, . . . , k} has size k − 1.

Remark 3.6.1. Note that by taking minors of the matrix M we obtain some equations in
the homogeneous coordinate ring which vanish along G(k, n). For example, since a1,1a2,2−
a1,2a2,1 is a 2×2 minor, this quadratic function of certain affine coordinates can be identified
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with a different affine coordinate. Clearing denominators, this minor yields a quadratic
relation x(k+1)23...kx1(k+2)3...k − x(k+2)23...kx1(k+1)3...k = x(k+1)(k+2)34...kx12...k.

3.6.2 Affine charts algebraically

We next repeat this computation algebraically. Consider the open affineD+,xI ⊂ P(
∧kKn).

Claim 3.6.2. The intersection G(k, n) ∩D+,xI is isomorphic to Ak(n−k).

Proof. The coordinate ring of D+,xI is the set of polynomials in the fractions xJ/xI for
subsets J 6= I. For each subset J ⊂ {1, . . . , n}, we let s(J, I) denote the size of J ∩ I.

Suppose that J is a subset of size k satisfying s(I, J) ≤ k − 2. Fix an ordered subset
i1 < . . . < ik−1 of k − 1 elements of I and an ordered subset j1 < . . . < jk+1 that is the
union of J with the missing element of I. Corresponding to these choices we have the
Plücker relation

k+1∑
`=1

(−1)`xi1,...,ik−1,j`xj1,...,ĵ`,...,jk+1
= 0.

This equation has xIxJ as one summand; all the other summands have the form xKxL
where s(K, I) > s(J, I) and s(L, I) > s(J, I). After localizing at xI , we can write xJ/xI in
terms of variables whose indices have larger intersection with I. Substituting repeatedly,
we can write xJ

xI
as a polynomial expression in variables xK/xI with s(K, I) = k − 1.

Precisely, these equations have the form

xJ
xI

=
∑

σ:J\(J∩I)→I\(J∩I)

(−1)sgn(σ)

 ∏
j∈J\J∩I

x{j}∪(I\σ(j))


as we let σ vary over all bijections between J\(J ∩ I) → I\(J ∩ I) (where sgn(σ) is an
appropriately chosen sign). Although the term xIxJ can appear in many different Plücker
relations, all the possibilities will yield the same expression for xJ/xI .

The Plücker relations which do not involve xI become identically zero after localizing
and substituting in the equations above. We will not verify this carefully.

Let q ⊂ K[xJ/xI ] denote the ideal obtained by restricting the Plücker relations to
the localization of xI . Let R denote the polynomial ring in the variables xK/xI such
that s(K, I) = k − 1. The argument above shows that R is isomorphic to K[xJ/xI ]/q.
Since are exactly k(n− k) subsets of {1, 2, . . . , n} satisfying s(K, I) = k − 1 we have that
mSpec(R) ∼= Ak(n−k).

3.6.3 The universal plane

The “universal plane” over G(k, n) is the following scheme.
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Proposition 3.6.3. There is a closed subvariety U ⊂ G(k, n) × Pn such that the fiber of
the projection map U → G(k, n) over a K-point x ∈ G(k, n) is the k-plane parametrized by
x.

In fact, the fiber of U → G(k, n) over any point will be a subscheme which is a union
of planes defined over a finite field extension.

Proof. We denote the homogeneous coordinate ring of Pn by K[y0, . . . , yn]. Let {D+,xI}
denote the set of affine charts on G(k, n) discussed in Claim 3.6.2. For each D+,xI we will
construct a closed subvariety of D+,xI ×Pn which satisfies the desired property over D+,xI .
We will then glue these subschemes to obtain U .

Any subset K ⊂ {1, . . . , n} with s(K, I) = k − 1 can be identified by removing an
element i of I and adding an element j from the complement of I. As we vary i ∈ I and
j ∈ {1, . . . , n}\I, we write bj,i for the restriction of the function x{j}∪I\{i}/xI on D+,xI .
(Note that the index and sign conventions are different than for the a-variables used before.)
Claim 3.6.2 shows that DxI

∼= Ak(n−k) with coordinate ring K[bj,i]i∈I,j∈{1,...,n}\I .
By Exercise 2.9.11 the vanishing locus of any set of polynomials in K[bj,i, y0, . . . , yn]

that is homogeneous in the y variables will define a closed subset of DxI × Pn. For every
j ∈ {1, 2, . . . , n}\I consider the equation

fj := yj +
∑
i∈I

(−1)sgn(σi,j)bj,iyi

where σi,j is the permutation which takes the ordered k-tuple obtained by replacing i by j
and rearranges it to increasing order. The system of (n− k) equations {fj}j∈{1,...,n}\I will
cut out a scheme UI over D+,xI . It is clear that UI is a variety – in fact, it is isomorphic to
Ak(n−k) × Pk. Fix a K-point x ∈ D+,xI . It is clear that when we evaluate the coordinates
bj,i at x the linear equations fj define the corresponding k-plane in Pn. Thus the fiber of
the map UI → DxI over x is indeed the plane parametrized by x.

We claim that as we vary I, the UI glue together to give a closed subvariety of G(k, n)×
Pn. Indeed, for any subset K ⊂ {1, . . . , n} of size k + 1 consider the equation

f̃K :=
∑
j∈K

(−1)sgn(σj)xK\{j}yj .

where σj is the permutation which rearranges the ordered (k+ 1)-tuple K by moving j to
the end. If I is a subset of size k such that K\I is a single element j, then the restriction
of f̃K to D+,xI is the equation fj . (The f̃K such that I 6⊂ K will vanish identically on

D+,xI .) Thus we can use the f̃K to define U .

3.6.4 Exercises

Exercise 3.6.4. Let K be an algebraically closed field. Fix two closed subsets X,Y ⊂ Pn.
Let Z = X ∩ Y . Show that the set of lines through a point in X\Z and a point in Y \Z
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is a quasiprojective variety V ⊂ G(1, n). The join Join(X,Y ) is the union of all the lines
parametrized by the closure V . Show that Join(X,Y ) is a closed subset of Pn.

Exercise 3.6.5. Let K be an algebraically closed field. Let X ⊂ Pn be a closed subset.
Show that the set of lines V ⊂ G(1, n) which connect two distinct points in X is a quasipro-
jective variety V . The secant variety Sec(X) is the union of all the lines parametrized by
the closure V . Show that Sec(X) is a closed subset of Pn.

Exercise 3.6.6. Let K be an algebraically closed field. Let C ⊂ P3 be the conic defined
by the equations x3 = x0x2 − x2

1 = 0. Find the equations of the subvariety X ⊂ G(1, 3)
that parametrizes the lines which meet C.

Repeat this exercise for the standard twisted cubic in P3.



Chapter 4

Dimension

Dimension is a surprisingly subtle concept. For example, in order to verify that a (topo-
logical) manifold has a well-defined dimension one must prove “invariance of domain”: if
U ⊂ Rm and V ⊂ Rn are open and there is a homeomorphism f : U → V then n = m.
This was proved in 1912 by Brouwer using tools from algebraic topology.

In this chapter we will construct a theory of dimension for quasiprojective K-schemes.
There are several possible definitions one could use; we will show that they all coincide for
K-schemes. (For general schemes these definitions could give different values, highlighting
the difficulties with this notion!)

Primer on finite ring homomorphisms

A ring homomorphism f ] : S → R is said to be finite if it gives R the structure of a finitely
generated S-module. (NB: this is much more restrictive than being finitely generated as an
S-algebra!) A ring homomorphism f ] is finite if and only if it is an integral homomorphism
of rings and it realizes R as a finitely generated S-algebra. In particular, if S and R are
finitely generated K-algebras then f ] is finite iff it is integral.

We will need to know that finiteness can be detected locally.

Proposition 4.0.1. Let f ] : B → A be a homomorphism of rings. Suppose that {gj}rj=1

is a finite set of elements in B which generate the unit ideal. Then A is a finite B-module
if and only if Af](gj) is a finite Bgj -module for every j.

Finite ring homomorphisms induce a close correspondence between prime ideals.

Theorem 4.0.2 (Lying Over). Suppose g] : B → A is a finite injective ring homomor-
phism. For any prime ideal p ⊂ B, there exists a prime ideal q ⊂ A such that (g])−1(q) = p.

Applying Lying Over repeatedly, we obtain:

149
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Theorem 4.0.3 (Going Up). Let g] : B → A be a finite injective ring homomorphism.
Suppose that

q0 ( q1 ( . . . ( qm

is a chain of primes in B, and that

p0 ( p1 ( . . . ( pn

is a chain of primes in A with n ≤ m such that (g])−1(pi) = qi for i = 0, 1, . . . , n. Then
the chain of pis can be continued via a chain

pn ( pn+1 ( . . . ( pm

such that (g])−1(pi) = qi for i = 0, . . . ,m.

When A is integrally closed, there is also a Going Down theorem which allows us to
extend chains of prime ideals “downwards” instead of ”upwards”.

Theorem 4.0.4 (Going Down). Let g] : B → A be a finite injective ring homomorphism
such that B is an integrally closed domain and A is a domain. Given any inclusion of
prime ideals q ⊂ q′ of B and a prime p′ of A such that p′ ∩ B = q′ there exists a prime p
of A contained in p′ such that p ∩B = q.
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4.1 Finite maps

In this section we start building a loose analogy between the following two constructions:

(1) In algebra, injective finite K-algebra homomorphisms f ] : S → R.

(2) In topology, covering maps with ramification (where we allow sheets of a covering to
come together along a Zariski closed subset).

Covering maps (and, if correctly defined, covering maps with ramification) are proper with
finite fibers. Our algebro-geometric analogues will also satisfy these two key geometric
properties.

4.1.1 Affine morphisms

We start with an auxiliary notion that is important in its own right.

Definition 4.1.1. Let f : X → Y be a morphism of quasiprojective schemes. We say that
f is affine if the preimage of every open affine subset in Y is an open affine subset in X.

Note that a morphism of projective schemes will have projective fibers, and thus (by
Exercise 2.11.13) will almost never be affine. On the other hand, we will soon see that
morphisms of affine schemes are always affine.

Since Definition 4.1.1 involves every open affine subset of Y it is difficult to check
directly. The following key lemma shows that it suffices to check what happens for a single
cover of Y by open affines.

Lemma 4.1.2. Let f : X → Y be a morphism of quasiprojective schemes. Suppose that
Y admits an open cover by open affines {Vi} such that the preimage of each Vi is an open
affine in X. Then the preimage of every open affine V in Y will be an open affine in X.

For example, this implies that a morphism of affine schemes is always affine.

Proof. By Lemma 2.5.2 there is an open cover {Wj} of V by open affines such that each
Wj is simultaneously a distinguished open affine in V and a distinguished open affine for
some Vi in our open cover. We let gj ∈ OY (V ) be an element whose localization yields Wj

and let hj ∈ OY (Vi) be an element whose localization yields Wj . Note that the preimage
of Wj is an open affine Dj of X. Indeed, it is the distinguished open affine of f−1(Vi)
corresponding to the element f ](Vi)(hj).

Let U be the preimage of V in X. Set R = OX(U). Let g̃j be the image of gj under
the pullback f ](V ) : OY (V ) → OX(U). Note that Dj := f−1(Wj) is the complement of
the vanishing locus of g̃j . Furthermore, by construction each Dj is an open affine in X.
Finally, by Exercise 2.4.19 we know that OX(Dj) ∼= Rg̃i .

We must verify that U ∼= mSpec(R). By Theorem 2.4.8 there is a morphism h : U →
mSpec(R). Furthermore, again by Theorem 2.4.8 the map f |U : U → mSpec(S) is the
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composition of h with the morphism mSpec(R) → mSpec(S) induced by f ]. This means
that the restriction h|Dj must be the isomorphism Dj

∼= mSpec(Rj) for every j. Since h is
an isomorphism along each open set in this open cover, h is itself an isomorphism.

4.1.2 Finite morphisms

Finite morphisms are defined by adding one additional property to the definition of an
affine morphism.

Definition 4.1.3. We say that a morphism of quasiprojective schemes f : X → Y is
finite if for every open affine V in Y the preimage U in X is an open affine such that
f ](V ) : OY (V )→ OX(U) is a finite K-algebra morphism.

Again this definition is hard to check directly, so we should develop a criterion that is
easier to verify.

Lemma 4.1.4. Let f : X → Y be a morphism of quasiprojective schemes. The following
conditions are equivalent:

(1) There is an open covering of Y by open affines {Vi} such that for every i the preimage
f−1(Vi) is an open affine in X and the map f ](Vi) : OY (Vi)→ OX(f−1(Vi)) is a finite
K-algebra homomorphism.

(2) f is a finite morphism.

Proof. Lemma 4.1.2 shows that a morphism satisfying (1) will be an affine morphism. It
only remains to show that for every open affine V in Y with preimage U we have that
OX(U) is a finite OY (V )-module. Tracing through the proof of Lemma 4.1.2, we can
assume there is a set {gj} ⊂ OY (V ) which generates the unit ideal and that OX(U)gj is a
finite OY (V )gj -module for every j. We conclude by Proposition 4.0.1.

(2) =⇒ (1) is immediate.

Example 4.1.5. Let f : A1 → A1 be the morphism induced by the map f ] : K[x]→ K[t]
sending x 7→ P (t) where P is a degree n polynomial. Then K[t] is generated as a K[x]-
module by 1, t, t2, . . . , tn−1. Thus f is a finite morphism.

Example 4.1.6. The open embedding A1\{0} → A1 is not finite.

We have already seen one general source of examples of finite maps.

Exercise 4.1.7. Prove that every closed embedding is a finite map.

Warning 4.1.8. The correct analogy between finite maps and covering maps with rami-
fication is when we require the finite morphism to be dominant. We do not impose this as
a hypothesis, so “smaller” maps like closed embeddings will also be finite.
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4.1.3 Basic properties of finite maps

We next translate several facts about integral ring homomorphisms to the setting of
schemes.

Exercise 4.1.9. Prove that a composition of finite morphisms is finite.

Lemma 4.1.10. Suppose f : X → Y is a finite morphism. Suppose that g : Z → Y is an
morphism. Then the induced f̃ : X×Y Z → Z is a finite morphism. (In other words, finite
morphisms are stable under base change.)

Proof. Let {Vk} denote an open cover of Y by open affines. For each Vk let {Uk} denote the
preimage; since f is finite Uk is an open affine in X. Finally, let {Wjk} be an open cover
of g−1(Vk) by open affines. Then the various Uk ×Vk Wjk form an open cover of X ×Z Y
by open affines. Thus it suffices to prove the statement when X,Y, Z are affine.

Translating to the algebraic situation, we need to prove the following:

Claim 4.1.11. Suppose that f ] : S → R is a finite K-algebra homomorphism. Let g] :
S → T be a K-algebra homomorphism. Then the induced map T → R⊗S T is finite.

To see this claim, for some positive integer n we have a surjective homomorphism
S⊕n → R of S-modules. Since tensor product is right exact, we obtain a surjection T⊕n →
R⊗S T of T -modules, proving the claim.

Lemma 4.1.12. A finite morphism f : X → Y is topologically closed.

This is the geometric interpretation of the “Lying Over” theorem.

Proof. One can check if a set is closed by intersecting against all sets in an open cover.
Thus we may suppose that Y is affine. Since f is finite this implies that X is also affine,
so f is induced by a K-algebra homomorphism f ] : S → R.

Suppose that Z ⊂ X is a closed subset which is the vanishing locus of an ideal I. Set

J = (f ])−1I. Consider the map f
]

: S/J ↪→ R/I. Applying Lying Over (Theorem 4.0.2)
with B = S/J , A = R/I, and m any maximal ideal of S/J , we find a prime ideal q ∈ R/I
such that (f

]
)−1(q) = m. In fact, this q must be a maximal ideal of R/I. Indeed, we

have an injection S/m ↪→ R/q which is a finite map. Note that B/m is a field and A/q
is a domain. Since the map ψx : A/q → A/q induced by multiplication by a non-zero
element x ∈ A/q is injective and A/q is a finite-dimensional B/m-space, in fact ψx must
be bijective. This shows that A/q is a field and so q is a maximal ideal.

Geometrically, this implies that for any point m ∈ V (J) there is a point q ∈ V (I) such
that f(q) = m. In other words, the image of Z coincides with the closed set V (J) in Y .
This shows that f is a closed map.
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Example 4.1.13. The ring morphism f ] : K[x] → K[x]x is not finite. Thus the open
embedding Dx → A1 is not finite. We can also see this by noticing that Lemma 4.1.12
fails.

By combining Lemma 4.1.10 and Lemma 4.1.12 we deduce:

Theorem 4.1.14. Finite morphisms are proper.

4.1.4 Exercises

Exercise 4.1.15. Let X ⊂ Pn+1 be a hypersurface and suppose that p ∈ Pn+1 is a K-point
not contained in X. Show that projection away from p defines a finite morphism X → Pn.
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4.2 Fibers of finite maps

In this section we continue the analogy between dominant finite morphisms of schemes
and covering maps with ramification in topology. We will focus on the fibers of finite
morphisms. The following easy lemma describes one of the defining properties of a finite
morphism.

Lemma 4.2.1. Let f : X → Y be a finite morphism. Then every fiber of f is a finite
scheme.

Proof. Fix a point y ∈ Y and let F := X ×Y y be the fiber over y. By Lemma 4.1.10, the
induced map f : F → y is a finite map. Since y = mSpec(S) for a finite K-module S, we
see that F = mSpec(R) for a finite K-module R. In other words, R is an Artinian ring.
We conclude that F is a finite set.

It is important to note that the converse of Lemma 4.2.1 is not true: for example,
most open embeddings are not finite. (See Example 4.1.13.) However, if we add in the
properness condition then we do get equivalent definitions.

Theorem 4.2.2. Let f : X → Y be a morphism of quasiprojective schemes that is proper
and has finite fibers. Then f is a finite morphism.

Unfortunately, the proof requires tools that we have not developed so far. In fact, even
more is true: the following important theorem describes the structure of morphisms with
finite fibers. (Such morphisms are called “quasifinite.”)

Theorem 4.2.3 (Zariski’s Main Theorem). Let f : X → Y be a morphism of quasipro-
jective schemes such that every fiber of f is finite. Then f is the composition of an open
embedding i : X → Z followed by a finite morphism g : Z → Y .

Exercise 4.2.4. Deduce Theorem 4.2.2 from Theorem 4.2.3.

4.2.1 Degree

Since a finite morphism has finite fibers, it is interesting to “count” the number of points
in a fiber.

Definition 4.2.5. Let f : X → Y be a finite morphism of quasiprojective schemes. For
any point y ∈ Y , the fiber f−1(y) is an affine scheme defined by an Artinian κ(y)-algebra
R. We define the degree of f over y to be

degy(f) := dimκ(y)(R).

(Note that if f−1(y) is empty then our convention is that R = 0 and degy(f) = 0.)

It turns out that degy has nice topological properties.
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Theorem 4.2.6. Let f : X → Y be a finite morphism of quasiprojective schemes. Then
degy(f) is an upper semicontinuous function on Y .

Proof. We must show that for any positive integer d the set Zd := {y ∈ Y | degy(f) ≤ d}
is an open subset. When d = 0, we must show that the image of f is a closed subset of Y
which follows from the properness of finite morphisms.

When d > 0, we can check whether a subset of Y is open by intersecting against every
element in an open cover. In this way we reduce to the case where Y = mSpec(S) (and
hence also X = mSpec(R)) is affine.

Fix a maximal ideal m ⊂ S representing a point y ∈ Zd. Then we have

dimκ(y)R/〈f ](m)〉 ≤ d.

If we consider R ⊗ Sm as a module over the local ring Sm and apply Nakayama’s lemma,
we see that there is a set of d elements g1, . . . , gd which generate R ⊗ Sm. By definition
each gi is a function in some sufficiently small open neighborhood of y. Using the fact that
distinguished open affines form a base for the topology, we can find some h ∈ S such that
g1, . . . , gd ∈ Sh. Thus R⊗ Sh is generated by g1, . . . , gd as an Sh-module. We deduce that
for any maximal ideal n ⊂ Sh we have

dimS/mR/〈f ](n)〉 ≤ d.

In other words, every point y in the open set Dh satisfies degy(f) ≤ d, proving the desired
statement.

In particular this implies:

Corollary 4.2.7. Let f : X → Y be a finite morphism of quasiprojective schemes. Suppose
that Y is irreducible. Then there is a non-empty open subset U ⊂ Y such that degy(f) is
constant for y ∈ U .

Exercise 4.2.8. Show that degy(f) can actually increase on closed sets by considering the
following two examples of finite morphisms.

(1) The morphism f : A1 → mSpec(K[x, y]/(y2 − x3 − x2)) defined by x 7→ t2 − 1, y 7→
t(t2 − 1).

(2) The morphism f : A1 → mSpec(K[x, y]/(y2 − x3)) defined by x 7→ t2, y 7→ t3.

Corollary 4.2.7 shows that for a dominant finite morphism f : X → Y of quasiprojective
varieties there is a non-empty open subset U ⊂ Y such that degy(f) is constant for y ∈ U .
Our next goal is to reinterpret this number in terms of the global geometry of X and Y .

Definition 4.2.9. Let f : X → Y be a dominant finite morphism of quasiprojective
varieties. This induces an inclusion f ] : K(Y ) ↪→ K(X). We define the degree deg(f) to
be [K(X) : K(Y )].
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The degree of a dominant finite map is an important invariant! It is used frequently
when studying the relationship between varieties which have the same dimension. For
example, note that a finite dominant morphism f will be birational if and only if it has
degree 1.

Theorem 4.2.10. Let f : X → Y be a dominant finite morphism of quasiprojective
varieties. There is a non-empty open subset U ⊂ Y such that for every y ∈ U we have

degy(f) = deg(f).

Exercise 4.2.8 shows that U need not equal all of Y .

Proof. By replacing Y by an open affine subset, it suffices to consider the case when
Y = mSpec(S) (and hence also X = mSpec(R)) is an affine variety. We will appeal to the
following important algebraic theorem.

Theorem 4.2.11 (Grothendieck’s Generic Freeness). Suppose that B is a finitely generated
K-algebra (or more generally, a finitely generated algebra over a Noetherian domain). For
any finitely generated B-module M , there is an element g ∈ B such that Mg is a free
Bf -module.

In our setting, this theorem implies that there is an element g ∈ S such that Rg is a
free Sg-module. Denote the rank of this module by r. Then for any maximal ideal m ⊂ Sg,
we have that Rg/f

]
g(m) is a free Sg/m-module of rank r. In other words, for any y ∈ D(g)

we have that degy(f) = r.

Finally, we must show that r = deg(f). It is clear that Rg⊗K(Y ) has dimension r over
K(Y ). But Rg⊗K(Y ) is a finite extension of K(Y ), and hence must coincide with the field
K(X).

4.2.2 Criterion for closed embedding

We’ll close this section with an interesting criterion for a morphism to be a closed em-
bedding. Certainly a closed embedding must be proper and be set-theoretically injective.
Note however that these two conditions are not sufficient (see Exercise 4.2.8.(2)). If we
replace “set-theoretically injective” by a condition guaranteeing that the fibers are single
points scheme-theoretically, then we do obtain an equivalent criterion.

Theorem 4.2.12. Let f : X → Y be a finite morphism of quasiprojective schemes such
that degy(f) ≤ 1 for every point y ∈ Y . Then f is a closed embedding.

According to Theorem 4.2.2 we may equivalently assume that f is proper and that if
the fiber over y is non-empty then it is a single reduced κ(y)-point.
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Proof. It suffices to consider the case when Y = mSpec(S) (and hence also X = mSpec(R))
is an affine scheme. We want to show that the ring map f ] : S → R is surjective. Let
M denote the cokernel of this B-module map. For any maximal ideal m ⊂ S, we have an
induced exact sequence

Sm → Rm →Mm → 0.

If we tensor by S/m, then the leftmost map becomes S/m→ R/〈f ](m)〉 which by assump-
tion is an isomorphism whenever the rightmost term is not zero. By Nakayama’s lemma,
we deduce that Mm = 0 for every maximal ideal m. Since we can test whether a B-module
vanishes after localizing at maximal ideals, we see that M = 0 and that f ] is surjective.
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4.3 Dimension

In this section we define the dimension of a quasiprojective scheme. We will give several
definitions and verify that they all coincide. This is not just pedantry – different properties
of the dimension can be most easily observed using different definitions.

Our first definition makes sense for any Noetherian topological space.

Definition 4.3.1. Let X be a Noetherian topological space. The Krull dimension of X
is defined to be the supremum over all integers r such that there is a strictly descending
chain

Z0 ) Z1 ) . . . ) Zr

where each Zi is an irreducible closed subset of X. We denote the Krull dimension by
krdim(X).

By the DCC condition for closed subsets any descending chain in a Noetherian topo-
logical space will eventually stop. However, this does not guarantee that the dimension is
finite! It is true, but not obvious, that every quasiprojective K-scheme has finite dimension.

Remark 4.3.2. Suppose that X = mSpec(R) is an affine scheme. Then the Krull dimen-
sion is the same as the largest integer r such that there is a chain

p0 ( p1 ( . . . ( pr

such that each pi is a prime ideal in R.

Example 4.3.3. We have krdim(A1) = 1 corresponding to the chain 0 ⊂ (x) of prime
ideals in K[x]. In Example 1.3.7 we checked that krdim(A2) = 2.

The following easy exercises clarify the meaning of the Krull dimension:

Exercise 4.3.4. Let X be a quasiprojective scheme. Prove that as we vary Xi over all
the irreducible components of X we have krdim(X) = supXi krdim(Xi).

Exercise 4.3.5. Let X be a quasiprojective scheme. Prove that krdim(X) = krdim(Xred).

Thus the Krull dimension is determined by its value for quasiprojective varieties. From
now on, it will be most convenient to focus on defining the dimension for quasiprojec-
tive varieties (and to use Exercise 4.3.4 and Exercise 4.3.5 to extend it to quasiprojective
schemes).

Exercise 4.3.6. Let X be a quasiprojective variety of finite dimension of dimension r.
Prove that X contains an open affine subset U such that krdim(U) = krdim(X).

Prove that if X has dimension ∞ then for any r > 0 there is an open affine subset
U ⊂ X with krdim(U) = r.

Even though the Krull dimension is very general and is easy to define, it is quite hard
to work with. For example, it is not obvious that krdim(An) = n. Luckily, for K-schemes
we have access to alternative definitions that are easier to work with.
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4.3.1 Transcendence dimension

Loosely speaking, we expect that the dimension of An should be n since its function ring
requires n generators. The following definition makes this intuition precise:

Definition 4.3.7. Let X be a quasiprojective variety. We define the transcendence di-
mension of X to be

trdim(X) = tr.deg.(K(X)/K).

Exercise 4.3.8. Let X be a quasiprojective variety. Show that for any open subset U ⊂ X
we have trdim(U) = trdim(X).

A helpful advantage of the transcendence dimension is that it is often easy to compute;
for example, we have trdim(Pn) = trdim(An) = n.

Example 4.3.9. Let f be an irreducible element of K[x1, . . . , xn]. Without loss of gen-
erality we may suppose that x1 divides some term in f . Let X denote the vanishing
locus of f . Then K(X) is a finite algebraic extension of K(x2, . . . , xn). Thus we see that
trdim(X) = n− 1.

4.3.2 Dominance dimension

Definition 4.3.10. Let X be a quasiprojective variety. We define the dominance dimen-
sion of X to be the supremum of all integers n such that there exists a dominant rational
map f : X 99K Pn. We denote this quantity by domdim(X).

Exercise 4.3.11. Let X be a quasiprojective variety. Show that for any open subset U
we have domdim(U) = domdim(X).

4.3.3 Comparison of dimensions

Before proving our main theorem, we need the following result.

Proposition 4.3.12. Let f : X → Y be a dominant finite morphism of affine varieties.
Then krdim(X) = krdim(Y ).

The main ingredient to this theorem is the “Going Up” theorem for finite extensions,
allowing us to relate prime ideals in the two rings of functions.

Proof. Write X = mSpec(R) and Y = mSpec(S). Note that both R and S are domains
and by Exercise 1.6.12 f ] is an inclusion. Choose a chain of prime ideals in Y . By Lying
Over (Theorem 4.0.2) we can lift the minimal prime in the chain to X; by Going Up
(Theorem 4.0.3) we can lift the entire chain to a chain in X. In this way we see that
krdim(X) ≥ krdim(Y ).
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Conversely, suppose given a chain of prime ideals

(0) ( p1 ( . . . ( pn

in R. Set qi = (f ])−1(pi). Then we have

(0) ⊂ q1 ⊂ . . . ⊂ qn

and we would like to show that every containment is strict. Suppose for a contradiction

that qi = qi+1. Consider the inclusion of quotients f
]

: S/qi ↪→ R/pi. This is still a finite
ring homomorphism. We then localize to get an inclusion f̃ ] : Frac(S/qi) ↪→ (R/pi)f](S/qi)

.

This is again a finite ring homomorphism. Furthermore, since by assumption qi = qi+1 we
see that the image of the prime pi+1 in this ring will be a non-zero prime ideal.

Since Frac(S/qi) is a field, we see that (R/pi)f](S/qi)
is an Artinian ring. In particular,

since this ring is a domain it should be a field. However, this contradicts the existence
of the non-zero prime arising from pi+1. We conclude that each qi ( qi+1 and thus that
krdim(Y ) ≥ krdim(X).

Theorem 4.3.13. Let X be a quasiprojective variety. Then

domdim(X) = trdim(X) = krdim(X).

Henceforth we will denote this common quantity by dim(X). Note that this result
implies that the Krull dimension of any quasiprojective K-scheme will be finite.

Proof. By applying Exercise 4.3.6, Exercise 4.3.8, and Exercise 4.3.11 we reduce to the
case when X = mSpec(R) is an affine variety.

We first show domdim(X) = trdim(X). Recall that a dominant map f : X 99K Pn in-
duces an inclusion of function fields K(Pn) ⊂ K(X). In this way we see that domdim(X) ≤
trdim(X). To see the converse equality, we will need the celebrated Noether Normalization
Theorem.

Theorem 4.3.14 (Noether Normalization). Let R be a finitely generated K-algebra do-
main. Suppose that the transcendence degree of Frac(R) over K is n. Then there exists
algebraically independent elements x1, . . . , xn ∈ R such that R is a finite integral extension
of K[x1, . . . , xn].

By Noether Normalization, if trdim(X) = n then mSpec(R) admits a finite morphism
to An. We conclude that domdim(X) ≥ trdim(X), so that the two quantities are equal.

We finish the proof by showing trdim(X) = krdim(X). The proof is by induction on
trdim(X). First suppose that trdim(X) = 0. This implies that R is an Artinian ring. Thus
every prime ideal in R is a maximal ideal, showing that krdim(X) = 0 as well.

Now we prove the induction step. Suppose that trdim(X) = n. Using Noether normal-
ization and our argument in the paragraph above, this condition implies that X admits
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a finite morphism f : X → An. By Proposition 4.3.12 we have krdim(X) = krdim(An).
Thus it suffices to show that krdim(An) = n.

Consider a maximal chain of prime ideals in K[x1, . . . , xn]:

(0) ( p1 ( . . . ( pr

Since K[x1, . . . , xn] is a UFD, p1 must be a principal ideal generated by an irreducible
element f . (If it were not, we could find a smaller non-zero prime ideal contained in p1.)
Set Y = V (f). By our induction assumption krdim(Y ) = trdim(Y ). In Example 4.3.9
we showed that Y has transcendence dimension n − 1, showing that the chain of ideals
p1 ( . . . ( pr has n elements. We conclude that krdim(An) = n as desired.

Notation 4.3.15. A quasiprojective scheme is said to be equidimensional if every com-
ponent has the same dimension. An equidimensional quasiprojective scheme of dimension
1 is called a curve, of dimension 2 is called a surface, and of dimension n ≥ 3 is called an
n-fold.

4.3.4 Exercises

Exercise 4.3.16. Let X be a quasiprojective scheme. Let U ⊂ X be an open subset.
Prove that dim(U) ≤ dim(X). Prove that if U intersects the irreducible component of X
of maximal dimension then dim(U) = dim(X).

Exercise 4.3.17. Let X be a quasiprojective scheme. Suppose that f : Y → X is a closed
embedding. Prove that dim(Y ) ≤ dim(X).

Exercise 4.3.18. (1) Suppose that f : X → Y is a finite morphism of quasiprojective
schemes. Prove that dim(X) ≤ dim(Y ).

(2) Suppose that f : X → Y is a dominant finite morphism of quasiprojective varieties.
Prove that dim(X) = dim(Y ).

Exercise 4.3.19. Let X be a quasiprojective variety. Suppose that f : X 99K Y is a
dominant rational map. Prove that dim(X) ≥ dim(Y ).

Exercise 4.3.20. Let X be a quasiprojective scheme. Prove that dim(X) = 0 if and only
X is a finite set.

Exercise 4.3.21. Let X and Y be quasiprojective varieties. Prove that dim(X × Y ) =
dim(X) + dim(Y ).

More generally, if we have morphisms f : X → Z and g : Y → Z, prove that

dim(X ×Z Y ) ≤ dim(X) + dim(Y ).

Find examples which exhibit the various dimensions allowed by this bound.
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Exercise 4.3.22. Prove that dim(G(k, n)) = k(n− k).

Exercise 4.3.23. Let X be a quasiprojective K-scheme and let L/K be a field extension.
Prove that dim(X) is the same as dim(XL).

Exercise 4.3.24. Let X be a quasiprojective scheme. For any x ∈ X, we define the local
dimension locdimx(X) to be the Krull dimension of the ring OX,x.

Prove that the local dimension of x is the same as the maximal dimension of any
irreducible component of X that contains x.
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4.4 Properties of dimension

In Section 4.3 we saw several basic properties of the dimension. In this section we will
discuss two difficult properties.

4.4.1 Krull’s Prinicipal Ideal Theorem

Krull’s Principal Ideal Theorem is the following statement:

Theorem 4.4.1 (Krull’s Principal Ideal Theorem). Let A be a Noetherian ring and let
f ∈ A be a non-unit. Let p be a minimal element in the set of prime ideals containing (f).
Then either

(1) p is a minimal prime in A, or

(2) the maximal length chain of primes descending from p has the form p0 ( p.

If f is a non-zero divisor, then we are guaranteed to be in case (2). If Nil(A) = 0 and f is
a zero divisor, then we are guaranteed to be in case (1).

Example 4.4.2. When A is not reduced then zero-divisors can land in case (2). Consider
for example the zero-divisor y in the ring K[x, y]/(x2, xy). The prime ideal (x, y) is a
minimal prime containing y and we have a chain of prime ideals (x) ⊂ (x, y).

Suppose that X is a quasiprojective scheme and that f ∈ OX(X) is a non-unit. Let
p be a minimal prime containing f . Krull’s PIT shows that we cannot “sandwich” any
irreducible subsets in the middle of V (p) ( X. We might optimistically hope that if we
extend a chain of irreducible subsets downward from V (p) then (together with V (p)) we
obtain a maximal length chain in X. This is exactly the content of the following two
results.

Theorem 4.4.3 (Geometric Krull’s PIT). Let X be an irreducible quasiprojective variety
of dimension n. Suppose that f ∈ OX(X) is a non-unit and set Z = V (f). Then dim(Z) =
dim(X)− 1.

Proof. Since f is not a unit, there must be an open affine U ⊂ X such that the restriction
of f to U is also not a unit. (If the restriction of f to every open affine were a unit, we
could take multiplicative inverses along each open set and glue to obtain a multiplicative
inverse on X.) Thus V (f) is a proper closed subset of X. By Exercise 2.8.16 we can find an
open affine in X whose intersection with V (f) is dense. Replacing X by this open affine,
we may assume that X = mSpec(R) is an affine variety.

Let p be a prime ideal minimal amongst all primes containing f and let W be the
vanishing locus of p. Since f cannot be a zero-divisor, Krull’s PIT shows that p has height
1. In other words, there is no irreducible closed subset Y satisfying W ( Y ( X.
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Applying Noether normalization to R we obtain a finite map f : X → An. The
restriction of f to W is also finite, so by Exercise 4.3.18 we have dim(W ) = dim(f(W )).
Note that f(W ) is irreducible (since W is) and closed (since f is finite) and thus contained
in an irreducible hypersurface H in An. We claim that f(W ) ( H. Indeed, if we had
strict containments f(W ) ( H ( An then by applying the Going Down theorem (Theorem
4.0.4) to the ideals of H and f(Z) and the extension K[x1, . . . , xn] ⊂ R we would find that
f−1(H) is an irreducible subset that is properly contained in X and that contains Z but
is not equal to it, a contradiction.

Since any hypersurface in An has dimension n−1 (Example 4.3.9), we see that dim(W ) =
dim(f(W )) = n − 1. Since W ⊂ Z we have dim(Z) ≥ dim(X) − 1. On the other hand,
any chain of prime ideals in R/(f) will yield a chain of prime ideals in R whose length is
larger by one, showing that dim(Z) + 1 ≤ dim(X). This proves the equality.

Remark 4.4.4. The converse of Theorem 4.4.3 is false: a codimension 1 subset need not
be defined as the vanishing locus of a single equation (see Example 3.2.4 and Exercise
4.4.14).

The corresponding statement for quasiprojective schemes is:

Corollary 4.4.5 (Geometric Krull’s PIT). Let X be a quasiprojective scheme and let
f ∈ OX(X). Set Z = V (f). If Z0 is a component of Z and X0 is a component of X which
contains Z0 then Z0 has codimension 0 or 1 in X0.

Proof. We know that Z0 will be a component of the restriction of f to X0. Thus we may
suppose that X is irreducible. If f is nilpotent, then V (f) = X will have codimension 0.
If f is not nilpotent, then its restriction to Xred is non-zero and we conclude by Theorem
4.4.3.

Exercise 4.4.6. Let X be a quasiprojective variety. Suppose that f : Y → X is a closed
embedding. Prove that if dim(Y ) = dim(X) then f is an isomorphism.

Krull’s Principal Ideal Theorem is surprisingly useful. Here is a couple applications.

Proposition 4.4.7. Let X be an affine scheme. Let x ∈ X and let n be the largest
dimension of any component of X that contains x. Then there are functions f1, . . . , fn
such that x is an irreducible component of V (f1, . . . , fn).

Proof. The proof is by induction on n. If n = 0 then the statement is clear. If n ≥ 1,
the maximal ideal m defining x will not be a minimal prime in OX(X). By the Prime
Avoidance Lemma m is not contained in the union of the minimal primes of OX(X). Thus
m contains a non-zero divisor fn. For every irreducible component Xi of X that contains
x, the intersection V (fn)∩Xi will have dimension one less than dim(Xi) by Theorem 4.4.5.
We apply the induction hypothesis to V (fn) to obtain functions f1, . . . , fn−1 in OX(X)/m.
Lifting these functions to OX(X) we obtain the result.
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Suppose that the finitely generated K-algebra R is a domain. Then Geometric Krull’s
PIT shows that for any f ∈ R the vanishing locus V (f) has codimension 1 in mSpec(R).
As mentioned above the converse does not hold in general, but the following proposition
shows that the converse does hold when R is a UFD.

Proposition 4.4.8. Let R be a finitely generated K-algebra that is a UFD. Suppose that
Z ⊂ mSpec(R) is a subvariety of codimension 1. Then Z = V (f) for some f ∈ R.

In fact, this condition characterizes the UFDs: if R is a domain which is not a UFD,
then there will be some codimension 1 prime which is not principal.

Proof. Choose some g ∈ R such that Z ⊂ V (g). Write g =
∏
gi as a decomposition into

irreducibles. Then Z ⊂ V (g1) ∪ V (g2) ∪ . . . ∪ V (gr). Since Z is irreducible, it is contained
in some V (gi). Note that V (gi) is also an irreducible subvariety and by Krull’s PIT it has
codimension 1 in mSpec(R). Applying Exercise 4.4.6 we see that Z = V (gi).

4.4.2 Fiber dimension

The following result is another surprisingly useful theorem governing the behavior of di-
mension.

Theorem 4.4.9. Let f : X → Y be a morphism of quasiprojective varieties.

(1) For every non-empty fiber F we have dim(X) ≤ dim(Y ) + dim(F ).

(2) Suppose that f is dominant. Then there is an open set V ⊂ Y such that every fiber
F over a point in V is non-empty and satisfies dim(X) = dim(Y ) + dim(F ).

Remark 4.4.10. If a fiber F has many components, then the dimension inequality in (1)
holds true for each component of F . We can deduce this by replacing X by an open subset
which removes the other components of F .

Remark 4.4.11. The “correct” statement is upper semicontinuity of fiber dimension,
which is a little bit stronger. See Exercise 4.4.19.

Let’s first give an informal proof of (2). Suppose that X = mSpec(R) has dimension
n and Y = mSpec(S) has dimension m. If we knew that the map f ] : S → R were the
composition of the inclusion S → S[t1, . . . , tn−m] with a finite inclusion S[t1, . . . , tn−m]→
R, then the fibers of f : X → Y would have the same dimension as the fibers of Y ×An−m →
Y . Unfortunately such a factorization is not always possible – although it looks reminiscent
of Noether Normalization, we are not in a setting to apply this result. However, we can
apply Noether Normalization to the Frac(S)-algebra R ⊗K Frac(S) to get a factorization
of the inclusion Frac(S)→ R ⊗K Frac(S). As we’ve seen before, we can “spread out” this
result on Frac(S) to obtain a factorization over an open subset of Y .
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Proof. After replacing X and Y by suitably chosen open affines, we may suppose that
X and Y are affine schemes. We write X = mSpec(R) and Y = mSpec(S). We set
n = dim(X) and m = dim(Y ).

(1) Suppose F is the fiber over y ∈ Y . Apply Proposition 4.4.7 to find m functions
f1, . . . , fm on Y such that y is an irreducible component of V (g1, . . . , gm). After replacing
Y by an open neighborhood of y and X by the preimage of this open neighborhood, we
may suppose that y = V (g1, . . . , gm). Then the fiber over Y is defined by the equations
{f ]gi}. By Krull’s PIT we see that dim(F ) +m ≥ n.

(2) Since f is dominant Exercise 1.6.12 shows that f ] is injective. As discussed above,
we consider the injection f ] : Frac(S)→ R⊗K Frac(S). Note that the rightmost term still
has fraction field Frac(R) and that the transcendence degree of Frac(R)/Frac(S) is n−m.
Noether Normalization (Theorem 4.3.14) shows that for some algebraically independent
elements t1, . . . , tn−m we have a factorization

Frac(S)
f] //

((

R⊗K Frac(S)

Frac(S)[t1, . . . , tn−m]

55

Since each ti ∈ R ⊗K Frac(S), by clearing denominators we can find a single element
s ∈ S such that sti ∈ R for every i. Consider the diagram

Ss //

��

Ss[t1, . . . , tn−m] //

��

Rs

��
Frac(S) // Frac(S)[t1, . . . , tn−m] // R⊗K Frac(S)

Unfortunately the top right horizontal map may not be a finite inclusion. However, suppose
we let u1, . . . , uk be a finite set of generators for Rs as a Ss[t1, . . . , tn−m]-algebra. By
comparing to the bottom row of the diagram, we see that each ui satisfies a monic equation
with coefficients in Frac(S)[t1, . . . , tn−m]. The coefficients may not be in Ss[t1, . . . , tn−m],
but there is an element s̃ so that all coefficients are in Sss̃[t1, . . . , tn].

Let V = Dss′ in Y and set U = f−1(V ). The computation above shows that f |U factors
as a dominant finite morphism U → V ×An−m followed by the projection V ×An−m → V .
Let F be any fiber of U → V . Since finiteness of a morphism is preserved by base change,
we obtain a surjective finite map F → An−m. Since finite maps are closed, there must be
an irreducible component Fi of F which admits a finite surjective map Fi → An−m. By
Exercise 4.3.18 dim(Fi) ≤ n−m, proving the statement.

Exercise 4.4.12. Use Theorem 4.4.9 to finish the proof of Chevalley’s Theorem (Theorem
1.6.10).
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4.4.3 Exercises

Exercise 4.4.13. Let f : X → Y be a dominant morphism of quasiprojective varieties.
Suppose that dim(X) = dim(Y ). Show that there is some non-empty open subset U ⊂ Y
such that the map f : f−1(U)→ U is a finite map. Such maps are called generically finite.
(Hint: use the proof of Theorem 4.4.9.)

More generally, if we have a dominant morphism of quasiprojective schemes f : X → Y
such that dim(X) = dim(Y ), again show that there is some non-empty open subset U ⊂ Y
such that the map f : f−1(U)→ U is a finite map.

Exercise 4.4.14. Consider the affine variety X = mSpec(K[w, x, y, z]/(wz − yx)). Show
that (w, x) is a prime ideal that defines a codimension 1 subvariety Z ⊂ X. Show that
there is no principal ideal that defines Z. (Hint: one way is to use the fact that the ring
defining X is a graded ring. A more general approach will be presented in Exercise 5.1.16.)

Exercise 4.4.15. Let X, Y , and Z be quasiprojective varieties equipped with dominant
morphisms f : X → Z and g : Y → Z. Prove that

dim(X) + dim(Y )− dim(Z) ≤ dim(X ×Z Y ) ≤ dim(X) + dim(Y ).

Find examples which exhibit the various dimensions allowed by this bound.

Exercise 4.4.16. Let X ⊂ Pn be a closed subscheme of dimension ≥ 1. Prove that if H is
a hyperplane that does not contain any component of X then the intersection X ∩H has
dimension one less than X. (Also, if X has dimension 0 then X ∩H will be empty.)

Exercise 4.4.17. Let X be an affine variety and consider the blow-up BlI(X) along an
ideal I. Let Z denote the preimage of V (I) (as defined in Exercise 3.4.15). Prove that Z
has codimension 1 in BlI(X).

Exercise 4.4.18. Let f : X → Y be a proper morphism of quasiprojective schemes. Sup-
pose that Y is irreducible and that every fiber F of f is irreducible of the same dimension.
Prove that X is irreducible. (What is a counterexample when f fails to be proper?)

Exercise 4.4.19. This exercise shows the upper semicontinuity of fiber dimension.
Suppose f : X → Y is a morphism of quasiprojective schemes. For any point x ∈ X

we define µ(x) to be the local dimension of x in the fiber F of f containing x. (The local
dimension was defined in Exercise 4.3.24.)

(1) Prove that for any point x we have locdimx(X) ≤ dim(Y ) + µ(x). (Hint: apply
Theorem 4.4.9.(1) and Exercise 4.3.24.)

(2) Prove that the map x 7→ µ(x) is upper semicontinuous. (Hint: apply Theorem
4.4.9.(2) and argue by Noetherian induction.)
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4.5 Application: Moduli spaces and incidence correspon-
dences

A moduli space in algebraic geometry is a scheme M whose points parametrize some other
kind of object. We have seen two examples already: the moduli space P(n+2)(n+1)/2−1 of
quadric hypersurfaces and the Grassmannian G(k, n) parametrizing k-dimensional planes
in Pn. As we saw in these two cases, the K-points of the moduli space parameterize the
corresponding objects which are defined over K, while the L-points parametrize the “orbits”
of objects defined over L.

Here is another example:

Example 4.5.1. Consider the hypersurfaces H ⊂ Pn which are defined by a single equation
f of degree d. By identifying the coefficients of f as coordinates on a projective space, we

see that the degree d hypersurfaces are parametrized by the K-points on P(n+dd )−1. We call
this projective space the moduli space of degree d hypersurfaces.

Another important property of moduli spaces is the existence of a family over M : is
there a scheme U with a morphism u : U →M such that the fiber of u over a point m ∈M
is exactly the object parametrized by M? We have already seen this construction for the
Grassmannian. Fortunately, it is also easy to construct a family over the moduli space of
hypersurfaces.

Example 4.5.2. Fix a projective space Pn and consider the moduli space M = P(n+dd )−1

of degree d hypersurfaces. We let I denote the set of ordered (n+1)-tuples of non-negative
integers which add up to d. Each degree d polynomial on Pn can be written the form∑

I∈I aIx
I . Note that M is equipped with the homogeneous coordinate ring K[yI ]I∈I

where the value of yI represents the coefficient of the monomial xI .
The family over the moduli space is the hypersurface H on M ×Pn defined in bihomo-

geneous coordinates (as in Section 3.3.1) by the equation
∑

I∈I yIx
I . It comes equipped

with a projection map u : H →M .

Broadly speaking, a key goal in moduli theory is to understand the sublocus of the
moduli space M parametrizing objects with special properties. In particular it is interesting
to know when “most” objects parametrized by M have a special property.

Definition 4.5.3. Let M be a moduli space. We say that a property P “holds for a
general object parametrized by M” if the Zariski closure of the set of objects which fail P
is a proper closed subset of M .

4.5.1 Incidence correspondences

Incidence correspondences are one of the best ways to construct and study special subloci of
a moduli space M . Suppose given two moduli spaces M1,M2. An incidence correspondence
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is a subset Z ⊂M1×M2 consisting of the set of pairs (X,Y ) of parametrized objects such
that X,Y interact in some special way.

Often given an incidence correspondence Z we will be in a situation where one map
Z → M2 is easy to understand and the other map Z → M1 is the one we would like to
study. Below we will see a an example of incidence correspondences at work.

4.5.2 Lines in hypersurfaces

In this subsection we work over an algebraically closed field K.

Proposition 4.5.4. Fix a projective space Pn and a degree d. Suppose that d > 2n − 3.
Then the general degree d hypersurface does not contain any lines.

Let M denote the moduli space of degree d hypersurfaces and let G(1, n) denote the
moduli space of lines in Pn. We would like to define the incidence correspondence Z ⊂
M ×G(1, n) which is the set of pairs (H, `) such that ` ⊂ H.

Claim 4.5.5. There is a closed subset Z ⊂ M × G(1, n) whose K-points represent pairs
(H, `) such that ` ⊂ H.

Proof. Consider the family of hyperplanes H ⊂ M × Pn and the family of lines U ⊂
G(1, n)×Pn. The preimages p−1

13 (H) and p−1
23 (U) will be closed subsets of M×G(1, n)×Pn.

Let Ẑ denote their intersection, a closed set. Note that Ẑ denotes the triples (H, `, p) such
that p ∈ H and p ∈ `.

Consider the projection map p12 : M × G(1, n) × Pn → M × G(1, n). The fiber of p12

over a point (H, `) will represent the intersection of H and `. By Exercise 4.4.19 there will
be a closed subset Z̃ ⊂ Ẑ consisting of points where the local fiber dimension of p12 is ≥ 1.
The set-theoretic image of Z̃ in M × G(1, n) will be the locus Z of pairs (H, `) such that
` ⊂ H. Since p12 is proper, the image Z of Z̃ is closed.

Proof of Proposition 4.5.4: Our strategy is to show that the dimension of Z is less than
the dimension of M . To prove this, we need to compute the dimension of the fibers of the
map Z → G(1, n). Let’s consider the preimage of a K-point. Since the PGLn+1-action
on the space of lines is transitive, this dimension is independent of the choice of line. We
may as well choose the line ` whose equation is (x2, . . . , xn). A degree d hypersurface f
will contain the line ` if and only if f(x0, x1, 0, . . . , 0) is identically 0. In other words, we
see that f cannot involve any monomials which only use the variables x0, x1. Degree d
monomials in x0, x1 form a (d + 1)-dimensional vector space, showing that every fiber of
Z → G(1, n) over a K-point is a projective space of dimension dim(M)− (d+ 1).

By Theorem 4.4.9 we deduce that

dim(Z) ≤ dim(G(1, n)) + dim(F ) = dim(M) + 2(n− 1)− (d+ 1).

When d > 2n − 3 then dim(Z) < dim(M) so the image of Z → M will be contained in a
proper closed subset of M .
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Remark 4.5.6. Although it does not prove it, the argument above suggests that a general
hypersurface of degree d < 2n − 3 will contain a (2n − 3 − d)-dimensional family of lines.
This turns out to be the case. For example, when d = 1 then any degree d hypersurface
H is isomorphic to Pn−1 and thus contains a 2(n − 2)-dimensional family of lines. When
d = 2 we saw an example in Exercise 3.1.15.

4.5.3 Exercises

Exercise 4.5.7. Let K be an algebraically closed field. Let X ⊂ Pn be a closed subscheme
of dimension ≥ 1. Prove that a general hyperplane H satisfies dim(X ∩H) = dim(X)− 1.
(Hint: you will need Exercise 2.11.14.)

Exercise 4.5.8. Let K be an algebraically closed field. Prove that there is some positive
integer d = d(k, n) such that a general hypersurface of degree ≥ d in Pn will not contain
any k-planes. (What is the function d(k, n)?)

Exercise 4.5.9. There are exactly 27 lines in the Fermat cubic hypersurface x3
0+x3

1+x3
2+x3

3

in P3
C. Can you find them all? (It turns out that every smooth cubic hypersurface over an

algebraically closed field will contain exactly 27 lines.)

Exercise 4.5.10. Fix a projective space Pn and a degree d. Suppose that d ≤ 2n − 3.
Suppose that you can find a degree d hypersurface which has a (2n − 3 − d)-dimensional
family of lines. Prove that a general degree d hypersurface admits a (2n−3−d)-dimensional
family of lines.

Exercise 4.5.11. Let X ⊂ Pn be a closed subscheme. If we fix a K-point p ∈ Pn that is
not contained in X then projection away from p defines a morphism φ : X → Pn−1. Prove
that for a general point p the morphism φ has finite fibers.

(Remember, this means that there is a non-empty open subset U ⊂ Pn such that any
K-point contained in U has this property. We do not insist that U actually contain any
K-points when our ground field is finite.)
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Chapter 5

Smoothness

Suppose that M is a smooth manifold. There are several approaches one can take to
defining the tangent space at a point x ∈M :

(1) Chart structure: one can first define the tangent space for points on Rn and then
“transform” these spaces to M using the chart structure. One must verify that the
definition does not depend on the choice of chart.

(2) Jets of curves: consider the set of curves σ : J →M which are smooth at x. We can
define an equivalence relation on such curves by setting σ1 ∼ σ2 if for every smooth
function f : M → R defined on a neighborhood of x the derivatives of f ◦ σ1 and
f ◦ σ2 coincide. We can define the tangent space to be the set of equivalence classes
of such σ.

(3) Derivations: a tangent vector at x allows us to take directional derivatives of functions
near x. Alternatively, we can use this feature as a way to define tangent vectors.

Let C∞x denote the set of germs of smooth real-valued functions near x. A derivation
is a linear map T : C∞x → R satisfying the product rule T (fg) = f(x)T (g)+g(x)T (f).
Then the vector space of derivations is the tangent space at x.

It will be helpful to modify this definition slightly. Let (C∞x )0 denote the germs of all
functions which vanish at x. Note that any derivation is determined by its values on
the subset (C∞x )0 ⊂ C∞x ; indeed, for any function f ∈ C∞x the behavior of a derivation
on f is determined by its behavior for f − f(x) ∈ (C∞x )0 where f(x) denotes the
constant function. Thus we can define the tangent space as the space of derivations
of (C∞x )0. The advantage of this perspective is that the product rule now becomes
T (fg) = 0.

In algebraic geometry there is no easy analogue of the first definition – while every scheme
admits a covering by affine charts, most schemes do not admit coverings by charts iso-

173
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morphic to An. However, the second and third definitions both admit analogues in our
setting.

Recall that the “foundational” objects for schemes are not topological spaces but rings
of functions. Correspondingly, the cotangent space is the natural construction for schemes;
we then define tangent spaces by taking a dual.
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5.1 Zariski tangent space

Our first definition of a “tangent space” in algebraic geometry is based on derivations. We
will give a second definition – which is slightly different – in Section 5.3.

Definition 5.1.1. Let X be a quasiprojective scheme. Fix x ∈ X and let mx denote the
maximal ideal of the stalk OX,x. The Zariski cotangent space at x is defined to be

T∨X,x := mx/m
2
x

considered as a finite-dimensional vector space over the residue field κ(x).
The Zariski tangent space TX,x is the dual of this κ(x)-vector space.

Note that there is no need to pass all the way to the local ring OX,x to compute the
Zariski cotangent space: if we choose any open affine mSpec(R) containing x and let m
be the maximal ideal associated to x, the Zariski cotangent space is simply m/m2 (since
localization and quotients commute).

Remark 5.1.2. The Zariski tangent space models the derivation approach to the tangent
space of a manifold. In our setting OX,x is analogous to the space of germs C∞x and the
maximal ideal mx is analogous to (C∞x )0. Based on our discussion in the introduction to
the chapter, a derivation should be a map mx → Lx that sends m2

x to zero. In other words,
a derivation should be an element of (mx/m

2
x)∨.

Example 5.1.3. Suppose that X ⊂ A2 is the vanishing locus of a polynomial f which
contains the origin m = (x, y). We can write

f = ax+ by + f ′

where f ′ ∈ m2. Using the usual notion of derivatives we see that the tangent line of X at
the origin should have equation ax+ by = 0. Let’s analyze this from the perspective of the
Zariski tangent space.

We can write the cotangent space (x, y)/(x, y)2 of the origin as Kx⊕Ky and the dual
space as Kx∨⊕Ky∨ (although it would be more traditional to use the notation Kdx⊕Kdy
for the cotangent space and K d

dx ⊕K d
dy for the tangent space). With this notation:

(1) The cotangent space of X at the origin is the quotient of Kx ⊕ Ky by the subspace
spanned by a x+ b y.

(2) The tangent space of X at the origin is the subspace of Kx∨ ⊕ Ky∨ defined by the
equation ax∨ + by∨ = 0.

We expect that X should be “smooth” at the origin precisely when f has non-zero linear
part. We can reinterpret this condition using the Zariski cotangent space: X should
be “smooth” at the origin when dimK TX,0 = 1 and should fail to be “smooth” when
dimK TX,0 = 2.
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Example 5.1.4. More generally, the Zariski tangent space at the origin in An is isomorphic
to Kn under the identification

(a1, . . . , an)↔

(
g 7→

n∑
i=1

ai
∂g

∂xi
(0)

)
.

Note that the role of the derivative ∂
∂xi

is just to pick off the xi-coefficient of the linear term
of g. If we use a different point x with residue field K, we evaluate the partial derivatives
at x instead.

Example 5.1.5. Consider the point m = (x − y, x2 + 1) ∈ A2
R. As discussed in Example

1.1.10 this point represents the Galois orbit (x+ i, y + i)∪ (x− i, y − i) of complex-valued
points. Thus we can expect the Zariski cotangent space at m to be the “union” of the
cotangent spaces at these two points. Computing, we find

T∨A2,m =
(x− y, x2 + 1)

(x2 − 2y2 + y2, x3 − x2y + x− y, x4 + 2x2 + 1)

= R(x− y)⊕ R(x2 + 1)⊕ R(x2 − xy)⊕ R(x3 + x)

as an R-vector space. Recall however that we should be thinking of the Zariski cotangent
space as a vector space over the residue field L = R[x, y]/(x − y, x2 + 1). Identifying
L = R⊕ Rx, we should instead write

T∨A2,m = L(x− y)⊕ L(x2 + 1)

5.1.1 Computing the Zariski cotangent space

The following results give a some general methods for calculating the Zariski cotangent
space. Vakil calls the following result “Krull’s PIT for the Zariski tangent space.”

Exercise 5.1.6. Let X = mSpec(R) and let m be a maximal ideal in R. Suppose that
f ∈ R vanishes at m and set Y = V (f). Show that TY,m is the subspace of TX,m defined by
the equation f(modm2) = 0.

More generally, the Zariski tangent space of a K-point in an affine K-scheme can be
computed using the Jacobian. Suppose that X ⊂ An is an affine scheme defined by the
ideal I = (f1, . . . , fr). We define the Jacobian matrix

Jacf1,...,fr =


∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fr
∂x1

. . . ∂fr
∂xn

 .
Here we are thinking of the entries in Jac as elements of K[x1, . . . , xn].
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Fix a K-point x in X. The inclusion X ⊂ An induces a surjective map of K-vector
spaces

mAn,x/m
2
An,x → mX,x/m

2
X,x.

The kernel of this map is spanned by the linear terms of the fi. Dually, we see that:

Proposition 5.1.7. Suppose that X ⊂ An is an affine scheme defined by the ideal I =
(f1, . . . , fr). For any x ∈ X with residue field K the Zariski tangent space TX,x is the kernel
of Jacf1,...,fr(x).

Warning 5.1.8. This computation only works for points with residue field K. This might
strike you as a little strange, and you would be right. In Section 5.3 we will give a different
definition of “tangent space” for which the Jacobian construction works all of the time.

Example 5.1.9. Let K = Fp(u) and let X = mSpec(K[x, y]/(y2 − xp + u)). We will show
that the Zariski tangent space of the point m = (y, xp−u) is not computed by the Jacobian.

Note that the residue field of m is L = Fp(u1/p). As an L-vector space the quotient
m/m2 is just Ly, hence one-dimensional. On the other hand, the Jacobian matrix is:

Jacf (x) =
[

0 2y
]
.

When evaluated at the point m, the coordinate y vanishes and thus the Jacobian has rank
0 and its kernel has dimension 2.

5.1.2 Morphisms

Suppose given a morphism f : X → Y of quasiprojective schemes taking the point x ∈ X
to the point y ∈ Y . Recall that the residue field of y and the residue field of x may not be
the same – we always have an inclusion OY,y/my ↪→ OX,x/mx but the map may not be an
isomorphism. Using the pullback f ] we obtain a map

f∗ : my/m
2
y → mx/m

2
x

of OY,y/my-vector spaces. However, if we are thinking of these sets as Zariski cotangent
spaces then the field of definition need not be the same.

Note that f∗ : T∨Y,y → T∨X,x only induces a map of Zariski tangent spaces f∗ : TX,x →
TY,y when x and y have the same residue field. This is an indication that the Zariski
tangent space is a bit unnatural. The alternative notion introduced in Section 5.3 has
better behavior with respect to morphisms.

5.1.3 Exercises

Example 5.1.10. Suppose that p is a prime number and q = pr. Let mSpec(R) be an affine
Fq-scheme. Recall from Example 1.5.14 that the Frobenius map f : mSpec(R)→ mSpec(R)
is induced by the ring homomorphism f ](g) = gq. Prove that for every x ∈ X the induced
map of Zariski tangent spaces is the zero map.
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Exercise 5.1.11. In this exercise we compute a “basis free” description of the tangent
space of a K-point in Pn.

Let x ∈ Pn be a point with residue field K. Consider the quotient morphism f :
An+1\{0} → Pn and let x̃ ∈ An+1 be any K-point whose image is x. Show that if we
identify TAn+1,x̃

∼= Kn+1 as in Example 5.1.4 then the kernel of the map f∗ : Kn+1 → TPn,x
is the line ` ⊂ Kn+1 corresponding to x.

More generally, suppose X = V+(f1, . . . , fr) in Pn and x ∈ X is a K-point. Let
X̃ = V (f1, . . . , fr) be the cone over X in An+1\{0} and let x̃ ∈ An+1 be any K-point whose
image is x. Show that TX,x is the quotient of T

X̃,x̃
by the line corresponding to x.

Exercise 5.1.12. Suppose that Y, Z are closed subschemes of the quasiprojective scheme
X. Suppose x ∈ Y ∩ Z.

(1) Prove that TY ∩Z,x = TY,x ∩ TZ,x as subsets of TX,x.

(2) Show that TY ∪Z,x ⊃ Span(TY,x, TZ,x). Give an example where the containment is
strict.

Exercise 5.1.13. Let X be a quasiprojective K-scheme. Fix a point x ∈ X with residue
field K. Let T denote the set of homomorphisms mSpec(K[t]/(t2))→ X whose set-theoretic
image is x. For each homomorphism g, let g denote the map mx/m

2
x → K arising from the

map on stalks induced by g. Prove that this rule defines a bijection between T and the
Zariski tangent space at x.

(This exercise illustrates how the Zariski tangent space can be thought of as maps from
“infinitesimal curves” to x ∈ X. Note that if X = mSpec(R) is affine, then T is just the set
of quotients R→ K[t]/(t2) which contain m in the kernel. Such a map must have the form
r 7→ r(x) + art where r(x) denotes evaluation and the function ar is essentially equivalent
to the choice of a vector in the Zariski tangent space.)

Exercise 5.1.14. Let X be a quasiprojective K-scheme and let x ∈ X be a point with
residue field K. Let D (for “dual numbers”) denote mSpec(K[t]/(t2)). As in Exercise 5.1.13
let T denote the set of homomorphisms D → X whose set-theoretic image is x. Show that
we can give T the structure of a K-vector space using the following prescriptions:

(1) To add two morphisms f, g : D → X, we take the composition

D
∆−→ D ×D f×g−−→ X.

(Explicitly, when X = mSpec(R) this rule combines the two maps r 7→ r(x)+art and
r 7→ r(x)+ brt to the map r 7→ r(x)+(ar + br)t, justifying calling this map addition.)

(2) To rescale a morphism f : D → X by a constant a ∈ K, we precompose by the
map ma : D → D which sends t 7→ at. (Explicitly, when X = mSpec(R) this rule
changes the map r 7→ r(x) + brt to the map r 7→ r(x) + abrt, justifying calling this
map rescaling.)
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Show that with this prescription the bijection of Exercise 5.1.13 is an isomorphism of
K-vector spaces.

Exercise 5.1.15. Let X,Y be quasiprojective K-schemes. Let w ∈ X × Y be a K-point
and let x and y denote the two projections of w to X and Y respectively. Show that

Tw(X × Y ) ∼= TxX ⊕ TyY.

(Hint: use Exercise 5.1.13.)

Exercise 5.1.16. Here is an interesting application of the Zariski tangent space. Consider
the ideal (x, z) in the variety X = mSpec(K[x, y, z]/(xy − z2)).

(1) Check that (x, z) defines a codimension 1 subvariety of X.

(2) Prove that (x, z) is not a principal ideal as follows. Note that Z = V (x, z) contains
the origin. If Z were principal, then by Exercise 5.1.6 TZ,0 would have codimension
1 in TX,0. Show that this is not the case.
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5.2 Regularity

In this section we give our first definition of “smoothness” using the Zariski cotangent
space.

5.2.1 Dimension and the Zariski cotangent space

The first step is to relate the dimension of a quasiprojective scheme X to the dimension
of its Zariski cotangent space. Recall from Exercise 4.3.24 that the local dimension of a
quasiprojective scheme X at a point x is the Krull dimension of OX,x, or equivalently, the
largest dimension of any irreducible component of X containing x.

Theorem 5.2.1. Let X be a quasiprojective scheme. For any x ∈ X we have

dimOX,x/mx T
∨
X,x ≥ locdimx(X).

Proof. Suppose that f1, . . . , f r is a OX,x/mx-basis for mx/m
2
x. Let f1, . . . , fr be any lifts of

these elements to mx. By Nakayama’s Lemma, we have mx = (f1, . . . , fr). We have then
reduced to the following lemma.

Lemma 5.2.2. Let R be Noetherian local ring with maximal ideal m. Suppose that f1, . . . , fr ∈
R are chosen so that m is a minimal prime over (f1, . . . , fr). Then the Krull dimension of
R is at most r.

In particular this shows that Noetherian local rings always have finite Krull dimension
(in contrast to arbitrary Noetherian rings). If we think of the generators of mx as “local
coordinates” near a point x, this lemma is saying that the number of local coordinates
gives an upper bound on the dimension of X near x. This lemma is a variant of Krull’s
Principal Ideal Theorem.

Proof. The proof is by induction on r. If r = 1 then we conclude by Krull’s Prinicipal
Ideal Theorem.

Suppose that r > 1. Let p be any prime ideal such that there is no prime ideal q
satisfying p ( q ( m. Note that p cannot contain every generator fi; without loss of
generality f1 6∈ p. Note that m is the unique prime ideal that can contain (f1, p). In other
words,

√
(f1, p) = m, so there is some positive integer N such that fNi ∈ (f1, p) for every

i. We write fNi = gi + aif1 where gi ∈ p, ai ∈ R. Note that

V (f1, g2, . . . , gr) = V (f1, f
N
2 , . . . , f

N
r ) = V (m).

We claim that p is minimal amongst all the prime ideals which contain (g2, . . . , gr). Note
that in the ring R/(g2, . . . , gr) the quotient of m is principal, generated by f1. By Krull’s
PIT the ideal m is codimension at most 1. Thus the quotient of p must be a minimal prime
ideal in R/(g2, . . . , gr).
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By the induction assumption, the Krull dimension of Rp is at most r − 1. Thus the
longest chain of primes descending from p has length at most r, showing that the longest
chain in R is ≤ r + 1.

5.2.2 Regularity

A local ring is said to be regular if its Krull dimension is the same as the minimal number
of generators for its maximal ideal. (In other words, a local ring is regular if it achieves
the equality in Lemma 5.2.2.) The following definition is the geometric version.

Definition 5.2.3. Let X be a quasiprojective scheme. We say that a point x ∈ X is
regular if OX,x is a regular local ring, or equivalently, if

dimT∨X,x = locdimx(X).

We say that X is regular if it is regular at every point.

There are certain types of points that “look” nonregular, for example, non-reduced
points or points that lie at the intersection of two components. The following lemmas
confirm this intuition.

Lemma 5.2.4. Let R be a regular local ring with maximal ideal m with Krull dimension n.
For any f ∈ m\m2 the quotient R/(f) is a regular local ring with Krull dimension n− 1.

Conversely, if f ∈ m\m2 satisfies that R/(f) is a regular local ring with Krull dimension
n− 1 then R is also regular.

Proof. By Exercise 5.1.6, the Zariski cotangent space of R/(f) has dimension one less than
the Zariski cotangent space of R. By Krull’s Principal Ideal Theorem, the Krull dimension
of R/(f) is at most one less than the Krull dimension of R. The first statement then follows
from Theorem 5.2.1.

Conversely, if R/(f) is regular of dimension n−1 then in particular the Zariski cotangent
space of R/(f) has dimension n−1. By Exercise 5.1.6 we see that R has Zariski cotangent
space of dimension n, and thus R is regular.

Proposition 5.2.5. A regular local ring R is a domain.

Proof. The proof is by induction on the Krull dimension n of R. In the base case R is
Artinian and the claim is clear.

In general, suppose that p is the smallest prime in a chain of prime ideals in R of
maximal length. We would like to prove that p = (0). Note that R/p is still a local ring
with Krull dimension n. Since the number of generators of the maximal ideal can only
decrease, Theorem 5.2.1 shows that R/p is a regular local ring.

Choose any element f ∈ m\m2. By Lemma 5.2.4 R/(f) and R/(p + (f)) are both
regular local rings of Krull dimension n − 1. By induction these are both domains. But
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a surjective ring homomorphism from one domain to another which preserves the Krull
dimension must be an isomorphism. We conclude that (f) = p + (f).

This implies that p ⊂ (f). In particular, every element r ∈ p can be written as r = af
for some a ∈ R. Since f 6∈ p (since R/(p + (f)) is not the same as R/p), this implies that
r = af for a ∈ p. In other words, p ⊂ fp.

It is clear that fp ⊂ p, so p = fp. By Nakayama’s Lemma this implies that p = 0.

Corollary 5.2.6. Let X be a quasiprojective scheme. Suppose that x ∈ X is a regular
point. Then:

• x lies on a unique irreducible component of X, and

• x is a reduced point.

Exercise 5.2.7. Prove the previous corollary.

5.2.3 Affine space

We will now compute one example: we will show that An is regular. In fact, our argument
will prove something more general.

Proposition 5.2.8. Let S be a regular local ring with maximal ideal n and residue field
K. Set R = S[x] and let p be any prime ideal in R such that nR ⊂ p. Then Rp is also a
regular local ring.

Proof. Set d = dim(S). Since S is a regular local ring, the ideal n is generated by d
elements f1, f2, . . . , fd.

There are two possibilities to consider. First suppose that nR = p. Since the elements
f1, . . . , fd generate p we see that it requires at most d generators. However, dim(Rp) is at
least d, since a chain of prime ideals of length d in S

0 = q0 ⊂ q1 ⊂ . . . ⊂ qd = n

induces the chain qiRp in Rp. By Theorem 5.2.1 we conclude that Rp is regular.
Next suppose that nR ( p. Since R/nR ∼= K[x] we see that the image of p in this ring

is a maximal ideal generated by a polynomial g(x). Thus p is a maximal ideal in R and if
g(x) denotes any lift of g(x) then f1, . . . , fd, g(x) is a generating set for p of length d + 1.
However, dim(Rp) is at least d+ 1, since a chain of prime ideals of length d in S

0 = q0 ⊂ q1 ⊂ . . . ⊂ qd = n

induces the chain qiRp in Rp with an additional p at the end. By Theorem 5.2.1 we conclude
that Rp is regular.

Exercise 5.2.9. Using Proposition 5.2.8, show that if X is a K-variety with a regular
point x then every point of X ×A1 that maps to x is regular. In particular, show that An
is regular.
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5.2.4 Exercises

Exercise 5.2.10. Let X ⊂ An be a closed subscheme defined by the ideal (f1, . . . , fr). Let
x ∈ X be a K-point. Show that x is a regular point of X if and only if the rank of the
affine Jacobian (r × n)-matrix Jacf1,...,fr(x) is equal to n− dimx(X).

Exercise 5.2.11. Let X ⊂ Pn be a closed subscheme defined by a homogeneous ideal
(f1, . . . , fr). Let x ∈ X be a K-point. Show that x is a regular point of X if and only if the
rank of the projective Jacobian (r× (n+ 1))-matrix Jacf1,...,fr(x) is equal to n− dimx(X).

Note that the partial derivatives of the projective Jacobian matrix are not well-defined
functions on the points of X – however, the rank of the matrix is well-defined. This
condition is called the Projective Jacobian Criterion.
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5.3 Relative tangent spaces and smoothness

Let X be a quasiprojective K-scheme and fix a finite extension L/K. Earlier we saw that
the set of points in X with residue field L might be a bit complicated (see Example 1.1.3.(3)
and Exercise 1.1.13). However, if we work with the space of L-points – that is, the maps
mSpec(L) → X – the structure is a lot nicer and more intuitive (see Exercise 1.5.11 and
the discussion after Exercise 1.7.8).

Today we will give our second construction of a tangent space, known as the “relative
tangent space.” The relationship between this construction and the Zariski tangent space is
closely analogous to the relationship between L-points and points with a fixed residue field
L. In particular, the relative tangent space is more “functorial” than the Zariski tangent
space and thus exhibits many desirable features that the Zariski tangent space lacks.

5.3.1 Relative tangent space

Definition 5.3.1. Let X be a quasiprojective K-scheme and let L be a finite extension
of K. Consider a L-valued point σ : mSpec(L) → X. The relative tangent space of σ
over K, denoted by TX/K,σ is the set of morphisms mSpec(L[t]/(t2)) → X such that the
composition with the inclusion mSpec(L)→ mSpec(L[t]/(t2)) is σ.

Note that the image of σ need not have residue field L. In the case when the image of
σ : mSpec(L) → X is a point x with residue field L, we will denote the relative tangent
space by TX/K,x.

Exercise 5.3.2. Prove that we can equip TX/K,σ with the structure of a L-vector space
using the prescription of Exercise 5.1.14.

When σ is a K-point the Zariski tangent space and the relative tangent space are
isomorphic; this follows from Exercise 5.1.13. However, when the residue field is larger
than K it is possible for the two spaces to differ (see Example 5.3.11). It turns out that
the relative tangent space is much better behaved than the Zariski tangent space. For
example, given any morphism f : X → Y and any L-point σ we obtain a pushforward map
f∗ : TX/K,σ → TY/K,f◦σ by composing with f . One of the most useful properties of the
relative tangent space is that it is invariant under base change.

Proposition 5.3.3. Let X be a quasiprojective K-scheme, let L be a finite extension of K,
and let σ : mSpec(L) → X be a L-point. Suppose that F is a field satisfying K ⊂ F ⊂ L.
Then TX/K,σ is isomorphic to TXF/F,σF.

Here σF denotes the point σ × i : mSpec(L) → X ×mSpec(F) where i] : F → L is the
given inclusion.

Proof. Note that there exists a unique K-morphism mSpec(L[t]/(t2))→ mSpec(F). Thus,
by the universal property of the product there is a bijection between TX/K,σ and the set of
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K-morphisms mSpec(L[t]/(t2))→ X×mSpec(K) mSpec(F) which yield σF upon composition
with mSpec(L) → mSpec(L[t]/(t2)). But every such K-morphism is a F-morphism (and
conversely any F-morphism is also a K-morphism). Thus such morphisms are in bijection
with TXF/F,σF .

By combining this with the fact that the relative tangent space and Zariski tangent
space agree for points over the ground field, we see that the relative tangent space is the
same as the Zariski tangent space after a base change.

Proposition 5.3.4. Let X be a quasiprojective K-scheme, let L be a finite extension of K,
and let σ : mSpec(L)→ X be a L-point. Then TX/K,σ is isomorphic to the Zariski tangent
space of XL at the L-point σL.

As a corollary, we can use the Jacobian to describe the relative tangent space.

Corollary 5.3.5. Let X be an affine K-scheme, let L be a finite extension of K, and let
σ : mSpec(L) → X be a L-point with image x. Suppose that X is a closed subscheme
of An defined by the ideal (f1, . . . , fr). Then TX/K,σ is the tensor product of L with the
κ(x)-vector space which is the kernel of the matrix

Jacf1,...,fr(x) =


∂f1
∂x1

(x) . . . ∂f1
∂xn

(x)
...

. . .
...

∂fr
∂x1

(x) . . . ∂fr
∂xn

(x)

 .
This yields the following important property of the relative tangent space.

Proposition 5.3.6. Let X be a quasiprojective K-scheme. Then the dimension of the
relative tangent space is upper semicontinuous: for any positive integer d, the subset

Zd = {x ∈ X | dimκ(x)(TX/K,x) ≥ d}

is a closed set in X.

Proof. It suffices to prove this result when X = mSpec(R) is affine. Choose an embedding
X ↪→ An and write (f1, . . . , fr) for its defining ideal. Then Zd is the vanishing locus of the
ideal generated by the (n− d+ 1)-minors of Jacf1,...,fr .

By Proposition 5.3.4 and Theorem 5.2.1 the relative tangent space of σ : L→ X always
has L-dimension at least as large as the local dimension locdimσ(mSpec(L))(X).
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5.3.2 Smoothness

Definition 5.3.7. Let X be a quasiprojective K-scheme. Let L/K be a finite extension.
We say that a L-point σ of X is smooth if the L-dimension of TX/K,σ is the local dimension
locdimσ(mSpec(L))(X). If σ is not smooth, we call it a singular L-point.

When the image x of σ : mSpec(L) → X has residue field L, we simply say that x is
a smooth or a singular point. The smooth locus of X is the union of the smooth points
in X, and the singular locus is its complement. We say that X is smooth if every point is
smooth.

A direct consequence of Proposition 5.3.6 is that the singular locus is closed.

Lemma 5.3.8. Let X be a quasiprojective K-scheme. The smooth locus of X is a (possibly
empty) open subset of X.

Remark 5.3.9. In the setting of affine K-schemes, it is also true that the nonregular locus
is closed. However the proof takes some work – the statement does not hold for arbitrary
rings.

We have already seen that regularity and smoothness coincide for K-points. The fol-
lowing theorem (which we do not prove) identifies other situations where the two coincide.

Theorem 5.3.10. Let X be a quasiprojective scheme.

• If x ∈ X is a smooth point, then it is a regular point.

• Suppose that x ∈ X is a point with perfect residue field. Then x is regular if and only
if it is a smooth point.

In particular, if x is a smooth point then the local ring OX,x is a domain. Arguing as
in Corollary 5.2.6, we see that any smooth point x is reduced and is contained in a unique
irreducible component of X. The following example shows that regular and smooth can
be different for points x whose residue field is non-perfect and is different from our ground
field.

Example 5.3.11. Let K = Fp(u) and let X = mSpec(K[x, y]/(y2−xp+u)). By Krull’s PIT
this affine scheme has dimension 1. We will show that the point m = (y, xp − u) is regular
but not smooth. Note that its residue field is L = Fp(u1/p). To see this point is regular,
note that as an L-vector space the quotient m/m2 is just Ly, hence one-dimensional. To
this point is not smooth, we compute the Jacobian:

Jacf (x) =
[

0 2y
]
.

When evaluated at the point m, the coordinate y vanishes and thus the Jacobian has rank
0 and its kernel has dimension 2. This shows that m is not a smooth point.
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5.3.3 Exercises

Exercise 5.3.12. Find all the singular points of the following plane curves in A2
C.

(1) y3 − y2 + x3 − x2 + 3xy2 + 3x2y + 2xy.

(2) x4 + y4 − x2y2.

(3) x3 + y3 − 3x2 − 3y2 + 3xy + 1.

Exercise 5.3.13. Let K be a field of characteristic 0. For any positive integers d and n
show that the Fermat hypersurface of degree d defined by the equation xd0 + . . . + xdn = 0
is smooth in Pn. (What can go wrong in characteristic p?)

Exercise 5.3.14. Let K be an algebraically closed field of characteristic 6= 2. We consider
the geometry of the quadric X = V+(

∑r
i=0 x

2
i ) in Pn.

(1) Show that the singular points of X are given by the linear space L ⊂ X defined by
the ideal (x0, . . . , xr).

(2) Let φ : BlL Pn → Pn be the blow-up of L. Show that the strict transform of X in
BlL Pn is smooth.

If we let X̃ denote the strict transform of X, then the map φ : X̃ → X is a birational
morphism such that X̃ is smooth and φ is an isomorphism over the smooth locus of X.
Such a map is called a resolution of singularities.

Exercise 5.3.15. Let X be a quasiprojective K-scheme, and consider a chain of finite
extensions K ⊂ F ⊂ L. Let σ : mSpec(F) → X be a F-point and let σ̃ : mSpec(L) → X
denote the composition with the natural map mSpec(L)→ mSpec(F). Show that TX/K,σ⊗L
is isomorphic to TX/K,σ̃.

Exercise 5.3.16. Let L/K be a finite field extension and let F/L be an arbitrary field
extension. Let σ : mSpec(L)→ X be an L-point and let σ′ : mSpec(F)→ XF be the base
change of σ to F. Prove that σ is a smooth point if and only if σ′ is a smooth point.

Exercise 5.3.17. Let K be an algebraically closed field. Suppose that X ⊂ Pn is a closed
subscheme. Fix a point p ∈ X. Suppose that ` is a line through p that is not contained in
X. We say that ` is a tangent line to X at p if T`,p is contained in TX,p (as subspaces of
TPn,p).

Prove that ` is a tangent line if and only if the intersection X ∩ ` is non-reduced at p.
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5.4 Geometric properties

In this section we address two key properties of smoothness.

5.4.1 Generic smoothness

Theorem 5.4.1. Suppose K is a perfect field. Any quasiprojective K-variety X of dimen-
sion n is birational to a hypersurface V (f) ⊂ An+1 defined by an irreducible polynomial
f .

Here we will give an algebraic argument.

Proof. Let K be the function field of X. Since K is perfect, K/K is finitely separably gen-
erated. By Noether Normalization, there are algebraically independent elements t1, . . . , tn
such that K is a finite separable extension of K(t1, . . . , tn). By the primitive element the-
orem, there is an element θ such that K = K(t1, . . . , tn, θ). We know that θ satisfies an
irreducible polynomial equation whose coefficients are rational functions in the ti. Clear de-
nominators to get a polynomial f ∈ K[t1, . . . , tn, θ]. This polynomial defines a hypersurface
in An+1 with the same function field as X.

Theorem 5.4.2. Let X be a geometrically integral quasiprojective K-variety of dimension
n. There is a non-empty open subset U ⊂ X such that every point x ∈ U is a smooth point.

The statement can fail if X is not geometrically integral; consider for example the
Fp(t)-variety mSpec(Fp(t)[x]/(xp − t)).

Proof. By Exercise 5.3.16 smoothness can be detected after base-changing to an alge-
braically closed field, so we may suppose that K is algebraically closed. Then by Theorem
5.4.1 it suffices to prove the statement when X = V (f) is a hypersurface in An+1 defined
by an irreducible polynomial f . The set of singular points is defined by the equations f = 0
and ∂f

∂xi
= 0 for i = 1, . . . , n+ 1. If Xsing = X, then each ∂f

∂xi
is contained in the ideal (f).

Since taking derivatives drops degree, this can only happen if all the partial derivatives of
f are identically 0.

When K has characteristic 0 this is impossible. When K has characteristic p, we see
that every term of f has exponents which are all divisible by p. Since all the coefficients
are also pth powers (as K is algebraically closed), we see that f = gp for some polynomial
g. But this contradicts the irreducibility of f .

5.4.2 Bertini’s Theorem

Suppose X ⊂ Pn is a projective variety. A hyperplane section of X is the intersection
X ∩ H for some K-hyperplane H. An important principle in algebraic geometry is that
when H is general (in the sense of Definition 4.5.3) the intersection X ∩ H will inherit
many of the nice properties of X. Our first example of this principle is Bertini’s Theorem.
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Theorem 5.4.3. Suppose that X ⊂ Pn is a smooth projective variety. Consider the pa-
rameter space Pn∨ for hyperplanes in Pn. There is some non-empty open subset V ⊂ Pn∨
such that every hyperplane H parametrized by a K-point in V the intersection X ∩ H is
smooth.

Proof. By Exercise 5.3.16 smoothness can be detected after base changing to the algebraic
closure of K. Thus we may assume that our ground field is algebraically closed.

Let U ⊂ (Pn)∨ denote the open subset parametrizing hyperplanes which do not contain
X. Consider the incidence correspondence I ⊂ U ×X consisting of pairs (H,x) such that
x is a singular point of X ∩H. Our first goal is to show that I is a closed subset of U ×X.

Fix a point x ∈ X. We can choose an open affine An ⊂ Pn which has x as the origin
and let K[y1, . . . , yn] denote its coordinate ring and let I = (f1, . . . , fr) denote the ideal
of X ∩ An. If we fix a hyperplane containing x then An ∩ H is the vanishing locus of
a homogeneous linear function `. Krull’s Principal Ideal Theorem shows that the local
dimension of x in X ∩H is one less than the dimension of X. By the Jacobian criterion
X ∩H will fail to be smooth at x precisely when the matrix

∂f1
∂x1

(x) . . . ∂f1
∂xn

(x)
...

. . .
...

∂fr
∂x1

(x) . . . ∂fr
∂xn

(x)

∂`
∂x1

(x) . . . ∂`
∂xn

(x)

 .

has rank dim(X). This will happen when the last row is in the span of the first r rows.
Note that the last row consists of the coefficients of `; thus, as we vary x the vanishing
of the corresponding (dim(X) + 1)-minors of this matrix will be described by equations in
the homogeneous coordinates on U ×X.

We next show that the projection map I → U is not dominant. It suffices to prove that
dim(I) < dim(U). The argument above shows that the hyperplanes such that X ∩ H is
singular at x must contain a fixed dim(X)-subplane in the projectivized tangent space of
Pn at x. In other words, in the parameter space Pn−1 of hyperplanes H that contain x, the
subset whose intersection with X is singular at x will lie in a (n−1−dim(X))-dimensional
subplane. By Theorem 4.4.9 we see that I has dimension ≤ (n− 1− dim(X)) + dim(X) =
n− 1, finishing the proof.

Remark 5.4.4. If K is an infinite field then any open subset of Pn∨ will contain a K-point.
Thus there will always be a hyperplane for which Bertini Theorem’s applies.

If K is a finite field this is no longer true. [[Kat99] Question 10] gives the example of
the hypersurface

∑n
i=0 xiy

q
i −x

q
i yi = 0 in P2n+1

Fq . The intersection of this hypersurface with
every Fq-hyperplane is singular.
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5.4.3 Exercises

Exercise 5.4.5. Suppose that K is an infinite field. Use Bertini’s theorem to show that
a general degree d hypersurface in Pn is smooth. More generally, prove that if we choose
general homogeneous polynomials f1, . . . , fr ∈ K[x0, . . . , xn] with r ≤ n then the subscheme
X = V+(f1, . . . , fr) is smooth.

Exercise 5.4.6. Suppose that K is algebraically closed. Suppose that X ⊂ Pn is a pro-
jective variety of dimension d. Show that the intersection of X with d general hyperplanes
will be a finite set of reduced points.

(More precisely, let M ∼= Pn denote the parameter space of hyperplanes on Pn. We
can think of M×d as the parameter space of sets of d hyperplanes. Show that there is an
open subset U ⊂ M×d such that for every point p ∈ U the intersection of M with the d
hyperplanes corresponding to p will be a finite set of reduced points.)
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5.5 Tangent cones and blow-ups

In this section we will define the tangent cone construction, a modification of the notion
of a tangent space. For the sake of simplicity we will focus only on K-points. We will need
the following definition:

Definition 5.5.1. Let f ∈ K[x1, . . . , xn]. Let d be the smallest degree of any term of f .
We define fmin to be the sum of all the terms of f which have degree d.

Let I ⊂ K[x1, . . . , xn] be an ideal (not necessarily homogeneous). The initial ideal Imin
is the ideal generated by fmin as we vary f over all elements in I.

It is important to note that Imin need not be the same as the ideal generated by
the minimal degree parts of the generators of I. For example, if I = (x + y2, xy) then
Imin = (x, y3).

Definition 5.5.2. Let X ⊂ An be an affine scheme and let x ∈ X be a K-point. Without
loss of generality we may suppose that x is the origin in An. Let I ⊂ K[x1, . . . , xn] be the
ideal of X. The tangent cone of x in X is the vanishing locus of the ideal consisting of the
lowest degree homogeneous part of I.

Exercise 5.5.3. Sketch the following curves in A2 and their tangent cones at the origin.
How do the tangent cones compare to the graph of the variety?

(1) y2 = x3 + x2.

(2) y2 = x3.

(3) (x2 + y2)2 + 3x2y − y3 = 0.

As illustrated by the previous exercise, the tangent cone is the “limit” of the tangent
lines of all nearby points. Note that it is possible for this limit to have many components
of different dimensions.

Exercise 5.5.4. Let X,Y ⊂ An be closed subschemes. Show that the tangent cone of
X ∪ Y at a point x is the union of the tangent cones of X and Y at x.

Remark 5.5.5. We can also think of the tangent cone as an ideal in OX,x as follows.
Consider the finitely generated graded K-algebra

S = OX,x/mx ⊕mx/m
2
x ⊕m2

x/m
3
x ⊕ . . .

Note that we have a surjection Sym(m/m2)→ S. This yields a closed subscheme mSpec(S) ⊂
mSpec(Sym(m/m2)) ∼= TX,x which is the (intrinsic) tangent cone of X. By composing with
the natural map TX,x → TAn,x we obtain the tangent cone as defined earlier.

With this definition the tangent cone is intrinsic to X, i.e. does not depend on a choice
of embedding. Thus the definition naturally extends to all quasiprojective varieties. We
will not pursue this line of reasoning here, being content to work with embedded varieties.
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5.5.1 Tangent cones and blowing-up a point

Tangent cones provide new insight into the blow-up construction.

Theorem 5.5.6. Let X ⊂ An be a closed subscheme. Let x ∈ X be a K-point. Let
φ : BlxAn → An be the blow-up and let φX : X̃ → X be the strict transform of X. The
fiber of φX over x is isomorphic to the mProj of the ideal defining the tangent cone as a
subscheme of the exceptional divisor E ∼= Pn−1 of φ.

Recall that φX can equally well be thought of as the blow-up of the ideal defining the
point x. Thus one can use Theorem 5.5.6 to show that the tangent cone is intrinsic to X,
independent of the choice of an embedding.

Proof. Without loss of generality we may assume x is the origin. Recall that the blow-up
of An at the origin (with coordinates x0, . . . , xn−1) is defined by the ideal

(xiyj − xjyi)n−1
i,j=0

inside of An×Pn−1. Suppose that X = V (I). We can compute the blow-up X̃ by taking the
preimage of X and then removing the “extra component” represented by the exceptional
divisor.

Consider the open subset U0 ⊂ BlxAn where y0 6= 0. This open set is isomorphic to
n-dimensional affine space in the coordinates x0,

y1
y0
, . . . , yn−1

y0
. On this chart, the preimage

of X is defined by f
(
x0, x0

y1
y0
, . . . , x0

y1
y0

)
as we vary f ∈ I. Since the exceptional divisor is

cut out by the equation x0 = 0, the strict transform of X is defined by the set of equations

f
(
x0, x0

y1
y0
, . . . , x0

y1
y0

)
xdmin0

where dmin is the minimal degree of any term in f .

Consider now the intersection of the strict transform of X with the exceptional divisor
E in this open subset. The intersection is given by setting x0 = 0. For each function f , the
only remaining terms will be those whose degree is dmin – more precisely, they will be the
terms of minimal degree which do not involve x0 at all. Varying the charts, we see that
X̃ ∩ E is generated by the projectivization of Imin.

Theorem 5.5.6 illustrates how one should think about the blow-up at a K-point x: the
operation replaces x with the projectivization of its tangent cone. In particular, when
we blow-up An at the origin the exceptional divisor E can be identified with the Pn−1

parametrizing tangent directions at 0. When we take the strict transform X̃ of X ⊂ An,
the intersection of X̃ with the exceptional divisor E is the set of “limit” tangent lines as
we approach 0 from directions in X.
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5.5.2 Tangent cones and general blow-ups

More generally, suppose that X = mSpec(R) is an affine scheme and I is an ideal in R.
Then a fiber of the blow-up map φX : BlI(X) → X over a point in V (I) will represent
the directions in the tangent cone of X that are not tangent to V (I). More precisely, the
construction replaces V (I) by the projectivization of its normal sheaf – since we haven’t
discussed vector bundles on schemes, we won’t attempt to make this precise.

Example 5.5.7. We use coordinates x0, x1, x2 on A3. Suppose that L ⊂ A3 is the linear
subspace defined by the equations x0 = x1 = 0. By taking a preimage in the blow-up, we
see that the exceptional divisor of φ : BlLA3 → A3 is isomorphic to mProj(K[y0, y1, x2])
where we only give positive weighting to the first two variables. In particular, the fiber
over the origin is given by setting x2 = 0.

Let X ⊂ A3 be a closed subscheme containing the origin. We let X̃ denote the strict
transform of X under φ : BlLA3 → A3. Arguing as in Theorem 5.5.6, we see that on the
chart y0 6= 0 the intersection with X̃ is defined by varying the functions

f(x0, x0
y1
y0
, x2)

xdmin0

where dmin is the minimal degree of any term of f in the x0, x1 variables. A similar
description applies to the chart y1 6= 0. Thus we see that the intersection of the strict
transform of X̃ with the exceptional divisor E is defined by the projectivization of the
initial ideal where the weight is purely in the first two variables.

Next consider the fiber of φ|
X̃

over the origin. On the chart y0 6= 0 this fiber is given
by setting x0 = x2 = 0. The only remaining functions will be the terms of minimal degree
which only involve x1. Arguing similarly on the other chart, we see that this fiber of φ|

X̃
is defined by quotienting the initial ideal by the variable x2. In other words, it is the
projectivization of the quotient of the tangent cone of X by the tangent direction of L.

5.5.3 Exercises

Exercise 5.5.8. An irreducible plane curve is said to have a node at a point if its tangent
cone is the union of two different lines. It is said to have a cusp at a point if its tangent
cone is a double line.

Prove that an irreducible cubic curve in P2 has at most one singular point and this
singular point is either a node or a cusp.

Exercise 5.5.9. For each of the following plane curves in P2
C, find the singular points and

the tangent cones at each singular point.

(1) xy4 + yz4 + zx4.

(2) x2y3 + x2z3 + y2z3.
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(3) y2z − x(x− z)(x− λz) for some λ ∈ C.

(4) xn + yn + zn.
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5.6 Normality

We next turn to a weaker variant of regularity that is motivated by algebra. Suppose that
X = mSpec(R) is an affine variety. We are interested in the situation when R is integrally
closed in Frac(R). Since this condition is a stalk-local property when R is a domain, we
can define it for quasiprojective varieties as well.

Lemma 5.6.1. Let X be a quasiprojective variety. The following conditions are equivalent:

(1) There is an open cover {Ui} of X by open affines such that every ring OX(Ui) is
integrally closed in K(X).

(2) For every open affine U ⊂ X we have that OX(U) is integrally closed in K(X).

(3) For every point x ∈ X the stalk OX,x is integrally closed in K(X).

Proof. This follows from the fact that the integral closure condition for domains can be
checked by localizing at maximal ideals combined with Proposition 2.5.6.

Definition 5.6.2. Let X be a quasiprojective variety. If X satisfies the equivalent condi-
tions of Lemma 5.6.1 we say that X is a normal variety.

We will only work with normality for varieties (although one can define it for arbitrary
schemes by requiring that all local rings be integrally closed).

Example 5.6.3. Every regular quasiprojective variety is normal. In Proposition 5.2.5
we showed that a regular local ring is a domain, and it only remains to show that a
regular local ring is integrally closed in its fraction field. This is a consequence of the
Auslander-Buchsbaum Theorem which shows that a regular local ring will be a UFD (and
thus integrally closed).

Example 5.6.4. Not every normal quasiprojective variety is regular. For example, set
R = K[x, y, z]/(xy − z2) and consider the quadric cone X = mSpec(R). Then X is not
regular at the origin.

However, X is normal if char(K) 6= 2. To see this, note that K(X) = K(x, y)[z]/(z2−xy)
is a degree 2 extension of K(x, y). Suppose that α = g + hz is an element of K(X) where
g, h ∈ K(x, y). The minimal polynomial of this element is

t2 − 2gt+ (g2 − xyh2)

If α is integral over R, then g ∈ R and g2 − xyh2 ∈ R so that h ∈ R as well. This means
that g, h are contained in K[x, y]. Thus α ∈ R.
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5.6.1 Properties of normal varieties

Normal varieties can be characterized using two important geometric properties. Although
normal varieties can be singular, these properties show that the singularities of X are
“mild.” The first property shows that the singular locus of a normal variety will have
codimension ≥ 2. The statement relies on the following fact about regularity: the locus
of nonregular points in a quasiprojective variety is a proper closed subset. (We proved
this for smoothness in Theorem 5.4.2 but we will not prove the analogous statement for
regularity.)

Theorem 5.6.5 (Property R1). Let X be a normal quasiprojective variety. Let Xnonreg

denote the closed locus of nonregular points in X. Then dim(Xnonreg) ≤ dim(X)− 2.

In particular, every normal variety of dimension 1 is regular.

Proof. It suffices to prove the theorem whenX = mSpec(R) is an affine variety of dimension
n.

Suppose for a contradiction that Xnonreg has codimension 1. Let Z be a codimension
1 irreducible component of Xnonreg equipped with its reduced structure. Thus Z is the
vanishing locus of a height 1 prime ideal p. Consider the local ring Rp: this is a Noetherian
local ring of dimension 1. Since integral closure is preserved by localization, Rp is a DVR.

Let f be a generator of the maximal ideal in Rp. Then there is some g ∈ R\p such
that f ∈ OX(Dg). Note that Dg ∩ Z will be the vanishing locus of the localized ideal pg.
This ideal contains the ideal (f), and the cokernel of the inclusion (f) ⊂ pg vanishes after
tensoring by Rp. Since the cokernel is finitely generated, there is a single function h ∈ Rg
such that tensoring by Rgh will also kill the cokernel of (f) ⊂ pg. In other words, the
intersection Dgh ∩ Z will be the vanishing locus of the single function f ∈ OX(Dgh). For

simplicity of notation, we let X̃ = Dgh and Z̃ = Dgh ∩ Z.

Since Z̃ is irreducible and reduced it has a regular point z. By Exercise 5.1.6 T
Z̃,z

is
the vanishing locus of a single linear equation in T

X̃,z
. Thus

dim(X)− 1 = dim(Z) = dim(T
Z̃,z

) = dim(T
X̃,z

)− 1.

This shows that z is also a regular point in X, yielding a contradiction.

Remark 5.6.6. More generally, we say a quasiprojective scheme X is Rk if the nonregular
locus of X has codimension ≥ k + 1.

The second key result addresses the behavior of functions. We have already seen that
in some situations we can remove a codimension 2 subset without affecting the ring of
functions (Exercise 1.10.11 and Example 1.10.9). The following result gives us a systematic
way of thinking about this property.
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Theorem 5.6.7 (Property S2). Let X be a normal quasiprojective variety. Let Z be a
closed subset of X of codimension ≥ 2. Then the natural injection OX(X) ↪→ OX(X\Z)
is an isomorphism.

Equivalently, any rational function in K(X) will fail to be defined along a codimension
1 subset. The complex analytic analogue of this result is Hartog’s theorem showing that
a holomorphic function defined away from a codimension 2 subset can be extended to the
entire manifold.

Proof. We first consider the case when X is an affine variety. We will use the following
theorem from commutative algebra:

Theorem 5.6.8. Let R be a Noetherian domain that is integrally closed. Then

R =
⋂

height 1 primes p

Rp

as subsets of Frac(R).

Thus it suffices to show that OX(X\Z) ⊂ Rp for every height 1 prime p. Suppose
r ∈ OX(X\Z). Fix a height 1 prime p so that V (p) has codimension 1 in X. Since Z
has codimension ≥ 2 we have V (p) ∩X\Z 6= ∅. Exercise 1.10.13 shows that r ∈ Rp. (In
other words, since V (p) meets the locus where r is defined, the denominator of r must be
contained in R\p.)

When X is an arbitrary quasiprojective variety, the statement follows from the affine
case using the gluing property of the sheaf of functions.

Remark 5.6.9. More generally, we say that a ring R satisfies Sk if the localization of R
along any prime ideal p satisfies

depth(Rp) ≥ min{k,dim(Rp)}

and this definition naturally extends to schemes. It is true, but not obvious, that the S2
property as we have defined it matches up with the S2 property defined using depth.

It turns out that the R1 and S2 properties characterize normality for quasiprojective
varieties:

Theorem 5.6.10 (Serre’s Criterion). Let X be a quasiprojective variety. Then X is normal
if and only if X satisfies R1 and S2.

We will not prove this result.

Example 5.6.11. Using the “depth” definition of the S2 property, one can see that an
irreducible reduced hypersurface in Pn will always be S2. Thus a hypersurface will be
normal if and only if it is regular in codimension 1.
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5.6.2 Normalization

Definition 5.6.12. Let X = mSpec(R) be an affine variety. The normalization ν : Xν →
X of X is the morphism of affine varieties corresponding to the inclusion ν] : R→ Rint to
the integral closure of R.

Example 5.6.13. Set R = K[x, y]/(y2−x3). Then R is not integrally closed: the element
y
x ∈ Frac(R) lies in the integral closure but not in R. There is an isomorphism K[t]→ Rint
via the map t 7→ y

x . Thus the normalization of mSpec(R) is A1 equipped with the map
A1 → mSpec(R) defined by x 7→ t2 − 1, y 7→ t3 − t.

Using the compatibility of the integral closure operation with localization, we can ex-
tend the definition to arbitrary quasiprojective varieties as follows.

Construction 5.6.14. Note that taking integral closures is compatible with localization:
for any multiplicative subset S ⊂ R the integral closure of RS is the localization of Rint
localized along S. In particular, given an open affine subset U of an affine variety X, the
normalization of U will be the preimage of U in the normalization of X.

Thus we can define the normalization of any quasiprojective variety X as follows. First
suppose X is a projective variety. If we take a closed embedding from X into projective
space, then the ideal of homogeneous functions which vanish on X is a homogeneous
prime ideal p. In particular this means that X = mProj(R) where R is the domain
defined by quotienting by p. Then we can define the normalization of X by taking the
mProj of an integral closure of R in the field obtained by localizing along all non-zero
homogeneous elements. In general, a quasiprojective variety X is an open subset of some
projective variety Y and we can define the normalization of X by taking its preimage in
the normalization of Y .

The normalization map ν : Xν → X is the “minimal” map from a normal variety to X
(see Exercise 5.6.17). The following result shows that ν has excellent geometric properties.

Theorem 5.6.15. Let X be a quasiprojective variety. The normalization map ν : Xν → X
is finite and birational.

Proof. By taking an open cover by open affines it suffices to prove the result when X =
mSpec(R) is an affine variety. Since the inclusion ν] : R → Rint is an integral homo-
morphism of finitely generated K-algebras, it is finite. Choose a finite set of elements
fi/gi ∈ Frac(R) which give a finite set of generators of Rint as an R-module. Let s be the
product of the gi. Then the localization of ν] along s is an isomorphism. Thus ν is an
isomorphism along the open subset Ds of mSpec(R).

Remark 5.6.16. In fact, the normalization map ν will be an isomorphism over the smooth
locus of X (which is a non-empty open subset by Theorem 5.4.2).
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5.6.3 Exercises

Exercise 5.6.17. Suppose that f : X → Y is a dominant morphism from a normal
quasiprojective variety X to a quasiprojective variety Y . Show that f admits a unique
factorization through the normalization of Y .

Exercise 5.6.18. Suppose that f : X → Y is a finite birational morphism. Show there is
a unique map g : Y ν → X from the normalization Y ν such that the composition f ◦ g is
the normalization map.

Exercise 5.6.19. This exercise gives an example of a variety which is regular in codimen-
sion 1 but not normal.

Consider the subring R = K[x3, x2, xy, y2] of K[x, y]. Show that the inclusion map of
rings defines the normalization of mSpec(R). (mSpec(R) is known as the “pinched plane”
– can you see why?)

Prove explicitly that mSpec(R) is not S2 by finding an open subset U ⊂ mSpec(R)
whose complement has codimension 2 such that OmSpec(R)(mSpec(R)) ( OmSpec(R)(U).

Exercise 5.6.20. Let X be a projective curve (i.e. a projective variety of dimension 1).
Prove that X is normal if and only if X is regular. (Hint: show that both conditions are
equivalent to requiring that every stalk OX,x be a DVR.)
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Chapter 6

Subvarieties of projective space

This chapter is devoted to the systematic study of closed subschemes of projective space.
To every closed subscheme X we associate two constructions:

(1) The Hilbert polynomial, recording the dimensions of the graded pieces of the homo-
geneous coordinate ring of X.

(2) The degree, a positive integer reflecting the number of intersections points of X with
a general linear space of complementary dimension.

These two constructions are closely related. In fact, the degree is determined by the leading
coefficient of the Hilbert polynomial. This chapter is devoted to the study of these two
constructions. Along the way, we will prove several fundamental properties of projective
space which you should be sure to internalize (Proposition 6.2.1, Exercise 6.2.15, Theorem
6.4.8).

The main motivation for studying the degree comes from homology theory. Let’s briefly
review the homology of projective space. We saw earlier that PnC can be written as a disjoint
union

AnC ∪ An−1
C ∪ . . .A1

C ∪ {pt}.

In fact this yields a cellular decomposition of PnC. Since the cells only occur in even
dimension, all the boundary maps in the chain complex computing cellular homology are
zero. This shows that:

Hi(PnC,Z) ∼=
{

Z if 0 ≤ i ≤ 2n and i is even
0 otherwise

By the universal coefficient theorem the cohomology groups have the same form.

Since PnC is a complex Kähler manifold, the cohomology carries many structures: the
cup product, Poincaré duality, the Hodge diamond, Hard Lefschetz, etc. However, since

201
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the cohomology groups of PnC are so simple most of these constructions are uninteresting.
The only interesting structure is the cup product in cohomology. As a ring, we have

H∗(PnC,Z) ∼= Z[x]/(xn+1)

where x is identified with an additive generator for H2(PnC,Z). Concretely, if σ ∈ H2(PnC,Z)
denotes the first Chern class of the dual of the tautological bundle then every cohomology
class in degree 2k is a multiple of σk. (Note that in algebraic geometry the dual of the
tautological bundle is naturally identified with the positive generator 1 and the tautological
bundle is identified with −1.)

If we dualize the cup product, we get a “cap product” structure on the homology group.
We will write Lk for the positive generator of H2k(PnC,Z) obtained by pushing forward the
fundamental class of a k-plane in PnC. Then the cap product has the following description.

H2k(PnC,Z)×H2l(PnC,Z)
∩−→ H2k+2l−2n(PnC,Z)

(α = aLk, β = bLl) 7→ α ∩ β = abLk+l−n

Suppose that α, β are two homology classes corresponding to oriented submanifolds L,M
of PnC. If L and M intersect “transversally”, then α ∩ β is represented by the oriented
submanifold L ∩ M . In other words, the cap product on homology corresponds to the
geometric operation of taking intersections (in sufficiently nice situations).

The degree is the “algebraic analogue” of the homology class: if X ⊂ PnC is a smooth
subvariety of dimension k, then X carries a fundamental class and its pushforward to
H2k(PnC,Z) ∼= Z is the integer deg(X). This follows from the defining property of the
degree: deg(X) is computed by intersecting against a plane, which is a generator of the
homology in complementary dimension.

Carrying this analogue further, we would like to construct a “cap product” in our
setting by taking intersections of algebraic subschemes. Bezout’s Theorem shows that (in
good situations) the degree of X ∩ Y is the product of deg(X) and deg(Y ) so that our
“algebraic cap product” exactly matches the corresponding construction in homology.

The last section is devoted to Hilbert schemes. It turns out that whenever we have a
“nice” (i.e. flat) family of closed subschemes of Pn the Hilbert polynomial stays constant
in the family. (The converse is also true: one can test the flatness of a family by checking
whether the Hilbert polynomial is constant.) Thus if we want to construct a moduli space
of closed subschemes of Pn, the best option is to look at all closed subschemes with a fixed
Hilbert polynomial. Although we do not have the tools to give a rigorous construction of
the Hilbert scheme, we will take an informal look at a few examples.

Throughout this chapter we assume that our ground field K is algebraically closed.
This is mainly for convenience; the results (when correctly formulated) are true in more
generality.
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6.1 Hilbert polynomials

Notation 6.1.1. Let S be a graded ring and let M be a graded S-module. For any integer
b we let M(b) denote the graded S-module which is abstractly isomorphic to M but has
the grading shifted by b, that is, M(b)r = Mr+b.

The Hilbert polynomial is a construction from commutative algebra that measures the
“size” of a finitely generated graded K-algebra (or more generally, a graded module).

Definition 6.1.2. Let S be a finitely generated graded K-algebra and suppose that M is a
finitely generated graded S-module. The Hilbert function of M is the function χM : N→ N
which assigns to each positive number r the number χM (r) := dimK(Mr).

Example 6.1.3. If S = K[x0, . . . , xn] is the polynomial ring in n + 1 variables then
χS(r) =

(
n+r
r

)
.

Exercise 6.1.4. Set R = K[x0, . . . , xn]. Consider a homogeneous function f ∈ R of degree
d and let S = R/(f). Using the exact sequence of graded R-modules

0→ R(−1)
·f−→ R→ S → 0

show that χS(r) =
(
n+r
r

)
−
(
n+r−d
r−d

)
(where as usual we interpret a binomial coefficient as

0 if one of the inputs is negative).

Since different graded rings can have the same mProj, the Hilbert function is not an
invariant of the projective scheme mProj(S). Thus we will primarily be interested in the
following situation.

Definition 6.1.5. Let X be a closed subscheme of Pn defined by a saturated ideal I. We
define the Hilbert function of X (as a subscheme of Pn) to be the Hilbert function of the
quotient ring K[x0, . . . , xn]/I. We will denote this function by χX .

6.1.1 Computing Hilbert functions

There are several ways to compute Hilbert functions. First, we can work directly from the
definition. For any degree r we have an exact sequence

0→ Ir → K[x0, . . . , xn]r → Sr → 0.

The kernel Ir is the space of homogeneous degree r polynomials which vanish along X.
Thus Sr represents the space of homogeneous degree r polynomials “restricted” to X.
(Remember, these polynomials are not actually functions on Pn and their restrictions are
not functions on X. Rather, they are “homogeneous functions” on both spaces.)

When X is a particularly nice variety we can compute the dimension of Sr directly
from this definition.



204 CHAPTER 6. SUBVARIETIES OF PROJECTIVE SPACE

Example 6.1.6. Let X be the rational normal curve in Pn. Recall that under the iden-
tification X ∼= P1 the homogeneous degree r functions on Pn restrict to the homogeneous
degree nr functions on X. Thus we have

χX(r) = dimK[x, y](n)
r = nr + 1.

Example 6.1.7. Let X be the union of three distinct points in P2. We first show that
restriction yields a map K[x, y, z]r → K3 in the following sense. Let’s choose a linear
function ` which does not vanish on any of the three points. In particular, X is contained
in the affine chart D+,`. We then obtain a linear map

ψr : K[x, y, z]r → OX(X) ∼= K3

f 7→ f/`r

The Hilbert function χX(r) will be the dimension of the image of this map.
First, note that χX(1) depends upon whether or not the three points are collinear.

If the three points are collinear, then the map ψ1 has a one-dimensional kernel so that
χX(1) = 3− 1 = 2. Otherwise we have χX(1) = 3− 0 = 3.

For r ≥ 2, we claim that χX(r) = 3. Indeed, for each point there is a linear function
which vanishes at that point but not the others. By multiplying and adding these together
in various combinations, we obtain polynomials of higher degrees which yield a surjection
onto K3.

In general, the best way to compute the Hilbert polynomial of the vanishing locus of
I ⊂ K[x0, . . . , xn] is often to compute a free graded resolution of K[x0, . . . , xn]/I. The
following example illustrates this technique.

Example 6.1.8. Suppose that X ⊂ Pn is the intersection of two hypersurfaces V+(f) and
V+(g) which share no common components. Set R = K[x0, . . . , xn] and I = (f, g). Let
d = deg(f) and e = deg(g). We have an exact sequence of graded modules

0→ R(−d− e)

[
·(−e)
·f

]
−−−−→ R(−d)⊕R(−e) [·f,·g]−−−→ R→ R/I → 0.

Show that for r ≥ d+ e we have χX(r) =
(
n+r
r

)
−
(
n+r−d

r

)
−
(
n+r−e

r

)
+
(
n+r−d−e

r

)
. (What

happens for smaller values of r?)

6.1.2 Hilbert polynomials

Generalizing Example 6.1.7, we see that the Hilbert function of a zero-dimensional scheme
is eventually constant.

Lemma 6.1.9. Let X ⊂ Pn be a closed subscheme with dim(X) = 0. Then for d sufficiently
large χX(d) is equal to dimK(OX(X)).
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Proof. Let S be the quotient of K[x0, . . . , xn] by the saturated ideal I defining X. Up to a
coordinate change, we may suppose that X is contained in the affine chart D+,x0 . In par-
ticular, X is an affine scheme which is the vanishing locus of some ideal J ⊂ K[x1x0 , . . . ,

xn
x0

].
Since OX(X) is Artinian, there are finitely many elements in the quotient K[x1x0 , . . . ,

xn
x0

]/J
which generate this ring as a K-module. In particular, by clearing denominators we see
that that for d sufficiently large we have OX(X) ∼= Sd as K-vector spaces.

The most important property of the Hilbert function is that it is eventually polyno-
mial. Furthermore, the various coefficients of the polynomial have interesting geometric
interpretations.

Theorem 6.1.10. Let X ⊂ Pn be a closed subscheme. There is a polynomial P (d) such
that χX(d) = P (d) for all d sufficiently large. Furthermore, the degree of P is the dimension
of X.

The polynomial P is known as the Hilbert polynomial of X. You may have seen a
variant of this result before in a commutative algebra course. We will give a “geometric”
proof.

Proof. We prove the theorem by induction on dim(X). The case when dim(X) = 0 is
handled by Lemma 6.1.9.

Suppose now that dim(X) > 0. Define S = K[x0, . . . , xn]/I. We claim that for a
general hyperplane H its equation ` is not a zero divisor in S. Indeed, the zero divisors in
S are the union of the associated (necessarily homogeneous) primes for the zero ideal in S.
For each such prime consider the corresponding vanishing locus Zi ⊂ Pn. The hyperplanes
whose equations are zero divisors in S are exactly the hyperplanes which contain some
Zi. By Exercise 4.4.16, such hyperplanes form a proper closed subset of the moduli space
(Pn)∨ parametrizing hyperplanes.

Fix a general hyperplane defined by an equation `. Consider the exact sequence of
abelian groups

0→ Sr−1
·`−→ Sr → (S/(`))r → 0. (6.1.1)

The ideal (I, `) defines X∩H. Exercise 4.4.16 shows that X∩H has dimension dim(X)−1.
Furthermore, the ideal (I, `) will agree with its saturation in sufficiently high degree. Thus
by induction on dimension we know that χX∩H is eventually equal to a polynomial of degree
dim(X) − 1. For r sufficiently large we have χX(r) − χX(r − 1) = PX∩H(r). Using the
properties of successive difference functions, we deduce that χX is eventually polynomial
of degree dim(X).

Exercise 6.1.11. Prove carefully the claim above about difference functions implicit in
the proof above: if χX(r) − χX(r − 1) is eventually polynomial, then χX(r) is eventually
polynomial and its degree is one larger than the degree of the difference equation.
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6.1.3 Exercises

Exercise 6.1.12. Prove that the Hilbert function of four points in P2 is 2, 3, 4, 4, . . . if the
points are collinear or 3, 4, 4, 4, . . . if the points are not.

Exercise 6.1.13. Prove that the Hilbert polynomial for the d-uple Veronese embedding
of Pn is

P (r) =

(
n+ r · d

d

)
.

Exercise 6.1.14. Compute the Hilbert polynomial for Pn×Pm under its Segre embedding.

Exercise 6.1.15. Let X ⊂ P3 be a conic curve and let Y ⊂ P3 be the union of two skew
lines (i.e. two lines which span P3). Note that X and Y both have dimension 1 and degree
2. Compute the Hilbert polynomials of X and Y and show that they are different.

Exercise 6.1.16. Let X ⊂ P2 be the union of three lines defined by V+(xy(x − y)) and
let Y ⊂ P3 be the union of the three coordinate axes through the point (0 : 0 : 0 : 1).
Compute the Hilbert polynomials of X and Y and show that they are different.
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6.2 Degree

Suppose that X is a closed subscheme of Pn. As discussed in the introduction, the degree
of X is a positive integer which represents the “homology class” of X. In this section we
will study this important invariant.

6.2.1 Intersections in projective space

We first start by developing the theory of intersections in projective space. The following
proposition is fundamental for understanding projective space. We have already seen the
special case when Y is a hypersurface in Exercise 2.11.14.

Proposition 6.2.1. Let X and Y be closed subschemes of Pn of dimensions a, b respec-
tively. Suppose that a+ b ≥ n. Then X ∩ Y 6= ∅ and dim(X ∩ Y ) ≥ a+ b− n.

The proof uses a clever trick to put us in a situation where we can use Krull’s PIT.

Proof. Let C(X), C(Y ) ⊂ An+1 be the cones over X and Y (that is, the loci defined by
the same ideals in K[x0, . . . , xn] but considered as subsets of An+1 instead of Pn). We have
dim(C(X)) = a+ 1 and dim(C(Y )) = b+ 1.

Consider the diagonal i : ∆ ⊂ An+1 × An+1. Note that i takes C(X) ∩ C(Y ) isomor-
phically to ∆∩ (C(X)×C(Y )). Exercise 1.7.18 showed that ∆ is defined by the equations
{1⊗ xi − xi ⊗ 1}n+1

i=0 . By applying Krull’s PIT (n+ 1) times, we see that the dimension of
∆ ∩ (C(X) × C(Y )) is at least (a + b + 2) − (n + 1). Thus C(X) ∩ C(Y ) has dimension
≥ (a+ b− n) + 1 and in particular has dimension ≥ 1. Taking the image in Pn drops the
dimension by 1, yielding the desired statement.

In particular, this shows that a closed subscheme X of Pn of dimension k will intersect
every plane of dimension n− k. Our next result shows that if we drop the dimension by 1,
then a general plane will not intersect X.

Proposition 6.2.2. Let X be a closed subscheme of Pn of dimension k. A general plane
of dimension n− k − 1 will not intersect X.

Exercise 6.2.3. Prove Proposition 6.2.2. (Hint: use Exercise 4.5.7.)

6.2.2 Degree

Definition 6.2.4. Let X be a closed subscheme of Pn and let P (x) denote its Hilbert
polynomial. Suppose that P (x) has degree r. Then the degree of X is r! times the
coefficient of xr in P (x).

Example 6.2.5. Let X be a hypersurface in Pn defined by an equation of degree d.
Exercise 6.1.4 shows that the degree of X is also d. (Thus there is no conflict between our
two competing definitions of the degree of a hypersurface.)
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Example 6.2.6. Let X be a 0-dimensional subscheme of Pn. Then Lemma 6.1.9 shows
that

deg(X) = dimKOX(X).

Again, this definition is compatible with the usage of degree in other contexts (see Section
4.2.1).

Our next task is to understand the geometric significance of the degree.

Theorem 6.2.7. Let X be a closed subscheme of Pn. Let H be a general hyperplane. Then
deg(X) = deg(X ∩H).

Proof. We return to the setting of the proof of Theorem 6.1.10. If we let S denote the
quotient of K[x0, . . . , xn] by the saturated ideal I defining X, then Equation (6.1.1) gives
an exact sequence

0→ Sr−1
·`−→ Sr → (S/(`))r → 0.

For r sufficiently large, by taking dimensions we see that

PX(r)− PX(r − 1) = PX∩H(r).

Using standard facts about difference of polynomials, we see that (dimX)! times the leading
coefficient of PX is the same as (dimX − 1)! times the leading coefficient of PX∩H .

Exercise 6.2.8. By mimicking the proof of Theorem 6.1.10 prove the following statement:
if X is a closed subscheme of Pn and H is a general degree d hypersurface then deg(X∩H) =
deg(X) · deg(H).

Repeating Theorem 6.2.7 inductively, we obtain the following. Suppose that X is
a closed subscheme of Pn of dimension k. Let Z denote the 0-dimensional subscheme
obtained by intersecting X against a general (n − k)-plane. Then the degree of X is the
same as the K-dimension of the Artinian ring OZ(Z).

When X is a smooth subvariety, the Bertini Theorem shows that the intersection of X
against a general (n− k)-plane L will be smooth, and thus also reduced. In this situation
the degree of X is simply the number of points in X ∩ L.

Remark 6.2.9. This discussion also explains why the degree matches up with the “ho-
mology class”: we can compute the integer representing a fixed homology class by taking
a cap product against a generator of the cohomology group in complementary dimension.

6.2.3 Degree and components

We next relate the degree of a closed subscheme X to the degrees of its irreducible com-
ponents.
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Definition 6.2.10. Let X be a quasiprojective scheme and let X0 be an irreducible com-
ponent of X equipped with the reduced structure. Let U = mSpec(R) be any open affine
in X that is contained in X0. Since X0 is irreducible the localization of R at its unique
minimal prime is an Artinian ring S over the field K(X0).

We define the multiplicity of X0 in X, denoted by mult(X0, X), to be the dimension of
S over K(X0). (When X is irreducible, we will use the shorthand mult(X) instead of the
more precise mult(X,X).)

The multiplicity of X0 in X measures the failure of X to be reduced at a general point
of X0. It does not observe any “extra” non-reducedness along closed subschemes properly
contained in X0.

Exercise 6.2.11. Show that in the setting of Definition 6.2.10 mult(X) is the same as the
degree of the tangent cone of X at a general point x ∈ X (when considered as a projective
subscheme of the projectivized tangent space of Pn at x). Deduce that the multiplicity of
X along X0 is independent of the choice of open affine U ⊂ X0.

Theorem 6.2.12. Let X be a closed subscheme of Pn of dimension k. Let X1, . . . , Xm

denote the irreducible components of X which have dimension k. Then

deg(X) =
m∑
i=1

mult(Xi, X) deg(Xi).

In particular, the degree only reflects the top-dimensional components of X and the
“generic” non-reducedness of the top-dimensional components. Conceptually, it is fair to
say that the degree is really an invariant for closed subvarieties, since the computation for
arbitrary closed subschemes reduces to this case.

Proof. We will use the following result from commutative algebra:

Theorem 6.2.13. Let S be a Noetherian graded ring and let M be a finitely generated
graded S-module. Then there exists a filtration

0 = M0 ⊂M1 ⊂ . . . ⊂M r−1 ⊂M r = M

such that for each i there is a homogeneous prime pi ⊂ S such that the quotient M i/M i+1 is
isomorphic to a shift S/pi(li) for some li ∈ Z. Furthermore, for each minimal homogeneous
prime p of S the number of times this prime occurs in the set of quotients is equal to the
length of Mp over Sp.

In our situation we let S be the quotient of K[x0, . . . , xn] by the saturated ideal defining
X and apply the theorem to S considered as a module over itself. We deduce that the
Hilbert polynomial PX(r) is a sum of Hilbert polynomials PZi(r− li) for irreducible closed
subschemes Zi of X (where the presence of li accounts for the shift in degrees). Note that
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(1) By Theorem 6.1.10 the only irreducible closed subschemes which can contribute to
the leading coefficient of PX will be the top-dimensional components of X.

(2) The contribution of such a component to the leading coefficient will not be affected
by the “shift” in degrees.

(3) The number of times each top-dimensional component Xi of X occurs is the same as
the length of Sp over itself.

The last step in the proof is given by the following exercise.

Exercise 6.2.14. Finish the proof of Theorem 6.2.12 by verifying that for a minimal prime
p corresponding to a top dimensional component Xi of X the length of Sp over itself is the
same as mult(Xi, X). (Hint: show that the length of Sp is the same as the length of the
local ring obtained by homogeneous localization along p.)

6.2.4 Exercises

Exercise 6.2.15. Prove that there is no non-constant morphism f : Pn → X to a quasipro-
jective scheme X with dim(X) < n. (Hint: if there were such a morphism, one could use
the fibers of f to find disjoint subvarieties of Pn.)

Exercise 6.2.16. Show that the degree of the dth Veronese embedding of Pm in P(m+d
d )−1

is dm.

Exercise 6.2.17. Compute the degree of the Segre embedding of Pn × Pm.

Exercise 6.2.18. Let X be a closed subvariety of Pn. Suppose that p is a K-point in Pn\X
so that projection away from p defines a morphism φ : X → Pn−1. Suppose furthermore
that φ is birational into its image. (One can show that if dim(X) ≤ n− 2 then projection
away from a general point in Pn will satisfy this property.) Prove that deg(X) = deg(φ(X)).
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6.3 Bezout’s Theorem

As discussed in the introduction, the degree of a subscheme represents its “homology class”
and we would like to develop an analogue of the cap product in our setting. We expect this
product to be modeled on taking intersections. Bezout’s theorem tells us when intersections
of varieties are indeed compatible with this desired “algebraic cap product” obtained by
multiplying degrees.

6.3.1 Complete intersections

The easiest version of Bezout’s theorem addresses a very special type of subscheme of Pn.

Definition 6.3.1. A closed subscheme X ⊂ Pn is said to be a complete intersection if its
saturated homogeneous ideal is generated by a regular sequence of elements in Pn.

Theorem 6.3.2. Suppose that X is a complete intersection in Pn defined by the f1, . . . , fk.
Then

deg(X) = deg(f1) · deg(f2) · . . . · deg(fk).

Proof. The proof is by induction on k. For any j ≤ k we let Xj denote the complete
intersection in Pn defined by the equations f1, . . . , fj . We also let Sj denote the quotient
of K[x0, . . . , xn] by the saturated ideal defining Xj . We have exact sequences

0→ Sj(−deg(fj+1))→ Sj → Sj+1 → 0.

In sufficiently high degrees, the dimension of the graded pieces of these rings are measured
by the Hilbert polynomials. Applying the theory of difference equations we obtain the
desired statement.

The geometric significance of complete intersections is clarified by the unmixedness
theorem.

Proposition 6.3.3. Suppose that X is a closed subscheme of Pn of codimension k. Then
X is a complete intersection if and only if its saturated homogeneous ideal is generated by
k equations.

Note that by Krull’s PIT k is the minimal possible number of generators for the ideal
of X.

Proof. We only need to prove the reverse implication. Suppose that f1, . . . , fk generate the
ideal for X. We will need a result originally proved by Macaulay:

Theorem 6.3.4. Let R be a polynomial ring. Suppose that I is an ideal whose height is
equal to the number of its generators. Then every associated prime of the 0 ideal in the
quotient R/I is a minimal prime.
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We prove by induction that the sequence consisting of the first r polynomials f1, . . . , fr
is regular. The base case is trivial. For the induction step, suppose that (f1, . . . , fr) is
regular. Krull’s PIT shows that every component of V+(f1, . . . , fr) must have codimension
r in Pn – otherwise it would be impossible to get an (n−k)-dimensional scheme by dropping
dimension k − r more times. Theorem 6.3.4 shows that fr+1 will be a zero divisor in
R/(f1, . . . , fr) if and only if it vanishes along some component of V+(f1, . . . , fr). But in
this case it is again impossible to get a (n− k)-dimensional scheme by intersecting all the
hypersurfaces. We conclude that the sequence remains regular when adding in fr+1.

By combining this result with Theorem 6.3.2, we obtain a version of Bezout’s Theorem
for complete intersections.

Corollary 6.3.5. Suppose that X,Y ⊂ Pn are complete intersections of dimensions a and
b respectively. Suppose that every component of X ∩ Y has dimension a+ b− n. Then

deg(X) · deg(Y ) = deg(X ∩ Y )

Theorem 6.3.2 can also be used to show that many closed subvarieties of Pn are not
complete intersections. For example:

Proposition 6.3.6. Let C ⊂ P3 be a twisted cubic. Then there is no homogeneous ideal
I ⊂ K[w, x, y, z] with two generators such that V+(I) = C.

Proof. Suppose there were an ideal I with two generators f, g such that C = V+(I). In
particular C is a complete intersection, so that

deg(f) · deg(g) = deg(C) = 3.

In particular, either f or g must be a linear equation. But C is not contained in any
hyperplane in P3, a contradiction.

6.3.2 Bezout’s Theorem

Unfortunately the case of complete intersections is rather special. We really would like a
version of Bezout’s Theorem that holds under less restrictive hypotheses. At the very least
we will need to require that X ∩ Y has the expected dimension.

Definition 6.3.7. Let X and Y be closed subvarieties of Pn which have dimensions a and
b respectively. We say that X and Y meet dimensionally transversally if a + b ≥ n and
every component of X ∩ Y has dimension a+ b− n.

Unfortunately this condition is not restrictive enough; we will need to impose extra
conditions for Bezout’s Theorem to hold. We will not prove the following general statement:
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Theorem 6.3.8. Let X and Y be closed subschemes of Pn. Suppose that X and Y meet
dimensionally transversally. Suppose also that for every component Zi ⊂ X ∩ Y the stalks
OX,z and OY,z are Cohen-Macaulay rings for general points z ∈ Zi. Then

deg(X) · deg(Y ) = deg(X ∩ Y ).

Recall that a local ring is said to be Cohen-Macaulay if the maximal length of a regular
sequence is the same as its dimension. Thus the Cohen-Macaulay condition should be
viewed as a “smoothness hypothesis” that is somewhat weaker than regularity. Examples
of Cohen-Macaulay schemes (i.e. schemes such that every local ring is Cohen-Macaulay)
include smooth varieties, complete intersections in Pn, and all reduced irreducible curves.

Theorem 6.3.8 fails if we drop the Cohen-Macaulay hypothesis.

Example 6.3.9. The easiest example of a non-Cohen-Macaulay scheme is the union X of
two planes in P4 which meet transversally at a single point p. For example, L could be
the vanishing locus of the ideal (wy,wz, xy, xz) in K[v, w, x, y, z]. The stalk of OX at the
point p will fail to be Cohen-Macaulay.

Suppose we choose a plane L such that X ∩L has dimension 0. If L is a general plane
then X∩L has degree 2 as expected. However, if L meets X at p, then an easy computation
shows that X ∩ L has degree 3.

Remark 6.3.10. It is natural to try to fix Bezout’s Theorem by adding in a “correction
term” to the degrees of the components of X ∩ Y . This correction is known Serre’s for-
mula. Suppose that X and Y are locally defined in an affine chart An by ideals I, J in
the coordinate ring . Assume that X and Y meet dimensionally transversally. For any
component Z of X ∩ Y we define the intersection multiplicity

IZ(X,Y ) =

n∑
i=0

lengthOX∩Y,ZTorAi (A/Ĩ, A/J̃)

where A is the local ring OAn,Z and Ĩ , J̃ are the ideals defining X,Y in this local ring.
Note that the 0th Tor term is exactly the multiplicity of Z in X ∩ Y (in the sense of
Definition 6.2.10); when X and Y are Cohen-Macaulay the higher Tor terms will vanish.
Then Bezout’s Theorem states that if X,Y meet dimensionally transversally we have

deg(X) · deg(Y ) =
∑

IZ(X,Y ) deg(Z)

as Z varies over all components of X ∩ Y .

It is sometimes useful to know when the intersection of two varieties has a component
of multiplicity one. The following proposition describes a situation known as “transversal
intersection”
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Proposition 6.3.11. Let X and Y be closed subvarieties of Pn. Suppose that X and Y
meet dimensionally transversally. Let Z be a component of X ∩ Y such that X and Y
are Cohen-Macaulay at general points of Z. Then multZ(X ∩ Y ) = 1 if and only if for a
general point z ∈ Z we have that X and Y are smooth at z and their tangent spaces TX,z,
TY,z meet transversally.

Remark 6.3.12. We can drop the Cohen-Macaulay assumption in Proposition 6.3.11 if
we use the “corrected” intersection multiplicity in place of multZ(X ∩ Y ).

6.3.3 Exercises

Exercise 6.3.13. Let X be the dth Veronese embedding of Pn. Recall that under the
identification X ∼= Pn a homogeneous linear function on the ambient projective space
restricts to define a homogeneous degree d equation on X. Apply Bezout’s Theorem on Pn
to compute the degree of X.

Exercise 6.3.14. Let Σn,m denote the Segre embedding of Pn × Pm.

(1) Prove that if we take a union L1 ∪ L2 where L1 is the preimage of a hyperplane
under the first projection and L2 is the preimage of a hyperplane under the second
embedding then there is a hyperplane H ⊂ Pnm+n+m such that H ∩Σn,m = L1 ∪L2.

(2) Use this construction to show that deg(Σn,m) =
(
n+m
n

)
.

(3) Use this construction to show that the vanishing locus of a bihomogeneous polynomial
of bidegree (a, b) in Σn,m will have degree a ·

(
n+m−1

m

)
+ b ·

(
n+m−1

n

)
.

Exercise 6.3.15. Show that the Segre variety corresponding to P1× P2 is not a complete
intersection.
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6.4 Low degree subvarieties of projective space

In this section we turn to the problem of classifying closed subschemes of Pn of low degree.
According to Theorem 6.2.12, the degree of X is determined by the degrees of its top-
dimensional components and their multiplicities. In particular, the degree cannot detect
non-reduced structure along proper closed subsets. Thus in our classification scheme we
should focus on the case when X is a closed subvariety.

6.4.1 Curves

Our classification of low degree curves starts with the following lemma:

Lemma 6.4.1. Let C be a closed subvariety of Pn of dimension 1. Suppose that deg(C) <
n. Then C is contained in a hyperplane.

Proof. Note that any n points of Pn are contained in some hyperplane. In particular, if we
choose n distinct points on C we can find a hyperplane H containing these points.

Suppose that C 6⊂ H. Since C is reduced, Krull’s PIT guarantees that the equation `
defining H is not a zero divisor in the homogeneous coordinate ring defining C. Repeating
the argument of Theorem 6.2.7 we see that deg(C) = deg(C ∩H). But the left hand side
is < n and by construction the right hand side is n, yielding a contradiction. We conclude
that C ⊂ H.

Exercise 6.4.2. More generally, show that if C is closed subvariety of Pn of dimension 1
and degree n− k then X is contained in a linear subspace of codimension k.

By Lemma 6.4.1 the lowest possible degree of an irreducible curve C not contained in a
hyperplane is n. We have already seen one example of this phenomenon: rational normal
curves. Conversely, it turns out that rational normal curves provide the only examples.

Proposition 6.4.3. Let C ⊂ Pn be a reduced irreducible curve of degree n. Suppose that
C is not contained in any hyperplane. Then C is a rational normal curve.

Proof. We first show that C is smooth. Suppose C has a singular point p. Choose a
hyperplane H that contains p and n− 1 other general points of C. Then H ∩C has length
n+ 1, contradicting Bezout’s Theorem. We conclude that C is smooth.

We next show that C is isomorphic to P1. Fix n − 1 points {pi}n−1
i=1 on the curve C

and consider the P1 parametrizing hyperplanes H through the pi. Bezout’s Theorem shows
that for every H the intersection H ∩ C is a dimension 0 scheme with length n. Thus, so
long as H is not tangent to C at one of the pi, the intersection of H with C will define
one additional reduced point. Let L denote the (n − 2)-plane spanned by the pi. Then
projection away from L defines an isomorphism from C\{pi} to an open subset of P1. In
fact this rational map extends to an isomorphism of C with P1.



216 CHAPTER 6. SUBVARIETIES OF PROJECTIVE SPACE

As we intersect C with any hyperplane H, the φ-image of H ∩ C will be a length n
subscheme of P1. This defines a K-linear map from the space of linear functions on Pn to
the space of degree n functions on P1. Since this map is injective, it is an isomorphism,
showing that C is a rational normal curve.

Example 6.4.4. Let’s classify all the reduced irreducible curves C in Pn which have low
degree.

Degree 1: By Exercise 6.4.2 we see that C must be a line.

Degree 2: Let C be a reduced irreducible curve of degree 2. Then Exercise 6.4.2 and
Proposition 6.4.3 show that C is a conic in a 2-plane in Pn.

Degree 3: Let C ⊂ Pn be a reduced irreducible curve of degree 3. Then Exercise 6.4.2
and Proposition 6.4.3 show that either:
• C is a twisted cubic in some 3-plane in Pn, or
• C is a degree three curve in a 2-plane in Pn (and in particular, is the intersection of

a plane with a cubic hypersurface).

Degree 4: Let C ⊂ Pn be a reduced irreducible curve of degree 4. Then Exercise 6.4.2
and Proposition 6.4.3 show that one of the following holds.
• C is a rational normal curve cubic in some 4-plane in Pn,
• C is a degree four curve in a 3-plane in Pn. Although we do not have the tools to show

it, it turns out that there are two ways to obtain such curves: one can take an intersection
of two quadric hypersurfaces in P3, or one can choose a smooth quadric Q ∼= P1 × P1 and
look at the vanishing locus of a bihomogeneous polynomial of bidegree (1, 3) in Q.
• C is a degree four curve in a 2-plane in Pn (and thus the intersection of a plane with

a degree 4 hypersurface).

6.4.2 Higher dimensions

Exercise 6.4.5. Show that if X ⊂ Pn is a closed subvariety of dimension k and degree
< n− k + 1 then X is contained in a hyperplane.

Exercise 6.4.6. Suppose that X ⊂ Pn is a closed subvariety of degree 1. Show that X
must be a plane.

The following statement generalizes Proposition 6.4.3. We will present it without proof.

Theorem 6.4.7. Let X ⊂ Pn be a closed subvariety of dimension k. If deg(X) = n−k+1
then X is either:

(1) a quadric hypersurface,

(2) a cone over the Veronese surface in P5,

(3) a rational normal scroll.
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6.4.3 Applications

We now give a couple applications of Bezout’s theorem. First, we prove a result promised
in Exercise 2.7.11.

Theorem 6.4.8. Let K be an algebraically closed field. Then every automorphism of Pn
is given by multiplication by an element of PGLn+1(K).

Using a similar approach one can show that the statement is valid for any field.

Proof. Suppose that φ : Pn → Pn is an automorphism. Let H be any hyperplane in Pn and
let ` be a line which meets H transversally at one point. Then φ(`) and φ(H) also meet
transversally at one point. By Bezout’s Theorem we must have deg(φ(`)) = deg(φ(H)) = 1.
By Exercise 6.4.6 φ(H) is still a hyperplane.

Restricting φ to the complements of H and φ(H), we obtain a morphism φ′ : An → An.
By applying the same argument to other hyperplanes and intersecting with this open affine,
we see that any linear function on the target must pullback to a power of a linear function
on the domain. But the only way that such a map φ′ can be an isomorphism is if the
pullback of a linear function is a linear function. By extending this map to all of Pn using
homogeneous coordinates we obtain the desired statement.

Bezout’s theorem also allows us to prove a classical statement about singular points of
plane curves.

Corollary 6.4.9. Let C be a reduced plane curve of degree d. Then C has at most 1
2d(d−1)

singular points.

This bound is achieved by a union of d lines. If C is irreducible, one can prove a
stronger bound of 1

2(d− 1)(d− 2).

Proof. Let f be the equation defining C. Since C is reduced f has a derivative which
does not vanish identically along any component of C. Without loss of generality we may
assume this derivative is ∂f/∂x. This is a homogeneous function of degree (d − 1), and
thus its vanishing locus is a curve D ⊂ P2. By construction C and D do not share any
components, so Bezout’s theorem shows that deg(C ∩D) = d(d− 1). Note that C and D
will intersect at every singular point of C and that the intersection multiplicity at such a
point is at least 2. Thus twice the number of singular points is at most d(d − 1), proving
the statement.
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6.5 Hilbert schemes

Thus far we have seen two examples of moduli spaces of subvarieties of Pn:

(1) The moduli space P(n+dn )−1 of degree d hyperplanes.

(2) The moduli space G(k, n) of k-planes.

These are both special examples of a more general construction known as a Hilbert scheme.
The Hilbert scheme is the prototypical example of a moduli space in algebraic geometry
and is instrumental in the construction of many other types of moduli space.

Suppose we would like to construct a parameter space for subvarieties of Pn. If we hope
to obtain a finite dimensional moduli space, we should start by fixing some topological
invariants of our subvarieties: the dimension and the degree. It is natural to ask whether
there are any other invariants which are always preserved by deformations. It turns out
that for “good” (i.e. flat) families of closed subschemes the precise list of invariants is given
by the coefficients of the Hilbert polynomial.

The Hilbert scheme MP,n parametrizes all closed subschemes of Pn with Hilbert poly-
nomial P . This moduli space has two key properties. First, it is projective: if we take a
one-dimensional family of closed subschemes with Hilbert polynomial P , we can define a
“limit” closed subscheme which still has Hilbert polynomial P . This compactness property
shows that there are no “missing” points in our family.

The second is that Hilbert schemes are “fine moduli spaces”. Consider the functor
which assigns to a scheme Y the set of closed subschemes C ⊂ Y ×Pn such that every fiber
of C → Y over a closed point has Hilbert polynomial P . This functor is representable: there
is a bijection between such constructions over Y and morphisms Y →MP,n. In particular,
this implies the existence of a universal family U over MP,n such that any family over Y is
constructed by choosing a morphism Y →MP,n and taking the construction U ×MP,n

Y .

6.5.1 Construction of the Hilbert scheme

Theorem 6.5.1. Fix a polynomial P (r). There is a projective scheme MP,n whose points
parametrize the closed subschemes of Pn which have Hilbert polynomial equal to P (r).

Sketch of proof: The first step in the proof is to show the following theorem:

Theorem 6.5.2. There is some fixed positive integer m (depending only on P (r) and
n) such that the following holds. Suppose that X is any closed subscheme whose Hilbert
polynomial is P (r) and let I be the saturated ideal defining it. Then:

(1) The Hilbert function χ(r) is equal to the Hilbert polynomial P (r) for every r ≥ m.

(2) I is generated in degree ≤ m. In particular, I is the saturation of the ideal generated
by Im.
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The first statement shows that Im ⊂ K[x0, . . . , xn]m is a subspace of codimension
P (m). Let G be the Grassmannian parametrizing subspaces of K[x0, . . . , xn]m with this
codimension. Then the second condition shows that the map which associates to any closed
subscheme X the corresponding subspace in G is injective.

In fact, the image of this map is a closed subscheme of G. To see that it is an algebraic
subset, we need to write down conditions on G which guarantee that the ideal generated
by a given codimension P (m) subspace defines a closed subscheme with the correct Hilbert
polynomial. We need to ensure that each χ(r) for r > m has the correct value. Since the
map K[x0, . . . , xn]m−r × Im → Ir is surjective, for each r we obtain a system of equations
expressing the fact that this linear map must have rank no more than dim(Ir). Combining
all these equations we obtain a closed subset of G.

6.5.2 Examples

Although we do not yet have the tools to give a rigorous construction of the Hilbert
scheme, we can still study several special examples. Suppose we fix a polynomial Pr.
The first step toward understanding the Hilbert scheme MP,n is to identify which types of
closed subschemes of Pn have Hilbert polynomial P . We can then hope to leverage this
information to obtain a better understanding of Pn.

Example 6.5.3. Suppose that P (r) is a non-negative constant a. The closed subschemes
of Pn with Hilbert polynomial a will be 0-dimensional subschemes of degree a. For example,
M1,n is just Pn itself.

A point in M2,n will either parametrize two distinct points or a single point with length
2 (i.e. a point “with a tangent direction”). M2,n can be constructed by blowing up the
diagonal in Pn × Pn (which has the effect of separating tangent directions for the points
contained in the diagonal) and then quotienting by the involution which swaps the two
factors.

Surprisingly, Ma,n can be very complicated even when n and a are small. While there
will always be at least one component which generically parametrizes a distinct points in
Pn, there can also be other components (and the singularities and non-reduced structure
can vary wildly). For example, the Hilbert scheme of 8 points in P4 is reducible – there is
a component which only parametrizes non-reduced schemes.

Example 6.5.4. Suppose that P (r) = r + 1. Then P (r) is the Hilbert polynomial of a
line. We claim that any closed subscheme X ⊂ Pn with Hilbert polynomial P (r) must be
a line.

To see this, note that X has dimension 1 and degree 1. Suppose we choose a one-
dimensional component X0 ⊂ X equipped with its reduced structure. **** shows that X0

must be a line. Then we have an exact sequence

0→ IX → IX0 → K → 0
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where K is the cokernel of the inclusion map.

We know that for X the Hilbert function eventually agrees with the Hilbert polynomial
r + 1. But X0 already has Hilbert polynomial r + 1. This implies that the cokernel K
satisfies Km = 0 for m sufficiently large. Since both ideals are saturated, this means that
IX = IX0 .

The Hilbert scheme Mr+1,n is of course the Grassmannian G(1, n).

Example 6.5.5. Suppose that P (r) = r + 2. Again a closed subscheme X with this
Hilbert polynomial will have dimension 1 and degree 1. However, in contrast to Example
6.5.4 it is now possible for X to be reducible or non-reduced. Indeed, by running through
the argument again we see that either X will be either:

(1) the union of a line and a distinct point, or

(2) a line with a single non-reduced point such that I/I2 has K-dimension 1.

A general point of Mr+2,n will parametrize the first type of closed subscheme, and there will
be a proper sublocus of Mr+2,n parametrizing the second. Note that Mr+2,n is birational
to Pn × G(1, n) but is not isomorphic to it since if we fix a point p on a line ` there are
many different non-reduced structures we can impose at p.

Example 6.5.6. Suppose that P (r) = 2r + 1. There are three types of curves in Pn of
degree 2: conics, pairs of lines, and double lines. Accordingly, there are three different
types of closed subschemes of Pn with Hilbert polynomial P .

(1) The Hilbert polynomial of a conic is 2r + 1. Thus if X contains a conic as a closed
subscheme then X must itself be a conic.

(2) A pair of disjoint lines in Pn will have Hilbert polynomial 2r+ 2 or 2r+ 1 depending
on whether or not the lines intersect. Thus it is impossible for X to contain a pair
of skew lines. If X contains a pair of intersecting lines, then X is equal to these two
lines.

(3) Suppose that X is supported on a single line. Since X has degree 2, we see that X
must be a non-reduced scheme with generic multiplicity 2. (Note that while affine
double lines are all isomorphic, projective double lines need not be.)

Let I` denote the ideal of the line supporting X. Since X defines a double line, we
see I` ) IX . Since IX contains at least n−1 functions which vanish everywhere along
`, the smallest the degrees of such functions can be is (n− 2) linear functions and 1
quadratic function. However, such an ideal already defines a subscheme with Hilbert
polynomial 2r+1 (and any further reduced structure would only increase the Hilbert
polynomial). We conclude that X is a planar double line, that is, a double line in a
plane P2.
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Note that any subscheme of type (1), (2), or (3) is (scheme-theoretically) contained
in a unique 2-plane. Thus, we get a morphism ρ : M2r+1,n → G(2, n). Each fiber of ρ
parametrizes the set of degree 2 curves in a fixed P2. Thus the fibers of ρ are isomorphic
to P5 and M2r+1,n has dimension 5 + 3(n− 3).

6.5.3 Exercises

Exercise 6.5.7. Show that if P (r) =
(
k+r
k

)
is the Hilbert polynomial of a k-dimensional

plane in Pn then the Hilbert scheme is the Grassmannian G(k, n).

Exercise 6.5.8. Show that the Hilbert scheme parametrizing closed subschemes of Pn
with Hilbert polynomial

P (r) =

(
n+ r

n

)
−
(
n+ r − d

n

)
is the moduli space of hypersurfaces P(n+dd )−1 discussed in Example 4.5.1.
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Part II

Sheaves and schemes
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Chapter 7

Sheaves

Suppose that X is a topological manifold. For any open subset U ⊂ X, let C(U) denote
the space of continuous functions on U . There are two important ways in which these
functions interact as we vary our open set:

(1) Restriction: given an inclusion of open sets V ⊂ U , any function on U also induces
a function on V .

(2) Gluing: given an open cover {Vi} of U and functions fi on Vi which agree on the
common overlaps, we obtain a unique function f on U by gluing the fi.

The definition of a sheaf formalizes these two important properties to give us a general
language for discussing “abstract functions” on a topological space. A sheaf F assigns to
every open subset U ⊂ X an abelian group F(U). The key axiom that a sheaf must satisfy
is gluing: given “local objects” that agree on overlaps, there is a unique way to glue them
to get a “global object”. Thus sheaves are often used to compare local vs. global geometry.

Example 7.0.1. Let U be an open set of C and let g : U → C be a holomorphic function.
Can we write g = eh for some holomorphic function h? The key observation is that this is
problem can always be solved locally: for any point x ∈ U we can take a logarithm of g
on a sufficiently small neighborhood of x. Thus the answer will depend only on the global
geometry of U .

It turns out that our ability to find global logarithms can naturally be expressed in
the language of sheaves. The exponential map defines a function Ohol → O×hol taking the
sheaf of holomorphic functions to the sheaf of invertible holomorphic functions. This map
is surjective locally, but not globally – this is a common feature for morphisms of sheaves.
The failure of the surjectivity of this map can be controlled using sheaf cohomology theory;
as a result, one can see that the obstruction to the surjectivity of the exponential map comes
from the singular homology H1(U,Z).

225
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In addition to sheaves of continuous (or differentiable or etc.) functions, there are
several other common geometric constructions of sheaves. The most important example
comes from vector bundles.

Example 7.0.2. Let X be a topological space. Recall that a rank r vector bundle on X is a
continuous surjection π : V → X and for each point x ∈ X an identification of the structure
of the vector space Rk on the fiber π−1x such that the following compatibility is satisfied:
for every point x ∈ X there is an open neighborhood U of x and a homeomorphism

ψU : U × Rr → π−1U

such that (π ◦ ψU )(x, v) = x and if we fix y ∈ U the map v 7→ ψU (y, v) is a linear
isomorphism between Rk and π−1y.

Given any open set U ⊂ X, the space of sections of U is the set of continuous maps
σ : U → V such that π ◦ σ = idU . Since sections can be glued, we can define a sheaf of
sections which associates to any open set U the set of sections of π over U .

The importance of this example is evident in the language we use for sheaves, which
includes terms like “sections” and “fibers” (intended to generalize the corresponding notions
in Example 7.0.2). We will eventually use this intuition to define vector bundles in the
language of algebraic geometry.

7.0.1 Preliminaries

Let C and D be categories. An adjunction between C and D is a pair of functors F : D→ C
and G : C→ D such that for all objects X in C and all objects Y in D we have a bijection

HomC(FY,X) ∼= HomD(Y,GX).

We furthermore require that these bijections are natural in both entries: there is a natural
isomorphism between the functors HomD(F−, X) and HomD(−, GX) from D to Set, and
similarly for the two functors HomC(FY,−) and HomC(Y,G−) from C to Set.

Definition 7.0.3. In the situation above F is called a left adjoint to G and G is called a
right adjoint to F .

The most important property of adjoint functors is limit preservation.

Theorem 7.0.4. Right adjoint functors commute with limits. Left adjoint functors com-
mute with colimits.

For example, suppose that products exist in C. Then for any two objects X1, X2 ∈ C
the object G(X1×X2) satisfies the right universal property to be identified with the product
G(X1)×G(X2).

Suppose next that C and D are abelian categories. Then the kernel construction is an
example of a categorical limit and the cokernel construction is an example of a categorical
colimit. Thus:
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Corollary 7.0.5. Let F,G be an adjoint pair defining an adjunction of abelian categories.
Then G is left exact and F is right exact.
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7.1 Presheaves and sheaves

We start by defining the notion of a presheaf.

Definition 7.1.1. Let X be a topological space. A presheaf F of abelian groups on X
consists of the following data:

(1) for every open subset U , an abelian group F(U) whose elements are known as “sec-
tions of F on U”, and

(2) for every inclusion of non-empty open subsets V ⊂ U , a homomorphism ρU,V :
F(U)→ F(V ) known as a “restriction map”; we sometimes denote ρU,V (s) using the
notation s|V

satisfying the following conditions:

(1) (Normalization) F(∅) = 0.

(2) (Compatibility) The assignment U 7→ F(U) and (V ⊂ U) 7→ ρU,V defines a con-
travariant functor from the category of open subsets of X (with morphisms = inclu-
sions) to the category of abelian groups. In other words, ρU,U = id and if W ⊂ V ⊂ U
then ρU,V ◦ ρV,W = ρU,W .

More generally, a presheaf with values in a category C is defined via a contravariant
functor from the category of open subsets of X to C. (In particular, the restriction maps
must be morphisms in C.) All the presheaves we work with will take values in an enrichment
of the category of abelian groups Ab, so we won’t lose anything by working exclusively in
this setting for now.

Presheaves do not have very much structure. As discussed in the introduction to the
chapter, we will normally be interested in the situation when our sections admit some kind
of gluing property. The notion of a sheaf was introduced in Section 1.8:

Definition 7.1.2. Suppose that X is a topological space and that F is a presheaf on X.
If F satisfies the following additional two axioms we say that F is a sheaf:

(3) (Identity) Suppose that {Vi} is an open cover of U . Suppose that f1, f2 ∈ F(U)
satisfy ρU,Vi(f1) = ρU,Vi(f2) for every i. Then f1 = f2.

(4) (Gluing) Suppose that {Vi} is an open cover of U . Suppose that for every i we have
an element fi ∈ F(Vi). Furthermore suppose that for every pair of indices i, j we
have ρVi,Vi∩Vj (fi) = ρVj ,Vi∩Vj (fj). Then there exists an element f ∈ F(U) satisfying
ρU,Vi(f) = fi for every i.

Remark 7.1.3. A presheaf which just satisfies the identity axiom is called a “separated
presheaf”. We won’t use this notation.
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it is quite common to capture the Identity and Gluing axioms using the following exact
sequence: suppose we fix an open subset U of X and an open cover {Vi}i∈I of U . Then
the axioms show that

0→ F(U)
φ−→
∏
i∈I
F(Vi)

ψ−→
∏

(i,j)∈I2
F(Vi ∩ Vj)

is an exact sequence. Here φ is the product of the restriction maps ρU,Vi : F(U) → F(Vi)
and ψ sends a tuple (fi) to (fi|Ui∩Uj − fj |Ui∩Uj ). For the cover {Vi} the identity axiom
corresponds to the injectivity of φ and the gluing axiom corresponds to exactness at the
middle place.

Example 7.1.4. Let X be a topological space. Fix an abelian group A. The constant
presheaf F with value A associates to every open set U the abelian group A (and to every
inclusion of open sets the identity map). This is not in general a sheaf. One issue is that it
fails the gluing axiom: for example, if U, V are disjoint open subsets then the gluing axiom
should imply that F(U ∪ V ) = F(U)×F(V ) but this fails in our example.

If we want to work with sheaves, we should instead consider the locally constant sheaf
with value A: to every open set U we assign the set of locally constant functions U → A.
We denote the locally constant sheaf with value A on X by AX .

7.1.1 Stalk

Just as for sheaves, the notion of a stalk is absolutely essential for working with presheaves.

Definition 7.1.5. Let X be a topological space and let F be a presheaf on X. For any
point x ∈ X the stalk Fx is defined to be the direct limit

Fx = lim−→
U3x
F(U).

In other words, consider the set of pairs (U, f) where U is an open neighborhood of x and
f ∈ F(U). Say that two pairs (U, f) and (V, g) are equivalent if there is some open set
W ⊂ U ∩ V that contains x such that the restrictions of f and g to F(W ) coincide. Then
Fx is the set of equivalence classes of pairs (U, f). We call these equivalence classes germs
of sections of F .

Since the direct limit of abelian groups receives a map from each group, for any open
neighborhood U of x there is a canonical restriction map ρU,x : F(U)→ Fx. When F is a
sheaf of functions, this restriction map assigns to any function its germ at x.

Exercise 7.1.6. Let X be a topological space equipped with a sheaf F . Prove that for
any open set U the product of the restriction maps

ρ : F(U)→
∏
x∈U
Fx

is injective. (However, this need not be true when F is a presheaf.)
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7.1.2 Examples

We have already extensively studied one class of sheaves: the structure sheaves on quasipro-
jective K-schemes. We next introduce a couple other sheaves that play an important role
in algebraic geometry.

Example 7.1.7. Let X be a topological space and let x ∈ X be a point. Fix an abelian
group A. The skyscraper sheaf at x with value A, denoted by A(x), is defined via the
assignment:

F(U) =

{
A if x ∈ U
0 if x 6∈ U

where the restriction maps are the identity map if both open sets contain x and 0 otherwise.
If x is a closed point, then the stalk of A(x) at x is equal to A and at any other point is
equal to 0. (What happens if x is not a closed subset of X?)

The following example describes one of the most important examples of sheaves in
algebraic geometry.

Example 7.1.8. Consider projective space Pn. Define the field F to be the localization of
the homogeneous coordinate ring K[x0, . . . , xn] along all non-zero homogeneous elements
and let Fm ⊂ F denote the set of degree m elements in F. For any integer m we define the
sheaf OPn(m) via the rule

OPn(m)(U) :=

{
f

g
∈ Fm

∣∣∣∣V+(g) ∩ U = ∅
}

where the restriction maps are the inclusions. Note that OPn(0) is just the structure sheaf
OPn defined by degree 0 elements.

Let’s analyze the sheaf OPn(m) in more detail. First, note that the global sections are
just the degree m homogeneous polynomials in the homogeneous coordinate ring:

OPn(m)(Pn) = K[x0, . . . , xn]m.

In particular the global sections of the sheaves OPn(m) allow us to recover the homogeneous
coordinate ring in an “intrinsic” way from projective space. Next consider the affine charts
Di = Pn\V+(xi). Recall that OPn(Di) is isomorphic to K[x0xi , . . . ,

xn
xi

]. Then OPn(m)(Di)
is the free OPn(Di)-module generated by xmi .

Exercise 7.1.9. Show that for every point x ∈ Pn the stalk OPn(m)x is a free rank 1
module over the local ring OPn,x.
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7.1.3 Exercises

Exercise 7.1.10. Let X be a topological space with a sheaf F . Suppose that U ⊂ X is
an open subset. Show that we can define a sheaf F|U on U by restricting the functor F to
the open sets of X contained in U . This sheaf is called the restriction of F to U .

Exercise 7.1.11. Let X be a topological space and let F be a sheaf on X. Suppose that
U is an open subset and f ∈ F(U). The support of f is defined to be

Supp(f) = {x ∈ U | ρU,x(f) 6= 0}.

Prove that Supp(f) is a closed subset of U . (Hint: what does it mean for an equivalence
class to be the zero element in Fx?)

Exercise 7.1.12. Let X be a topological space and let F be a sheaf on X. The support
of the sheaf F is defined to be the set of points x such that Fx is not zero. Show that the
support of F need not be a closed subset of X. (Hint: try constructing a suitable sheaf on
the two-pointed space X = {p, q} where the closed subsets are ∅, {p}, X.)

Exercise 7.1.13. Let F and G be presheaves on X. The direct sum of F and G, denoted
by F ⊕G, is the presheaf which associates to every open set U the direct sum F(U)⊕G(U)
and whose restriction maps act componentwise as ρF and ρG .

Show that if F and G are sheaves then F ⊕ G is also a sheaf.
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7.2 Morphisms and sheafification

In this section we will show that there is a canonical way of transforming a presheaf into
a sheaf.

7.2.1 Morphisms of presheaves

The first step is to define the category of presheaves on X.

Definition 7.2.1. Suppose that X is a topological space and that F ,G are presheaves on
X. A morphism of presheaves φ : F → G assigns to each open set U a homomorphism
φ(U) : F(U) → G(U) in such a way that φ is compatible with restriction: for any open
V ⊂ U the diagram

F(U)
φ(U) //

ρF,U,V

��

G(U)

ρG,U,V

��
F(V )

φ(V ) // G(V ).

is a commuting diagram. A morphism of sheaves is defined in the same way.

The category of presheaves on X will be denoted by PreSh(X) and the category of
sheaves on X will be denoted by Sh(X).

Note that a morphism of presheaves φ : F → G induces morphisms of stalks in the
following way. Fix a point x ∈ X. For every open neighborhood U of x consider the
composition

F(U)
φ(U)−−−→ G(U)

ρU,x−−→ Gx.

This collection of homomorphisms determines a homomorphism φx : Fx → Gx using the
universal property of the direct limit.

Example 7.2.2. Consider the sheaf OP1(m) on P1. Fix a homogeneous polynomial f ∈
K[x, y] of degree d. For every open set U ⊂ P1 define the homomorphism

φ(U) : OP1(m)(U)→ OP1(m+ d)(U)

g

h
7→ fg

h

Since these φ(U) obviously commute with restriction, for any homogeneous degree d poly-

nomial f we obtain a morphism of sheaves OP1(m)
·f−→ OP1(m+ d).
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7.2.2 Sheafification

Suppose that we start with a presheaf F and would like to modify it to obtain a sheaf.
When F fails the identity axiom, we will need to “decrease” the number of sections by
identifying any sections whose restrictions agree. When F fails the gluing axiom, we will
need to “increase” the number of sections to ensure that local sections can be glued.

We will describe a clean way to accomplish both goals at once.

Construction 7.2.3. Let X be a topological space and let F be a presheaf on X. The
sheafification F+ of F is defined as follows. For any open set U , we define F+(U) as a
subset of

∏
x∈U Fx via

F+(U) =

(fx ∈ Fx)x∈U

∣∣∣∣∣∣
for every x ∈ U,∃ an open neighborhood

V 3 x and a section g ∈ F(V ) s.t.
g|x = fx for every x ∈ V

 .

For V ⊂ U the restriction map is induced by the projection maps
∏
x∈U Fx →

∏
x∈V Fx.

It is clear that F+ is a presheaf. (Since the empty product of abelian groups is 0, the
normalization axiom holds.) Note that every presheaf F admits a canonical presheaf map
sh : F → F+ by sending a section s ∈ F(U) to the element (s|x ∈ Fx)x∈U of F+(U).

Proposition 7.2.4. Let X be a topological space and let F be a presheaf on X. The
sheafification F+ is a sheaf.

Proof. To verify the identity axiom, suppose we have an open set U and an open cover {Vi}
of U . If two sections f, f ′ ∈ F+(U) have the same restriction to Vi then their components
corresponding to points x ∈ Vi coincide. Thus if f, f ′ have the same restriction to each Vi
in our open cover then they must be the same section.

To verify the gluing axiom, suppose we have an open set U and an open cover {Vi}
of U . Suppose we have sections fi ∈ F+(Vi) whose restrictions to overlaps agree. This
guarantees that the component of fi associated to a point x ∈ X depends only on x and
not on the index i. By selecting these choices of germs at the various points x ∈ X we
obtain an element f ∈

∏
x∈U Fx. It is clear that f satisfies the necessary condition to lie

in OX(U).

A sheafification F+ comes equipped with a presheaf morphism sh : F → F+ which
sends a section s ∈ F(U) to its stalks at points in U . We will call sh the sheafification
map and consider it as part of the data of the sheafification.

Exercise 7.2.5. Show that sheafification defines a functor from the category of presheaves
to the category of sheaves.

While the sheafification F+ can look quite different from F , there is one important way
in which the two presheaves are similar.
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Exercise 7.2.6. Let X be a topological space and let F be a presheaf on X. Show that

the sheafification map sh : F → F+ induces an isomorphism of stalks sh : Fx
∼=−→ F+

x for
every x ∈ X.

In fact, this property – the existence of a presheaf map from F inducing an isomorphism
on stalks – characterizes the sheafification up to isomorphism by Proposition 7.2.8 and
Proposition 7.3.14.

Example 7.2.7. Let X be a topological space. The sheafification of the constant presheaf
F with value A is the locally constant sheaf with value A.

7.2.3 Universal property

Proposition 7.2.8. Let X be a topological space and let F be a presheaf on X. For
any sheaf G on X, every presheaf morphism φ : F → G will factor uniquely through
sh : F → F+.

In particular this implies that the sheafification of a sheaf is isomorphic to itself, re-
solving a potential conflict in our notation.

Proof. The morphism φ induces stalk homomorphism φx : Fx → Gx. For any open set U ,
consider the induced map

∏
x∈U Fx →

∏
x∈U Gx. Under this map, an element in F+(U)

will be sent to an element of(gx ∈ Gx)x∈U

∣∣∣∣∣∣
for every x ∈ U,∃ an open neighborhood

V 3 x and a section h ∈ G(V ) s.t.
h|x = gx for every x ∈ V

 .

By combining the gluing axiom with Exercise 7.1.6, we see that this subset of
∏
x∈U Gx is

isomorphic to G(U). In this way we obtain a morphism φ+ : F+ → G.

To prove that the factoring φ+ is unique, note that by Exercise 7.2.6 the image of the
composition

F+(U)→ G(U)→
∏
x∈U
Gx

is determined by the maps φx on stalks. Since the second map is injective by Exercise
7.1.6, we deduce that the factoring φ+ is unique.

Using the universal property, we see that sheafification defines a functor from PreSh(X)
to Sh(X). In fact, Proposition 7.2.8 says that the sheafification functor is a left adjoint to
the forgetful functor Sh(X)→ PreSh(X).
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7.2.4 Exercises

Exercise 7.2.9. Suppose that φ : F → G is a morphism of presheaves such that open set
U the map φ(U) : F(U)→ G(U) is injective. Show that the induced map of sheafifications
F+ → G+ has the same property.

Exercise 7.2.10. For each of the following examples of a topological space X equipped
with a presheaf F , describe the sheafification F+.

(1) X = Rn, F assigns to each open set U the set of bounded functions on U .

(2) X = S1, F assigns to each open set U the set of continuous functions f on U which
satisfy f(x) = f(−x) for every pair of antipodal points x,−x in U .

(Note that we can think of F as the presheaf of pullbacks of functions under the
quotient map S1 → RP1.)

(3) X = C, F assigns to each open set U the set of holomorphic functions on U which
admit a square root.
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7.3 Kernels, images, and cokernels

In this section we fix a topological space X. The goal of this section is transport construc-
tions from the category Ab to the categories PreSh(X) and Sh(X). This is the first step
toward giving these categories the structure of abelian categories.

Definition 7.3.1. Suppose that φ : F → G is a morphism of presheaves of abelian groups.
We can define the kernel presheaf (resp. image presheaf) of φ simply by assigning to every
open subset U the kernel (resp. image) of φ(U) equipped with the restriction maps from
F (resp. G). We denote this construction by kerpre(φ) (resp. impre(φ)).

When F ,G are sheaves it is not obvious (and in fact not true) that these presheaf
constructions will yield sheaves. We will correct this deficiency by systematically appealing
to the sheafification construction.

The main theme of this section is the relationship between constructions for morphisms
of sheaves and properties of the induced morphisms of stalks.

7.3.1 Kernels

Definition 7.3.2. Let φ : F → G be a morphism of sheaves of abelian groups. The kernel
of φ, denoted ker(φ), is the sheaf which associates to each open set U the kernel of φ(U)
and to each inclusion of open subsets V ⊂ U the restriction of ρF,U,V to ker(φ(U)).

We must verify that this definition actually yields a sheaf. It is clear that the construc-
tion yields a presheaf. The identity axiom is an immediate consequence of the identity
axiom for F . To verify the gluing axiom, suppose that we are given an open set U , an
open cover {Vi}, and local sections fi ∈ ker(φ)(Vi). By the gluing axiom in F there is a
section f ∈ F(U) which restricts to the various fi, and we just need to verify that f is in
the kernel of φ. Note that

φ(U)(f)|Vi = φ(Vi)(f |Vi) = φ(Vi)(fi) = 0

for every i. By the identity axiom for the sheaf G we conclude that φ(U)(f) = 0.

Remark 7.3.3. Note that ker(φ) comes equipped with an inclusion morphism of sheaves
i : ker(φ)→ F .

Definition 7.3.4. We say that a morphism of sheaves φ : F → G is injective if ker(φ) = 0.
Equivalently, φ is injective if and only if φ(U) is injective for every open set U .

Exercise 7.3.5. Let φ : F → G be a morphism of sheaves. Prove that ker(φ)x ∼= ker(φx)
and that this isomorphism is the map on stalks induced by the inclusion map i : ker(φ)→
F .

Deduce that φ is injective if and only if the induced stalk maps φx are injective for
every x ∈ X.
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7.3.2 Images

Definition 7.3.6. Let φ : F → G be a morphism of sheaves of abelian groups. The image
of φ, denoted im(φ), is the sheafification of the image presheaf impre(φ).

It is important to note that the image presheaf need not be a sheaf. Even though it
will always satisfy the identity axiom, it may fail to satisfy the gluing axiom. The issue is
that if φ(fi) are local sections of G which agree on overlaps, there is no reason to expect
the corresponding local sections fi of F to agree on overlaps. (Example 7.3.13 gives an
explicit example.)

Remark 7.3.7. Since the only axiom that the image presheaf fails is the gluing axiom,
we must “increase” the number of sections to obtain a sheaf. Indeed, it is easy to see that
for any open set U there is an inclusion im(φ(U)) ⊂ (imφ)(U).

Remark 7.3.8. By Exercise 7.2.9 im(φ) comes equipped with an inclusion morphism of
sheaves i : im(φ)→ F .

Definition 7.3.9. We say that a morphism of sheaves φ : F → G is surjective if im(φ) = G.

Exercise 7.3.10. Let φ : F → G be a morphism of sheaves. Prove that im(φ)x ∼= im(φx)
and this isomorphism of stalks is induced by the inclusion map i : im(φ)→ G.

Deduce that φ is surjective if and only if the induced stalk maps φx are surjective for
every x ∈ X.

The following important exercise will be used many times in the future.

Exercise 7.3.11. Let X be a topological space and let φ : F → G be a morphism of
sheaves. Prove that φ is surjective if and only if for every open set U and every section
g ∈ G(U) there is an open cover {Vi} of U and elements fi ∈ F(Vi) such that φ(Vi)(fi) = gi
for every i.

Warning 7.3.12. Suppose that a map of sheaves φ : F → G is “locally surjective” in the
sense that there is a base {U} for the topology of X such that for every U the map φ(U)
is surjective. Exercise 7.3.11 shows that φ is a surjective map of sheaves.

However, the converse is false: Exercise 7.3.21 shows that a surjective map of sheaves
need not be “locally surjective.” In fact, for a surjective morphism of sheaves there might
not be any open set U such that φ(U) is surjective.

The following example shows that a surjective morphism of sheaves need not induce a
surjection of sections on every open set U . (This also shows that the image presheaf need
not be a sheaf.)

Example 7.3.13. Set P1 = mProj(K[x, y]). Consider the morphism φ : OP1(−1) ⊕
OP1(−1) → OP1 obtained by multiplying by x on the first component and multiplying
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by y on the second component. Then φ is a surjective map. Indeed suppose we fix a
distinguished open affine set U ⊂ P1 which is the complement to the vanishing locus of an
irreducible homogeneous polynomial g. Then the induced map of sections on the open set
U is

(K[x, y]g)−1 ⊕ (K[x, y]g)−1 → (K[x, y]g)0.

This map is a surjection: if we write g = xg1 + yg2 for some polynomials g1, g2, an element
h on the right will be the image of the element (hg1g , h

g2
g ) on the left. Taking limits we see

that φ is surjective on stalks, and thus surjective.
However, if we look at global sections the induced map

OP1(−1)(P1)⊕OP1(−1)(P1) // OP1(P1)

0 K

is the zero map.

7.3.3 Isomorphisms

There are many equivalent ways to describe an isomorphism of sheaves.

Proposition 7.3.14. Let φ : F → G be a morphism of sheaves. The following are equiva-
lent:

(1) φ is an isomorphism.

(2) φ is injective and surjective.

(3) φ(U) : F(U)→ G(U) is an isomorphism for every open set U .

(4) For every x ∈ X the induced map on stalks φx : Fx → Gx is an isomorphism.

Proof. (1)⇒ (2): it is clear that ker(φ) is contained in ker(φ−1◦φ), showing that ker(φ) = 0.
Similarly, it is clear that the image of φ contains im(φ ◦ φ−1), so that the image of φ must
be all of G.

(2) ⇒ (3): the injectivity of φ implies that each φ(U) is injective. To see that φ(U) is
surjective, choose some g ∈ G(U). By surjectivity of φ there is an open cover {Vi} of U
and elements fi ∈ F(Vi) such that φ(Vi)(fi) = g|Vi . Since φ is injective, the restrictions of
fi and fj to Vi ∩ Vj agree. Thus the fi glue to give an element f ∈ F(U). The image of
this element is g ∈ G(U), showing surjectivity.

(3) ⇒ (1): it is clear that for every inclusion of open sets V ⊂ U we have ρU,V ◦
φ(U)−1 = φ(V )−1 ◦ ρU,V . Thus we can define an inverse morphism via the prescription
(φ−1)(U) = φ(U)−1.

(2) ⇔ (4): apply Exercise 7.3.5 and Exercise 7.3.10.
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Warning 7.3.15. Proposition 7.3.14.(4) does not claim that if F ,G are sheaves which
satisfy Fx ∼= Gx for every x ∈ X then F and G are isomorphic. We can only conclude
the existence of an isomorphism when there is some global map φ which induces all these
isomorphisms of stalks.

For example, consider the sheaves OP1(d) on P1. Exercise 7.1.9 shows that for every
point x ∈ X and for every integer d the stalk OP1(d)x is a free rank 1 module over OP1,x.
In particular for every integer d these stalks are isomorphic abelian groups. However, the
sheaves OP1(d) are definitely not isomorphic to each other for different values of d – for
example, when d ≥ 0 then the space of global sections of OP1(d) is a K-vector space of
dimension d+ 1.

7.3.4 Cokernels

Definition 7.3.16. Let φ : F → G be a morphism of sheaves of abelian groups. The
cokernel presheaf cokpre(φ) associates to each open set U the cokernel of φ(U) and to each
inclusion of open subsets V ⊂ U the quotient of the restriction map ρG,U,V . The cokernel
of φ, denoted cok(φ), is the sheafification of the cokernel presheaf.

Remark 7.3.17. Note that cok(φ) comes equipped with a quotient morphism of sheaves
q : G → cok(φ) which is the composition of the quotient map to the cokernel presheaf and
the sheafification map.

Exercise 7.3.18. Let φ : F → G be a morphism of sheaves. Prove that cok(φ)x ∼= cok(φx)
and that this isomorphism is the map on stalks induced by the quotient map q : G → cok(φ).

The cokernel presheaf need not be a sheaf.

Exercise 7.3.19. Find a morphism of sheaves φ : F → G such that the cokernel presheaf
is not a sheaf. Can you find an example where the identity axiom fails? Where the gluing
axiom fails?

7.3.5 Exercises

Exercise 7.3.20. Let X be a topological space. Suppose that φ1, φ2 : F → G are two
morphisms of sheaves such that for every x ∈ X the induced maps on stalks satisfy φ1,x =
φ2,x. Prove that φ1 = φ2.

Exercise 7.3.21. Let X = A1
K. Let G be the skyscraper sheaf at the origin with value

K[x](x). Show that the localization maps induce a surjection morphism of sheaves φ :
OX → G. Show however that there is no open neighborhood U of the origin such that the
map φ(U) : OX(U) → G(U) is surjective. (Can you leverage this idea to find a surjective
morphism of sheaves such that there is no open set U with φ(U) surjective?)

Exercise 7.3.22. Consider the morphism of sheaves OP1(−1)→ OP1 defined by multipli-
cation by x. Identify the image and cokernel of this map.
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Exercise 7.3.23. Consider the morphism of sheaves OP1(−d)→ OP1 defined by multipli-
cation by a degree d homogeneous polynomial f . Show that the cokernel is supported on
V+(f).
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7.4 Category of sheaves

Let X be a fixed topological space. In this section we show that the category Sh(X) is an
abelian category and discuss the theory of exact sequences in this category.

7.4.1 Abelian category

The category of presheaves of abelian groups on X carries the structure of an abelian cate-
gory in a natural way. As discussed in the previous section, one can transport constructions
from Ab to PreSh(X) by performing them simultaneously for each open set U .

As we saw before, the corresponding constructions for sheaves are more difficult. How-
ever, the nice properties of the sheafification functor allow us to turn presheaf constructions
into sheaf constructions without losing the “universality” of the construction. In partic-
ular, we will see that the category of sheaves of abelian groups on X is also an abelian
category.

First we verify that Sh(X) is an additive category. Given any two sheaves F ,G we must
endow the space Hom(F ,G) with the structure of an abelian group. Given two morphisms
φ, ψ : F → G we define

(φ+ ψ)(U) := φ(U) + ψ(U)

for any open set U . It is clear that φ + ψ is still compatible with restriction so that this
function is a well-defined sheaf morphism. It is also clear that composition of morphisms
is bilinear. Finally, the zero object in Sh(X) is the 0 sheaf, and the biproduct is given by
the direct sum operation ⊕ from Exercise 7.1.13.

Exercise 7.4.1. Verify that ⊕ (as defined in Exercise 7.1.13) is a biproduct in the category
Sh(X).

7.4.2 Kernels and cokernels

We next check that our definitions of kernel and cokernel agree with the categorical defi-
nitions.

Lemma 7.4.2. Let φ : F → G denote a morphism of sheaves. Then the inclusion i :
ker(φ)→ F is the equalizer of φ and the zero map.

Proof. It is clear that φ ◦ i = 0 ◦ i, since both are the zero map. Suppose that ψ : H → F
also satisfies φ ◦ ψ = 0 ◦ ψ. Then for every open set U the image of ψ(U) : H(U)→ F(U)
must lie in ker(φ(U)). In this way we see that ψ factors through i : ker(φ) → F and it is
clear this factorization is unique.

Lemma 7.4.3. Let φ : F → G denote a morphism of sheaves. Then the quotient map
q : G → cok(φ) is the coequalizer of φ and the zero map.



242 CHAPTER 7. SHEAVES

Proof. Let Q denote the presheaf cokernel and let q̃ : G → Q denote the presheaf cokernel
map. Since the composition of φ with q̃ is the zero map, the composition of φ with q is
also the zero map.

Suppose that ψ : G → H satisfies ψ ◦ φ = ψ ◦ 0. Then for every open set U the map
ψ(U) : G(U) → H(U) admits a unique factorization through q̃(U) : G(U) → Q(U). In
this way we see that as a map of presheaves ψ admits a unique factorization through q̃.
Using the universal property of sheafification in Proposition 7.2.8, we see that as a map of
sheaves ψ admits a unique factorization through q.

7.4.3 Monomorphisms and epimorphisms

The next step is to identify the monomorphisms and epimorphisms in Sh(X).

Proposition 7.4.4. Let φ : F → G be a morphism of sheaves. Then:

(1) φ is a monomorphism if and only if it is injective.

(2) φ is an epimorphism if and only if it is surjective.

Proof. (1) First suppose that φ is injective. Suppose that ψ1, ψ2 : H → F satisfy that
φ ◦ ψ1 = φ ◦ ψ2. In particular, for every point x ∈ X we have φx ◦ ψ1,x = φx ◦ ψ2,x.
Since injections are monomorphisms in Ab, we see that ψ1,x = ψ2,x for every point x. We
conclude that ψ1 = ψ2 by Exercise 7.3.20.

Conversely, suppose that φ is not injective. Then ker(φ) is not the zero sheaf. Since
the composition of φ with the zero map and the inclusion map from ker(φ) to F are the
same, we see that φ is not a monomorphism.

(2) First suppose that φ is surjective. Suppose that ψ1, ψ2 : G → H satisfy that
ψ1 ◦ φ = ψ2 ◦ φ. In particular, for every point x ∈ X we have ψ1,x ◦ φx = ψ2,x ◦ φx. Since
surjections are epimorphisms in Ab, we see that ψ1,x = ψ2,x for every point x. We conclude
that ψ1 = ψ2 by Exercise 7.3.20.

Conversely, suppose that φ is not surjective. By Exercise 7.3.10 and Exercise 7.3.18 we
see that cok(φ) is not the zero sheaf. Since the composition of φ with the zero map and
the quotient map from G to cok(φ) are the same, we see that φ is not an epimorphism.

In particular, by combining Proposition 7.4.4 with Exercise 7.3.5 and Exercise 7.3.10
we see that the property of being a monomorphism or epimorphism can be checked on the
level of stalks.

The final step is to check that every monomorphism is a kernel and that every epimor-
phism is a cokernel. This follows from what we have already shown. First, we claim that
if φ : F → G is a monomorphism then φ is the kernel of the quotient map q : G → cok(φ).
Indeed, this can be checked on the level of stalks, where it follows from Proposition 7.4.4,
Exercise 7.3.5, and Exercise 7.3.18. The dual argument is similar. Thus we have shown:
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Theorem 7.4.5. The category Sh(X) is abelian.

Before moving on, we point out that the image sheaf im(φ) coincides with the notion
of “image” in an abelian category – this follows from a stalk computation. Thus any
morphism of sheaves φ : F → G factors as an epimorphism F → im(φ) composed with a
monomorphism im(φ)→ G.

7.4.4 Exact sequences

As with any abelian category, one of the fundamental notions in Sh(X) is that of an exact
sequence. A complex of sheaves

. . .
φi−2−−−→ Fi−1

φi−1−−−→ Fi
φi−→ Fi+1

φi+1−−−→ . . .

is exact if im(φi−1) = ker(φi) for every i.

Exercise 7.4.6. Show that a complex of sheaves is exact if and only if for every point
x ∈ X the induced complex of stalks at x is exact.

Much of the course will be devoted to studying how various functors on Sh(X) interact
with exact sequences. The following example will be particularly important for us.

Definition 7.4.7. Let X be a topological space. The global sections functor Sh(X)→ Ab
assigns to any sheaf F the abelian group F(X) and to any morphism of sheaves φ the
homomorphism φX . This functor is denoted by Γ(X,−) : Sh(X)→ Ab.

One could of course use any open set in place of X, but the global sections functor is
the most important one.

Lemma 7.4.8. Let X be a topological space. The global sections functor is left-exact.

Proof. Suppose that 0 → F ′ φ−→ F ψ−→ F ′′ → 0 is a short exact sequence of sheaves. Since
φ is injective, F ′(X)→ F(X) is injective.

It only remains to show exactness in the middle, i.e. that im(φ(X)) = ker(ψ(X)). It
is clear that im(φ(X)) ⊂ ker(ψ(X)) since ψ ◦ φ = 0. Conversely, suppose that f ∈ F(X)
lies in the kernel of ψ(X). This means that f is also an element of ker(φ)(X). Due to the
exactness of the sequence, this implies that f ∈ im(φ)(X). In other words, there is an open
cover {Vi} of X and elements gi ∈ F ′(Vi) such that f |Vi = φ(Vi)(gi). Since φ is injective,
the restriction of gi and gj to Vi ∩ Vj agree. Applying the gluing axiom, we conclude that
there is an element g ∈ F ′(X) such that φ(X)(g) = f .

The following example shows that the global sections functor is not exact.
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Example 7.4.9. Consider the map φ : OP1(−2) → OP1 defined by multiplying by the
equation xy. Then φ is an inclusion and its cokernel is the union K(p) ⊕ K(q) of the
skyscraper sheaves with value K at the two points p, q ∈ V+(xy). If we take the exact
sequence

0→ OP1(−2)→ OP1 → K(p)⊕K(q)→ 0

and apply the global sections functor we obtain

0 // OP1(−2)(P1) // OP1(P1) // (K(p)⊕K(q))(P1)

0 K K2

In particular the rightmost map in this sequence is not surjective.

7.4.5 Exercises

Exercise 7.4.10. Let X be a topological space. Suppose that to each point x ∈ X we
assign a divisible abelian group Qx. Define the sheaf Q by assigning to any open set U the
product

∏
x∈U Qx and to any inclusion V ⊂ U the corresponding projection map. Prove

that Q is an injective object in Sh(X).

Exercise 7.4.11 ([Cla]). Let X be a manifold of dimension ≥ 1. Fix a point x ∈ X. For
any open neighborhood V ⊂ X define the sheaf ZV via the prescription:

ZV (U) =

{
Zπ0(U) if U ⊂ V

0 if U 6⊂ V

with the obvious restriction maps.

(1) Show that for any open neighborhood V of x there is a surjection ρV : ZV → Z(x)
where Z(x) denotes the skyscraper sheaf at x with value Z.

(2) Use the surjections ρV to show that there is no projective object in Sh(X).
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7.5 Pushforward and inverse image

Suppose that f : X → Y is a continuous map between topological spaces. In this section
we analyze how to pass sheaves of abelian groups back and forth between X and Y . The
pushforward of a sheaf is easy to define, but can be tricky to work with. The pullback is
more difficult to define, but it turns out to have better geometric behavior.

Definition 7.5.1. Let F be a presheaf of abelian groups on X. We define the presheaf
f∗F which assigns to the open set V ⊂ Y the group F(f−1V ) and assigns to an inclusion of
open sets the restriction map for the preimages. When F is a sheaf then f∗F is a sheaf as
well – the identity and gluing properties for f∗F follow immediately from the corresponding
statements for F .

To any morphism φ : F → G on X we define the morphism f∗φ : f∗F → f∗G on Y
via the prescription (f∗φ)(V ) := φ(f−1V ). It is then clear that f∗ defines a functor from
Sh(X) to Sh(Y ).

Example 7.5.2. Let X be a topological space. Suppose that i : U → X is the inclusion
of an open subset. For any sheaf F on U , the pushforward sheaf i∗F assigns to any open
set V ⊂ X the abelian group F(U ∩ V ).

Example 7.5.3. Let X be a topological space with a sheaf F . Suppose that i : x→ X is
the inclusion of a point. For any sheaf F on x, the pushforward sheaf i∗F is the skyscraper
sheaf at x with value F(x).

The inverse image of a sheaf is harder to define but tends to be better behaved than the
pushforward. (This is an avatar of the fact that the natural operation for vector bundles is
the pullback operation.) We will reserve the term “pullback” for a later construction that
is only defined for sheaves of modules. As demonstrated by Exercise 7.2.10.(2) we cannot
expect the “naive pullback” of a sheaf to be a sheaf, so we should anticipate a sheafification
when defining this operation.

Definition 7.5.4. Let G be a sheaf of abelian groups on Y . We define the inverse image
presheaf f−1

preG which assigns to every open set U in X the abelian group

lim−→
V⊃f(U)

G(V )

and to every inclusion of open sets the homomorphism induced by the universal property
of the direct limit applied to the various restriction maps for G. The inverse image sheaf
f−1G is the sheafification of the inverse image presheaf.

To any morphism φ : F → G on Y we define the morphism f−1φ : f−1F → f−1G on Y
as follows. Fix an open set U on X. For every open set V ′ ⊃ f(U) we have a composition

F(V ′)
φ−→ G(V ′)→ lim−→

V⊃f(U)

G(V ).
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By the universal property of direct limits, we obtain a morphism of inverse image presheaves
f−1
preφ : f−1

preF → f−1
preG. By applying the sheafification functor we obtain the desired

morphism f−1φ. With this definition f−1 becomes a functor from Sh(Y ) to Sh(X).

Remark 7.5.5. While the inverse image presheaf always satisfies the identity property
(check!), it can fail to be a sheaf even in very simple situations. For example, if the map
f : X → Y contracts X to a point, the inverse image presheaf will be a constant presheaf
(which is usually not a sheaf).

Example 7.5.6. Let X be a topological space with a sheaf F . Suppose that i : U → X is
the inclusion of an open subset. Then the inverse image sheaf i−1F is isomorphic to F|U .

Example 7.5.7. Let X be a topological space with a sheaf F . If we let i : x→ X denote
the inclusion of a point, then the inverse image sheaf i−1F is isomorphic to the stalk Fx.

7.5.1 Stalks

The inverse image construction behaves well with respect to stalks.

Lemma 7.5.8. Let f : X → Y be a continuous map of topological spaces. Let G be a sheaf
of abelian groups on Y . For any point x ∈ X we have (f−1G)x ∼= Gf(x).

Proof. First we compute the stalk of the inverse image presheaf. The key is the realization
that an open set V ⊂ Y will contain the f -image of some open neighborhood U 3 x if and
only if V contains f(x). Thus

f−1
preGx = lim−→

U3x

(
lim−→

V⊃f(U)

G(V )

)
∼= lim−→

V 3f(x)

G(V )

∼= Gf(x).

By Exercise 7.2.6 the stalk of the inverse image presheaf at x is isomorphic to the stalk of
the inverse image sheaf.

The behavior of stalks under pushforward is more subtle. (This is another indication
that the inverse image is more natural in geometric contexts.) Suppose that f : X → Y
is a continuous map and that F is a sheaf of abelian groups on X. For a point y ∈ Y we
have

(f∗F)y = lim−→
V 3y
F(f−1V )

If we let F denote the fiber over y, there is a natural morphism from (f∗F)y to limU⊃F F(U)
but this map need not be an isomorphism since there may be open neighborhoods of F
which do not contain the preimage of any open neighborhood of y. Thus there is no way
to define the stalk (f∗F)y using only the fiber F and the topology of X.
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7.5.2 Adjointness

Theorem 7.5.9. Let f : X → Y be a continuous map of topological spaces. Then f−1 and
f∗ form an adjoint pair: for any sheaves F on X and G on Y we have a bijection

HomSh(X)(f
−1G,F) ∼= HomSh(Y )(G, f∗F)

natural in both entries.

This adjunction takes some work to set up carefully. We will just describe the bijection
between Hom spaces, leaving the naturality as an exercise for the dedicated reader.

Proof. Suppose given a morphism φX : f−1G → F . By precomposing with the sheafifi-
cation map, we obtain a morphism of presheaves φX,pre : f−1

preG → F . In particular, for
every open set V ⊂ Y we obtain a map f−1

preG(f−1V ) → F(f−1V ). Furthermore these
maps are compatible with the restriction maps for open sets of Y . Using the isomorphism
G(V ) ∼= f−1

preG(f−1V ) we obtain a morphism G → f∗F .

Suppose given a morphism φY : G → f∗F . In other words, for every open set V ⊂ Y
we have a map G(V )→ f∗F(V ). For any open subset U of X, we obtain a map

lim
V⊃f(U)

G(V )→ lim
V⊃f(U)

f∗F(V ) = lim
f−1V⊃U

F(f−1V )→ F(U)

where the last map is defined by the restriction maps. It is clear that these maps are
compatible with restriction for open sets in X. Thus we get a map of presheaves f−1

preG → F .
By the universal property of sheafifcation, we obtain a map of sheaves f−1G → F .

These two constructions are inverses.

Note that f−1 is a left adjoint and f∗ is a right adjoint in this adjoint pair of functors.
In particular, they have good exactness properties.

Proposition 7.5.10. Let f : X → Y be a continuous map of topological spaces. Then f∗
is left-exact and f−1 is exact.

Proof. Theorem 7.5.9 and Corollary 7.0.5 imply that f∗ is left-exact and f−1 is right-exact.
To see that f−1 is exact, we combine Lemma 7.5.8 (showing that (f−1G)x ∼= Gf(x)) and
Exercise 7.4.6 (showing that exactness can be checked on the level of stalks.)

Exercise 7.5.11. Prove that f∗ is left-exact “by hand” without appealing to the general
properties of adjoint functors.
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7.5.3 Extension by zero

We saw previously that f−1 is always a left adjoint. In very special situations it can also
be a right adjoint functor. Our next goal is to describe its paired functor.

Definition 7.5.12. Let X be a topological space and let i : U → X be the inclusion of an
open subset. Given any sheaf of abelian groups F on U , we define the extension by zero
presheaf i!,preF by setting

i!,preF(V ) =

{
F(V ) if V ⊂ U
0 if V 6⊂ U

We define the extension by zero sheaf i!F by sheafifying the extension by zero presheaf.

The stalks of i!F are identically zero for points outside of the open set U and are equal
to the stalks of F for points in U . Note that i! is not the same as i∗ for inclusions of open
sets as in Example 7.5.2. (What is an example where the two constructions are different?
Can you think of an example where they yield the same thing?)

Exercise 7.5.13. Let X be a topological space and let i : U → X be the inclusion of an
open set. Prove that i! is a left adjoint and i−1 is a right adjoint which together form an
adjoint pair.

7.5.4 Exercises

Exercise 7.5.14. Let f : X → Y and g : Y → Z be continuous maps of topological spaces.
Prove that:

(1) (g ◦ f)∗ = g∗ ◦ f∗.

(2) (g ◦ f)−1 = f−1 ◦ g−1. (Hint: since these constructions involve a sheafification, it
is not easy to directly compare the values of the two constructions on open sets.
Instead, you should construct a morphism between them and show that it induces
an isomorphism of stalks.)

Exercise 7.5.15. Let X be a topological space. Let i : U → X be the inclusion of an
open subset and let j : Z → X be the inclusion of the complement of U . Show that for
any sheaf F on X we have an exact sequence

0→ i!i
−1F → F → j∗j

−1F → 0.

Calculate this sequence explicitly when X = An, Z is the origin, and the sheaf is OAn .

Exercise 7.5.16. Finish the proof of Theorem 7.5.9 by proving naturality of the bijection.
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7.6 Gluing sheaves

In this section we discuss how one can construct sheaves by gluing “local data” on a
topological space. Suppose that X is a topological space and that B is a base for the
topology on X. In Definition 1.9.1 we defined the notion of a B-sheaf on X.

Definition 7.6.1. Let X be a topological space and let B = {Vi} be a base for the topology.
A B-sheaf F̃ assigns to every open set Vi ∈ B an abelian group F̃(Vi) and to each inclusion
Vi ⊂ Vj of open sets in B a restriction map ρ̃Vj ,Vi such that the following properties hold:

(1) F̃(∅) = 0.

(2) The assignments F̃ , ρ̃ define a contravariant functor from the category of open subsets
of X contained in B (with morphisms = inclusions) to the category of abelian groups.

(3) For any open set Vi ∈ B and any open cover of Vi by elements in B the identity and
gluing axioms hold.

In Section 1.9 we showed:

• Given a B-sheaf F̃ , there is a unique sheaf F on X such that F(U) = F̃(U) for every
U in B (Theorem 1.9.2).

• Given a morphism of B-sheaves φ̃ : F̃ → G̃ we obtain an induced morphism of the
corresponding sheaves φ : F → G that agrees locally with φ̃ (Exercise 1.9.4).

Altogether we obtain:

Theorem 7.6.2. Let X be a topological space equipped with a base B for the topology.
There is an equivalence between the category of B-sheaves and the category of sheaves.

The categorical inverse of the “gluing functor” discussed above is the forgetful functor
from the category of sheaves to the category of B-sheaves. The most important special
case of this construction is:

Corollary 7.6.3. Let X be a topological space equipped with an open cover {Ui}. Suppose
that for each index i we have a sheaf Fi on Ui. Suppose furthermore that for every pair of
indices i, j we have an isomorphism

φij : Fi|Ui∩Uj → Fj |Ui∩Uj

and that φii is the identity map, φij = φ−1
ji and φjk ◦φij = φik (as isomorphisms of sheaves

on Ui∩Uj ∩Uk). Then there is a sheaf F on X (unique up to isomorphism) such that F|Ui
is isomorphic to Fi.
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We proved this in Corollary 1.9.5. The key point is that the different Fi give us many
different ways of defining the group of sections associated to a given open set. The “cocycle
condition” – that is, the condition on the maps φij – is exactly what we need to canonically
identify these various choices.

Just as we can glue sheaves on open sets, we can glue morphisms of sheaves on open
sets, and one can again view this as a special case of Theorem 7.6.2.

Corollary 7.6.4. Let X be a topological space equipped with two sheaves F ,G. Let {Ui}
be an open cover of X. Suppose that for every open set Ui we are given a morphism
φi : F|Ui → G|Ui and that furthermore we have

φi|Ui∩Uj = φj |Ui∩Uj .

Then there is a unique morphism of sheaves φ : F → G such that φ|Ui = φi for every i.

The construction of sheaves through local data is quite common and it is important to
feel comfortable with this perspective.

Example 7.6.5. Let’s construct the sheaves O(d) on P1 via local data. Consider the open
cover of P1 by the two coordinate charts isomorphic to A1. We set U0 = D+,x0 (with ring of
functions K[x1x0 ]) and U1 = D+,x1 (with ring of functions K[x0x1 ]). Note that the intersection
U0 ∩ U1 is the affine scheme corresponding to the ring K[x0x1 ,

x1
x0

].
We plan to glue together the structure sheafOP1 |U0 on U0 and the structure sheafOP1 |U1

on U1. According to Theorem 7.6.3, we only need to specify the data of an isomorphism

φ01 : OP1 |U0∩U1 → OP1 |U0∩U1 .

The easiest way to obtain an isomorphism is to multiply by a unit in the ring OP1(U0 ∩
U1). We define the morphism of sheaves φd which assigns to open set V ⊂ U0 ∩ U1 the
multiplication by (x0x1 )d. (These maps clearly commute with restriction and thus give a
valid morphism.) Since x0

x1
is invertible on U0 ∩ U1 the morphism φd is invertible. By

Corollary 7.6.3 the isomorphism φd yields a corresponding sheaf Fd.
Let’s verify that Fd is isomorphic to O(d). For any open set U ⊂ P1, we have

Fd(U) = { (g0, g1) ∈ OP1(U ∩ U0)×OP1(U ∩ U1) | φd(g0|U∩U0∩U1) = g1|U∩U0∩U1 } .

Since φ0 is the identity map, in this case the condition matches the usual gluing axiom
for sheaves so that F0

∼= OP1 . However, when φd is not the identity map then the gluing
condition is different from the usual one. Precisely, the condition is that xd0g0 = xd1g1 when
both sides are considered as degree d elements in K(x0, x1). Thus the map O(d)(U) →
Fd(U) sending

g 7→
(
g

xd0
,
g

xd1

)
defines the desired isomorphism.
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Exercise 7.6.6. Consider the open cover of Pn by affine charts Ui = D+,xi . Show that
OPn(d) is isomorphic to the sheaf Fd defined by gluing the structure sheaves using the local
homomorphisms φij which is multiplication by ( xixj )d.

7.6.1 Constructing a sheaf on stalks

There is an alternative perspective on sheaves coming from the “espace étalé” construc-
tion. We won’t need this perspective in the future, but we include it here for the sake of
completeness.

Let X be a topological space with a sheaf F . Exercise 7.1.6 shows that a section
f ∈ F(U) is determined by its restriction to the stalks Fx for stalks x ∈ U . In fact, one
can recover F(U) from the combined information of the stalks and the “local sections” as
follows.

Let F denote the disjoint union of the stalks tx∈XFx. We have a natural map π : F→
X. For any open set U ⊂ X and any section s ∈ F(U) we obtain a subset {ρU,x(s)}x∈U of
F. We give F the topology which has these sets as a base.

Exercise 7.6.7. Given any open subset U ⊂ X, prove that F(U) can be identified with
the space of continuous maps σ : U → F which are sections of π. Show that under this
identification restriction maps ρU,V can be defined as the restriction of continuous maps.

One advantage of the espace étalé perspective is that both the pullback functor and
the sheafification functor admit easy and natural descriptions.
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Chapter 8

Schemes

The theory of schemes is closely analogous to the theory of manifolds. However, our basic
objects will be determined by algebra instead of geometry. To any ring R we can associate
a geometric space known as the spectrum Spec(R). A scheme is defined to be a space that
is locally isomorphic to the spectrum of a ring.

The theory of manifolds is nicest for spaces which have some additional properties:
second countable, Hausdorff, compact, etc. Most of the chapter is dedicated to identifying
analogous constructions in algebraic geometry.

We briefly remind the reader of our setting. All rings R are commutative unital rings;
all homomorphisms of rings are unital (i.e. send 1 to 1). The 0 ring is a valid ring; it does
not admit a homomorphism to any ring besides itself but it receives homomorphisms from
every ring. We will accept the Axiom of Choice, so in particular every ideal is contained
in a maximal ideal.

8.0.1 Algebraic preliminaries

We briefy review a few finiteness assumptions for rings.

Definition 8.0.1. A homomorphism of rings φ : S → R is of finite type if it realizes R as
a finitely generated S-algebra. In other words, φ has finite type if for some positive integer
n there exists a surjection S[x1, . . . , xn]→ R that restricts to φ.

A homomorphism of rings φ : S → R is of finite presentation if for some positive integer
n there exists a surjection S[x1, . . . , xn] → R whose kernel is generated by a finite set of
polynomials.

Note that when S is a Noetherian ring the two definitions are equivalent. Let P denote
the property “of finite type” or “of finite presentation”. Then homomorphisms of type P
have many nice properties. The most relevant properties for us are:

(1) Homomorphisms of type P are preserved under composition.

253
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(2) Suppose that φ : S → R is a homomorphism and that {ri} is a set of elements which
generate the unit ideal in R. Then φ : S → R satisfies P if and only if φ : S → Rri
satisfies P for every i.

(3) Homomorphisms of type P are preserved under tensor product: if φ : S → R satisfies
P and S → T is a ring homomorphism then T → R⊗S T satisfies P .

We will also use a much stronger version of finiteness:

Definition 8.0.2. A homomorphism of rings φ : S → R is finite if it realizes R as a finitely
generated S-module. In other words, there is some positive integer n such that there exists
a surjection of S-modules S⊕n → R.

A homomorphism of rings φ : S → R is said to be integral if every element of R satisfies
a monic equation with coefficients in S.

It turns out that a homomorphism is finite if and only if it is integral and has finite
type. Let P denote the property “finite” or “integral”. Then homomorphisms of type P
satisfy a (slightly different) list of properties:

(1) Homomorphisms of type P are preserved under composition.

(2) Suppose that φ : S → R is a homomorphism and that {sj} is a set of elements which
generate the unit ideal in R. Then φ : S → R satisfies P if and only if φ : Ssj → Rφ(sj)

satisfies P for every j.

(3) Homomorphisms of type P are preserved under tensor product: if φ : S → R satisfies
P and S → T is a ring homomorphism then T → R⊗S T satisfies P .

Note in particular that the localization property of finite morphisms is weaker than the
corresponding property for finite type morphisms.
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8.1 Spectrum of a ring

The building blocks for schemes are spectrums of rings.

Definition 8.1.1. Let R be a ring. The spectrum of R, denoted Spec(R), is the set of
prime ideals in R. For any ideal I in R, we define the vanishing locus V (I) ⊂ Spec(R) to
be the set of prime ideals which contain I. These form the closed sets in a topology called
the Zariski topology.

Exercise 8.1.2. Prove that the V (I) satisfy the necessary properties to form the closed
sets in a topology.

Exercise 8.1.3. If I and J are ideals in R prove that V (I) ⊃ V (J) if and only if
√
I ⊂
√
J .

It is important to note that not every point in Spec(R) is closed! Indeed, the closure of
p ∈ Spec(R) is V (p). Thus the closed points of Spec(R) will be exactly the maximal ideals
on R. The following definitions describe some more basic properties of points of Spec(R).

Definition 8.1.4. We say that a point p in Spec(R) is a generic point if its closure is all
of Spec(R). Equivalently, p is a generic point if it is the unique minimal prime ideal in R.

Warning 8.1.5. Be careful not to confuse the notion of a “generic point” and a “general
point”. We say that a property is true for a “general point” of a scheme X if it holds
for the points in some dense open subset U . Often properties of the generic point can be
translated into properties of general points and vice versa, but it is important to keep your
language straight.

Definition 8.1.6. Given a point p ∈ Spec(R) we define the residue field κ(p) to be R/p.

Loosely speaking, we can think of the residue field κ(p) as the “receiving space” for
functions in R evaluated at the point p. From this perspective, the evaluation map is
simply the quotient R → R/p. Note that the functions which vanish at the point p are
exactly the same as the functions contained in p.

8.1.1 Morphisms

Suppose that f ] : S → R is a homomorphism of rings. For every prime ideal p of R the
pullback (f ])−1 is a prime ideal of S. In this way we obtain a function f : Spec(R) →
Spec(S).

Exercise 8.1.7. Verify that if f ] : S → R is a ring homomorphism then the pullback map
f : Spec(R)→ Spec(S) is continuous in the Zariski topology.

A morphism f : Spec(R)→ Spec(S) between two spectra is defined to be a continuous
map which is induced by a ring homomorphism f ] : S → R. Note that the fiber over a
point q ∈ Spec(S) can be identified with the closed set V (f ](q)) of Spec(R).
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Exercise 8.1.8. Let I be an ideal in a ring R. Show that the map f : Spec(R/I) →
Spec(R) induced by the quotient f ] : R → R/I induces a homeomorphism between
Spec(R/I) and the closed subset V (I) ⊂ Spec(R).

8.1.2 Examples

The following examples help us develop our intuition for the points in Spec(R).

Example 8.1.9. There are two types of points in Spec(K[x]): the maximal ideals and the
prime ideal (0). The maximal ideals are precisely the closed points of Spec(K[x]) and the
zero ideal is the generic point of Spec(K[x]).

Example 8.1.10. More generally, suppose that R is a finitely generated K-algebra. Recall
that mSpec(R) denotes the set of maximal ideals of R. In other words, mSpec(R) is the
subset of Spec(R) consisting of all the closed points. By assigning to any prime ideal p the
intersection V (p) ∩mSpec(R) we obtain a bijection

{points of Spec(R)} ↔
{

irreducible closed
subsets of mSpec(R)

}
.

The bijectivity follows from the fact that R is a Jacobson ring: each prime ideal is the
intersection of the maximal ideals which contain it.

For some examples of K-algebras we can list all the prime ideals explicitly, but in
general the set of points of Spec(R) is very complicated. Thus we usually understand the
non-closed points of Spec(R) via the corresponding irreducible closed subsets of mSpec(R).

We next turn to several fundamental examples which are not finitely generated K-
algebras.

Example 8.1.11. Spec(Z) contains one closed point for each prime p > 0 and one generic
point corresponding to the prime ideal 0. Note the close similarity between Spec(Z) and
Spec(K[x]) for a field K. The main difference is that the residue fields for closed points
of the latter are all finite extensions of K while the residue fields for closed points of the
former all have different characteristics.

More generally, if OK is the ring of integers in a number field then Spec(OK) will be
a Dedekind domain so that every prime ideal besides 0 will be maximal. The inclusion
Z → OK defines a map Spec(OK) → Spec(Z) whose fibers are controlled by the splitting
of primes in OK .

Example 8.1.12. The ring Z[x] has three types of prime ideals:

(1) Height 0: the zero ideal.

(2) Height 1: principal ideals generated by either a prime p ∈ Z or by a polynomial f
that is irreducible (and whose coefficients are relatively prime).
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(3) Height 2: maximal ideals of the form (p, f) where f is a polynomial that is irreducible
mod p.

It may be helpful to see a geometric description of this ring. The inclusion f ] : Z → Z[x]
induces a morphism f : Spec(Z[x]) → Spec(Z). The fiber over a closed point (p) is
Spec(Z[x] ⊗Z Z/(p)) ∼= A1

Fp . The fiber over the generic point 0 is Spec(Z[x] ⊗Z Q) ∼= A1
Q.

In this way it is fair to think of Spec(Z[x]) as “A1 over the ring Z”.

The previous example motivates the following definition.

Definition 8.1.13. Let R be any ring. We define AnR to be Spec(R[x1, . . . , xn]). Note
that AnR comes equipped with a “structure morphism” AnR → Spec(R). The fiber of the
structure map over a point p ∈ Spec(R) is isomorphic to Anκ(p).

Warning 8.1.14. Suppose K is a field. We will frequently use the geometric notation
(a1, . . . , an) to denote the closed point in AnK which is more precisely identified as the
maximal ideal (x1 − a1, . . . , xn − an). Unfortunately this notation has the potential to
cause a mild confusion: the origin (0, . . . , 0) is a closed point of AnK which is not the same
as the generic point (0) of AnK.

Example 8.1.15. Let R be a finitely generated K-algebra and let p be a prime ideal. The
local ring Rp is usually not finitely generated over K. There will be a bijection between
points of Spec(Rp) and points of Spec(R) which contain p in their closure.

The localization map defines an injection f : Spec(Rp) → Spec(R) whose image is
the intersection of all the open sets in Spec(R) containing p. (Note that the image does
not actually contain any open subset of Spec(R).) As we discussed in Section 1.8.3, we
should think of Rp as capturing the behavior of “arbitrarily small” open neighborhoods of
p without actually identifying a specific example.

Example 8.1.16. Let Z be a DVR. Then Spec(Z) has two points: a closed point m and
a generic point 0. A key example is the local ring OC,p of a curve C at a smooth point
p. As discussed above, in this case we can think of the generic point 0 as identifying an
“arbitrarily small” open neighborhood the closed point p in C.

More generally, recall that an integral domain R is called a valuation ring if for every
element f in the fraction field we have either f ∈ R or f−1 ∈ R. The key property of
valuation rings is that their ideals are totally ordered by inclusion. In particular, every
valuation ring has a unique maximal ideal m.

Loosely speaking, valuation rings play the role of “small open neighborhoods” of curves
in topology. From this perspective, a morphism f : Spec(R)→ X represents a “small piece
of a curve” in X extending off of the point f(m).

Example 8.1.17. Let R be a finitely generated K-algebra and let m be a maximal ideal.
Let R̂m denote the completion of R with respect to m. Then Spec(R̂m) comes equipped
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with a canonical map Spec(R̂m)→ Spec(R). This is close to – but not quite the same as –
the “formal neighborhood” of m, a ringed space (which is not a scheme!) defined by taking
a completion of the structure sheaf. (In the current example, the “formal neighborhood”
of m is just a single topological point equipped with the sheaf of rings R̂m.)

The formal neighborhood of a point is the algebro-geometric equivalent of looking at
a limit of small open neighborhoods in the Euclidean topology. For example, the formal
neighborhood of the origin in An is equipped with the ring K[[x1, . . . , xn]]. This ring is
also the set of germs at the origin of holomorphic functions on Cn. Although there are
many more holomorphic functions on Cn then there are algebraic functions on AnC, when
we pass to a formal local neighborhood the induced rings of functions in the two settings
now coincide!

Sometimes geometric theorems which do not hold for Zariski open sets will have ana-
logues for formal neighborhoods (e.g. the inverse function theorem). However we will not
study formal neighborhoods in any depth.

8.1.3 Structure sheaf

We will define the structure sheaf on Spec(R) in a way that is exactly analogous to our
definition for mSpec(R). The crucial property is that the behavior of functions on open
subsets is determined by localization. Intuitively, we would like to define the functions on
an open set U simply by inverting all functions f which do not vanish at any point of U .
However, this is not quite correct; the right definition is:

Definition 8.1.18. Let R be a ring. For every open subset U ∈ Spec(R), define Õ(U) to
be the localization of R along all functions f such that V (f)∩U = ∅. The restriction maps
ρ̃U,V are determined by the universal property of localization. This defines a presheaf of
abelian groups on Spec(R).

The structure sheaf OSpec(R) is the sheafification of this presheaf Õ. Note that for every
open set U the set OSpec(R)(U) naturally carries the structure of a ring.

A distinguished open affine subset of Spec(R) is an open set of the form Df :=
Spec(R)\V (f) for some element f ∈ R. It is easy to show that such subsets form a
base of the topology of Spec(R). They are also the open subsets for which it is easy to
compute the structure sheaf:

Proposition 8.1.19. For any f ∈ R we have OSpec(R)(Df ) ∼= Rf .

Proof. We first claim that for the presheaf Õ we have Õ(Df ) ∼= Rf . Indeed, if g ∈ R is a

function such that V (g) ⊂ V (f) then g is already a unit in Rf so the map Rf → Õ(Df )
induced by the universal property of localization is an isomorphism.

An element of OSpec(R)(Df ) is obtained by fixing an open cover {Vi} of Df and choosing

elements gi ∈ Õ(Vi) whose restrictions to intersections agree. By refining the open cover
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we may suppose that each Vi is itself a distinguished open affine in Spec(R). The desired
statement then follows from the localization exact sequence of Proposition 1.11.4 applied
to Rf .

We also have:

Proposition 8.1.20. For any point p ∈ Spec(R) the stalk of the structure sheaf at p is
OSpec(R),p = Rp.

Proof. Since distinguished open affines are cofinal in the direct limit defining the stalk, it
suffices to check that

Rp = lim−→
f 6∈p

Rf

which can be proved by comparing the universal properties of both sides.

Example 8.1.21. Suppose that R is a finitely generated K-algebra. Then the struc-
ture sheaf on mSpec(R) is simply the restriction of the structure sheaf on Spec(R). In
other words, one can recover the topology and structure sheaf on Spec(R) entirely from
mSpec(R).

From now on we will replace work exclusively with Spec instead of mSpec. For example,
we define AnK = Spec(K[x1, . . . , xn]). We can be confident that these new constructions
will behave in exactly the same way as the old ones; however, it will often be convenient
theoretically to have access to the new non-closed points.

Finally, we discuss how morphisms of spectra interact with the structure sheaf. The
key point is:

A morphism f : Spec(R) → Spec(S) induces a map of sheaves f ] : OSpec(S) →
f∗OSpec(R).

Recall that a morphism f : Spec(R) → Spec(S) is simply a ring homomorphism f ] :
S → R. Suppose we fix an open subset U ⊂ Spec(S). Note that a function g ∈ S will
satisfy V (g) ∩ U = ∅ if and only if V (f ](g)) ∩ f−1U = ∅. Thus the universal property
of localization induces a ring map ÕSpec(S)(U) → ÕSpec(R)(f

−1U). Varying U , we obtain

a map of presheaves ÕSpec(S) → f∗ÕSpec(R). By Exercise 7.2.5 the universal property of

sheafification yields a map f ] : OSpec(S) → f∗OSpec(R).

Even though the sheaf map is completely determined by the original ring map via
localization, we still consider the sheaf map to be “part of the data” of the morphism
f : Spec(R)→ Spec(S).
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8.1.4 Exercises

Exercise 8.1.22. Consider the nodal cubic X = V (y2 − x3 − x2) in A2
K. Show that every

open subset of X is irreducible.
Consider now the completion of K[x, y] along the ideal (x, y). The equation y2−x3−x2

defines a closed subset of the corresponding affine scheme. Show that that this closed set
has two irreducible components corresponding to the two “Euclidean local” branches of
the curve at the node. (Hint: what is the Taylor series for

√
x2 + x3?)

Exercise 8.1.23. Suppose that f : Spec(R)→ Spec(S) is the morphism associated to the
ring map f ] : S → R. Given a point p ∈ S, we define the scheme-theoretic fiber of f over
p to be V ((f(p))). Prove that the set-theoretic fiber of f over p is the same as the set
underlying the scheme-theoretic fiber.

Exercise 8.1.24. Consider the ring R = K[w, x, y, z]/(wy,wz, xy, xz). Geometrically
Spec(R) represents the union of two copies of A2

K meeting at the origin. Let U ⊂ Spec(R)
be the complement of the origin.

Prove that OSpec(R)(U) is not the same as the localization of R along all the functions
which vanish along the origin. (Hint: consider the function which is identically 1 on one
component of U and identically 0 on the other.) This explains why we must include a
sheafification when defining the structure sheaf.

Exercise 8.1.25. Consider the morphism f : Spec(Z[i])→ Spec(Z) induced by the inclu-
sion Z ↪→ Z[i]. What is the fiber of f over a point of Spec(Z)?

Exercise 8.1.26. Consider the equation y2 = x3 + 1. Discuss and contrast the vanishing
locus of this equation:

(1) In C[x, y].

(2) In Q[x, y].

(3) In Fp[x, y] where p = 2, p = 3, or p ≥ 5.

(4) In Z[x, y].

Hypothesize why it makes sense to say that the vanishing locus y2 = x3 + 1 is “an elliptic
curve defined over Z[1

6 ].”
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8.2 Schemes

We will define a scheme to be a topological space X equipped with a sheaf of rings OX
such that X is “locally isomorphic” to the spectrum of a ring. Before we can make such a
definition, we need to specify what “isomorphic” means for such spaces.

Definition 8.2.1. A ringed space is a topological space X equipped with a sheaf of rings
OX . We say that X is a locally ringed space if for every x ∈ X the stalk OX,x is a local
ring.

A morphism of locally ringed spaces consists of a continuous map f : X → Y and a
morphism of sheaves f ] : OY → f∗OX such that for every x ∈ X the induced morphism on
stalks f ]x : OY,f(x) → OX,x is a local homomorphism of local rings. (That is, the f ]-image
of the maximal ideal in OY,f(x) should be the maximal ideal in OX,x.)

Here the map of sheaves f ] represents the “pullback map” which associates to any
function on Y the induced map on X obtained by composition with f .

Remark 8.2.2. It may feel more natural for the “pullback map” to be written as a
map f−1OY → OX instead of a map OY → f∗OX . (Of course by adjunction the data
represented by these two possible representations are completely equivalent.) One reason
we prefer the latter is because for any open set V ⊂ Y the ring f∗OX(V ) is naturally a
OY (V )-module, whereas the opposite statement is not true. Thus the map OY → f∗OX
fits more naturally into the theory of sheaves of modules which we will soon develop.

The “local homomorphism” requirement in Definition 8.2.1 is at first glance a bit ob-
scure. In the setting of algebraic geometry, this requirement ensures that the topological
map f and the sheaf map f ] are “compatible” in the sense that the pullback of the functions
vanishing at f(x) will be functions which vanish at x. This guarantees that the continuous
function f is “induced locally” by the ring maps f ]. (We discussed this issue at length in
the setting of quasiaffine K-schemes in Section 1.12.)

Definition 8.2.3. An affine scheme is a locally ringed space which is isomorphic (as a
locally ringed space) to the spectrum of a ring. A scheme is a locally ringed space such
that every point x ∈ X admits an open neighborhood which is an affine scheme.

A morphism of schemes is a morphism of locally ringed spaces. We let Sch denote the
category of schemes.

Right away we should settle a potential conflict of notation with the previous section.

Theorem 8.2.4. Let X = Spec(R) and Y = Spec(S) be affine schemes. There is a bijec-
tion between the set of scheme morphisms f : X → Y and the set of ring homomorphisms
f ] : S → R.

This bijection assigns to any morphism f the map f ] : OY (Y ) → OX(X) and to any
ring map f ] the morphism f : X → Y described in the previous section. The proof is
essentially the same as the proof of Proposition 1.12.8.
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8.2.1 Gluing schemes

Our first task is to find a way to construct schemes that are not simply the spectrum of a
ring. The following construction gives a very general and very useful method for creating
new schemes.

Theorem 8.2.5. Let {Xi}i∈I be a collection of schemes. Suppose that:

• for every pair of indices i, j we have an open subscheme Xij ⊂ Xi where Xii = X.

• for every pair of indices i, j we have an isomorphism fij : Xij → Xji where fii = idX .

satisfying the cocycle condition

• fij(Xik ∩Xij) ⊂ Xjk, and

• fik|Xij∩Xik = fjk|Xji∩Xjk ◦ fij |Xij∩Xik .

Then there is a scheme X (unique up to unique isomorphism) equipped with open sets Ui
such that each Ui is isomorphic to Xi and Ui ∩ Uj is isomorphic to Xij.

Note that the “cocycle condition” shows up again in this new setting.

Proof. We let X denote the quotient of tXi by the equivalence relation x ∼ fij(x) for
every i, j. (The cocycle condition guarantees that this is an equivalence relation.) Note
that for every index i there is a natural inclusion Xi ↪→ X which is a homeomorphism
onto an open subset. We can then apply Corollary 7.6.3 to glue the structure sheaves OXi
to obtain a sheaf of rings O. Since the locally ringed space (X,O) is locally isomorphic
around any point to one of the Xi, it is a scheme.

We can also naturally define morphisms of schemes via gluing; see Exercise 8.2.20. Here
are some examples of the gluing construction in action.

Example 8.2.6. Suppose that A1, A2 are both isomorphic to A1
K and that U1, U2 are the

complements of the origin in the two affine lines. The identity map on this open set induces
an isomorphism f12 : U1 → U2. By Theorem 8.2.5 we can glue the two affine lines along
f12 to obtain a scheme X.

This scheme will look like a copy of the affine line with the origin “doubled”. In
other words, there are two origins 01, 02 coming from the two affine lines. Any open
neighborhood of 01 will intersect every open neighborhood of 02; nevertheless there are
open sets containing 01 but not 02 and vice versa. Exercise 8.2.16 asks you to show that
X is not an affine scheme.

Example 8.2.7. Suppose that A1, A2 are both isomorphic to A1
K and that U1, U2 are the

complements of the origin in the two affine lines. Note that the complement of the origin
has a non-trivial isomorphism defined by the ring map x 7→ x−1. Let f12 : U1 → U2 denote
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this inversion map. According to Theorem 8.2.5 we can glue the two affine lines along f12

to obtain a scheme. The scheme obtained in this way is isomorphic to P1
K; the inversion

used in the gluing map f12 matches with the inversion identifying the coordinate ring K[ yx ]
on D+,x with the coordinate ring K[xy ] on D+,y.

8.2.2 Proj construction

The Proj construction associates a scheme to a Z≥0-graded algebra R. The topology
and functions of this scheme are determined by the structure of the graded ideals in R.
Alternatively, one can view the Proj construction as a special case of Theorem 8.2.5 which
glues affine schemes via the graded localizations of R.

Construction 8.2.8. Let R be a Z≥0-graded ring. We define Proj(R) to be the set of
prime homogeneous ideals which do not contain R>0. Given a homogeneous ideal I, we set
V+(I) to be the set of prime homogeneous ideals which contain I. These form the closed
sets in a topology on Proj(R).

A distinguished open affine in Proj(R) is an open set of the formD+,f = Proj(R)\V+(f).
One can show that D+,f is homeomorphic to Spec((Rf )0) using the familiar construction

p ⊂ R oo localization // pf ⊂ RfOO

intersection

��
pf ∩ (Rf )0 ⊂ (Rf )0.

The proof that this is a homeomorphism is identical to the special case discussed in Propo-
sition 2.3.8

To define the structure sheaf OProj(R), we glue together the structure sheaves of the
various distinguished open affines Spec((Rf )0) using Corollary 7.6.3. (Alternatively, we
could directly glue the schemes Spec((Rf )0) together along their common intersections
using Theorem 8.2.5.)

The scheme Proj(R) always comes equipped with a map Proj(R) → Spec(R0). This
map can be defined by gluing the maps of distinguished open affines in Proj(R) corre-
sponding to the maps of rings R0 → (Rf )0 using Exercise 8.2.20.

Definition 8.2.9. For any ring R0, we define PnR0
to be Proj(R0[x0, . . . , xn]). This scheme

is equipped with a structure map PnR0
→ Spec(R0); the fiber over a point p ∈ Spec(R0) is

Pnκ(p).

When R is a finitely generated graded K-algebra this construction behaves exactly the
same as the familiar mProj construction.
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Example 8.2.10. Let R be a finitely generated Z≥0-graded K-algebra. Then the points
of mProj(R) are in bijection with the closed points of Proj(R). More generally, there is a
bijection

{points of Proj(R)} ↔
{

irreducible closed
subsets of mProj(R)

}
.

As we discussed in Example 8.1.10, all the information about the topology of Proj(R) is
captured by mProj(R). Furthermore, as with affine schemes the restriction of the structure
sheaf on Proj(R) yields the structure sheaf on mProj(R). From now on we will replace our
mProj construction by the Proj construction.

For rings that are not K-algebras one must be a little careful – our intuition concerning
vector spaces can lead us astray.

Example 8.2.11. Consider P1
Z = Proj(Z[x, y]). By analogy with projective space over a

field, we might expect the closed points to look like ordered pairs of integers (a : b) up to
equivalence by rescaling. It turns out that such pairs are in bijection with the morphisms
Spec(Z)→ P1

Z; however, the closed points of P1
Z will look quite different.

The best way to think about P1
Z is using the structure morphism P1

Z → Spec(Z). The
fiber over a closed point (p) will be isomorphic to P1

Fp and the fiber over the generic point

(0) will be P1
Q. Note that any closed point of P1

Z will be contained in a fiber of the first
type and thus such points can be identified by choosing a prime p and a closed point in
P1
Fp .

8.2.3 Relative schemes

Definition 8.2.12. Fix a scheme S. Then an S-scheme (or equivalently a scheme over
S) is a scheme X equipped with a “structure morphism” pX : X → S. A morphism of
S-schemes is a commuting diagram

X
f //

pX ��

Y

pY��
S

The category of S-schemes will be denoted by Sch/S.

Many geometric constructions are best understood in a relative category rather than
the category of all schemes. We have seen a couple examples of this principle in action
already:

Example 8.2.13. Every quasiprojective K-scheme comes equipped with a morphism X →
Spec(K). Furthermore the K-morphisms of quasiprojective K-schemes f : X → Y are
exactly the same as the morphisms in the category of K-schemes. (Indeed, requiring that
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f locally be defined by a K-algebra homomorphism is the same as insisting that f form a
commuting diagram with the structural morphisms to Spec(K).)

Example 8.2.14. Let R be a Z≥0-graded ring. As discussed in Section 8.2.2 we have a
structural morphism Proj(R)→ Spec(R0). The most natural setting for the Proj construc-
tion is the category Sch/ Spec(R0).

8.2.4 Scheme valued points

Definition 8.2.15. Let X be a scheme. For any other scheme Z a Z-valued point of X is
defined to be a morphism Z → X. The set of all Z-points of X is denoted by X(Z).

When X is an S-scheme, we usually insist that Z → X be a morphism in the category
Sch/S.

Scheme-valued points can be used to build up a systematic “categorical” perspective of
X. In many ways the notion of scheme-theoretic points is more natural than the notion of
topological points. For example, the set of Spec(K)-valued points of X will usually exhibit
better behavior than the set of points in X which have fixed residue field K (as we saw in
Exercise 1.5.11).

8.2.5 Exercises

Exercise 8.2.16. Let X be the affine line with a doubled origin constructed in Example
8.2.6. Compute OX(X) and conclude that X is not an affine scheme.

Exercise 8.2.17. Let X be a scheme. Recall that a point ξ ∈ X is a generic point if its
closure is all of X.

(1) Prove that if X has a generic point then it is topologically irreducible.

(2) Prove that if X has a generic point ξ then every open affine U in S contains ξ.

(3) Prove that if X has a generic point ξ then ξ is the only generic point.

Exercise 8.2.18. Let X be a scheme, U ⊂ X an open set, and f ∈ OX(U). We define the
vanishing locus of f , denoted by V (f), to be the set of points x ∈ U such that ρU,x(f) ∈ mx.

(1) Prove that V (f) is a closed subset of U .

(2) Let U ′ denote the complement of V (f) in U . Prove that ρU,U ′(f) has an inverse in
OX(U ′).

(We have seen both these properties before in the special case when U is affine.)
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Exercise 8.2.19. Prove carefully the claim implicit in Example 8.2.11: if R is a PID
then the R-points of the R-scheme P1

R (or in other words, sections of the structure map
P1
R → Spec(R)) are in bijection with

R2\(0, 0)
/

(a, b) ∼ (ra, rb) ∀r 6= 0

You may prefer the equivalent description that the R-points of P1
R are the pairs of coprime

elements (r1, r2) up to rescaling by R×.

Exercise 8.2.20. Let X be a scheme. Suppose that {Ui} is an open cover of X by
schemes and for each i we have a morphism fi : Ui → Y . Suppose furthermore that
fi|Ui∩Uj = fj |Ui∩Uj for all i, j. Prove that there is a morphism f : X → Y such that
f |Ui = fi for all i.
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8.3 First properties of schemes

8.3.1 Local properties

We first develop a systematic way of passing a ring-theoretic property P to the category of
schemes. As in Section 2.5, the necessary ingredient is that P should be compatible with
localization in some way. We discuss two types of “local properties” for ring.

We say that a ring property P is stalk-local when P holds for a ring R if and only if
it holds for every localization Rp at a prime ideal p. The following theorem (whose proof
is immediate) shows that stalk-local properties can naturally be extended to arbitrary
schemes.

Theorem 8.3.1. Let P be a stalk-local property of rings. Then for any scheme X the
following are equivalent:

(1) X admits an open cover by affine open subsets U satisfying P .

(2) For every x ∈ X the stalk OX,x satisfies P .

(3) Every open affine U in X satisfies P .

In these cases we say that X satisfies P .

Some examples of stalk-local properties are:

• Reducedness, i.e. the property Nil(R) = 0.

• Normality, i.e. the property that the localization of R along every prime ideal is an
integrally closed domain.

(The property of being an integrally closed domain is almost stalk-local – if we assume
R is a domain, then we can check the integral closure property on stalks.)

• Regularity, i.e. the property that the localization of R along every prime ideal is
regular.

We say that a scheme is reduced, normal, or regular if all of its local rings satisfy the
corresponding property.

Just as with quasiprojective K-schemes, the schemes which are irreducible and reduced
play a special role in the theory. (We will reserve the terminology “variety” for schemes
defined over a field.)

Definition 8.3.2. A scheme X is integral if it is reduced and topologically irreducible.

Exercise 8.3.3. Show that X is integral if and only if for every open affine U ⊂ X the
section ring OX(U) is a domain.
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We say that a ring property P is local if

• whenever R satisfies P then the localization Rf at an element f ∈ R also satisfies P ,
and

• if {fi} generate the unit ideal in R and Rfi satisfies P for every i then R satisfies P .

Note that every stalk-local property is also local, but the converse is not true. The property
“R is Noetherian” is an important example of a local property that is not stalk-local. The
key tool for working with local properties is:

Lemma 8.3.4 (Nike’s lemma). Let X be a scheme. Suppose that U and V are open affines
in X. Then U ∩V admits a cover by open sets which are simultaneously distinguished open
affines in both U and V .

Proof. The argument for Lemma 2.5.2 works equally well in this more general setting.

Using Nike’s Lemma, one easily deduces:

Theorem 8.3.5. Let P be a local property of rings. Then for any scheme X the following
are equivalent:

(1) X admits an open cover by affine open subsets U satisfying P .

(2) Every open affine U in X satisfies P .

In the setting of Theorem 8.3.5 we will usually say that X is “locally P”.

8.3.2 Morphisms to affine schemes

The following result is absolutely essential for understanding the category of schemes.

Theorem 8.3.6. Let X = Spec(R) be an affine scheme. For any scheme Y , there is a
bijection between morphisms Y → X and ring homomorphisms R→ OY (Y ).

Proof. Suppose we choose an open cover of Y consisting of open affines {Vi}. We have a
diagram

Hom(Y,X) //

ρ1

��

Hom(R,OY (Y ))

ρ2

��∏
i Hom(Vi, X) //

∏
i Hom(R,OY (Vi)).

The two vertical maps are injective and by Theorem 8.2.4 the map along the bottom is a
bijection. It only remains to check that the images of the two vertical maps are identified by
this bijection. In other words, we must check that the gluing data for obtaining a morphism
Y → X from a set of morphisms Vi → X is the same as the gluing data for constructing
a morphism f ](Y ) : R → OY (Y ) from morphisms f ](Vi) : R → OY (Vi) using the gluing
property for sheaves. This argument is explained in the proof of Theorem 2.4.8.
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8.3.3 Open and closed embeddings

It turns out that any open or a closed subset of a scheme can be given the structure of a
scheme. In this section we begin discussing these important constructions.

Definition 8.3.7. A morphism f : X → Y is an open embedding if f takes X homeomor-
phically onto an open subset U of Y and the map f ] : OY → f∗OX induces an isomorphism
between OY |U and OX .

An open subscheme is an open embedding such that f is a set-theoretic inclusion.

It is clear that any open subset of a scheme can naturally be equipped with the structure
of an open subscheme in a unique way.

We next turn to closed embeddings. The first step is the following proposition:

Proposition 8.3.8. Let f : X → Y be a morphism of schemes. The following are equiva-
lent:

(1) f takes X homeomorphically onto a closed subset Z of Y and the map f ] : OY →
f∗OX is surjective.

(2) For every open affine V ⊂ Y , the preimage f−1(V ) is affine and the induced map
f ](V ) : OY (V )→ OX(f−1V ) is surjective.

(3) Y admits an open cover by open affines V satisfying that the induced map f ](V ) :
OY (V )→ OX(f−1V ) is surjective.

Although we could give the proof now, it will be much easier once we have developed
more machinery. Thus we take this theorem for granted for now and postpone the proof
until Lemma 9.3.11; the dedicated reader can check that we do not introduce any circular
arguments in this way. (Note that the implications (2) =⇒ (3) =⇒ (1) are immediate,
so the only missing step is (1) =⇒ (2).)

Definition 8.3.9. A morphism f : X → Y is a closed embedding if it satisfies the three
equivalent definitions of Proposition 8.3.8.

A closed subscheme is a closed embedding such that f is a set-theoretic inclusion.

Exercise 8.3.10. Prove that a closed subscheme of an affine scheme is affine.

Closed embeddings are significantly more subtle than open embeddings. For example,
it is not immediately clear that a closed subset of a scheme will admit the structure of a
closed subscheme. The following construction identifies the most useful tool for working
with closed embeddings.

Definition 8.3.11. Let X be a scheme. A quasicoherent ideal sheaf I is a subsheaf of OX
such that:
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(1) for every open affine U ⊂ X we have that I(U) is an ideal in OX(U),

(2) for every open affine U and every f ∈ OX(U) we have the localization formula
I(Df ) = I(U)f .

It turns out the data of a closed subscheme X ⊂ Y is equivalent to the data of a quasico-
herent ideal sheaf on Y . The following exercise shows how to construct a closed subscheme
from a quasicoherent ideal sheaf; we will postpone the construction of a quasicoherent ideal
sheaf from a closed subscheme to Theorem 9.3.12.

Exercise 8.3.12. Suppose that I is a quasicoherent ideal sheaf on a scheme Y . Prove
that there is a closed subscheme f : X → Y such that I is the kernel of f ]. (Hint: for
every open affine U in Y construct a closed subscheme V (I(U)) of U . Show that these
closed subschemes can be glued to yield a scheme X.)

8.3.4 Exercises

Exercise 8.3.13. Prove that open and closed embeddings are examples of monomorphisms
in the category of schemes.

Exercise 8.3.14. Let X be a scheme. Given any affine open subset U ⊂ X, we can
consider the ideal of nilpotents N(U) ⊂ OX(U). Show that these ideals together form a
quasicoherent ideal sheaf N ⊂ OX .

The corresponding closed subscheme is known as the reduced subscheme Xred ⊂ X.
Prove that the inclusion is a homeomorphism.

(Warning: it is not true that on every open subset U the ideal N (U) is the set of
nilpotents in OX(U). Consider for example X =

∐
n∈N Spec(K[x]/(xn)).)

Exercise 8.3.15. Let f : X → Y be a morphism of schemes. Suppose that I is a
quasicoherent ideal sheaf on Y . Give an example showing that f−1I need not admit an
injection into OX (and thus cannot necessarily be considered as a quasicoherent ideal sheaf
on X).

The inverse image ideal sheaf f−1I · OX is the image of f−1I under the natural map
f−1OY → OX . (Conceptually, the inverse image ideal sheaf is obtained by “pulling back
the functions in I.) Prove that the inverse image ideal sheaf is a quasicoherent ideal sheaf.

Exercise 8.3.16. Let X be an integral scheme.

(1) Show that X is normal if and only if for every open affine U the ring OX(U) is
integrally closed in its fraction field.

(2) Construct a normalization map ν : Xν → X from a normal scheme Xν in the
following way: for every open affine U in X let Ũ be the scheme defined by the
integral closure of OX(U) in its fraction field. Show that as we vary U the affine
schemes Ũ can be glued together to give ν.
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(3) Prove that the morphism ν : X̃ → X has the following universal property: for every
normal integral scheme Y and any dominant morphism f : Y → X there is a unique
factoring of f through ν.
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8.4 Category of schemes

In this section we work through some basic properties of the category of (relative) schemes.
By far the most important property is the existence of relative products.

8.4.1 Initial and final objects

Let X be a scheme. Theorem 8.3.6 show that there is a bijection between morphisms
f : X → Z and ring maps Z → OX(X). Since Z is an initial object in the category of
rings, we conclude that Spec(Z) is a final object in the category Sch.

As in other geometric categories, the empty set Spec(0) is an initial object in Sch.

8.4.2 Products

It turns out that (relative) products of schemes exist in full generality. We achieve this
construction via the following steps:

(1) We first construct products for morphisms of affine schemes. Given morphisms f :
Spec(R)→ Spec(T ), g : Spec(S)→ Spec(T ) of affine schemes, Theorem 8.3.6 shows
that Spec(R ⊗T S) satisfies the right universal property to be identified with the
relative product Spec(R)×Spec(T ) Spec(S) in Sch.

(2) Let X, Y , Z be schemes equipped with morphisms f : X → Z, g : Y → Z. Let
{Ui} be an open cover of X. Suppose that we can construct each product Ui ×Z Y
in the category of schemes. Then we can also construct X ×Z Y as follows. Using
the universal property of products as in Lemma 2.9.1 we see that the preimage
of Ui ∩ Uj in Ui ×Z Y is isomorphic to (Ui ∩ Uj) ×Z Y . Thus the preimage of
Ui ∩ Uj in Ui ×Z Y is canonically isomorphic to its preimage in Uj ×Z Y . Applying
Theorem 8.2.5 we can glue the various Ui ×Z Y along these open subsets with these
canonical identifications. The resulting scheme P is equipped with two natural maps
π1 : P → X and π2 : P → Y . Arguing as in Lemma 2.9.3 we see that P satisfies the
universal property of X ×Z Y .

(3) Combining the previous two steps, we can construct all relative products X×Spec(T )Y
over an affine scheme. Arguing as in Lemma 2.9.4 we can leverage this case to
construct arbitrary relative products X ×Z Y .

Given any scheme Y we define AnY := AnZ ×Spec(Z) Y and PnY := PnZ ×Spec(Z) Y . The
following exercise verifies that there is no conflict with our earlier notation.

Exercise 8.4.1. Let A be any ring. Prove that PnA ∼= PnZ ×Spec(Z) Spec(A).

The commuting square obtained from the relative product is often referred to as “base
change” or as a “Cartesian diagram”. Many fundamental constructions for schemes are
best formalized using the product construction.
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Construction 8.4.2. Let f : X → Y be a morphism of schemes. For any morphism
i : Z → X, the fiber of f over Z is the base change X ×Y Z. We are usually interested in
the case when i is a closed or open embedding. In particular, given a point y ∈ Y the fiber
over y is often denoted by Xy.

Note an important consequence: fibers are “preserved” by base change. That is, sup-
pose we have a morphism f : X → Y and a morphism g : Z → Y . Then the fiber of
X ×Y Z → Z over a point z is isomorphic to the fiber of f over g(z).

Construction 8.4.3. Let i : Y → X and j : Z → X be open or closed embeddings. The
intersection of Y and Z is Y ×X Z.

Construction 8.4.4. Let f : X → Z be a morphism of schemes. The diagonal of f is the
morphism ∆X/Z : X → X ×Z X defined by the identity morphisms to both factors. We
also sometimes use ∆X/Z to denote the set-theoretic image of the diagonal morphism.

Construction 8.4.5. Let f : X → Y be a morphism of S-schemes. The graph of f is the
morphism Γf : X → X ×S Y defined by the identity morphism to the first factor and f
to the second. We also sometimes use Γf to denote the set-theoretic image of the graph
morphism.

It is tempting to think that the diagonal and graph of a morphism will be closed
embeddings, but this need not be true in general. We will return to this issue in the
following sections.

8.4.3 Coproducts

Coproducts exist in the category of schemes; just like in other geometric categories, the
coproduct of two schemes is simply their disjoint union. There is another type of relative
coproduct that frequently occurs in geometric constructions: gluing along isomorphic closed
subschemes. (Note that Theorem 8.2.5 guarantees that we can glue along isomorphic open
subschemes in very general situations.)

Construction 8.4.6. Let X1, X2 be two schemes. Suppose that Z is a scheme admitting
closed embeddings f1 : Z1 → X1 and f2 : Z2 → X2. We construct the gluing X1 tZ X2.

We start by discussing the affine case. If X1, X2 are both affine, then Z is also affine
(being isomorphic to a closed subscheme of an affine scheme). Suppose Xi = Spec(Ri)

for i = 1, 2, that Z = Spec(S), and that fi is defined by f ]i : Ri → S. Then we define
Y := X1 tφ X2 as the Spec of the subring

T := {(r1, r2) ∈ R1 ×R2 | f ]1(r1) = f ]2(r2)}.

Exercise 8.4.7. (1) Show that Spec(T ) has a closed subset isomorphic to Spec(S) whose
complement is isomorphic to (X1\Z) ∪ (X2\Z).
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(2) Show that for any t ∈ T the distinguished open affine Dt is isomorphic to the result
of applying the gluing construction on the distinguished open affines Dπ1(t) ⊂ X1 and
Dπ2(t) ⊂ X2 with respect to the closed subscheme isomorphic to D

f]1(t)=f]2(t)
⊂ Z.

We now describe the general construction. We first construct the topological space Y
by gluing together X1 and X2 over the isomorphism φ; we let Z denote the (closed) locus
of gluing. We next construct the structure sheaf on Y . For every point y, we choose an
affine neighborhood in the obvious way: for points y ∈ X1\Z (resp. X2\Z) we just use
a sufficiently small affine in X1 (resp. X2) and for points y ∈ Z we use the construction
above. Exercise 8.4.7 verifies that the local structure sheaves glue together to give a global
sheaf OY giving Y the structure of a scheme.

Warning 8.4.8. Despite the apparent similarity to Construction 8.4.6, it may not be
possible to glue two isomorphic closed subschemes in a single scheme X. (Rather, such a
construction yields an object in the larger category of algebraic spaces.)

Since arbitrary pullbacks exist in the category of rings, one might dually hope that
arbitrary pushouts exist in the category of schemes. This turns out not to be the case.
The argument below shows that you cannot obtain a scheme by gluing two copies of A1

along the complements of the generic point – the resulting object would not have “enough”
closed points to be a scheme.

Example 8.4.9 ([Bra]). Let X1, X2 be two copies of A1
K and let η ∼= Spec(K(t)) denote

the generic point of A1. We claim that the two inclusion maps i1, i2 : η ⇒ X1 tX2 do not
admit a coequalizer in the category of schemes.

Suppose that there were a morphism f : X1 t X2 → Y that coequalized i1, i2. We
first claim that no two closed points of X1 t X2 map to the same closed point in Y . To
see this, it is enough to see that for any closed points x1 ∈ X1, x2 ∈ X2 there is some
morphism of schemes g : X1 tX2 → Z such that g(x1) 6= g(x2) but g(η1) = g(η2). If x1, x2

represent different points of A1 one can take g : A1 t A1 → A1 to be the identity on each
component; if they represent the same point of A1 one can simply add a translation to one
of the components.

On the other hand, if the coequalizer Y existed then we could find an open affine V ⊂ Y
which contains an open neighborhood of the f -image of the generic points on X1 and X2.
Thus f−1(V ) would contain an open subset U1 ⊂ X1 and an open subset U2 ⊂ X2. Let
W ⊂ U1 ∩ U2 be a distinguished open affine that lies in the intersection of these two open
sets in A1. We denote the copies of W in our two affine lines by W1 ⊂ X1 and W2 ⊂ X2.
Note that by assumption the two maps W1 → V and W2 → V define the same map on the
generic point of the Wi. This implies that they are the same map: since V is affine both
maps are determined by a ring homomorphism OU (U)→ OW (W ), and since the induced
maps on fraction fields are the same the original maps must also coincide. In particular, for
any closed point w ∈ W the corresponding closed points w1 ∈ W1, w2 ∈ W2 are identified
by f . This contradicts the previous paragraph.
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8.4.4 Monomorphisms and epimorphisms

A good starting point is to recall how these two notions behave in the category of com-
mutative rings. A monomorphism of rings is the same as an injective homomorphism.
Epimorphisms of rings are a bit subtle; some examples include surjective homomorphisms
and localization maps. Since scheme morphisms are dual to ring homomorphisms, we can
loosely expect these notions to “flip” when we work with schemes.

Both monomorphisms and epimorphisms of schemes are a bit subtle. In general they
cannot be characterized in the same way as their topological counterparts (see Exercise
8.4.12 and Exercise 8.4.13). However under the right hypotheses we can recover the geo-
metric situation. Here we will give two statements, without proof and using concepts we
have not yet defined, explaining when our geometric intuition is correct.

Theorem 8.4.10 (EGA IV, 17.2.6). Let f : X → Y be a morphism of schemes that is
locally of finite type (see Definition 8.6.14). The following are equivalent:

(1) f is a monomorphism.

(2) The fiber over every point y ∈ Y is either empty or is isomorphic to Spec(κ(y)).

Theorem 8.4.11 (Exercise 8.7.19). Let f : X → Y be a morphism of schemes that are
reduced and separated (see Definition 8.7.1). The following are equivalent:

(1) f is an epimorphism.

(2) The image of f is set-theoretically dense in Y .

8.4.5 Relative schemes

Fix a scheme S. The categorical properties of the category Sch/S are the same as those
of Sch. The identity map id : S → S is the final object in this category. Relative products
exist in Sch/S: one just takes the relative product in the larger category Sch and notes
that there is a unique map from the product to S making all the natural maps to S
commute.

8.4.6 Exercises

Exercise 8.4.12. Show that the normalization of a cuspidal cubic is an injective morphism
that is not a monomorphism.

Exercise 8.4.13. Find an example of a set-theoretically surjective morphism of schemes
which is not an epimorphism.

Exercise 8.4.14. Suppose that L/K is a finite Galois extension of fields. Compute
Spec(L)×Spec(K) Spec(L). Then compute the product Spec(K(x))×Spec(K) Spec(K(y)).
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Exercise 8.4.15. Set X = Y = A1
K and consider the morphism f : X → Y defined by

x 7→ x2. Compute X ×Y X. (Careful: what happens in characteristic 2?)

Exercise 8.4.16. Let X be a scheme over S. Suppose that T → S is any morphism and
write XT := X ×S T . Show that the diagonal maps for X/S and for XT /T are compatible
in the sense that we have a pullback diagram

XT

∆XT /T //

��

XT ×T XT

��
X

∆X/S // X ×S X

Exercise 8.4.17. Suppose we have morphisms of schemes f1 : X1 → T , f2 : X2 → T , and
T → S. Show that the following diagram is a pullback diagram:

X1 ×T X2
(id,id) //

f1◦p1=f2◦p2
��

X1 ×S X2

(f1,f2)
��

T
∆T/S // T ×S T

Exercise 8.4.18. Let S be a scheme. A group scheme over S is an S-scheme ρ : G → S
equipped with morphisms

µ : G×S G→ G e : S → G i : G→ G

such that the maps µ, e, i satisfy the usual axioms for groups: associativity of µ and the
identity and inverse axioms. Note that each of these axioms should be interpreted as the
equality of two maps:

(associativity) µ ◦ (µ× id) = µ ◦ (id× µ) : G×G×G→ G

(identity) µ ◦ (id× e) = proj1 : G×S S → G

µ ◦ (e× id) = proj2 : S ×S G→ G

(inverse) e ◦ ρ = µ ◦ (id× i) ◦∆G/S : G→ G

e ◦ ρ = µ ◦ (i× id) ◦∆G/S : G→ G

Show that the following are examples of group schemes by carefully defining the maps
µ, e, i using explicit ring homomorphisms. (Note that for an affine group scheme the cor-
responding ring homomorphisms should define a “cogroup”.)

(1) The closed points of Ga(C) = Spec(C[x]) are in bijection with C. Show that Ga(C)
carries a group scheme structure corresponding to the usual addition in C.
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(2) The closed points of Gm(C) = Spec(C[x, x−1]) are in bijection with C×. Show that
Gm(C) carries a group scheme structure corresponding to the usual multiplication in
C×.

(3) The closed points of µn(C) = Spec(C[x, x−1])/(xn − 1) are in bijection with the nth
roots of unity in C. Show that µn(C) carries a group scheme structure corresponding
to the group structure on the roots of unity.

(4) Define analogous group schemes Ga(Z), Gm(Z), µn(Z) over the integers. What do
these look like explicitly?
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8.5 Noetherian schemes

The definition of a manifold includes the condition that the space be second countable.
Similarly, in algebraic geometry we usually focus on schemes that are not “too large”.
In this section we discuss several finiteness conditions that ensure that schemes exhibit
nice behavior. There are two types: “finiteness” conditions for the underlying rings and
finiteness conditions for the gluing process.

8.5.1 Quasicompactness

The most important fundamental finiteness condition is the following:

Definition 8.5.1. We say that a scheme X is quasicompact if it is compact in the Zariski
topology.

While it is a bit perverse to introduce new notation that means the same thing as a
familiar definition, this change reminds of the important fact that quasicompactness has
very little to do with the geometric notion of “compactness”. In practice one often uses
the equivalent definition provided by the following exercise.

Exercise 8.5.2. Show that a scheme X is quasicompact if and only if it admits a finite
cover by open affines. (Hint: first show that every affine scheme is quasicompact; see
Exercise 1.3.2.)

Example 8.5.3. Let X = Spec(K[x1, x2, x3, . . .]). Like all affine schemes, X is quasi-
compact. However, the open subscheme U which is the complement of the origin is not
quasicompact. Indeed, the infinite cover ∪i∈NDxi has no finite subcover.

8.5.2 Quasicompact quasiseparated

There is a somewhat technical topological condition that is even better than quasicom-
pactness.

Definition 8.5.4. A scheme X is said to be quasicompact quasiseparated if it admits
a finite open cover {Ui}ki=1 by open affines, and furthermore for each pair of indices the
intersection Ui ∩ Uj is covered by a finite set of open affines.

This definition is vaguely analogous to the notion of “paracompact” in the classical
topology. There is one particular type of argument (see Exercise 8.5.17, Theorem 9.3.8,
Exercise 9.5.28, Exercise 9.3.20) which uses this assumption in an essential way. Due to the
importance of this particular argument we cannot avoid using this definition. However,
since we will only use this notion infrequently as a technical assumption, we will not
systematically develop the theory of schemes of this type.
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8.5.3 Noetherian schemes

Many of the basic features of quasiprojective K-schemes – for example, the decomposition
into irreducible components – relied on the Noetherian property of the underlying rings.
The next definition identifies a property of schemes which allows us to develop a similar
theory.

Definition 8.5.5. We say that a scheme X is locally Noetherian it satisfies the following
equivalent conditions:

(1) X admits an open cover by sets isomorphic to spectra of Noetherian rings

(2) Every open affine in X is isomorphic to the spectrum of a Noetherian ring.

We say that X is Noetherian if it is quasicompact and locally Noetherian.

Note that the equivalence of the two conditions follows from the fact that the property
of being a Noetherian ring is local. Noetherian schemes satisfy several important finiteness
properties that are not shared by every quasicompact scheme.

Exercise 8.5.6. Show that if X is a Noetherian scheme then every open subset of X is
quasicompact. Deduce that every open subset of a Noetherian scheme is quasicompact
quasiseparated.

Exercise 8.5.7. Show that if X is a Noetherian scheme then the topological space under-
lying X is a Noetherian topological space (in the sense of Exercise 1.3.16).

As with any Noetherian topological space, Noetherian schemes admit decompositions
into irreducible closed subsets. In particular we can define the dimension of a Noetherian
scheme using chains of closed irreducible subsets.

Definition 8.5.8. The dimension of a Noetherian scheme is the maximal length r of a
chain

X0 ( X1 ( . . . ( Xr

of irreducible closed subsets of X.

However, when X is not a quasiprojective K-scheme, you must be very careful with the
notion of dimension.

Warning 8.5.9. Although the Noetherian condition guarantees that any particular chain
will have finite length, it may be that the supremum over the lengths of all such chains is
infinite. In other words, an affine scheme defined by a Noetherian ring can have infinite
dimension. The most famous is “Nagata’s example” obtained by localizing a polynomial
ring in infinitely many variables along a carefully chosen multiplicative subset.

Despite this pathology, Noetherian induction works on every Noetherian scheme.
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Warning 8.5.10. In general the vanishing locus of a single equation on a Noetherian
scheme X need not have dimension ≥ dim(X)− 1. In other words, Geometric Krull’s PIT
(Theorem 4.4.3) does not hold for arbitrary Noetherian schemes.

For example, set R = K[x](x)[t]. One can show that dim(Spec(R)) = 2 corresponding
to the chain of prime ideals 0 ⊂ (t) ⊂ (x, t). However, the single equation xt − 1 (which
is neither a unit nor a zero-divisor) defines a closed subscheme of codimension 1 and of
dimension 0 since R/(xt− 1) is a field.

The way around these pathologies is to focus on the notion of codimension. Suppose
thatX is an irreducible Noetherian scheme. We can define the codimension of an irreducible
closed subscheme Y ⊂ X as the maximum length r of a chain of irreducible closed subsets
Y = Z0 ⊂ Z1 ⊂ . . . ⊂ Zr = X. The correct analogues for Noetherian schemes of the results
we proved in Section 4.4 (Krull’s PIT, dimension of fibers) will involve the codimension.

For example, Krull’s PIT shows that the codimension of the vanishing locus of a func-
tion in an irreducible Noetherian scheme will have codimension at most 1. However, the
codimension of Y in X and the dimension of Y may not be “complementary” in the sense
that they no longer need to add up to dim(X), and in such situations Geometric Krull’s
PIT can fail.

8.5.4 Associated points

Let R be a Noetherian ring. A prime ideal in R is said to be an associated prime if it
annihilates some element in R. An associated prime is said to be isolated if it is a minimal
prime in R; otherwise we call it an embedded prime. There will only be a finite set of
associated primes for R and their intersection will be Nil(R).

Definition 8.5.11. Let X be a Noetherian scheme. We say that a point x ∈ X is an
associated point if the maximal ideal mx is an associated prime of the local ring OX,x, or
equivalently, if mx consists entirely of zerodivisors.

If we localize a Noetherian ring R along a multiplicative set S, the associated primes
of S−1R are the associated primes of R which do not intersect S. This means that a prime
ideal p ⊂ R is an associated prime if and only if p is an associated point of Spec(R). In
particular, a point x ∈ X is an associated point if and only if it defines an associated prime
in any affine open containing it.

Exercise 8.5.12. Show that a Noetherian scheme has only finitely many associated points.

We call an associated point x ∈ X an isolated or embedded point depending on whether
mx is isolated or embedded. The behavior of these points is determined by primary de-
composition. In particular:

• There is a bijection between the irreducible components of X and the isolated points
x. Each isolated point is the generic point of some irreducible component of X.
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• The locus of points in X which are not reduced (i.e. such that Nil(OX,x) 6= 0) is the
closure of the non-reduced associated points. Every embedded point is non-reduced
but isolated points may or may not be reduced.

• Given any open subset U ⊂ X and any section f ∈ OX(U), the support of f is the
intersection of U with the closure of a finite set of associated points in U (see Lemma
1.4.8).

• Given any open affine U ⊂ X and any section f ∈ OX(U), f will be a zero divisor if
and only if V (f) contains an associated point of X.

Thus the associated points play an important role in controlling the geometry of a
Noetherian scheme.

8.5.5 Chevalley’s Theorem

Another important result that holds for Noetherian schemes is Chevalley’s Theorem.

Theorem 8.5.13. Let f : X → Y be a finite type morphism of Noetherian schemes. Then
the set-theoretic image f(X) is a constructible subset of Y .

We have seen this result before in the context of quasiprojective K-schemes. The proof
in general is similar:

(1) Using elementary topological arguments, we reduce to showing that f(X) is con-
structible when X,Y are integral and affine and f(X) is dense in Y . In particular f
induces an injection f ] : K(Y )→ K(X).

(2) Applying Noether normalization, we see that the injection f ] : K(Y )→ K(X) is the
composition of a transcendental extension K(Y ) → K(Y )(g1, . . . , gr) followed by a
finite algebraic extension.

(3) Spreading out, we see that there is an open set V ⊂ Y such that over V the morphism
f is the composition of a finite morphism and a projection An×V → V . In particular,
f is surjective over V .

(4) Appeal to Noetherian induction to deduce the constructibility the intersection of the
image of f with Y \V .

8.5.6 Exercises

Exercise 8.5.14. DefineX = Spec(C[x, y1, y2, y3, . . .]/(y
2
1, y

2
2, y

2
3, . . . , (x−1)y1, (x−2)y2, (x−

3)y3, . . .)). Prove that the natural map A1
C → X is a homeomorphism. Prove that the non-

reduced locus of X is a countable union of points, and in particular, is not a closed subset
of X. (This is in contrast to the situation for Noetherian schemes.)
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Exercise 8.5.15. Consider the ring R = K[x1, x2, x3, . . .]/(x1, x
2
2, x

3
3, . . .). Show that

Spec(R) is a Noetherian topological space (in fact it only has one point) even though R is
not a Noetherian ring. Thus, a scheme whose underlying topological space is Noetherian
need not be a Noetherian scheme.

Exercise 8.5.16. An open subscheme i : U → X is said to be scheme-theoretically dense
if the induced map i] : OX → i∗OU is injective.

(1) Prove that if X is reduced then an open subscheme is scheme-theoretically dense if
and only if U is set-theoretically dense.

(2) Prove that ifX is a Noetherian scheme then an open subscheme is scheme-theoretically
dense if and only if U contains every associated point of X.

Exercise 8.5.17. Let X be a scheme and let f ∈ OX(X). Define Xf to be the complement
of the vanishing locus V (f) defined in Exercise 8.2.18. That exercise showed that the
restriction of f to Xf is invertible. When X satisfies some finiteness hypotheses we can
say more.

(1) Suppose that X is quasicompact. Suppose that a ∈ OX(X) is an element whose
restriction to Xf is 0. Prove that for some n > 0 we have fna = 0 in OX(X).

(2) Suppose that X is quasicompact quasiseparated. Let b ∈ OX(Xf ). Show that for
some n > 0 the element fnb is the restriction of an element of OX(X).

(Hint: for each open affine Ui we can find an integer ni such that fnib ∈ O(Ui ∩Xf )
extends to a function gi on Ui. Apply (1) to each open set in the finite cover of
Ui ∩ Uj by open affines to show that if we increase n further we can ensure that the
{gi} agree on overlaps.)

(3) Suppose that X is quasicompact quasiseparated. Then OX(Xf ) = OX(X)f .

Exercise 8.5.18. Suppose that f : X → Y is a morphism of Noetherian schemes inducing
a sheaf map f ] : OY → f∗OX . Show that the kernel of f ] is a quasicoherent ideal sheaf.
(Hint: one strategy is to appeal to Exercise 8.5.17.)

The closed subscheme of Y defined by this ideal sheaf is called the scheme-theoretic
image of f .

Exercise 8.5.19. There is no natural way to define the scheme-theoretic image of a mor-
phism f : X → Y without some finiteness properties. For example, let Y = A1

K and let
X = tn∈NK[x]/(xn). Let f : X → Y be the morphism whose restriction to each component
of X is the inclusion map. Prove that the kernel of f ] does not define the same closed
subset as the set-theoretic closure of f(X).
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8.6 Properties of morphisms

One of Grothendieck’s insights is that many properties of schemes are best understood as
properties of morphisms. (This principle is implicit in Definition 8.2.12.) If P is a property
of schemes, we will often say that a morphism f : X → Y satisfies property P if for every
open affine subset U ⊂ Y the scheme f−1(U) satisfies P .

In this section we will set up a general theory of properties of morphisms. It turns out
that there are three key properties which all “well-behaved” properties of morphisms will
satisfy.

Definition 8.6.1. Suppose that P is a property of morphisms of schemes. We say that

(1) P is preserved under composition, if whenever f : X → Y satisfies P and g : Y → Z
satisfies P then g ◦ f satisfies P .

(2) P is stable under base change, if whenever a morphism f : X → Z satisfies P and
g : Y → Z is any morphism the induced map X ×Z Y → Y satisfies P .

(3) P is local on the target, if the following two properties hold. First, if a morphism
f : X → Y satisfies P then for any open V ⊂ Y the morphism f |f−1V satisfies P .
Second, given a morphism f : X → Y and an open covering {Vi} of Y , if f |f−1Vi

satisfies P for every i then f satisfies P .

Remark 8.6.2. Suppose the property P is stable under base change. This implies that
if a morphism f : X → Y satisfies P then so does f : f−1U → U for any open subset
U ⊂ Y . Thus, if P is a property that is stable under base change then to verify “local on
the target” we just need to verify the second half of Definition 8.6.1.(3). We will often use
this shortcut without further mention.

The most basic examples of well-behaved classes of morphisms are open and closed
embeddings.

Exercise 8.6.3. Prove that open embeddings satisfy the three properties of Definition
8.6.1. (Hint: to show stable under base change, verify that if U → Y is an open embedding
and f : X → Y is any morphism then U ×Y X is isomorphic to f−1U .)

Exercise 8.6.4. Prove that closed embeddings satisfy the three properties of Definition
8.6.1. (Hint: Proposition 8.3.8 shows that closed embeddings are local on the target; this
property will be useful for proving the other two.)

8.6.1 Properties of morphisms arising from the diagonal

We will be particularly interested in properties of morphisms which model topological
properties. Usually a direct translation of a topological property into algebraic geometry is



284 CHAPTER 8. SCHEMES

not so interesting due to the oddities of the Zariski topology. Instead, the best analogue is
obtained by systematically using diagonal morphisms. The following lemma gives a general
framework for constructing “well-behaved” properties of morphisms using the diagonal.

Lemma 8.6.5. Suppose that P is a property of morphisms that is preserved under compo-
sition, stable under base change, and local on the target. Say that a morphism f : X → Y
satisfies property Q if the induced map ∆X/Y : X → X ×Y X satisfies P . Then property
Q is also (1) preserved under composition, (2) stable under base change, and (3) local on
the target.

Proof. (1) Suppose X → T and T → S are morphisms which satisfy Q. By applying
Exercise 8.4.17 with X1 = X2 = X, we obtain a pullback diagram on the right side of the
commuting diagram:

X
∆X/T // X ×T X

g //

��

X ×S X

��
T

∆T/S // T ×S T

By assumption ∆X/S satisfies P ; since P is stable under base change, g also satisfies P .
Since P is closed under composition, we conclude that ∆X/S : X → X ×S X satisfies P .

(2) Suppose that X → S satisfies P and that T → S is any morphism. Set XT :=
X ×S T . By Exercise 8.4.16 we have a pullback diagram

XT

∆XT /T //

��

XT ×T XT

��
X

∆X/S // X ×S X

By assumption ∆X/S satisfies P . Since P is stable under base change, ∆XT /T also satisfies
P .

(3) Let f : X → Y be a morphism of schemes. As in Remark 8.6.2, it suffices to show
that if P holds over the open sets in an open cover of Y then it holds for f . Let {Vi} be an
open cover of Y and suppose that f : f−1Vi → Vi satisfies P for every i. Consider the map
g : X ×Y X → Y . By applying Lemma 2.9.1 twice we see that the preimage of Vi under
this map is isomorphic to f−1Vi ×Vi f−1Vi. Since f satisfies P over each Vi and since by
Exercise 8.4.16 we have (

f−1Vi ×Vi f−1Vi
)
∩∆X/Y

∼= ∆f−1Vi/Vi

we see that the diagonal X → X ×Y X satisfies P over the open set g−1Vi. As we vary i
the sets g−1Vi form an open cover of X ×Y X. Since P is local on the target, we see that
X → X ×Y X satisfies P .
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There is also a useful cancellation theorem for “well-behaved” properties of morphisms.

Proposition 8.6.6. Let P be a property of morphisms of schemes that is closed under
composition and stable under base change. Suppose we have a diagram

X
f //

h ��

Y

g
��

S

such that h : X → S and ∆Y/S : Y → Y ×S Y satisfy P . Then f : X → Y satisfies P .

Proof. Applying Exercise 8.4.17 to the maps f : X → Y , id : Y → Y , and g : Y → S, we
obtain a pullback diagram

X
ΓX/Y //

f
��

X ×S Y

��
Y

∆Y/S // Y ×S Y

Since P is stable under base change, the graph morphism ΓX/Y satisfies P . Similarly, since
h : X → S satisfies P the the projection morphism p2 : X ×S Y → Y obtained by base
change satisfies P . Since P is closed under composition, the composed map f = p2 ◦ΓX/Y :
X → Y satisfies P .

8.6.2 Geometric examples

We end this section by discussing four geometric examples of well-behaved morphisms. We
will only outline the proofs; careful arguments can be found in [Sta15].

Definition 8.6.7. A morphism f : X → Y is quasicompact (resp. quasicompact quasisep-
arated) if the preimage of every open affine V ⊂ Y is quasicompact (resp. quasicompact
quasiseparated).

Exercise 8.6.8. Prove that a morphism of affine schemes is quasicompact quasiseparated.
Thus (just as with the absolute versions) these two notions pertain to the finiteness of the
gluing structure.

Proposition 8.6.9. The quasicompact property and the quasicompact quasiseparated prop-
erty for morphisms are preserved under composition, stable under base change, and local
on the target.

Proof. First we consider quasicompactness. Preserved under composition is easy, and
stable under base change follows quickly from local on the target. To prove local on the
target, we need to show that for an open affine V ⊂ Y the preimage f−1V is quasicompact
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if and only if for any finite set of elements {fi} in OY (V ) which generate the unit ideal
the preimage of each f−1Dfi is quasicompact. The reverse implication is clear, since a
finite union of quasicompact sets is quasicompact. For the forward implication, suppose
f−1V = ∪nj=1Uj is a finite union of open affines. If we set gij = f ](V )(fi|Uj ) then f−1Dfi =
∪nj=1Dgij is also a finite union of open affines, hence quasicompact.

It turns out that the quasiseparated condition is equivalent to requiring that the diago-
nal ∆X/Y : X → X ×Y X is a quasicompact morphism (Exercise 8.6.21). We conclude the
three desired properties of quasicompact quasiseparated morphisms from Lemma 8.6.5.

Definition 8.6.10. We say that a morphism f : X → Y is affine if for every open affine
subset V ⊂ Y the preimage f−1V is also affine.

Proposition 8.6.11. The affineness property for morphisms is preserved under compo-
sition, stable under base change, and local on the target. In fact, if f : X → Y is a
morphism and Y admits an open cover by open affines {Vi} such that f−1(Vi) is affine,
then f is affine.

Proof. Once the last statement is proved, the first statement follows without too much
difficulty. We proved this statement for quasiprojective K-schemes in Lemma 4.1.2, and
the proof in this more general context is similar. There is one important subtlety: in
Lemma 4.1.2 we used the formula OX(U\V (f)) = OX(U)f when U is the preimage of
an open affine in Y . For general schemes this formula only holds under certain finiteness
hypotheses. Under our open cover assumption, Proposition 8.6.9 shows that f is quasi-
compact quasiseparated and thus Exercise 8.5.17 shows that this localization formula is
valid whenever U is the preimage of an open affine V ⊂ Y .

Definition 8.6.12. A morphism f : X → Y is finite if it is affine and furthermore for
every open affine V ⊂ Y we have that f ] : OY (V ) → OX(f−1V ) realizes OX(f−1V ) as a
finitely generated OY (V )-module.

Proposition 8.6.13. Finite morphisms are closed under composition, stable under base
change, and local on the target.

Proof. Since affine morphisms satisfy these three properties, we just need to address the
module structure, and thus the desired properties follow from the algebraic results discussed
in Section 8.0.1.

Definition 8.6.14. A morphism f : X → Y is locally of finite type if for every open
affine V = Spec(S) of Y and every open affine U = Spec(R) contained in f−1(V ) the ring
extension f ] : S → R realizes R as a finitely generated S-algebra. It has finite type if it is
locally of finite type and quasicompact.

We define locally finitely presented and finitely presented in the analogous way.
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Despite the superficial similarity between finite morphisms and morphisms of finite
type, the two types of morphisms play a vastly different role. “Finite type” is often a
standing assumption in geometric settings; for example, every morphism of quasiprojective
K-schemes will have finite type. In contrast finite morphisms have a number of special
geometric and cohomological properties.

Remark 8.6.15. There is a slightly unsettling asymmetry between the definition of finite
and the definition of finite type. For finite morphisms, we needed to assume the morphism
was affine and we considered the map OY (V ) → OX(f−1V ). For finite type morphisms,
we do not need an affineness assumption and we allowed ourselves to take any open affine
U in f−1V and consider the map OY (V )→ OX(U)

The reason for this asymmetry is that finite type morphisms satisfy a stronger lo-
calization property than finite morphisms. Thus we can get away with a weaker set of
assumptions when we define them; see the following proof for more details.

Proposition 8.6.16. Morphisms of finite type (or locally of finite type, or finitely pre-
sented, or locally finitely presented) are closed under composition, stable under base change,
and local on the target.

Proof. The key realization is that the localization result for ring extensions of this type in
Section 8.0.1 is stronger than the localization result for finite homomorphisms. It implies
that morphisms of this type are local on the domain – if we take an open cover {Ui} of
X and every map Ui → Y is locally of finite type, then X → Y is also locally of finite
type. The three properties then follow easily from the algebraic results discussed in Section
8.0.1.

8.6.3 Exercises

Exercise 8.6.17. Let f : X → P2 denote the blow-up of a point. Show that f is not an
affine morphism.

Exercise 8.6.18. Suppose that f : X → Z is a finite morphism. Prove that the fiber of f
over every point of Z is finite.

Exercise 8.6.19. Prove that an open embedding is locally of finite type. Prove that a
closed embedding has finite type.

Exercise 8.6.20. Suppose that f : X → Y is a morphism. Exercise 8.4.17 shows that if
U, V are open subschemes of X then the following diagram is a pullback diagram:

U ×X V //

��

U ×Y V

��
X

∆X/Y // X ×Y X
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Show that the downwards map on the right is an open embedding. Deduce that if U, V are
open sets in X, then the intersection U ∩V is isomorphic to ∆X/Y ∩(U×Y V ). (This result
is most intuitive when f is the map to Spec(Z), where we see that U ∩ V ∼= ∆∩ (U × V ).)

Exercise 8.6.21. Let f : X → Y be a quasicompact morphism. Prove that f is quasi-
compact quasiseparated if and only if ∆X/Y : X → X ×Y X is quasicompact. (Hint: use
Exercise 8.6.20.)

More generally, an arbitrary morphism f is said to be quasiseparated if the diagonal
morphism is quasicompact. We will not use this concept without the quasicompactness
hypothesis.
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8.7 Separatedness

Another basic assumption we impose on manifolds is the Hausdorff condition. In this
section we analyze the analogue of this property in algebraic geometry. As discussed in
Exercise 1.3.1, the Zariski topology on a scheme is almost never Hausdorff. In order to
translate “Hausdorffness” into algebraic geometry, we will rely on an alternative formula-
tion: a topological space X is Hausdorff if and only if the diagonal ∆ ⊂ X ×X is a closed
subset. This definition generalizes well to algebraic geometry.

Definition 8.7.1. Let f : X → Y be a morphism of schemes. We say that f is separated
if the diagonal morphism δ : X → X ×Y X is a closed embedding.

If X is an S-scheme, we say that X is separated over S if the structural morphism
X → S is separated. (When S is not specified, we assume S = Spec(Z) is the final object
in the category of schemes.)

Remark 8.7.2. Note that the algebraic geometric definition of separatedness does not
simply recover the topological notion of Hausdorfness because the product in Sch is not
compatible with the topological product of the underlying topological spaces.

Remark 8.7.3. Note that if a morphism is quasicompact and separated then it is quasi-
compact quasiseparated.

Exercise 8.7.4. Show that every morphism of affine schemes is separated.

Use this property to show for any morphism f : X → Y the set-theoretic image of
∆X/Y is a locally closed subset of X ×Y X (i.e. a closed subset of an open set).

Separatedness has all three of our standard properties for morphisms.

Theorem 8.7.5. Separatedness is preserved by composition, stable under base change, and
local on the target.

Proof. This follows from Lemma 8.6.5 and Exercise 8.6.4.

The next result shows that the separatedness condition is a purely topological condition
on the diagonal.

Proposition 8.7.6. Let f : X → Y be a morphism. Then f is separated if and only if the
set-theoretic image of the diagonal map ∆X/Y is a closed subset of X ×Y X.

Proof. We need to show that if the image of ∆X/Y is closed then ∆X/Y is a homeomorphism

and ∆]
X/Y is surjective. In fact, since the composition of ∆X/Y with the first projection

map π1 : X×Y X → X is the identity map ∆X/Y is always a homeomorphism. To see that

∆]
X/Y : OX×YX → ∆X/Y,∗OX is surjective, it suffices to prove that the map is surjective

in an affine neighborhood of a point in the set-theoretic image of ∆X/Y . For any point
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x ∈ X, we can choose an open affine neighborhood V of f(x) and an open neighborhood
U ⊂ f−1(V ) of x. Then U ×V U is affine and so by Exercise 8.7.4 the restriction of ∆X/Y

to U is a closed embedding. This shows that ∆]
X/Y is surjective locally around the point

∆X/Y (x), finishing the proof.

8.7.1 Examples

We next discuss some basic examples of separated and non-separated morphisms. One
important example is that closed embeddings and open embeddings are separated (see
Exercise 8.7.16).

Example 8.7.7. The “line with a doubled origin” described in Example 8.2.6 is non-
separated. Let’s recall the construction. Let U ⊂ A1

C denote the complement of the origin.
We can define a scheme X by taking two copies of A1

C and identifying the open set U in
each copy using the identity isomorphism. This scheme X will look like A1

C with the origin
“doubled”. In other words, the points of X are (A1\{0}) ∪ {01, 02}.

Let’s check that the structure map X → Spec(K) is not separated. The diagonal in
X ×Spec(K) X will consist of all points of the form {(x, x)|x ∈ X}. However, the closure
will also contain the points (01, 02) and (02, 01) which are not contained in the diagonal.
(Check this claim carefully using affine charts!) Thus the diagonal is not closed.

Example 8.7.8. The diagonal map for projective space ∆Pn : Pn → Pn × Pn will have
closed image. In fact, according to Exercise 3.3.10 the image is the intersection of the Segre
embedding of Pn × Pn with a linear space. (We will reprove this in Proposition 8.7.9.)

By leveraging the argument for projective space, we can show that:

Proposition 8.7.9. Let S be a Z≥0-graded ring that is finitely generated as an S0-algebra.
Then Proj(S) is separated.

Since open embeddings are separated, Proposition 8.7.9 in turn implies that every
quasiprojective K-scheme is separated.

Proof. Exercise 8.7.4 shows that Spec(S0) is separated. Since separatedness is preserved
by composition it suffices to show that the structural morphism Proj(S) → Spec(S0) is
separated. By Exercise 2.7.10 there is some positive integer n such that this morphism
factors as

Proj(S)→ PnS0
→ Spec(S0)

where the first morphism is a closed embedding. The first map is separated by Exercise
8.7.16, thus it suffices to prove that the projection map PnS0

→ Spec(S0) is separated.

We only need to show that the diagonal is a closed subscheme of PnS0
×Spec(S0) PnS0

.
We can cover PnS0

×Spec(S0) PnS0
with affine charts of the form Uij := D+,xi ×Spec(S0) D+,xj .
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The intersection of the diagonal with Uij is isomorphic to D+,xi ∩ D+,xj and the map
∆ ∩ Uij → Uij is given by the surjection of rings

S0[x0xi , . . . ,
xn
xi

]⊗S0 S0[y0yj , . . . ,
yn
yj

]→ S0[ z0zi , . . . ,
zn
zi
, zizj ]

xk
xi
7→ zk

zi
yk
yj
7→ zk

zi
· zizj

In particular, ∆ ∩ Uij is a closed subscheme of Uij . Since closed embeddings are local on
the target, by varying i, j we see that PnS0

is separated.

8.7.2 Properties of separated schemes

We will next prove a couple useful properties of separated schemes.

Proposition 8.7.10. Suppose that f : X → Spec(R) is a separated morphism. Then for
any open affines U, V in X the intersection U ∩ V is also an open affine.

Proof. Exercise 8.6.20 shows that U ∩ V is isomorphic to

(U ×Spec(R) V ) ∩∆X/Spec(R).

Note that U ×Spec(R) V is affine since all three terms are affine. Using the separatedness
assumption we see that (U ×Spec(R) V ) ∩∆ is a closed subscheme of U ×Spec(R) V so that
it is also affine. Thus U ∩ V is affine.

If f, g : X → Y are two continuous maps of topological spaces and Y is Hausdorff,
then the equalizer {x ∈ X|f(x) = g(x)} is closed in X. The following statement gives an
analogue in the setting of algebraic geometry.

Proposition 8.7.11. Suppose that f, g : X → Y are two morphisms of S-schemes such
that Y is separated over S. Suppose there is an open subscheme i : U → X with scheme-
theoretically dense image such that f ◦ i = g ◦ i. Then f = g.

Recall from Exercise 8.5.16 that an open subscheme i : U → X is said to be scheme-
theoretically dense if the map i] : OX → i∗OU is an injection.

Proof. It suffices to prove the statement when X is an affine scheme. The pair of maps
f, g : X → Y yield a morphism h : X → Y ×S Y . Define E via the pullback diagram

E
π2 //

π1
��

Y

∆Y/S

��
X

h // Y ×S Y
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Note that since Y is separated π1 is a closed embedding.
Consider the map i : U → X. The pair of maps (i, f ◦ i = g ◦ i) induces a morphism

ψ : U → E through which i factors. Since π1 is a closed embedding, OX → π1∗OE
is a surjection. Since the open embedding i factors through E, the map E → X is set
theoretically bijective and OX → π1∗OE is also an injection, hence an isomorphism. We
conclude that h factors through the diagonal ∆Y/S showing that f = g.

8.7.3 Valuative criterion

One way of describing the Hausdorff property is to require that all convergent sequences
of points have a unique limit. The following criterion describes the analogous statement
in algebraic geometry. Recall that a valuation ring R is an integral domain such that for
every element f in the fraction field either f or f−1 is contained in R. As discussed in
Example 8.1.16, such rings are loosely analogous to the role of small open sets of curves in
topology.

Theorem 8.7.12 (Valuative criterion for separatedness). Let f : X → Y be a morphism
of schemes such that X is locally Noetherian. Then f is separated if and only if for any
valuation ring R with field of fractions K and any diagram

Spec(K) //

��

X

f

��
Spec(R) // Y

there is at most one morphism Spec(R)→ X making the diagram commute.

Note that the forward implication follows from Proposition 8.7.11. The reverse impli-
cation is more difficult.

Consider the composition Spec(K) → X → Y . The map Spec(R) → Y represents
a “small arc of a curve” through this K-point, and the valuative criterion requires that
there is at most one “lift” of this arc to X. Thus the valuative criterion is analogous to
the description of the Hausdorff property via uniqueness of limits. Although this result
is important conceptually, we will not use this theorem and so refer to [Har77, Theorem
II.4.3] for a proof.

Remark 8.7.13. If f is a finite type morphism of Noetherian schemes, then it suffices to
check the valuative criterion for all DVRs.

8.7.4 K-schemes

Definition 8.7.14. Let K be a field. A K-scheme is a scheme X equipped with a morphism
X → Spec(K) that is finite type and separated.
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Remark 8.7.15. Some authors call the schemes satisfying Definition 8.7.14 “varieties over
K”. We have chosen instead to reserve the term “variety” for those K-schemes which are
also irreducible and reduced. Some authors only use the term “variety” when the ground
field K is algebraically closed. All these usages are common in the literature; be careful to
keep track!

K-schemes are the basic “geometric” objects over the field K. Amongst all K-schemes,
we have two important subclasses:

• Projective K-schemes: the K-schemes which admit a closed embedding into projective
space. (As shown in Theorem 2.8.12, these are also the K-schemes isomorphic to
Proj(R) where R is a finitely generated graded K-algebra with R0

∼= K.)

• Quasiprojective K-schemes: the K-schemes which admit an open embedding into a
projective K-scheme.

The fact that these are K-schemes follows from Proposition 8.7.9.

8.7.5 Exercises

Exercise 8.7.16. (1) Show that the diagonal and the graph of a morphism are monomor-
phisms in the category of schemes (even though they need not be closed or open
embeddings).

(2) Show that if f : X → Y is a monomorphism then ∆X/Y : X → X ×Y X is an
isomorphism. Conclude that monomorphisms are separated. In particular, closed
embeddings, open embeddings, diagonal morphisms, and graph morphisms are sepa-
rated.

(3) Suppose f : X → Y and g : Y → Z are morphisms of schemes. Show that if g ◦ f is
separated then f is separated.

Exercise 8.7.17. Suppose f : X → Y and g : Y → Z are morphisms of schemes such that
g is separated. Use Proposition 8.6.6 to prove the following statements.

(1) If g ◦ f is a closed embedding then f is a closed embedding.

(2) If g ◦ f is an affine morphism then f is an affine morphism.

(3) If g ◦ f is a finite morphism then f is a finite morphism.

Consider the map g : X → A1 where X denotes the line with the doubled origin and g is
the function which “glues” the two origins in X. Use this morphism to show that all three
of the statements can fail when g is not separated.
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Exercise 8.7.18. Give an example of a non-separated scheme X and open affines U, V in
X such that U ∩ V is not affine.

Exercise 8.7.19. Prove that a morphism f : X → Y of separated reduced schemes is an
epimorphism if and only if the image of f is dense in Y . (Hint: for the forward implication,
let Z denote the closure of the image of f . Consider the two maps from Y to the scheme
Y
∐
Z Y constructed in Construction 8.4.6.)
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8.8 Properness

Amongst all manifolds, the compact manifolds have the nicest geometric properties. Since
most of the schemes we work with are (quasi)compact in the Zariski topology, we are led
to look for a different way of formulating an analogous construction for schemes.

Definition 8.8.1. A morphism f : X → Y is universally closed if for every morphism
Z → Y the induced map X ×Y Z → Z is topologically closed.

As we discussed in Section 2.11, the universally closed condition is closely analogous
the notion of “properness” in topology, and can thus be used to recapture our intuition
concerning compactness.

Definition 8.8.2. A morphism of schemes f : X → Y is proper if it is separated, finite
type, and universally closed.

If X is an S-scheme, we say that X is proper over S if the structural morphism X → S
is separated. (When S is not specified, we assume S = Spec(Z) is the final object in the
category of schemes.)

Note that separatedness is included as an assumption, so that proper schemes are
analogous to compact Hausdorff manifolds. Since all three conditions in Definition 8.8.2
are well-behaved properties of morphisms, we obtain:

Theorem 8.8.3. Proper morphisms are preserved under composition, stable under base
change, and local on the target.

8.8.1 Examples

We next discuss several basic examples of proper maps.

Exercise 8.8.4. Prove that closed embeddings are proper.

The following result shows that projective K-schemes are proper.

Theorem 8.8.5. Let S be a Z≥0-graded ring that is finitely generated as an S0-algebra.
Then the structure map Proj(S)→ Spec(S0) is proper.

Proof. Applying Exercise 8.8.4 and using Theorem 8.8.3 we reduce to showing that PnR0
→

Spec(R0) is proper. This follows from the Fundamental Theorem of Elimination Theory
as described in Theorem 2.11.7 and Exercise 2.11.9.

Proposition 8.8.6. Finite morphisms are proper.

Proof. Finite morphisms are affine, hence separated by Exercise 8.7.4. It is also clear
that a finite morphism has finite type. Finally, one can show that finite morphisms are
topologically closed using the Going Up theorem; see Lemma 4.1.12. Since finite morphisms
are also stable under base change, this means they are in fact universally closed.
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8.8.2 Proper versus projective

Theorem 8.8.5 shows that projective K-schemes are proper. However, there are examples
of proper K-schemes which are not projective. (Unfortunately, we do not yet have the
tools to give an example.) The following important result shows that proper K-schemes
are not too far from projective K-schemes: any proper K-variety is birationally equivalent
to a projective K-variety. More precisely:

Theorem 8.8.7 (Chow’s Lemma). Let S be a Noetherian scheme. Suppose that f : X → S
is proper. Then there exists an S-scheme X ′ such that:

(1) X ′ admits a proper surjective map φ : X ′ → X that is an isomorphism over a dense
open subset of X.

(2) For some positive integer n the structure map X ′ → S factors through a closed
embedding X ′ ↪→ PnS.

It turns out that every K-scheme admits an open embedding into a proper K-scheme.
(In other words, the relationship between quasiprojective K-schemes and projective K-
schemes is the same as the relationship between arbitrary K-schemes and proper K-
schemes.) This is a consequence of:

Theorem 8.8.8 (Nagata’s Compactification Theorem). Let S be a Noetherian scheme.
Suppose that f : X → S is separated and finite type. Then f factors as an open embedding
X ↪→ P composed with a proper map P → S.

8.8.3 Global sections

One of the most important properties of proper varieties is a finiteness result for the ring
of global sections.

Theorem 8.8.9. Let X be a scheme equipped with a proper morphism f : X → Spec(R).
Then OX(X) is integral over R.

The argument is conceptually the same as the argument for Corollary 2.11.11: to any
global function on X we associate a morphism X → A1

R and use the inclusion A1
R ⊂ P1

R to
prove the result.

Proof. Suppose f ∈ OX(X). If f is nilpotent, then certainly it is integral over R. Other-
wise, we claim there is an open subset U ⊂ X such that f |U is invertible. Indeed, since f
has finite type over an affine scheme we see that X is quasicompact. If f vanishes along
all of X, then the restriction of f to every open affine is nilpotent, and by choosing a
finite open cover of X by open affines we conclude that there is some global N such that
fN = 0. Thus any non-nilpotent function in OX(X) has V (f) ( X and by Exercise 8.2.18
the restriction of f to the complement of V (f) is invertible.
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By Theorem 8.3.6 we get a Spec(R)-morphism g : U → A1
R corresponding to the ring

map g] : R[t]→ OX(U) sending t 7→ f−1. By composing the graph Γ : U → U ×Spec(R) A1
R

with the open embedding U ×Spec(R) A1
R → X ×Spec(R) A1

R we obtain a map h : U →
X ×Spec(R) A1

R. We claim that the set-theoretic image of this map is a closed subset G. In
fact, since f−1 is identified with t along G we see that G is the preimage of the hyperbola
V (xy − 1) under the map (f, id) : X ×Spec(R) A1

R → A1
R ×Spec(R) A1

R.

Since X → Spec(R) is proper, the map π : X ×Spec(R) A1
R → A1

R is topologically
closed. Thus the image π(G) is a closed subset of A1

R and is defined by some ideal I. Since
we defined G by sending t to an invertible function, π(G) also must be contained in the
complement of V (t). This implies that I + (t) = R[t]. In particular, we can write

1 = r(t) + ts(t)

for some polynomials r(t) ∈ I and s(t) ∈ R[t]. Since r(t) vanishes on the image of f−1 :
U → A1, by pulling back this equation via f−1 we see that

1 = 0 + f−1s(f−1).

After multiplying by an appropriate power of f to clear denominators we see that f is
integral over R.

8.8.4 Valuative criterion

Just as with separatedness, one can define properness via a valuative criterion. In a
Hausdorff manifold, the compactness property corresponds to the existence of limits of
sequences. Thus, in the valuative criterion of properness we add an existence condition to
the uniqueness we require for separatedness.

Theorem 8.8.10 (Valuative criterion for properness). Let f : X → Y be a morphism of
schemes of finite type such that X is locally Noetherian. Then f is proper if and only if
for any valuation ring R with field of fractions K and any diagram

Spec(K) //

��

X

f

��
Spec(R) // Y

there is exactly one morphism Spec(R)→ X making the diagram commute.

We refer to [Har77, Theorem II.4.7] for a proof.

Remark 8.8.11. If f is a finite type morphism of Noetherian schemes, then it suffices to
check the valuative criterion for all DVRs.
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The most important and commonly used consequence of the valuative criterion is the
following. By a curve over a field K, we will mean a 1-dimensional integral K-scheme.

Theorem 8.8.12. Let X be a proper K-scheme. Suppose that C is a regular curve over
K. Then any rational map φ : C 99K X extends to a morphism f : C → X.

Of course the restriction to K-schemes is not necessary; any situation where we have
a regular scheme C that is locally defined by a Dedekind ring should work just as well.
However, the regularity hypothesis is essential (see Exercise 8.8.17).

Proof. Suppose that p ∈ C is a point where f is not defined. Since C is regular, the stalk
OC,p is a DVR. Let Z denote Spec(OC,p) and let ξ denote Spec(K(C)). By the valuative
criterion the map f : ξ → X extends to a morphism f : Z → X.

Let U ⊂ X be an open affine that contains the f -image of the unique closed point in Z
and let V ⊂ C be an open affine neighborhood of p such that V \p is contained in f−1(U).
We have two ring homomorphisms:

f ](U) : OX(U)→ OC(V \p)

f
]
(U) : OX(U)→ OC,p

and by construction these maps are the same map when we post-compose by the map to

the function field of C. This implies that the image of the map f
]
(U) : OX(U) → OC,p

actually lies in OC(V ). In this way we obtain a morphism f : V → U which agrees with f
on V \p. By gluing f and f we obtain a rational map from C to X that is well-defined at
p and is in the same equivalence class of rational maps as f .

We have the following interesting consequence:

Corollary 8.8.13. Let X be a regular curve over a field K. Then X is proper over K if
and only if it is a projective K-scheme.

Here the regularity hypothesis is not essential; it turns out that every proper curve is
projective.

Proof. We first show that any regular curve is birational to a regular projective curve. Let
C be a regular curve and let U ⊂ C be an open affine. Then there is a closed embedding
U → AnK. By composing with AnK → PnK and taking the scheme theoretic image, we see that
U admits an open embedding into a projective curve Y . The normalization map ν : Z → Y
will be an isomorphism over U . The curve Z will be regular (since an integrally closed
DVR is a regular local ring) and will be projective by Construction 5.6.14, thus it is a
regular projective curve birational to C.

Suppose now that X is a proper curve. We have already shown that there is a birational
morphism φ : X 99K Z to a regular projective curve. By Theorem 8.8.12 φ and φ−1 both
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extend to morphisms g and g′ respectively. Since the compositions g ◦ g′ and g′ ◦ g agree
with the identity map on an open subset, by Proposition 8.7.11 g and g′ are inverses. This
shows that X is isomorphic to Z.

Remark 8.8.14. In fact, the argument of Corollary 8.8.13 shows that every regular K-
curve is birationally equivalent to a unique regular projective curve.

8.8.5 Exercises

Exercise 8.8.15. Suppose f : X → Y and g : Y → Z are morphisms of schemes such that
g is separated. Show that if g ◦ f is proper then f is proper.

Exercise 8.8.16. Let X be a normal projective K-variety and let Y be a projective K-
variety. Suppose we have a rational map φ : X 99K Y . Prove that φ can be extended to
each point in X whose closure is a codimension 1 subvariety of X. Deduce that if U is the
largest locus where φ can be defined then the complement X\U has codimension ≥ 2 in
X.

Exercise 8.8.17. Find a (non-regular) curve C defined over a field K, a proper K-scheme
X, and a rational map f : C 99K X which does not extend to a morphism.
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Chapter 9

Sheaves of modules

The motivation for studying sheaves of modules comes from the geometric theory of vector
bundles. Recall that a vector bundle π : V → X is a locally trivial fibration whose fibers
can be identified with Rr. Given two vector bundles π : V → X and ρ : U → X, a map of
vector bundles is a commuting diagram

V f //

π   

U

ρ~~
X

such that f restricts to a linear map fx over each point x ∈ X. In general the rank of
the linear map fx need not be constant as x varies. Thus, there is no natural notion of a
“kernel” or a “image” of a vector bundle map unless the rank happens to be constant. The
nicest situation is when we have a short exact sequence of vector bundles, i.e. a sequence
of vector bundle maps

0→ V f−→ U g−→W → 0

such that over every point in x the fibers yield a short exact sequence of vector spaces.
It turns out that every SES of vector bundles splits, i.e. there is a vector bundle map
s :W → U such that g ◦ s = idW .

One can develop a similar theory of vector bundles in the setting of schemes using the
Zariski topology in place of the usual topology and using ArZ in place of Rr. Since the
Zariski topology is much coarser than the topologies used in geometry, there are a few key
differences. For example, it is much harder for a map of vector bundles to split in the
Zariski topology: a surjection of vector bundles no longer needs to admit a splitting.

9.0.1 Vector bundles and modules

In this chapter we will take an alternative approach: we will expand the category of vector
bundles to the larger category of sheaves of modules on X (known as the category of OX -

301
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modules). This is an abelian category that combines the algebraic techniques from module
theory with the geometric intuition behind vector bundles. It has one essential advantage:
one can always take kernels and cokernels of a map of OX -modules (although the resulting
objects need not be vector bundles). Since the connection between vector bundles and
sheaves of modules is not obvious, we will spend a little time developing it.

Suppose that X is a scheme. Recall that a vector bundle π : V → X is “locally
isomorphic” to a product in the Zariski topology. In other words, for any sufficiently small
open affine U ⊂ X with ring of functions R = OX(U) and preimage VU = π−1U there is
an isomorphism

ψU : VU ∼= U × ArZ = Spec(R[x1, . . . , xr]).

We now will make an essential change in perspective. Instead of working with the entire
ring R[x1, . . . , xr], it suffices just to remember the degree 1 part of the ring, i.e. the module

MU := Rx1 ⊕Rx2 ⊕ . . .⊕Rxr.

This has the key advantage of replacing a “large” R-module by a finitely generated R-
module. As we vary the open set U , the resulting modules MU will naturally yield a sheaf
M of abelian groups on X. Thus we have the additional advantage that our construction
now yields an object in an abelian category.

Let’s analyze the geometric meaning of this transition. Remember, the ringR[x1, . . . , xr]
is the ring of functions on the scheme VU . A section σ : U → VU will be defined by an
R-algebra homomorphism R[x1, . . . , xr] → R, or equivalently, by an R-module homomor-
phism Rx1 ⊕ . . . ⊕ Rxr → R. Note that such a homomorphism is not an element of the
module MU , but rather of the dual module M∨U . We can then glue the M∨U together to
yield a sheaf M∨. Thus:

We systematically replace a vector bundle π : V → X by its sheaf of sections M∨.

Although the presence of the dual is a bit surprising, it is there for a good reason: it
represents the fact that the space of linear functions on a vector space is naturally identified
with the dual space.

Note that we can always recover the vector bundle VU from the module MU = Rx1 ⊕
. . . ⊕ Rxr by taking the Spec of the symmetric algebra Sym(MU ). But most of the time
we won’t need to bother reconstructing the “geometric” vector bundle V.

9.0.2 Algebra preliminaries

Definition 9.0.1. Let R be a ring. An R-module M is called:

(1) Finitely generated, if there is a positive integer b and a surjection R⊕b →M .

(2) Finitely presented, if there are positive integers a, b and an exact sequence R⊕a →
R⊕b →M → 0.
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(3) Coherent, if M is finitely generated and for any positive integer c and morphism
R⊕c →M the kernel is finitely generated.

When R is a Noetherian ring these three definitions are all equivalent, but in general
they are successively stronger.

Warning 9.0.2. When we leave the realm of Noetherian rings, these notions can exhibit
pathological behavior. For example, R need not be a coherent R-module. Even worse, an
arbitrary ring need not have any non-zero coherent modules at all (see [Zho]).

The notion of coherent is mostly useful for rings R which are coherent over themselves;
for such rings coherent is the same as finitely presented.

When we leave the setting of Noetherian rings, the notion of finitely generated no longer
behaves well. Here is a summary of some of the nice properties of coherent modules.

Suppose R is a ring and M,N are R-modules which satisfy one of our three properties.
We first discuss which operations on M,N preserve these properties.

finitely
generated

finitely
presented

coherent
if M and N have
property P then:

3 3 3 does M ⊗N?

7 7 3 does Hom(M,N)?

7 7 3 does ker(φ : M → N)?

3 3 3 does cok(φ : M → N)?

3 3 3 does an extension of M by N?

Table 9.1: Finiteness properties over fixed ring

In particular, the coherent R-modules always form an abelian subcategory of R−Mod.
In fact, we can classify when the other types of modules form abelian categories:

Theorem 9.0.3 ([CEH]). Let R be a ring. The following are equivalent:

(1) The finitely generated R-modules form an abelian category.

(2) An R-module is finitely generated if and only if it is coherent.

(3) R is Noetherian.

Theorem 9.0.4 ([Rob]). Let R be a ring. The following are equivalent:

(1) The finitely presented R-modules form an abelian category.

(2) An R-module is finitely presented if and only if it is coherent.

(3) R is coherent over itself.
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We next discuss how these properties behave when we change the base ring R.

Definition 9.0.5. We say that a property P is:

(1) preserved by localization, if for every R-module M that satisfies P and every multi-
plicatively closed set S we have that S−1M satisfies P as an S−1R-module.

(2) determined locally, if for every set of elements {ri} which generate the unit ideal
in R we have that an R-module M satisfies P if and only if for every index i the
localization Mri satisfies P as an Rri-module.

(3) preserved by base change, if for every R-module M that satisfies P and every ring
homomorphism R→ T we have that M ⊗R T satisfies P as a T -module.

finitely
generated

finitely
presented

coherent is the property P :

3 3 3 preserved by localization?

3 3 3 determined locally?

3 3 7 preserved by base change?

Table 9.2: Finiteness properties over varying ring

Note that the only property on our list that fails for coherent modules is preserva-
tion under base change. Finally, we mention one important property of finitely presented
modules:

Theorem 9.0.6. Let R be a ring, S a multiplicatively closed subset of R. Let M,N be
R-modules such that M is finitely presented. Then

HomR(M,N)⊗ S−1R ∼= HomS−1R(S−1M,S−1N).
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9.1 OX-modules

Definition 9.1.1. Let (X,OX) be a ringed space. A presheaf of OX -modules is a presheaf
of abelian groups F on X such that:

(1) for every open set U , F(U) carries the structure of an OX(U)-module, and

(2) for every inclusion of open sets V ⊂ U , the restriction map ρF ,U,V : F(U)→ F(V ) is
compatible with the module structures via the restriction map ρOX ,U,V : OX(U) →
OX(V ). In other words, we have a commuting diagram of module actions

OX(U)×F(U) //

ρ

��

F(U)

ρ

��
OX(V )×F(V ) // F(V )

A sheaf of OX -modules (or more briefly, an OX -module) is a presheaf of OX -modules which
is also a sheaf.

A morphism of OX -modules φ : F → G is a morphism of sheaves such that for every
open set U the map φ(U) is a homomorphism of OX(U)-modules.

Remark 9.1.2. We will of course mostly be interested in the case when X is a scheme,
but it is helpful to consider this more general situation.

Our goal in this section is simply to verify some basic properties of the category OX −
Mod(X) of OX -modules. We will see some systematic ways of constructing OX -modules
in the next sections.

Theorem 9.1.3. The category of OX-modules is an abelian category when equipped with
the constructions ⊕, ker, cok of sheaves of abelian groups.

Proof. Suppose that φ : F → G is a morphism of OX -modules. It is clear that the kernel,
presheaf image, and presheaf cokernel of φ are each presheaves of OX -modules. Note that
if we have an open set U , an open cover {Vi} of U , and sections si ∈ F(Vi) that agree
on overlaps, then we can define the action of any f ∈ OX(U) on the various si via the
restriction function. Thus the sheafification process preserves the existence of an action by
the various section rings OX(U) and its clear by construction that the resulting object is
an OX -module. The rest of the argument is straightforward.

Given two OX -modules F ,G, we denote by HomOX (F ,G) the abelian group consisting
of OX -module morphisms from F to G. In fact, HomOX (F ,G) carries the structure of an
OX(X)-module: given a morphism φ and an open set U , the action of OX(X) on φ(U)
is defined via the restriction map. There is a map of OX(X)-modules HomOX (F ,G) →
HomOX(X)(F(X),G(X)) but in general this map is not an isomorphism.
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9.1.1 Sheaf hom

Definition 9.1.4. Suppose that F and G are OX -modules. For any open set U , the
restrictions F|U and G|U are OX |U -modules. As discussed above, HomOX |U (F|U ,G|U ) will
have the structure of a OX(U)-module.

Given an inclusion of open subsets V ⊂ U , we can restrict a OX |U -homomorphism
φ : F|U → G|U to V . These maps are clearly compatible with the restriction maps for the
sheaf OX .

This construction defines a presheaf of OX -modules denoted by HomOX (F ,G).

Lemma 9.1.5. The presheaf HomOX (F ,G) is a sheaf.

Proof. This follows from the gluing property for morphisms of sheaves in Corollary 7.6.4.

Warning 9.1.6. Suppose U is an open subset of X. It is tempting, but incorrect, to
identify HomOX (F ,G)(U) with HomOX(U)(F(U),G(U)). This latter object is not even a
presheaf: if V ⊂ U how does a map F(U)→ G(U) yield a map F(V )→ G(V )?

Warning 9.1.7. Although HomOX (F ,G)x admits a morphism to HomOX,x(Fx,Gx) these
two modules are not isomorphic in general. This is a consequence of the failure of module
Hom to commute with localizations; see Exercise 9.1.21.

9.1.2 Sheaf tensor product

Definition 9.1.8. Suppose that F and G are OX -modules. The tensor product presheaf
is the assignment

U 7→ F(U)⊗OX(U) G(U)

equipped with the restriction maps induced by the universal property of tensor products.
The tensor product F ⊗OX G is the sheafification of the tensor product presheaf.

Example 9.1.9. In general the tensor product presheaf is not a sheaf. For example,
Exercise 9.3.14 shows that OP1(1) ⊗ OP1(1) ∼= OP1(2). On the other hand, the tensor
product of OP1(1)(P1) ∼= K2 with itself is different from OP1(2)(P1) ∼= K3.

Exercise 9.1.10. Suppose that F ,G are OX -modules. Prove that for any point x ∈ X we
have (F ⊗OX G)x ∼= Fx ⊗OX,x Gx.

Remark 9.1.11. In a similar way we can define other tensor product constructions, such
as the kth symmetric power or the kth exterior power of an OX -module. We will not need
these constructions but please remember that they are defined in the natural way.

The Hom and ⊗ constructions satisfy an adjointness property, just as they do for
modules.
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Theorem 9.1.12. Let (X,OX) be a ringed space and let F , G, H be OX-modules. There
is a canonical isomorphism

HomOX (F ⊗OX G,H)→ HomOX (F ,HomOX (G,H))

which is functorial in all entries.

Exercise 9.1.13. Let (X,OX) be a ringed space and let F be an OX -module. Prove that
HomOX (F ,−) is a left exact functor. Prove that F ⊗OX − is a right exact functor.

9.1.3 Functors associated to morphisms

Let f : X → Y be a morphism of ringed spaces (that is, a continuous map and a morphism
of sheaves of rings f ] : OY → f∗OX). The most common way to pass sheaves of modules
between X and Y is the following.

• If F is an OX -module, then f∗F is a f∗OX -module. Thus f∗F obtains the structure
of an OY -module via f ] : OY → f∗OX . We continue to call f∗F the pushforward of
F . Note that f∗ defines a functor from the category of OX -modules to the category
of OY -modules.

• If G is an OY -module then f−1G is an f−1OY -module. To obtain a OX -module we
need to make a further modification.

Definition 9.1.14. Let f : X → Y be a morphism of ringed spaces. For any OY -module
F we define the pullback f∗F to be

f∗F = f−1F ⊗f−1OY OX .

With this definition f∗ is a functor from the category of OY -modules to the category
of OX -modules. By combining Lemma 7.5.8 and Exercise 9.1.10 we see that for any point
x ∈ X we have f∗Fx = Ff(x) ⊗OY,f(x) OX,x.

Exercise 9.1.15. Suppose that f : X → Y is a morphism of ringed spaces. Prove that
f∗ and f∗ are adjoint functors: for any OX -module F and OY -module G we have an
isomorphism

HomOX (f∗G,F) ∼= HomOY (G, f∗F)

that is natural in both entries.

As a consequence of Exercise 9.1.15, there are canonical maps G → f∗f
∗G and f∗f∗F →

F . This exercise also implies:

Corollary 9.1.16. The pushforward functor f∗ is left-exact and the pullback functor f∗ is
right-exact.
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Remark 9.1.17. Suppose that f : X → Y is a morphism of schemes. Then we always
have f∗OY ∼= OX . On the other hand, the structural map f ] : OY → f∗OX need not
be an isomorphism, and in fact the condition that this map be an isomorphism is a very
interesting one to study.

Example 9.1.18. Let f : X → Y be a morphism of schemes. Suppose that G is an OY -
module. As in Exercise 9.1.20 we will identify global sections s ∈ G with sheaf morphisms
s : OY → G. Since f∗ is a functor, any section s : OY → G yields a section f∗s : OX =
f∗OY → f∗G. This map Γ(Y,G)→ Γ(X, f∗G) is known as “pulling back sections.”

9.1.4 Summary

In summary, after including the global sections functor Γ(X,−) introduced in Definition
7.4.7 we have identified the following functors:

• Functors from OX−Mod to OX(X)−Mod or OX(X)−Modop:

Γ(X,−) HomOX (F ,−) HomOX (−,F)

• Functors from OX−Mod to OX−Mod or OX−Modop:

HomOX (F ,−) HomOX (−,F) −⊗OXF

• Given a morphism f : X → Y ,

f∗ : OX−Mod→ OY−Mod f∗ : OY−Mod→ OX−Mod

Much of the rest of the course will be dedicated to understanding these various functors.
Since most of these functors are left or right exact, they are suitable candidates for the
theory of derived functors.

Remark 9.1.19. In this section we kept subscripts of OX everywhere to emphasize our
underlying category. In upcoming sections we will bravely drop the OX -subscripts.

9.1.5 Exercises

Exercise 9.1.20. LetX be a scheme and let F be aOX -module. Prove thatHomOX (OX ,F)
is isomorphic to F . Deduce that there is a bijection between morphisms s : OX → F and
sections s ∈ F(X).

Exercise 9.1.21. Let X be a scheme with a closed point x. Let i : U → X be the inclusion
of the complement of x and let F = i!OU . Show that F is an OX -module. Show that
HomOX (F ,F)x 6= HomOX,x(Fx,Fx).
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Exercise 9.1.22. Let X be a scheme. Let x ∈ X be a point, let M be a κ(x)-module,
and let G denote the skyscraper sheaf at x with value M . Show that G is an OX -module
and that

HomOX (F ,G) ∼= HomOX,x(Fx,M)

Exercise 9.1.23. Let f : X → Y be a morphism of schemes. Prove that f∗ commutes with
tensor product. (Hint: this relates to the module computation (M ⊗S R)⊗R (N ⊗S R) ∼=
(M ⊗S N)⊗S R.)

Show that f∗ need not commute with tensor product. (One option is to use Exercise
9.3.14.) However, construct for every pair of OX -modules F ,G a natural map f∗F⊗f∗G →
f∗(F ⊗ G).

Exercise 9.1.24. Let X be a K-scheme and let F be an OX -module. Let L/K be an
extension and let f : XL → X be the morphism induced by base change. Prove that
f∗F(XL) ∼= F ⊗KL. (To make this argument work, the key is that X should be quasicom-
pact quasiseparated.)

Exercise 9.1.25. Find an example of a morphism of schemes f : X → Y such that f∗ is
not a left exact functor. (Note the contrast with the inverse image functor f−1.)
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9.2 OX-modules on affine schemes

Suppose that X = Spec(R) is an affine scheme. The goal of this section is to build
up a dictionary that relates R-modules with OX -modules. Just as we constructed the
structure sheaf using localizations of R, we will construct OX -modules using localizations
of R-modules.

9.2.1 Modules and localization

When we constructed the structure sheaf of an affine K-scheme, the key step was Propo-
sition 1.11.4 which verified that localizations were compatible with gluing. Our first result
will be the analogous statement for modules.

Proposition 9.2.1. Let R be a ring and let M be an R-module. Fix a finite set of elements
{gi}ri=1 which generate R. Then there is an exact sequence

0→M
φ−→
∏
i

Mgi
ψ−→
∏
i,j

Mgigj

where φ is the product of the localization maps M →Mgi and ψ sends a tuple (mi ∈Mgi)
to (mi1 −

mj
1 ∈Mgigj ).

The proof is essentially the same as the proof of Proposition 1.11.4 (and for good reason
– the two statements are saying essentially the same thing).

Proof. We let ρi : M → Mgi and ρi,j : Mgi → Mgigj be the localization maps. It is clear
that the image of the leftmost map

∏
i ρi is contained in the set of compatible elements

(mi ∈Mgi |ρi,j(mi) = ρj,i(mj)∀i, j)

and we must show this map is an isomorphism.

First we show injectivity. Suppose that m ∈ M is mapped to 0. In other words, for
every index i there is some positive integer ki such that mgki = 0. Set N = supi ki. Since
R = (g1, . . . , gr), we also have R = (gN1 , . . . , g

N
r ). We deduce that m = 0.

Next we show surjectivity. We write mi = ni/g
ki
i . By assumption we have ni/g

ki
i =

nj/g
kj
j as elements in Mgigj . Thus for any pair of indices i 6= j there is some non-negative

integer tij such that

nig
kj+tij
j g

tij
i = njg

ki+tij
i g

tij
j .

We define N = supi ki + supj 6=i tij . Then we can rewrite

mi =
ni

gkii
=
nig

N−ki
i

gNi
.
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For notational convenience we will write pi = nig
N−ki
i . The advantage of this change is

that for i 6= j we have the simpler relation

pig
N
j = nig

kj
j (gN−kii g

N−kj
j ) = njg

ki
i (gN−kii g

N−kj
j ) = pjg

N
i .

Since R = (g1, . . . , gr), we also have R = (gN1 , . . . , g
N
r ). In particular we have an equality

1 =
∑r

i=1 cig
N
i for appropriate choices of ci. Define m =

∑r
i=1 cipi. We claim that m ∈ R

maps to mj ∈ Rgj under the localization map. Indeed, we have

mgNj =
r∑
i=1

cipig
N
j =

r∑
i=1

cipjg
N
i = pj .

Exercise 9.2.2. Prove the analogue of Proposition 9.2.1 with no assumption on the finite-
ness of the gi.

9.2.2 The ˜-functor

Construction 9.2.3. Let X = Spec(R) be an affine scheme. Suppose that M is an

R-module. We define a OX -module M̃ as follows.
Consider the base B of the topology on X consisting of distinguished open affines Df .

We assign to Df the module obtained by localizing M along all the functions g such that
Vg ∩Df = ∅. The restriction maps are defined using the universal property of localization.

Exercise 9.2.4. Use Proposition 9.2.1 to show that the definition above defines a B-sheaf.
(Hint: mimic the proof of Corollary 1.11.6.)

We define M̃ to be the sheaf on Spec(R) associated to this B-sheaf. It is clear that this
construction defines a functor from R−Mod to OX−Mod.

The characterizing properties of the OX -module M̃ are:

• We have M̃(Df ) ∼= Mf (and in particular M̃(Spec(R)) = M).

• For any point x ∈ Spec(R) corresponding to the prime ideal p we have M̃x
∼= Mp.

• For any open set U ⊂ X and any open cover {Dfi} of U by distinguished open affines,
we have an exact sequence

0→ M̃(U)→
∏
i

Mfi →
∏
i,j

Mfifj .

Let’s study the properties of the ˜-functor in more depth.



312 CHAPTER 9. SHEAVES OF MODULES

Proposition 9.2.5. Let X = Spec(R) be an affine scheme. The ˜-functor R−Mod →
OX−Mod is a left adjoint to the global sections functor OX−Mod→ R−Mod. In other
words, for any OX-module F and any R-module M we have an isomorphism

HomOX (M̃,F) ∼= HomR(M,F(X))

that is natural in both entries.

Proof. Given a morphism ψ : M → F(X) and an element g ∈ R, we can compose the
localization of ψ with restriction to obtain

ψg : Mg → F(X)⊗R Rg → F(Dg).

If B denotes the base of the topology of X consisting of distinguished open affines then
we obtain a morphism from the B-sheaf associated to M̃ to the B-sheaf associated to F .
By Theorem 7.6.2 we obtain a morphism from M̃ to F , and it is clear that the induced
map on global sections agrees with the map we started with. The rest of the proof is
straightforward.

Proposition 9.2.6. Let X = Spec(R) be an affine scheme. The ˜-functor defines an exact
fully faithful functor from R−Mod to OX−Mod.

Proof. We first show the exactness of the functor. If we have an exact sequence of R-
modules, then the sequence obtained by localizing at a prime p ⊂ R is still exact. Since
exactness of a sequence of OX -modules can be checked on the level of stalks, we see that
the corresponding sequence of OX -modules is still exact.

To say that the functor is fully faithful means that the natural map

HomR(M,N)→ HomOX (M̃, Ñ)

is a bijection. This follows from Proposition 9.2.5.

It is important to note that the ˜-functor is not essentially surjective – there are many
OX -modules that are not isomorphic to M̃ for any M . (However, Proposition 9.2.6 does
imply that the category of R-modules is equivalent to the subcategory of OX−Mod defined
by the image of the ˜-functor.)

Example 9.2.7. Let R be a ring and suppose that i : U → Spec(R) is the inclusion of an
open subscheme. Then i!(OU ) is a OX -module that is usually not isomorphic to a sheaf in
the image of the ˜-functor. For example, if Spec(R) is irreducible then i!(OU )(X) = 0 but
it need not be the zero sheaf. Sheaves obtained by i! (and in particular the exact sequence
of Exercise 7.5.15) are an important source of counterexamples.

The following important result gives conditions guaranteeing that the global sections
functor is exact. Note that it goes in the “opposite direction” of Proposition 9.2.6.
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Proposition 9.2.8. Let X be an affine scheme. Suppose that we have an exact sequence
of OX-modules

0→ F1
φ−→ F2

ψ−→ F3 → 0.

Assume that F1 is in the image of the ˜-functor. Then the sequence of global sections

0→ F1(X)
φ(X)−−−→ F2(X)

ψ(X)−−−→ F3(X)→ 0

is also exact.

The assumption on F1 guarantees that for any open set U and any distinguished open
affine Df we have F1(U ∩Df ) = F1(U)f . In other words, for any section s ∈ F1(U ∩Df )
we can find some positive integer n such that fns extends to a section defined on all of U .

Here is a sketch of the argument. Fix a section t ∈ F3(X). Since ψ is surjective, we
can find an open cover {Ui} of X and “local liftings” si ∈ F2(Ui) of t. We would like to
glue the si to get a global section s, but of course there is no reason to expect the si to
agree on overlaps. However, we know that si|Ui∩Uj − sj |Ui∩Uj is in F1(Ui ∩ Uj). Using the
assumption on F1, we can “extend” these differences to larger open sets (at the cost of
multiplying by a power of a function). Using these extensions we can hope to cancel these
obstructions (on a global level) to obtain functions which glue.

Proof. Since the global sections functor is left-exact, it suffices to prove exactness of the
sequence of global sections on the right. Suppose t ∈ F3(X). Let f ∈ OX(X) be any
function such that t|Df is the image of an element s ∈ F2(Df ) under ψ(Df ). The first
step of the proof is to a weaker lifting property: there is some positive integer N such that
fN t ∈ F3(X) is in the image of ψ(X).

Since ψ is surjective, we can find a finite open cover {Ui}ri=1 of X by distinguished open
affines Ui = Dgi and elements si ∈ F2(Ui) such that ψ(Ui)(si) = t|Ui . Define Vi = Ui ∩Df .
Since the two sections s|Vi and si|Vi both map to t|Vi under ψ(Vi), their difference lies in
F1(Vi). By assumption on F1, there is some positive integer Mi such that fMi(s|Vi − si|Vi)
is the restriction of an element in F1(Ui). As there are only finitely many i, we can set
M = supiMi and use this one constant M for every open set Ui. We let ui ∈ F1(Ui) denote
the section which restricts to fM (s|Vi − si|Vi). We then define s′i = fMsi + ui in F2(Ui).

We have now achieved that these sections s′i ∈ F2(Ui) are local lifts of fM t with the
further property that their restrictions to Ui ∩Df agree with fMs|Ui∩Df . But we do not
know that the s′i agree on the overlaps Ui ∩Uj . We next increase the power of f to achieve
this overlap condition.

Set Uij = Ui ∩ Uj . Since s′i|Uij and s′j |Uij both map to fM t|Uij , their difference lies
in F1(Uij). Furthermore, by construction the restriction of their difference to Uij ∩ Df

is zero. By assumption on F1, this means that there is some constant Lij such that
fLij (s′i|Uij−s′j |Uij ) is the zero element in F1(Uij). If we set L = supi,j Lij and set s+

i = fLs′i,
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we see that each s+
i ∈ F2(Ui) maps to fM+Lt|Ui under ψ(Ui) and also s+

i |Uij = s+
j |Uij .

Gluing, we find a global section of F2(X) whose image is fM+Lt ∈ F3(X).

Since X is quasicompact, there is a finite set of functions {fk} such that the Dfk form
an open cover of X and for every k we have that t|Dfk is in the image of ψ(Dfk). Applying
the argument above for each fk, we find that there are positive constants Tk such that
fTkk t is in the image of ψ(X). However, since the Dfk form an open cover the various

fTkk generate the unit ideal in OX(X). We conclude that t is in the image of ψ(X) as
claimed.

9.2.3 Properties of the ˜-functor

When a module operation commutes with localization, we can expect the ˜-functor to be
compatible with the module operation.

Exercise 9.2.9. Prove that the ˜-functor commutes with arbitrary direct sums.

Proposition 9.2.10. Let X = Spec(R) be an affine scheme and let M,N be R-modules.
Then:

(1) M̃ ⊗OX Ñ ∼= M̃ ⊗R N .

(2) If M is a finitely presented R-module, then Hom(M̃, Ñ) ∼= ˜Hom(M,N).

In part (2) the finite presentation of M is essential – only in this situation are we
guaranteed that Hom commutes with localization.

Proof. (1) Recall that M̃ ⊗OX Ñ is constructed by sheafifying the presheaf assigning to

the open set U the abelian group M̃(U) ⊗OX(U) Ñ(U). Since the global sections of this

presheaf are M⊗RN , we obtain an R-module homomorphism M⊗RN → (M̃⊗OX Ñ)(X).

By Proposition 9.2.5 we obtain a morphism M̃ ⊗R N → M̃ ⊗OX Ñ .

To show that this map is an isomorphism, it suffices to check that it induces an iso-
morphism on the level of stalks. The stalk of the tensor product presheaf at a prime ideal
p is isomorphic to Mp ⊗Rp Np. By Exercise 7.2.6 we see that φ induces the map on stalks

(M ⊗N)p →Mp ⊗Rp Np

which is an isomorphism.

(2) Proposition 9.2.5 yields a morphism ˜Hom(M,N) → Hom(M̃, Ñ). To show that
this map is an isomorphism, it suffices to check that it induces an isomorphism on the level
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of stalks. For a point x corresponding to a prime p we have

Hom(M̃, Ñ)x = lim−→
f 6∈p

Hom(Mf , Nf )

= lim−→
f 6∈p

Hom(M,N)f

= Hom(M,N)p

where we used the fact that M is finitely presented to commute the Hom and the localiza-
tion at the second step. This proves the result.

9.2.4 Exercises

Exercise 9.2.11. Let X = Spec(R) be an affine scheme and let F be an OX -module.
Show that F is in the image of the ˜-functor if and only if for every distinguished open
affine Dg ⊂ X we have F(Dg) ∼= F(X)g.

Exercise 9.2.12. Find an affine scheme X and an exact sequence of OX -modules

0→ F1
φ−→ F2

ψ−→ F3 → 0

such that the map ψ(X) on global sections is not surjective.
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9.3 Quasicoherent sheaves

We now “globalize” our discussion of the ˜-functor from the previous section.

Definition 9.3.1. Let X be a scheme. We say that a OX -module F is a quasicoherent
sheaf if there is a cover of X by open affines {Ui} and OX(Ui)-modules Mi such that F|Ui
is isomorphic to M̃i for every i.

We let Qcoh(X) denote the full subcategory of OX−Mod whose objects are quasico-
herent sheaves.

A key property of quasicoherence is that it does not depend upon the choice of affine
cover. More precisely:

Proposition 9.3.2. Let X be a scheme. If F is a quasicoherent sheaf, then for every open
affine U in X there is a OX(U)-module M such that F|U ∼= M̃ .

Proof. Suppose that {Vi} is an open cover of X consisting of open affines such that F|Vi
is equal to M̃i for some OX(Vi)-module Mi. Applying Nike’s Lemma (Lemma 8.3.4) and
refining our open cover, we may suppose that some subset {Vj}j∈J forms an open cover of
U and furthermore that each Vj is a distinguished open affine in U corresponding to some
function fj ∈ OX(U).

If we apply the gluing property of sheaves to the open cover {Vj} of U we obtain an
exact sequence

0→ F(U)→
∏
j

F(Vj)→
∏
j,k

F(Vj ∩ Vk).

In other words, we have an exact sequence of OX(U)-modules

0→ F(U)→
∏
j

Mj →
∏
j,k

(Mj)fk .

where the first map is restriction and the second map is a product of localization maps.
Suppose thatW ⊂ U is some distinguished open affine defined by a function g ∈ OX(U).

Since localization is exact, we obtain a sequence

0→ F(U)g →
∏
j

(Mj)g →
∏
j,k

(Mj)fkg.

Using the fact that F|Vj ∼= M̃j , we see that (Mj)g ∼= F(W ∩ Vj) and (Mj)fkg
∼= F(W ∩

Vj ∩Vk). Furthermore, under these identifications the second map in the sequence above is
still induced by restriction. By comparing this sequence to the exact sequence expressing
the gluing property for F|W with respect to the open cover {W ∩ Vj}, we conclude that
F(U)g ∼= F(W ). Since this is true for any g ∈ OX(U), Exercise 9.2.11 shows that F|U is

equal to F̃(U).
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Proposition 9.3.2 implies that a quasicoherent sheaf on an affine scheme Spec(R) must

be isomorphic to a sheaf of the form M̃ for some R-module M . In other words:

Corollary 9.3.3. Let X = Spec(R) be an affine scheme. Then the ˜-functor and the global
sections functor define an equivalence of categories between R−Mod and Qcoh(X).

This also gives us a useful criterion for checking whether anOX -module is quasicoherent.
By combining Proposition 9.3.2 and Exercise 9.2.11 we obtain:

Corollary 9.3.4. Let X be a scheme and let F be an OX-module. Then F is quasicoherent
if and only if for any open affine U ⊂ X and any g ∈ OX(U) the map

F(U)g → F(Dg)

is an isomorphism. (Here the map is obtained by applying the universal property of local-
ization to the restriction map F(U)→ F(Dg).)

9.3.1 The category of quasicoherent sheaves

Our next goal is to show that the category of quasicoherent sheaves is an abelian category.
The key is to study how quasicoherence behaves in exact sequences.

Proposition 9.3.5. Let X be a scheme. Suppose that 0 → F1
φ−→ F2

ψ−→ F3 → 0 is an
exact sequence of OX-modules. If two of the Fi are quasicoherent, then the third one is as
well.

In particular, if φ : F → G is a morphism of quasicoherent sheaves then the kernel and
cokernel of φ are also quasicoherent.

Proof. It suffices to consider the case when X is affine. We will write Mi = Fi(X) for
i = 1, 2, 3.

First suppose that F1,F2 are quasicoherent. Since the ˜-functor is fully faithful, there
is a module homomorphism q : M1 →M2 such that when we take ˜-images we get φ. Since˜ is exact, the cokernel of φ is equal to K̃ where K is the cokernel of q. This forces F3

∼= K̃
so that F3 is quasicoherent. The argument when F2,F3 are quasicoherent is exactly the
same.

Finally suppose that F1,F3 are quasicoherent. By Proposition 9.2.8 we know that
0 → M1 → M2 → M3 → 0 is exact. By Proposition 9.2.6 ˜ will preserve the exactness
of this sequence. Using the adjointness property of ˜ as in Proposition 9.2.5 we obtain a
commuting diagram

0 // M̃1
//

��

M̃2
//

��

M̃3
//

��

0

0 // F1
// F2

// F3
// 0

By hypothesis the left and right vertical arrows are isomorphisms, so the middle vertical
arrow is also an isomorphism by the 5-lemma.
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Theorem 9.3.6. Let X be a scheme. Then Qcoh(X) is an abelian category.

Proof. It suffices to check that the structures⊕, ker, cok which giveOX−Mod the structure
of an abelian category preserve quasicoherence. In particular, it suffices to verify this
when X is an affine scheme. The fact that ker and cok preserve quasicoherence follows
Proposition 9.3.5, and the compatibility of ⊕ with the ˜-functor was checked in Exercise
9.2.9.

9.3.2 Pushforward and pullback

We next study the behavior of quasicoherent sheaves under pushforward and pullback. The
first step is to analyze the special case of morphisms between affine schemes.

Lemma 9.3.7. Let f : Spec(R)→ Spec(S) be a morphism of affine schemes.

(1) For any S-module N we have f∗Ñ = Ñ ⊗S R.

(2) For any R-module M we have f∗M̃ = S̃M where SM means we think of M as an
S-module via f ].

Proof. (1) By tracing through the inverse image presheaf and tensor product presheaf
constructions, we see that there is an R-module homomorphism N ⊗RS → f∗Ñ(Spec(R)).

By Proposition 9.2.5 we obtain a OX -morphism Ñ ⊗R S → f∗Ñ . It suffices to show
that this morphism induces isomorphisms of stalks, which follows from Lemma 7.5.8 and
Exercise 9.1.10.

(2) Via the identification f∗M̃(Spec(S)) ∼= SM we obtain a map S̃M → f∗M̃ . It
suffices to show this is an isomorphism on stalks. For any g ∈ S we have f−1(Dg) = Df]g

and thus (f∗M̃)p ∼= M ⊗R Sp.

Theorem 9.3.8. Let f : X → Y be a morphism of schemes.

(1) For any quasicoherent sheaf G on Y the pullback f∗G is quasicoherent.

(2) Suppose f is quasicompact quasiseparated. Then for any quasicoherent sheaf F on X
the pushforward f∗F is quasicoherent.

Proof. (1) Follows immediately from Lemma 9.3.7.(1).
(2) It suffices to prove the theorem when Y = Spec(S) is affine. By hypothesis X is

covered by a finite union of open affines {Ui} and each intersection Ui ∩ Uj is also covered
by a finite union of open affines {Uijk}. Note that to check whether local sections on Ui
and Uj agree when restricted to Ui ∩ Uj , we can equally well check whether they agree
when restricted to every Uijk. Thus, for any open set V ⊂ Y we have an exact sequence

0→ F(f−1V )→ ⊕iF(f−1V ∩ Ui)→ ⊕i,j,kF(f−1V ∩ Uijk)
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(Note that we can use a direct sum instead of a product in the second and third modules
since there are only finitely many terms involved in each product.) Since the maps in this
exact sequence commute with restriction, we obtain an exact sequence

0→ f∗F → ⊕i(f |Ui)∗F|Ui → ⊕i,j,k(f |Uijk)∗F|Uijk .

Each of the sheaves (f |Ui)∗F|Ui and (f |Uijk)∗F|Uijk is quasicoherent by Lemma 9.3.7.(2)
and their direct sums are quasicoherent by Exercise 9.2.9. Thus the kernel f∗F is also
quasicoherent by Proposition 9.3.5.

Note that the adjointness of the functors f∗ and f∗ still holds if we restrict them to
categories of quasicoherent sheaves. In particular f∗ is left-exact and f∗ is right exact.

Exercise 9.3.9. Find a morphism of schemes f : X → Y and an injective morphism
φ : F → G of quasicoherent sheaves on Y such that f∗φ is not injective.

9.3.3 Computations

One of the nice features of quasicoherent modules is that our main constructions can be
understood on the level of open affines.

(1) A morphism φ : F → G of quasicoherent sheaves is surjective if and only if for every
open affine V the map φ(V ) : F(V )→ G(V ) is surjective. Similarly exactness can be
checked on the level of open affines. (This follows from Proposition 9.2.8.)

(2) Suppose that F ,G are quasicoherent sheaves. We can compute F ⊗G by choosing an
open affine cover, applying module ⊗ to the module of sections on each open affine,
and then gluing the resulting sheaves. (This follows from Proposition 9.2.10.)

Under suitable finite presentation hypotheses, we can do a similar procedure for
Hom(F ,G). (See Exercise 9.4.21.)

(3) Given a morphism f : X → Y , the functor f∗ can also be computed on the level of
open affines using module operations. That is, if we choose an open cover of Y by open
affines V and choose an open cover of X open affines U contained in the preimage of
open affines of V , the the restriction of f∗G to U is defined by OX(U)⊗OY (V ) G(V ).
(This follows from Lemma 9.3.7.)

However, f∗ cannot be computed locally: given an open affine V ⊂ Y , the value of
f∗F(V ) really depends on the entire preimage over V and can’t be reduced to a local
computation on X. This again highlights why the pushforward is so hard to work
with. (Note however that when f is affine then f∗F can be computed using local
algebra.)

These properties make computations with quasicoherent sheaves much easier.
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Warning 9.3.10. Although a tensor product of quasicoherent sheaves is quasicoherent,
a Hom of quasicoherent sheaves need not be quasicoherent without a finite presentation
hypothesis on the first entry; see Exercise 9.4.21.

9.3.4 Quasicoherent ideal sheaves

Finally, we finish the discussion of closed embeddings and quasicoherent ideal sheaves begun
in Section 8.3.3. The first step is to finish the proof of Proposition 8.3.8:

Lemma 9.3.11. Suppose that f : X → Y is a closed embedding (that is, f is a homeo-
morphism to a closed subset of Y and f ] is surjective). Then for every open V ⊂ Y the
preimage f−1V is affine and the induced map f ](V ) : OY (V )→ OX(f−1V ) is surjective.

Proof. Evidently f is a quasicompact morphism. We also showed in Exercise 8.7.16 that
f is separated. Thus f is quasicompact quasiseparated. By Theorem 9.3.8 f∗OX is a
quasicoherent sheaf on Y . The surjectivity of f ] on open affines follows from Proposition
9.2.8.

As in Definition 8.3.11 a quasicoherent ideal sheaf on a scheme X is simply a quasico-
herent subsheaf of OX . We can now prove the key theorem:

Theorem 9.3.12. Let X be a scheme. There is a bijection between closed subschemes of
X and quasicoherent ideal sheaves I on X.

Proof. Exercise 8.3.12 explains how to construct a closed subscheme Z from a quasicoherent
ideal sheaf I. Conversely, suppose we have a closed subscheme i : Z ⊂ X. As shown in
Lemma 9.3.11 i∗OZ is a quasicoherent sheaf. By Proposition 9.3.5 the kernel of the map
OX → i∗OZ is a quasicoherent ideal sheaf. These two constructions are inverses: they are
connected by the property that on any affine U ⊂ X the intersection Z∩U is the vanishing
locus of I(U).

In summary, if we have a closed subscheme i : Z → X then we obtain an exact sequence
of quasicoherent sheaves

0→ IZ → OX → i∗OZ → 0.

On each open affine U , this sequence simply expresses the structure sheaf of Z as the
quotient of the ideal defining U ∩ Z. We will frequently appeal to this exact sequence in
the future.

Example 9.3.13. Let i : Z → Pn be the inclusion of a degree d hypersuface defined by
f ∈ OPn(d). The ideal sheaf of Z is the same as the image of the map φ : OPn(−d)→ OPn

induced by multiplication by f . Thus IZ ∼= OPn(−d) and we have an exact sequence

0→ OPn(−d)
·f−→ OPn → i∗OZ → 0.



9.3. QUASICOHERENT SHEAVES 321

9.3.5 Exercises

Exercise 9.3.14. Let K be a field and consider PnK.

(1) Show that the sheaf OPnK(d) defined in Example 7.1.8 is a quasicoherent OX -module.

(2) Show that HomOPn (OPnK(a),OPnK(b)) ∼= OPnK(b− a).

(3) Show that OPnK(a)⊗OPnK
OPnK(b) ∼= OPnK(a+ b).

Exercise 9.3.15. Let f : P1 → Pd be a rational normal curve of degree d. Show that
f∗OPd(m) is isomorphic to OP1(md).

Exercise 9.3.16. Let f : Pn × Pm → Pnm+n+m be the Segre embedding. Show that
f∗O(1) is equal to π∗1O(1)⊗ π∗2O(1) where π1, π2 are the projection maps.

Exercise 9.3.17. Consider Pn×Pm equipped with the two projection maps π1, π2. Com-
pute π2∗π

∗
1OPn(d).

Exercise 9.3.18. Consider the squaring map f : P1 → P1 defined by [s : t] 7→ [s2 : t2].
Compute f∗O(d).

Exercise 9.3.19. Let X be the disjoint union of countably many copies of Spec(Z). Con-
sider the map f : X → Spec(Z) which is the identity on each component. Prove that f∗OX
is not a quasicoherent sheaf. (Hint: Apply Corollary 9.3.4.)

Exercise 9.3.20. Let X be a scheme and let f ∈ OX(X). Define Xf to be the complement
of the vanishing locus V (f) defined in Exercise 8.2.18. Let F be a quasicoherent sheaf on
X. The following statements generalize Exercise 8.5.17.

(1) Suppose that X is quasicompact. Suppose that a ∈ F(X) is an element whose
restriction to Xf is 0. Prove that for some n > 0 we have fna = 0 in F(X).

(2) Suppose that X is quasicompact quasiseparated. Let b ∈ F(Xf ). Show that for some
n > 0 the element fnb is the restriction of an element of F(X).

(3) Suppose that X is quasicompact quasiseparated. Then F(Xf ) = F(X)f .
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9.4 Coherent sheaves

In this section we discuss “finite” quasicoherent sheaves. For a non-Noetherian ring there
are three different reasonable definitions for “finite” modules: finitely generated, finitely
presented, and coherent (see Definition 9.0.1). For Noetherian rings these three definitions
all coincide, but in general they have slightly different properties (see Table 9.0.2 and Table
9.0.2) and the right notion will depend on the context.

Warning 9.4.1. For a non-Noetherian ring R the set of coherent R-modules might be
pathologically small; see Warning 9.0.2. Coherent modules are most useful for rings R
which are coherent over themselves, in which case coherent is the same as finitely presented.

Definition 9.4.2. Let X be a scheme and let F be a quasicoherent sheaf on X. We say
that F is coherent (resp. finitely generated, finitely presented) if there is an open cover
of X by open affines Ui such that F(Ui) is a coherent (resp. finitely generated, finitely
presented) OX(Ui)-module for every i.

A key property of coherent sheaves is that the coherent condition can be verified locally:

Lemma 9.4.3. Let X be a scheme and let F be a coherent (resp. finitely generated, finitely
presented) sheaf on X. Then for every open affine U we have that F(U) is a coherent
(resp. finitely generated, finitely presented) OX(U)-module.

Proof. This follows from the fact that all three conditions are determined locally (as in
Definition 9.0.5).

Warning 9.4.4. It is not true that if F is coherent then F(U) is a finitely generated
OX(U)-module for every open set U ; see Exercise 9.4.22. (This is related to the fact that
the global sections of the structure sheaf on a quasiprojective K-variety need not be finitely
generated over K.)

9.4.1 Category of coherent sheaves

Let Coh(X) denote the category of coherent sheaves on X. The following results verify
that Coh(X) is a well-behaved subcategory of QCoh(X).

Theorem 9.4.5. Let X be a scheme. Suppose we have an exact sequence 0→ F1 → F2 →
F3 of OX-modules. If two of the Fi are coherent, then so is the third.

Proof. This follows from the corresponding fact for coherent R-modules combined with
Proposition 9.3.5.

Corollary 9.4.6. Let X be a scheme. Then Coh(X) is an abelian category.

Furthermore if we have two coherent modules on a Noetherian scheme then their Hom
or tensor product is again a coherent sheaf.
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Remark 9.4.7. Note that the analogue of Theorem 9.4.5 fails for finitely generated or
finitely presented sheaves since these properties are not preserved by taking kernels. In
fact sheaves of these types need not form an abelian category.

9.4.2 Pullbacks and pushforwards

Although coherent modules are not preserved under base change, finitely generated modules
are. Thus:

Lemma 9.4.8. Let f : X → Y be a morphism of schemes. Suppose G is a finitely
generated quasicoherent sheaf on Y . Then f∗G is finitely generated. In particular, if X is
locally Noetherian then the pullback of a coherent sheaf on Y is coherent on X.

It is much rarer for the pushforward of a coherent sheaf F to be coherent. Even for
quasiprojective K-schemes coherence is often not preserved by pushforward – for example,
consider the pushforward of the structure sheaf under the map A1

K → Spec(K).

Suppose that f : X → Y is a morphism of schemes. Since F is coherent, f∗F will
be a finite f∗OX -module. The key question is: when can we expect f∗OX to be a finite
OY -module?

Perhaps the best general answer to this question is “when f is proper”. We have seen
before that the global sections of a proper scheme satisfy various types of finiteness. Thus,
it is reasonable to hope that for any proper morphism f : X → Y and any open affine
V ⊂ Y the ring f∗OX(V ) is a finite OV (V )-module.

Theorem 9.4.9. Let f : X → Y be a proper morphism to a locally Noetherian scheme Y .
For any coherent sheaf F on X the pushforward f∗F is a coherent sheaf on Y .

We will prove a special case – when f is a projective morphism – in Corollary 12.3.4.

9.4.3 Rank of coherent sheaves

Definition 9.4.10. Let X be a scheme and let x ∈ X. For any OX -module F , we define
the κ(x)-vector space F(x) by tensoring Fx by OX,x/mx. F(x) is known as the fiber of F
at x.

We define the rank of F at x to be rkx(F) := dimκ(x)F(x).

Be careful not to confuse the fiber of F at x with the stalk of F at x! The stalk captures
the behavior of F on arbitrarily small open neighborhoods of x via localization; the fiber
records the behavior of F at x via quotienting. Alternatively, if i : x→ X is the inclusion
then F(x) is i∗F while Fx is i−1F . (In the next section we will see the definition of a
“vector bundle” in algebraic geometry; it is this construction which motivates the “fiber”
terminology.)
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Warning 9.4.11. Suppose we have an exact sequence of coherent sheaves on X. It is not
necessarily true that the sum of the ranks of the two outer terms at a point x ∈ X is the
rank of the middle term; see Exercise 9.4.25.

We have already seen that the stalk Fx captures information about F on “small” open
neighborhoods of x. Our next goal is to show that when F is finitely generated, the fiber
F(x) also captures certain features of F on an open neighborhood of x. The following
lemma is a first step in this direction.

Lemma 9.4.12. Let X be a scheme and let F be a finitely generated quasicoherent sheaf
on X. Suppose that for some point x ∈ X we have Fx = 0. Then there is an open
neighborhood U of x such that F|U = 0.

Proof. Since F is quasicoherent, it suffices to consider the case when X = Spec(R) is an

affine scheme so that F = M̃ for some coherent module M . Suppose that {mi}ri=1 are the
generators of M . By assumption, the prime ideal p corresponding to x satisfies Mp = 0.
This means that for each of the generators mi, there is an element fi ∈ R\p such that
fimi = 0. Then Mf1...fr = 0.

As you might guess, Nakayama’s Lemma is the key for relating the stalk and the fiber
of F at a point. The following statement is the geometric version of Nakayama’s Lemma:

Theorem 9.4.13. Let X be a scheme and let F be a finitely generated quasicoherent sheaf
on X. Let x ∈ X. Suppose that f1, . . . , fr ∈ Fx have images in F(x) which span this
κ(x)-vector space. Then there is an open neighborhood U of x such that f1, . . . , fr ∈ F(U)
and the map

φ : O⊕rX |U
(f1,...,fr)−−−−−−→ F|U

is surjective.

In particular, if the fiber F(x) is zero then F is identically zero on an open neighborhood
of x.

Proof. We can apply the usual Nakayama’s lemma to see that Fx is generated by f1, . . . , fr
as an OX,x-module. Since each fi is defined by a section of F on a neighborhood of x, by
taking intersections we find a neighborhood U of x such that every fi ∈ F(U). For this
choice of U , the cokernel of the map φ is a finitely generated quasicoherent sheaf whose
stalk at x vanishes. By Lemma 9.4.12, we may shrink U further to ensure that the cokernel
of φ is the 0 sheaf

Corollary 9.4.14. Let X be a scheme and let F be a finitely generated quasicoherent sheaf
on X. Then the function x 7→ rkx(F) is upper semicontinuous. In particular, if rkx(F) = 0
then F is identically zero on an open neighborhood of x.
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9.4.4 Support

Recall that the support of a sheaf F of abelian groups is the set of points where the stalk
is not zero. We next discuss the support of finitely generated sheaves.

Exercise 9.4.15. Let X be a scheme and let F be a finitely generated quasicoherent sheaf
on X. Show that for any point x ∈ X we have x ∈ Supp(F) if and only if F(x) 6= 0.

Lemma 9.4.16. Let X be a scheme and let F be a finitely generated quasicoherent sheaf.
For any open affine U we have

Supp(F) ∩ U = V (Ann(F(U))).

In particular, the support of F is a closed subset of X.

Proof. Set R = OX(U) and M = F(U). For any prime p ⊂ R, Lemma 9.4.12 shows that
Mp = 0 if and only if there is some f ∈ R such that p 6⊂ V (f) and Mf = 0. The first
condition on f says that f 6∈ p and the second says that f ∈ Ann(M). Thus, we see that
Mp = 0 if and only if p 6⊂ Ann(M).

The last statement follows from the fact that the closedness of a set can be tested
locally.

Corollary 9.4.17. Let X be a scheme and let F be a finitely generated quasicoherent
sheaf. Then there is a closed embedding i : Z → X such that the set-theoretic image of i is
Supp(F) and there is a finitely generated quasicoherent sheaf G on Z with i∗G ∼= F .

Proof. Annihilators of finitely generated modules are compatible with localization, in the
sense that for a ring R, a finitely generated R-module M , and a multiplicatively closed
subset S we have S−1 Ann(M) = Ann(S−1M). Thus the locally defined ideals Ann(F(U))
define a quasicoherent ideal sheaf on X, hence a closed subscheme Z. The last statement
follows from the fact that an R-module M can equally well be thought of as an R/Ann(M)-
module.

Definition 9.4.18. Let X be a scheme and let F be a finitely generated quasicoherent
sheaf. The scheme-theoretic support of F is the subscheme Z defined locally by the anni-
hilator of F(U).

When X is a Noetherian scheme, then the scheme theoretic support of a finitely gen-
erated quasicoherent sheaf F can be studied using the theory of associated primes.

9.4.5 Torsion sheaves

Definition 9.4.19. Let X be an scheme and let F be an OX -module. We say that F is
a torsion sheaf if for every point x ∈ X the stalk Fx is a torsion OX,x-module.
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When R is an integral domain, we have a nice theory of torsion modules: an R-module
M is torsion if and only if it vanishes upon tensoring with Frac(R).

Lemma 9.4.20. Let X be an integral scheme and let F be a finitely generated quasicoherent
sheaf on X. The following are equivalent:

(1) For every x ∈ X the stalk Fx is a torsion OX,x-module.

(2) For every open affine U ⊂ X we have that F(U) is a torsion O(U)-module.

(3) The stalk of F at the generic point of X is zero.

(4) Supp(F) ( X.

Proof. (1) ⇔ (2): follows from the fact that for a domain R and an R-module M we have
that M is a torsion module if and only if Mp is torsion for every prime ideal p ⊂ R.

(1) ⇒ (3): clear
(3) ⇔ (4): follows from Lemma 9.4.16.
(4)⇒ (2): Lemma 9.4.16 shows that for any open affine U we have Ann(F(U)) 6= 0.

Every finitely generated R-module M fits into an exact sequence 0 → Mtors → M →
Mtf → 0 where Mtors is the torsion submodule. This construction sheafifies to give an
exact sequence

0→ Ftors → F → Ftf → 0

where Ftors is the torsion subsheaf. We say that F is torsion-free if its torsion subsheaf is
zero.

9.4.6 Exercises

Exercise 9.4.21. Let X be a scheme. Suppose that F is a coherent sheaf on X and that
G is a quasicoherent sheaf. Prove that Hom(F ,G) is quasicoherent.

Let R be the DVR K[x](x), let X = Spec(R), and let F = ⊕̃∞i=1R. Show that
HomOX (F ,OX) is not quasicoherent.

Exercise 9.4.22. LetX = P2 and consider the coherent sheaf F = i∗OP1 where i : P1 → P2

is the inclusion of a line `. Let U be the open set in P2 which is the complement of a point
in `. Show that F(U) is not a finitely generated OX(U)-module.

Exercise 9.4.23. Let f : X → Y be a morphism of schemes and let F be a finitely
generated quasicoherent sheaf on Y . Prove that Supp(f∗F) = f−1(Supp(F)).

Exercise 9.4.24. Find an example of a scheme X and a quasicoherent sheaf F such that
Supp(F) is not closed. (Hint: consider the sheaf ⊕a∈CFa on A1

C where Fa is the skyscraper
sheaf with value C at the point (x− a).)
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Exercise 9.4.25. Suppose that we have a scheme X, a point x ∈ X, and an exact sequence
of coherent sheaves

0→ F → G → H → 0.

(1) Prove that rkx(F) + rkx(H) ≥ rkx(G).

(2) Find an example where we have a strict inequality.

(3) Suppose that H is locally free. Prove that rkx(F) + rkx(H) = rkx(G).

Exercise 9.4.26. Let X be a regular curve over a field.

(1) Prove that every torsion free coherent sheaf F on X is locally free, i.e. X admits an
open cover by open affines U such that the restriction of F to U is defined by a free
OX(U)-module.

(2) Prove that for every torsion sheaf T there is some closed subscheme i : Z → X such
that T ∼= i∗OZ .
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9.5 Locally free sheaves

As described in the introduction to the chapter, in algebraic geometry there are certain
OX -modules which play the role of vector bundles. This section is dedicated to exploring
these quasicoherent sheaves.

Definition 9.5.1. Let X be a scheme. A quasicoherent sheaf F on X is locally free if X
admits a covering by open affines U such that F|U is defined by a free OX(U)-module.

We say that a locally free sheaf F on X has rank r if the rank of F is r at every point,
or equivalently, if X admits an open cover {Ui} such that F|Ui is isomorphic to O⊕rUi . A
locally free sheaf of rank 1 is called an invertible sheaf.

We will focus on locally free sheaves of finite rank.

Warning 9.5.2. In contrast to some of our other constructions, locally free does not mean
that the restriction of F to every open affine is free. Rather, the correct affine analogue
of a “finite rank locally free sheaf” is a projective module. More precisely, over any ring
R a finitely presented R-module M is projective if and only if the localization of M along
every prime ideal is free.

It is interesting to ask which types of rings have the property that every projective
module is free. Easier examples include local rings and PIDs. The Quillen-Suslin Theorem
(which contributed to Quillen winning a Fields Medal) shows that projective modules are
free for polynomial rings over fields – in other words, every locally free coherent sheaf on
affine space is defined by a free module.

For finitely presented quasicoherent sheaves local freeness is a condition that can be
checked on stalks.

Proposition 9.5.3. Let X be a scheme and let F be a finitely presented quasicoherent
sheaf. Suppose that x ∈ X is a point such that Fx is a locally free OX,x-module. Then
there is some open neighborhood U of x such that F|U is a locally free quasicoherent sheaf
on U .

Proof. Choose a finite set of elements m1, . . . ,mr which generate Fx as a OX,x-module.
Applying Theorem 9.4.13 (Geometric Nakayama’s Lemma) we obtain an open neighbor-
hood V of x and a surjection φ : OrX |V → F|V . Since F is finitely presented, the kernel
of this map is a finitely generated OV -module GV . Since the stalk of GV at x is trivial, it
is trivial on an open neighborhood U of x in V by Lemma 9.4.12. On U the map φ is an
isomorphism.

Corollary 9.5.4. Let X be a scheme and let F be a finitely presented quasicoherent sheaf
on X. If Fx is locally free for every point x ∈ X then F is locally free.

In fact, if we assume a bit more about X then local freeness can even be detected on
fibers.
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Theorem 9.5.5. Let X be a reduced scheme. Suppose that F is a finitely presented qua-
sicoherent sheaf on X such that the rank of F is constant at all the points of X. Then F
is locally free.

We need to assume that X is reduced because the rank does not “see” the non-reduced
structure of X along the generic point of a component of X. (Consider for example the
skyscraper sheaf K on Spec(K[x]/(x2)).)

Proof. It suffices to check that for an open affine U the restriction F|U is locally free. We
let r denote the rank of F .

Fix a point x ∈ U and choose r elements f1, . . . , fr ∈ Fx which generate the fiber F(x)
as a κ(x)-vector space. By Theorem 9.4.13 after perhaps shrinking U the fi extend to U
and we have a surjection

φ : O⊕rX |U
(f1,...,fr)−−−−−−→ F|U

Write U ∼= Spec(R) and let R⊕R →M denote the map of modules induced by φ. Suppose
that there is a non-zero element (r1, . . . , rr) in the kernel. In particular there is some rj
which is non-zero; since R is reduced, this means that there is some prime p such that
rj 6∈ p. If y ∈ U denotes the corresponding point, then φy : O⊕rX,y → Fy has a kernel. Since
it is surjective by construction, we conclude that the rank of F at y is smaller than r,
contradicting our assumption.

Locally free sheaves interact well with many of the module constructions we have dealt
with so far. Just as for vector bundles, the natural functorial operation for locally free
sheaves is the pullback. The exercises explain these compatibilities in more detail. We will
prove one important statement here that is frequently used to compute pushforwards.

Proposition 9.5.6 (Projection formula). Let f : X → Y be a morphism of schemes.
Suppose that F is an OX-module and that G is a locally free OY -module of finite rank.
Then

f∗(F ⊗ f∗G) ∼= f∗F ⊗ G.

Proof. By tensoring the counit map f∗f∗F → F by f∗G we get an induced morphism
f∗f∗F ⊗ f∗G → F ⊗ f∗G. Since tensor product commutes with pullback, we can identify
the left-hand side as f∗(f∗F⊗G) ∼= f∗f∗F⊗f∗G. Thus by adjunction we obtain a morphism
φ : f∗F ⊗ G → f∗(F ⊗ f∗G).

To show that φ is an isomorphism, it suffices to argue locally. Thus we may assume
that E = O⊕rY . Using f∗O⊕rY ∼= O

⊕r
X , we obtain an isomorphism as desired.

9.5.1 Vector bundles

We next clarify how a locally free sheaf of finite rank is the “same thing” as a vector bundle
in algebraic geometry. The following construction will allow us to construct a scheme from
a locally free sheaf.
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Definition 9.5.7. Let X be a scheme. A quasicoherent sheaf of OX -algebras is a quasi-
coherent sheaf of OX -modules that is simultaneously a sheaf of rings on X.

Construction 9.5.8. Let X be a scheme and let A be a quasicoherent sheaf of OX -
algebras. For any open affine U in X, the sections A(U) form a ring which in turn defines
an affine scheme AU := Spec(A(U)). For any inclusion of open affines V ⊂ U the restriction
map ρU,V : A(U)→ A(V ) defines an inclusion ψV,U : Spec(A(V ))→ Spec(A(U)).

As we vary over all open affines U , the resulting schemes AU equipped with the maps
ψV,U satisfy the cocycle condition. By gluing over all identifications obtained via the maps
ψV,U , we obtain a scheme Spec(A) equipped with a morphism π : Spec(A) → X. By
construction π is an affine morphism.

The construction Spec is known as the “relative Spec” construction. Its defining feature
is that π∗OSpec(A) = A.

Exercise 9.5.9. Let X be a scheme and let A be a quasicoherent sheaf of OX -algebras.
Show that the fiber of Spec(A)→ X over a point x is isomorphic to Spec(A(x)).

Definition 9.5.10. Let X be a scheme. Given any locally free sheaf F of constant rank
r, the symmetric algebra Sym(F∨) is a quasicoherent sheaf of OX -algebras. Set V =
Spec(Sym(F∨)). We call π : V → X the vector bundle associated to the sheaf F . Note
that we can recover F from V by defining F = (π∗OV)∨.

As discussed in the introduction to the chapter, this construction realizes F as the sheaf
of sections on V. We included the dual ∨ in the definition to ensure that we obtained in
this relationship. (This argument is made rigorous in Exercise 9.5.25.)

Note that the fiber of Spec(F∨)→ X over a point x is isomorphic to Arκ(x) by Exercise

9.5.9. In fact, Spec(F∨) → X is an example of a “geometric vector bundle” as defined
in Exercise 9.5.24. The converse is also true; Exercise 9.5.24 shows that every geometric
vector bundle over X is defined by a locally free sheaf on X so that there is a bijection
between the two objects.

Example 9.5.11. Let’s analyze the tautological bundle T of Pn. By definition T is the
subbundle of the trivial bundle An+1×Pn that associates to each point in projective space
the corresponding line in An+1. (Note that we can also think of T as the blow-up of the
origin in An+1.) We will use coordinates xi on Pn and yi on An+1.

Over the affine chart Ui = D+,xi , the tautological bundle T is the vanishing locus of
the ideal (

x0
xi
yi − y0, . . . ,

xn
xi
yi − yn

)
⊂ K

[
y0, . . . , yn,

x0
xi
, . . . , xnxi

]
Note that the quotient is a free K[x0xi , . . . ,

xn
xi

]-module of rank 1 generated by yi. Since yi
matches up with the degree 1 homogeneous function xi, by comparing against Example
7.1.8 we see that the pushforward of the structure sheaf of T is the bundle OPn(1). We
can also see this using transition functions; the sequence of maps

OUi |Ui∩Uj → π∗OT |Ui∩Uj → OUj |Ui∩Uj
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sends 1 7→ yi and yj 7→ 1. Since on Ui ∩ Uj we have the equation xjyi = xiyj , the
composition sends 1 7→ xi

xj
and this defines OPn(1) by Exercise 7.6.6.

Taking a dual as in Definition 9.5.10, we see that the tautological bundle T on projective
space has sheaf of sections OPn(−1). This coheres with the well-known geometric fact
that the tautological bundle does not admit any global sections; indeed, there are no non-
constant holomorphic maps CP1 → C2. (In contrast, sections of OPn(1) are linear functions
on An+1 and thus correspond to points of the dual space.)

9.5.2 Transition functions

Suppose that F is a locally free sheaf of rank r on a scheme X. Then there is an open
cover {Ui} of X such that we have isomorphisms φi : F|Ui → O

⊕r
Ui

. Furthermore the maps
ψij defined by the compositions

ψij : O⊕rUi∩Uj
φ−1
i−−→ F|Ui∩Uj

φj−→ O⊕rUi∩Uj

satisfy the cocycle conditions. We will call these sheaf morphisms ψij the transition func-
tions for F . (Note that “the” transition functions depend upon the choice of isomorphisms
φi. Since an isomorphism of OX(Ui) is multiplication by a unit in OX(Ui)

×, two possible
choices of transition function will also differ locally by multiplication by a unit. More
precisely, if we choose units ui ∈ OX(Ui)

× then the transition functions ψ′ij = ψij · u−1
i · uj

should be considered equivalent to the transition functions ψij .)
Conversely, starting from the sheaves O⊕rUi and “local gluing data” ψij : O⊕rUi∩Uj →

O⊕rUi∩Uj that satisfies the cocycle condition, we can use Corollary 7.6.3 to construct a locally
free sheaf on X.

Example 9.5.12. In Example 7.6.5 and Exercise 7.6.6 we showed that the locally free
sheaves O(d) on Pn can be constructed by taking the structure sheaves on our standard
charts and gluing them via the isomorphisms ψij defined by multiplying by ( xixj )d.

It is important to note that the global sections s of a locally free sheaf F admit the
same transition functions as F does. Namely, if we take s ∈ F and restrict to a trivializing
open set Ui we can identify s|Ui with an element si ∈ OX(Ui)

⊕r. Given two open sets
Ui, Uj , the map ψij will take si|Ui∩Uj to sj |Uj∩Uj . In other words, the global sections of F
are the same as systems of local sections whose behavior on the overlaps are described by
the transition functions.

9.5.3 Zero loci of sections

In Chapter 2 we associated to any homogeneous polynomial f ∈ OPn(d) the vanishing
locus V+(f) ⊂ Pn. As described in Example 9.3.13, the vanishing locus of f is the closed

subscheme defined by the image of the map OPn(−d)
·f−→ OPn .
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More generally, given any scheme X equipped with a locally free sheaf F and any
global section s ∈ F(X), we can define the vanishing locus of s in an analogous way. This
construction is more important than it appears at first: the zero loci of sections of locally
free sheaves play a special role in many situations (for example in intersection theory).

Definition 9.5.13. Suppose that X is a scheme and F is a locally free sheaf of rank r on
X. Suppose that s ∈ F(X) is a global section, or equivalently, s : OX → F is a morphism.
The zero locus of the section s is the closed subscheme of X defined by the quasicoherent
ideal sheaf which is the image of s∨ : F∨ → OX .

Example 9.5.14. When F is the structure sheaf OX then the zero locus of a section f is
the same as V (f). When F ∼= O(d) on Proj(S) then the zero locus of a section f is the
same as V+(f).

The zero locus of a section of a locally free sheaf is a very natural geometric notion.
The following exercise gives an alternative definition (see also Exercise 9.5.27).

Exercise 9.5.15. Let X be a scheme and let F be a locally free sheaf of rank r on X.
Suppose s ∈ F(X). For any point x ∈ X, there is an open affine neighborhood U such
that we have an isomorphism ψU : F → O⊕rU . In particular, ψU (s|U ) is an r-tuple of
functions (f1, . . . , fr). Show that the intersection of Z(s) with U is defined by the ideal
(f1, . . . , fr) ⊂ OX(U). (Why does the choice of ψ not affect the resulting ideal sheaf?)

Exercise 9.5.16. Let X be a scheme, F a locally free sheaf, s ∈ F(X). Prove that a point
x is contained in Z(s) if and only if the restriction of s to the fiber F(x) is zero.

By Krull’s PIT we can “expect” the vanishing locus of a section of a locally free sheaf
of rank r to have codimension r (although as we have seen it is certainly possible for
the number of equations to differ from the codimension). This relationship is particularly
important for locally free sheaves of rank 1; we will return to this topic in depth in Chapter
10.

9.5.4 Exercises

Exercise 9.5.17. Let X be a scheme and let F be a locally free sheaf on X. Show that
the functor F ⊗− is an exact functor.

Exercise 9.5.18. Let X be a scheme. Suppose that F and G are locally free sheaves of
finite rank on X. Prove that F ⊗G, Hom(F ,G), and F ⊕G are also locally free sheaves of
finite rank.

Exercise 9.5.19. Let X be a scheme and let F be a locally free sheaf of finite rank on X.
Prove that F∨ is again a locally free sheaf and that (F∨)∨ ∼= F . Show by example that
F∨ need not be isomorphic to F .
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Exercise 9.5.20. (1) Let f : X → Y be a morphism. Show that the pullback of a
locally free sheaf on Y is locally free on X.

(2) Let f : X → A2 be the blow-up of the origin and let F be the ideal sheaf of the
exceptional divisor in X. Show that F is locally free but that f∗F is not locally free.

Exercise 9.5.21. Let X be a scheme. Suppose that F is a finite rank locally free sheaf
and that G,H are OX -modules. Prove that there is an isomorphism Hom(G ⊗ F ,H) ∼=
Hom(G,F∨ ⊗H).

Exercise 9.5.22. Let X be a scheme and let F be a locally free sheaf of finite rank on X.
Fix an open cover {Ui} that trivializes F and suppose that ψij are the transition functions
for F with respect to the cover.

(1) Prove that {Ui} also trivializes F∨ with the transition functions ψ−1
ij .

(2) Suppose that G is an invertible sheaf on X that is also trivialized by {Ui} with
transition functions µij . Show that {Ui} trivializes F ⊗ G with transition functions
defined by ψij · µij .

Exercise 9.5.23. There are some important ways in which vector bundles behaves differ-
ently in algebraic geometry and in topology. For example, consider the surjective map of
bundles φ : OP1(−1) ⊕ OP1(−1) → OP1 defined by multiplication by x on the first factor
and y on the second. Show that φ is a surjective map of constant rank but that it does
not admit any splitting.

Exercise 9.5.24. Let X be a scheme. A geometric vector bundle on X of rank r is a
morphism π : V → X such that there is an open cover {Ui} of X satisfying the following
properties:

(1) For every i there is an isomorphism φi : ArZ × Ui → π−1Ui that commutes with the
morphisms to Ui.

(2) Suppose that V ⊂ Ui ∩ Uj is an open affine defined by the ring R so that ArZ ×
V ∼= Spec(R[x1, . . . , xn]). Then the isomorphism φj ◦ φ−1

i : Spec(R[x1, . . . , xn]) →
Spec(R[x1, . . . , xn]) is defined by an invertible linear R-algebra homomorphism.

Given a geometric vector bundle π, prove that π∗OV is a locally free sheaf of rank r.
Deduce that there is a bijection between locally free sheaves of rank r (up to isomorphism)
and geometric vector bundles of rank r (up to isomorphisms compatible with the structure
maps to X).

Exercise 9.5.25. Let X be a scheme and let A be a quasicoherent sheaf of OX -algebras.
Let Y be an X-scheme, that is, a scheme Y equipped with a structural morphism Y → X.
Show that there is a bijection

HomOX−alg(A, π∗OY ) ∼= HomSch/S(Y,Spec(A))
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Suppose now that F is a locally free sheaf on X and π : V → X the corresponding vector
bundle. Prove that for any open set U there is a bijection between sections s ∈ F(U) and
geometric sections s : U → V|U of π over U . (Hint: show that s ∈ F(U) defines a map of
algebras Sym(F|∨U )→ OU via contraction.)

Exercise 9.5.26. Show that if f : X → Y is an affine morphism then there is some
quasicoherent sheaf A of OY -algebras such that X ∼= Spec(A) and f is identified with the
canonical map π : Spec(A)→ Y .

Exercise 9.5.27. Let X be a scheme and let F be a locally free sheaf of rank r on X
defining the geometric vector bundle V = Spec(F∨). Note that there is a closed embedding
z : X → V defined by taking the zero section of V.

Fix a global section s ∈ F(X); by Exercise 9.5.25 we get a morphism s : X → V. Show
that the zero locus Z(s) is the same as the pullback of the closed embedding z under the
map s : X → V.

Exercise 9.5.28. Let X be a scheme, let L be an invertible sheaf on X, and let s ∈ L(X).
Define Xs to be the complement of the zero locus Z(s). Let F be a quasicoherent sheaf on
X. The following statements give our final generalization of Exercise 8.5.17.

(1) Suppose that X is quasicompact. Suppose that a ∈ F(X) is an element whose
restriction to Xs is 0. Prove that for some n > 0 we have sna = 0 as a section of
(F ⊗ Ln)(X).

(2) Suppose that X is quasicompact quasiseparated. Let b ∈ F(Xs). Show that for some
n > 0 the element snb is the restriction of an element of (F ⊗ Ln)(X).

(3) Suppose that X is quasicompact quasiseparated. Then F(Xs) ∼= ⊕n≥0(F ⊗ Ln)(X).

Exercise 9.5.29. Let X be a normal integral Noetherian scheme. Suppose that U ⊂ X is
an open subset such that X\U has codimension ≥ 2. Prove that for any locally free sheaf
F on X the restriction map F(X)→ F(U) is an isomorphism. (Hint: use the S2 property
locally.)
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9.6 Graded modules and the Proj construction

Suppose that S is a Z≥0-graded ring. In this section we will study the correspondence
between graded S-modules and quasicoherent sheaves on Proj(S). Recall that for any
Z-graded S-module N , we define N(d) to be the same module shifted in degree by d:
N(d)m := Nd+m.

A Z≥0-graded ring S is said to be generated in degree 1 if S is generated by S1 as an S0-
algebra. This is an important technical assumption that will show up several times in this
section. In practice this assumption is not too restrictive: if S is a finitely generated S0-
algebra then Exercise 2.7.10 shows that some Veronese subalgebra S(m) that is generated
in degree 1, and Proposition 2.7.7 verifies that Proj(S) ∼= Proj(S(m)).

One special feature of degree 1 elements in S is the following result:

Exercise 9.6.1. Let N be a Z-graded S-module. If f ∈ S has degree 1, prove that
(Nf )0

∼= N/(f − 1)N under the bijection n/fdeg(n) ↔ n+ (f − 1)N .

As a consequence we have

Corollary 9.6.2. Let N be a Z-graded S-module. If f ∈ S has degree 1, prove that
(Nf )0

∼= N ⊗S (Sf )0.

9.6.1 Constructing a sheaf

We will define a functor ˜+ which associates to any Z-graded S-module N a quasicoherent
sheaf Ñ+.

Construction 9.6.3. Let S be a Z≥0-graded ring. Suppose that N is a Z-graded S-
module. For every homogeneous f ∈ S+ the (Sf )0-module (Nf )0 defines a quasicoherent

sheaf (̃Nf )0 on D+,f . These modules satisfy a natural compatibility under localization
maps; applying Corollary 7.6.3 to glue the resulting sheaves we obtain a quasicoherent
sheaf Ñ+ on Proj(S).

Exercise 9.6.4. Show that for any point p ∈ Proj(S) the stalk of Ñ+ at p is the de-
gree 0 piece of the homogeneous localization N(p) (that is, the localization of N along all
homogeneous elements not contained in p).

Exercise 9.6.5. Show that ˜+ defines an exact functor from the category of Z-graded
S-modules to the category of quasicoherent sheaves on Proj(S).

Unlike the affine case, ˜+ is not an equivalence of categories. The issue is one that we
have observed before in the context of homogeneous ideals: if two graded S-modules N,N ′

agree in sufficiently high degrees then they define the same quasicoherent sheaf on Proj(S).
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There is one more important property satisfied by the ˜+ functor. Suppose that M
and N are Z-graded S-modules. For any homogeneous f ∈ S+ we have a natural map

(Mf )0 ⊗(Sf )0 (Nf )0 → ((M ⊗S N)f )0

m

fdeg(m)/deg(f)
⊗ n

fdeg(n)/deg(f)
7→ m⊗ n

fdeg(n+m)/deg(f)

These local maps induce a global morphism M̃+ ⊗OProj(S)
Ñ+ → M̃ ⊗S N

+
.

Proposition 9.6.6. Let S be a Z≥0-graded ring that is generated in degree 1. For any two
Z-graded S-modules M,N the map

M̃+ ⊗OX Ñ
+ → M̃ ⊗S N

+

is an isomorphism.

Proof. By assumption Proj(S) is covered by distinguished open affines of the form D+,f

where f is homogeneous of degree 1. It suffices to verify that the globally-defined morphism
discussed above restricts to an isomorphism on each of these open sets. Using Corollary
9.6.2 we see that

(Mf )0 ⊗(Sf )0 (Nf )0
∼= (M ⊗S (Sf )0)⊗(Sf )0 (N ⊗S (Sf )0)

∼= (M ⊗S N)⊗S (Sf )0

which verifies the desired isomorphism over D+,f .

9.6.2 Invertible sheaves

There are certain quasicoherent sheaves which play a particularly important role in our
graded theory.

Definition 9.6.7. Let S be a Z≥0-graded ring. We denote the quasicoherent sheaf S̃(d)
+

by OProj(S)(d) (or just O(d) when the context is understood).

Example 9.6.8. For PnK Definition 9.6.7 agrees with the definition of the invertible sheaves
OPn(d) given in Example 7.1.8 so there is no conflict in notation.

One might expect that the quasicoherent sheaves O(d) have a natural interaction with
the grading structure of graded S-modules N . The following exercise verifies this relation-
ship under our usual hypothesis:

Exercise 9.6.9. Let S be a Z≥0-graded ring that is generated in degree 1. Let N be a Z-

graded S-module. Show that Ñ+⊗O(d) ∼= Ñ(d)
+

. In particular, show that O(n)⊗O(m) ∼=
O(n+m).
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In keeping with the previous exercise, we define:

Definition 9.6.10. Let S be a Z≥0-graded ring that is generated in degree 1. Let F be a
quasicoherent sheaf on Proj(S). We define F(n) := F ⊗O(n).

We now turn to the study of the sheaves O(d). Just as for PnK, these sheaves are often
invertible sehaves.

Lemma 9.6.11. Let S be a Z≥0-graded ring that is generated in degree 1. Then O(d) is
an invertible sheaf on Proj(S).

The restriction on S is necessary; see Exercise 9.6.23.

Proof. By assumption Proj(S) is covered by the distinguished open affines D+,f where
f ∈ S has degree 1. For such functions f we have that (Sf )d is the free (Sf )0-module
generated by fd. In this way we see that O(d) is obtained by gluing together locally free
sheaves of rank 1 on an open cover, hence it is itself a locally free sheaf of rank 1.

Remark 9.6.12. In particular, when S is generated in degree 1 by elements {x1, . . . , xm}
the proof above shows that on the open affine cover D+,fi the transition functions for the
invertible sheaf O(d) are defined by ( xixj )d.

By analogy with the situation for PnK, one might expect the global sections of O(d) on
Proj(S) to be isomorphic to the dth graded piece of S. This is not true in general, even if
we assume that S is generated in degree 1. The following proposition clarifies the situation:

Proposition 9.6.13. Let S be a Z≥0-graded ring which is an integral domain and is finitely
generated in degree 1 by elements x0, . . . , xn. Then we have an equality of graded S-modules

⊕
i≥0

Γ(Proj(S),O(d)) ∼=
n⋂
i=0

(Sxi)

inside the field F obtained by localizing S along all non-zero homogeneous elements.

The right hand side will always contain S, but need not be equal to it in general. When
every xi is prime – for example, if S is a UFD – then the right hand side is equal to S. (The
RHS is reminiscent of the intersection over height 1 primes that characterizes integrally
closed Noetherian domains, and indeed when S is Noetherian then every element in the
RHS will be integral over S.)

Proof. We can compute the global sections of O(d) by applying the gluing axiom to the
open cover of Proj(S) by D+,xi . We obtain our usual exact sequence

0→ Γ(Proj(S),O(d))→ ⊕ni=0(Sxi)d → ⊕ni,j=0(Sxixj )d
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Taking sums, we get

0→
⊕
i≥0

Γ(Proj(S),O(d))→ ⊕ni=0(Sxi)→ ⊕ni,j=0(Sxixj )

Since all the localizations of S are contained in F, we see that the kernel of the righthand
map is the set of all elements (si ∈ Sxi) which are identified with the same element in F.
This implies the desired statement.

Exercise 9.6.14. Let S be a Z≥0-graded ring which is finitely generated in degree 1 by
elements x0, . . . , xn. Prove that there is a “canonical” map S → ⊕d≥0Γ(Proj(S),O(d)).

The true importance of the invertible sheaves O(d) won’t become clear until Section
10.6 when we discuss ample line bundles. A first step in this direction is the geometric
version of Hilbert’s Syzygy Theorem:

Theorem 9.6.15 (Hilbert’s Syzygy Theorem). If F is a coherent sheaf on PnK then there
is an exact sequence

0→ Er → Er−1 → . . .→ E0 → F → 0

where each Ei is a direct sum of line bundles Ei = ⊕kij=1O(di,j) and where r ≤ n+ 1.

In particular we can try to understand arbitrary coherent sheaves on Pn using finite
exact sequences of sheaves we understand very well.

9.6.3 Constructing a graded module

Having defined a functor ˜+ : S−GrMod→ QCoh(Proj(S)), we now define a functor Γ•
in the reverse direction. In contrast to the situation for affine schemes, we do not obtain an
equivalence between the category of graded S-modules and the category of quasicoherent
sheaves on Proj(S). Nevertheless, the resulting correspondence is quite nicely behaved.

Construction 9.6.16. Let S be a Z≥0-graded ring that is generated by a finite set of
elements in degree 1 as an S0-algebra. Given any quasicoherent sheaf F on Proj(S) we
define

Γn(F) := Γ(Proj(S),F(n)).

We also set

Γ•(F) :=

∞⊕
n=−∞

Γn(F)

Γ•(F) has the structure of a graded Γ•(OProj(S))-module via the multiplication maps

Γ(Proj(S),F(n))⊗ Γ(Proj(S),O(d))→ Γ(Proj(S),F(n+ d))

induced by tensor product. Via the map S → Γ•(OProj(S)) from Exercise 9.6.14 we see
that Γ•(F) also has the structure of a graded S-module.
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Definition 9.6.17. Let S be a Z≥0-graded ring that is generated by a finite set of elements
in degree 1 as an S0-algebra. We call the functor Γ• from QCoh(Proj(S)) to the category
of graded S-modules the saturation functor. We say that a graded S-module is saturated
if it lies in the image of this functor.

Exercise 9.6.18. Let S be a Z≥0-graded ring that is generated by a finite set of elements
in degree 1 as an S0-algebra. Show that for any graded S-module N there is a canonical
morphism of graded S-modules N → Γ•(Ñ

+). This function is called the “saturation
map”. (Hint: send m to the collection of elements m/1 in the distinguished open affines
D+,fi .)

When we are working with projective K-schemes, the saturation map can be described
more explicitly (see Exercise 9.6.26). We next analyze what happens if we compose the
two functors Γ• and ˜+ in the opposite order. We will continue to assume that S is finitely
generated in degree 1. We first construct a morphism

φ : Γ̃•(F)
+
→ F .

For any f ∈ S1, a section of Γ̃•(F)
+

along D+,f is a fraction m/fd where m ∈ Γ(X,F(d)).
We can associate to m/fd the section

m|D+,f
⊗ f−d ∈ (F(d)⊗O(−d))(D+,f ) ∼= F(D+,f ).

This module-theoretic map defines the function φ|D+,f
, and by gluing we obtain the map

φ.

Theorem 9.6.19. Let S be a Z≥0-graded ring that is generated in degree 1 and finitely
generated as an S0-algebra. Let F be a quasicoherent sheaf on Proj(S). Then the map

φ : Γ̃•(F)
+
→ F is an isomorphism.

In particular, this shows that the functor Γ• is essentially surjective onto the category
of quasicoherent sheaves on Proj(S).

Proof. It suffices to prove that each φ|D+,f
is an isomorphism. Exercise 9.5.28 shows that

every element of F(D+,f ) has the form m ⊗ f−d for some positive integer d and some
m ∈ F(X). In particular, φ is surjective.

Conversely, suppose that m is a section of Γ(X,F(d)) such that m⊗ f−d ∈ F(D+,f ) is
zero. Then Exercise 9.5.28 shows that there is some positive integer n such thatm⊗f−d+n ∈
F(n)(D+,f ) is zero. Thus mfn/f−d+n = m/f−d will be zero in (Γ•(F)f )0, and we conclude
that φ is injective.
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9.6.4 Adjoint pairs

In sum, given a Z≥0-graded ring S that is finitely generated in degree 1, we have the
following functors

QCoh(Proj(S))

Γ•
))

graded S-modules˜+oo

Γ•(˜+)

��
saturated S-modules

inclusion

TT

The following results describe the relationships between these various functors.

Theorem 9.6.20. Let S be a Z≥0-graded ring that is generated in degree 1 and finitely
generated as an S0-algebra. For any graded S-module N and any quasicoherent sheaf F on
Proj(S) we have a natural bijection

Hom(Ñ+,F) ∼= Hom(N,Γ•(F)).

In particular, ˜+ and Γ• form an adjoint pair between the categories QCoh(Proj(S)) and
the category of graded S-modules.

Theorem 9.6.21. Let S be a Z≥0-graded ring that is generated in degree 1 and finitely gen-
erated as an S0-algebra. Then Γ• defines an equivalence of categories between QCoh(Proj(S))
and the category of saturated graded S-modules.

Theorem 9.6.22. Let S be a Z≥0-graded ring that is generated in degree 1 and finitely
generated as an S0-algebra. Then the saturation functor Γ•(˜+) is the left adjoint of the
inclusion functor as functors between the categories of graded S-modules and saturated
graded S-modules.

9.6.5 Exercises

Exercise 9.6.23. Let S be the graded ring K[x] where x has degree 2. Show that
OProj(S)(1) is not an invertible sheaf.

Exercise 9.6.24. Let S be the graded subalgebra of K[s, t] generated by s4, s3t, st3, t4.
Let X = Proj(S). Prove that OX(1) is locally free and that dimK Γ(X,OX(1)) = 5. Show
that Γ•(OProj(S)) is isomorphic to the Veronese subalgebra K[s, t](4).

Exercise 9.6.25. Show that if S is a Noetherian Z≥0-graded algebra and N is a finitely

generated graded S-module then Ñ+ is coherent.

Exercise 9.6.26. Suppose that S is a finitely generated graded K-algebra with S0
∼= K

and that S is generated in degree 1. Let N be a finitely generated graded S-module. Prove
that the canonical map N → Nsat is an isomorphism in all sufficiently high degrees.

Exercise 9.6.27. Let S be a Z≥0-graded ring that is generated in degree 1 and finitely

generated as an S0-algebra. Show that Proj(S) is isomorphic to Proj(Γ•(S̃
+)).
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9.7 Flat morphisms

A central idea in topology and geometry is that of a fibration – loosely speaking, this is a
map whose fibers look “the same”. Such a condition is too stringent in algebraic geometry,
as it fails even in very simple examples (such as a pencil of cubic curves in the plane). In
this chapter, we will introduce a different notion of a morphism whose fibers are “varying
in a nice way.”

Recall that an R-module M is said to be flat if M ⊗R − is an exact functor. Flatness
is a stalk-local property – that is, it can be checked after localizing at prime ideals – so it
generalizes naturally to quasicoherent sheaves. We will need one important result about
flat ring extensions:

Theorem 9.7.1 (Going Down). Let S ⊂ R be a flat ring extension. Suppose that for
positive integers 1 ≤ m < n we have a chain of prime ideals q1 ) q2 ) . . . ) qn in S and
a chain of prime ideals p1 ) . . . ) pm such that pi ∩ S = qi. Then we can find a prime
pm+1 ( pm such that pm+1 ∩ S = qm+1.

9.7.1 Flat morphisms

Definition 9.7.2. Let f : X → Y be a morphism of schemes. We say that a OX -module
F is flat over Y at a point x ∈ X if Fx is a flat OY,f(x)-module. We say that F is flat over
Y if it is flat at every point.

A morphism f : X → Y is flat if OX is flat over Y .

Example 9.7.3. A finitely generated module over a local ring is flat if and only if it is
free. Thus, a coherent sheaf F on X is flat (with respect to the identity map) if and only
if it is locally free.

This definition was introduced by Serre, who noticed its usefulness in algebraic ge-
ometry. It is perhaps surprising that this algebraic definition has important geometric
ramifications. This section is dedicated to the geometry of flat morphisms; later on we will
see how such maps also have nice cohomological properties.

Proposition 9.7.4. Let f : X → Y be a morphism, F a quasicoherent sheaf on X. Then
F is flat over Y if and only if for every open affine V ⊂ Y and every open affine U ⊂ f−1V
we have that F(U) is a flat OY (V )-module.

In particular, this means that the map Spec(S) → Spec(R) is flat when S is a flat
R-algebra – for example, when S is a localization of R, a free R-module, or (when R is
Noetherian) a completion along an ideal.

Proof. This reduces to an algebraic statement: M is a flat S-module if and only if Mp is a
flat Sp-module for every prime ideal p ⊂ S.
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Theorem 9.7.5. (1) Let f : X → Y be a morphism and suppose that F is an OX-
module that is flat over Y . For any morphism g : Z → Y , the pullback of F to
X ×Y Z is flat over Z.

(2) Suppose that f : X → Y and g : Y → Z are morphisms of schemes. If F is an
OX-module that is flat over Y and g is a flat morphism then F is flat over Z.

Proof. (1) Since flatness can be verified locally, this follows from the algebraic fact that if
M is a flat S-module and S → R is any homomorphism then M ⊗S R is a flat R module.

(2) Since flatness can be verified locally, this follows from the algebraic fact that if M
is a flat S-module and S is a flat R-algebra then M is a flat R-module.

As an immediate corollary, we see:

Corollary 9.7.6. Flat morphisms are preserved under composition, stable under base
change, and local on the target.

A key property of flat morphisms (that follows immediately from Proposition 9.7.4) is:

Corollary 9.7.7. Let f : X → Y be a flat morphism. For any exact sequence of quasi-
coherent sheaves on Y , the pullback under f is an exact sequence of quasicoherent sheaves
on X.

9.7.2 Flatness and open sets

We next show that flatness interacts well with open sets.

Exercise 9.7.8. Prove that open embeddings are flat.

Proposition 9.7.9. Let f : X → Y be a flat morphism of locally finite presentation. Then
f is topologically open.

In fact, since both properties of f are preserved by base change, f is even “universally
open” in the sense that every base change of f is still topologically open.

Just as the closedness of a finite map follows from the Going Up theorem, the openness
of a flat map follows from the Going Down theorem. Note that the statement is not true
if we remove the finite presentation hypothesis: consider the inclusion of the generic point

Spec(K(x))→ Spec(K[x]) or even the inclusion Spec(K̂[x](x))→ Spec(K[x]). Nevertheless
even in these examples flat morphisms retain information about a “dense” subset.

Proof. We will only prove the statement when X,Y are Noetherian schemes. By Exercise
9.7.8, it suffices to prove that f(X) is an open subset of Y . By Chevalley’s Theorem f(X)
is a constructible subset. Thus it suffices to show that if y1, y2 are points of Y such that
y1 ∈ y2 and we have y1 ∈ f(X) then y2 ∈ f(X) as well.
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Note that y1 ∈ y2 if and only if y2 is in the image of the natural map Spec(OY,y1)→ Y .
Thus it suffices to show that for any point x ∈ X the induced morphism Spec(OX,x) →
Spec(OY,f(x)) is surjective.

By assumption the morphism f ]x : OY,f(x) → OX,x is a flat local homomorphism. A
standard argument in commutative algebra implies that it is faithfully flat, hence injective.
Indeed, suppose that K is the kernel of f ]x. Since OX,x is flat, if we tensor by it we get the
exact sequence

K ⊗OY,f(x) OX,x → OX,x → OX,x ⊗OY,f(x) OX,x
where the map on the right send f 7→ 1⊗f . In particular the map on the right is injective,
since if we compose it with the homomorphism g1⊗g2 → g1g2 we get the identity map. This
means that K ⊗OY,f(x) OX,x is the zero module. If K were non-zero, then by Nakayama’s
Lemma K/mf(x)K would also be non-zero. Again appealing to flatness, the quotient map
would lead to a surjection

K ⊗OY,f(x) OX,x → K/mf(x)K ⊗OY,f(x) OX,x
∼= K/mf(x)K ⊗OY,f(x)/mf(x) OX,x/mx

However, the RHS is clearly non-zero, since we are tensoring a non-zero vector space by a
field extension. This contradicts the fact that the LHS should vanish. We conclude that K
is zero and that f ]x is an inclusion. We can thus apply the Going Down Theorem (Theorem
9.7.1) to see that the induced map Spec(OX,x)→ Spec(OY,f(x)) is surjective.

There is another key result relating flatness to open sets:

Theorem 9.7.10. Let f : X → Y be a finite type morphism such that Y is integral.
Suppose that F is a finitely generated quasicoherent sheaf on X. Then there is a non-
empty open set V ⊂ Y such that F is flat over V .

Note that we are allowing the preimage of V to be empty – for example, if f is a closed
embedding then we should take U to be the complement of X. One can also weaken the
hypotheses a little bit; see [Sta15, Tag 052B].

Proof. We will just prove the statement under the additional hypothesis that Y (and hence
X) is Noetherian. It suffices to prove the statement when Y = Spec(S) is affine. Note that
since Y is integral S is a domain.

Since f is quasicompact, we can choose a finite cover of X by open affines Ui = Spec(Ri)
for i = 1, . . . , r. For each index i, we apply Grothendieck’s Generic Freeness (Theorem
9.7.11) to find an element gi ∈ S. Then F will be flat over the open set Dg1g2...gr of S.

The proof relied on the following algebraic fact:

Theorem 9.7.11 (Grothendieck’s Generic Freeness). Suppose that B is a finitely generated
algebra over a Noetherian domain A. For any finitely generated B-module M , there is an
element g ∈ A such that Mg is a free Ag-module.
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There is a companion fact which we will not prove:

Theorem 9.7.12. Let f : X → Y be a finite type morphism of Noetherian schemes and
let F be a finitely generated quasicoherent sheaf on X. Then the set of points x ∈ X such
that F is flat over Y at x is an open subset.

9.7.3 Flatness criteria

When R is a Dedekind domain, we can classify the flat R-modules in an explicit way:
an R-module M is flat if and only if it is torsion free. (This follows from the localization
criterion for flat modules and the structure theorem for modules over a PID.) The following
result is a scheme-theoretic version.

Theorem 9.7.13. Let f : X → Y be a morphism of Noetherian schemes such that Y is
integral, regular, and has dimension 1. Then f is flat if and only if every associated point
of X maps to the generic point of Y .

The forward implication is always true (see Exercise 9.7.23). However, the reverse
implication relies upon the fact that the base has dimension 1.

Proof. Let V ⊂ Y be an open affine and let U ⊂ f−1V be an open affine. Since OY (V ) is
a Dedekind domain, we see that OX(U) will be a flat OY (V )-module if and only if OX(U)
is torsion free as a OY (V )-module.

First suppose that every associated point of X maps to the generic point of Y . Note
that an element f ∈ OX(U) will be a zero divisor if and only if there is a prime ideal
p representing an associated point of U such that V (f) ⊃ V (p). In particular, for any
element g ∈ OY (V ) we have that V (f ](V )(g)) = f−1(V (g)) and thus by assumption the
vanishing locus cannot contain any associated point of X. Thus no element of OY (V ) maps
to a zero divisor in OX(U). Varying U and V , we deduce that f is flat.

Conversely, suppose that f is flat. Since g ∈ OY (V ) cannot map to a zero divisor in
OX(U), it is impossible for V (g) to contain the f -image of an associated point of X. Since
this is true for every g ∈ OY (V ), the f -image of an associated point of X must be the
generic point.

Remark 9.7.14. An important consequence is the ability to take “flat limits”. Suppose
we have an integral curve C parametrizing a flat family of closed subschemes of Pn. In
other words, suppose we have a closed subscheme U ⊂ C × Pn such that the projection
map p1 : U → C is flat. If we take a projective closure C, we can extend the family over
C simply by taking the closure of U in C × Pn. Since taking closures does not affect the
associated points, the new family U will still be flat over C.

Another situation in which flatness admits a nice description is when we are working
with finite morphisms.
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Exercise 9.7.15. Suppose that f : X → Y is a finite morphism and F is a coherent sheaf
on X. Show that F is flat over Y iff f∗F is locally free.

As we saw in Theorem 4.2.10, flatness is the key ingredient which allows us to identify
the degree of f with the degree of the fibers of f . Indeed, if f is a finite flat morphism
then the proof of Theorem 4.2.10 shows that both of these numbers will coincide with the
rank of f∗OX . The following useful theorem identifies examples of finite morphisms which
are guaranteed to be flat.

Theorem 9.7.16 (Miracle Flatness, [Sta15] Tag 00R3). Let f : X → Y be a surjective
finite morphism. If X is Cohen-Macaulay and Y is regular then f is flat.

In particular, a finite morphism between regular schemes is always flat. In fact, the
statement of Miracle Flatness still holds true if we only know that the fibers of f have
constant dimension.

9.7.4 Fibers of flat families

Finally, we turn to the key property of flatness: the fibers of a flat family will “vary nicely”.
We will only prove one statement in this direction.

Theorem 9.7.17. Let f : X → Y be a flat morphism of irreducible K-schemes. Then
every non-empty fiber of f has dimension dim(X)− dim(Y ).

There is a similar statement for arbitrary Noetherian schemes, except that (as usual)
one needs to compare codimensions instead.

Proof. By Proposition 9.7.9 f(X) is an open subset of Y . Since flatness is preserved by
base change, we may replace Y by the reduced scheme underlying the open set f(X) and
X by the base change over this set. Since the desired statement is local on the target
we may also assume that Y is affine. In this case for every open affine U ⊂ X the map
f ] : OY (Y )→ OX(U) is injective

Fix a point x ∈ X. Set y = f(x) and let F be an irreducible component of the fiber over
y that contains x. Let U be an open affine neighborhood of x. If p0 ⊂ OY (Y ) corresponds
to the point y, there is a chain of prime ideals

p0 ) p1 ) . . . ) pdimY

Since OX(U) is flat over OY (Y ), the Going Down theorem for flat extensions shows that
we have a chain

q0 ) q1 ) . . . ) qdimY

where q0 is the prime ideal defining F ∩ U and where (f ])−1(qi) = pi. We can extend this
chain on the left using prime ideals contained in q0 so that the total length is (one more
than) dim(F ) + dim(Y ). This shows that dim(X) ≥ dim(F ) + dim(Y ). Since the reverse
inequality was proved in Theorem 4.4.9 (and Remark 4.4.10), this finishes the proof.
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We finish with one more statement showing how the fibers of a flat morphism “vary
nicely.” Suppose that Y is an integral scheme and let X be a closed subscheme of Y × Pn.
For any point y ∈ Y , the fiber of f over y is a closed subscheme of Pnκ(y). We can thus
associate to any point of y the Hilbert polynomial of the fiber over y.

Theorem 9.7.18. Let Y be an integral scheme and let X be a closed subscheme of Y ×Pn.
Then the projection map f : X → Y is flat if and only if the Hilbert polynomial of the
fibers of f is constant over the points of Y .

Thus important result shows that the Hilbert polynomial is exactly the right tool for
understanding flat families of projective schemes. We will prove a more general statement
in Theorem 12.7.7.

9.7.5 Exercises

Exercise 9.7.19. Prove that the following morphisms are not flat using the definition
directly:

(1) The map Spec(K[x, y]/(xy))→ Spec(K[x]).

(2) The map Spec(K[x, y]/(y2, xy))→ Spec(K[x]).

(3) The blow-up of a point φ : X → P2.

How do these morphisms violate the properties of flat morphisms described earlier?

Exercise 9.7.20. Prove that the normalization of the cuspidal curve Spec(K[x, y]/(y2 −
x3)) is an open morphism that is not flat. (More generally, explain why the normalization
of a non-normal K-variety will never be flat.)

Exercise 9.7.21. Let f : X → Y be a flat morphism. Show that every locally free sheaf
on X is flat over Y .

Exercise 9.7.22. Prove that a morphism f : X → Y is flat if and only if f∗ : QCoh(X)→
QCoh(Y ) is exact.

Exercise 9.7.23. Let f : X → Y be a flat morphism of Noetherian schemes. Show that
the f -image of an associated point of X is an associated point of Y . (Hint: use the fact
that the maximal ideal in a Noetherian local ring R is an associated prime of R if and only
if every element contained in it is a zero-divisor.)

More generally, if F is a coherent sheaf on X that is flat over Y then every associated
point of F maps to an associated point of Y .
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Exercise 9.7.24. Let U = A1\{0}. Consider the family of subschemes W ⊂ A3×U where
the fiber of W over the point p ∈ U is the union of the lines y = z = 0 and x− p = z = 0.
Note that the map π : W → U is flat.

By Remark 9.7.14 there is a subscheme W ⊂ A3 × A1 which is flat over A1 and agrees
with W over U . Compute the flat limit of this family: what is the fiber of W over 0?
(Hint: it is not the reduced union of the x and y axes.)

Exercise 9.7.25. Consider the double plane X = V ((w, x) ∪ (y, z)) in A4. Consider the
map A4 → A2 given by s 7→ w + y, t 7→ x+ z and let f : X → A2 be the restriction to X.
Show that f is finite but not flat. (Hint: compute the degrees of f above various points.)
Using Theorem 9.7.16 deduce that X is not Cohen-Macaulay.

Exercise 9.7.26. A morphism f : X → Y is said to be faithfully flat if it is flat and
surjective.

(1) Suppose that X and Y are affine schemes. Prove that f is faithfully flat if and only
if f ] realizes OX(X) as a faithfully flat OY (Y )-algebra.

(2) Prove that faithfully flat morphisms are preserved under composition, stable under
base change, and local on the target.

(3) Prove that if f : X → Y is a faithfully flat morphism then a sequence of quasicoherent
sheaves on Y is exact if and only if its pullback to X is exact.
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Chapter 10

Line bundles

Line bundles play an important role in every area of geometry. This is particularly true in
algebraic geometry. Indeed, the fundamental example of a scheme is projective space and
the key geometric feature of projective space is the tautological line bundle. Thus it should
come as no surprise that the tautological line bundle and its dual O(1) feature prominently
in the study of projective schemes.

Suppose that X is a scheme. Given a morphism f : X → Pn, we can obtain an invertible
sheaf L on X by pulling back OPn(1). The invertible sheaf L has one key property: since
the global sections of O(1) don’t simultaneously vanish at any point, the global sections of
L also do not vanish at any point.

In the first section of the chapter, we show that this construction can be reversed:
starting from an invertible sheaf L and a set of global sections, we can construct a (rational)
map to projective space. (The construction of a rational map from a graded homomorphism
of homogeneous coordinate rings is a special case of this construction.) This result provides
a fundamental shift in perspective: we can analyze the category of quasiprojective K-
schemes by instead studying invertible sheaves and their sections.

We next discuss how to classify invertible sheaves on a scheme X. It turns out that
the study of invertible sheaves is closely tied to the study of codimension 1 subvarieties.
This correspondence leads us to the study of Weil divisors (formal sums of codimension
1 integral subschemes) and of Cartier divisors (Weil divisors locally defined by a single
equation). After introducing these new concepts, we explain how in some cases they can
be used to classify invertible sheaves.

Finally, we turn to the question of which invertible sheaves on X can be the pullback
of O(1) under a morphism f : X → P1. In fact, we ask for something even stronger: we
are mainly interested in the case when f is a closed embedding. This leads to the notion
of a very ample invertible sheaf (which is the pullback of O(1) under a closed embedding)

349
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and its “stable” analogue, an ample invertible sheaf. In the last two sections we discuss
these essential notions, first in the “absolute” setting, then in the “relative” setting.

10.0.1 Algebraic preliminaries

Let X be a Noetherian scheme and let Y be an irreducible closed subset. As discussed in
Section 8.5.3, we define the codimension of Y to be the maximal integer r such that we
have an increasing chain of irreducible closed subsets

Y = X0 ( X1 ( . . . ( Xr = X.

While we have an inequality dim(X) ≥ dim(Y ) + codimX(Y ), in general we do not obtain
equality.

The following theorems summarize the properties of codimension for Noetherian schemes:

Theorem 10.0.1 (Krull’s Prinicipal Ideal Theorem). Let X be an irreducible Noetherian
scheme. Let U ⊂ X be an open subset and suppose that f ∈ OX(U). Then V (f) is a closed
subset of U of codimension ≤ 1.

Theorem 10.0.2 (Dimension of fibers). Let f : X → Y be a morphism of Noetherian
schemes. Suppose that p is a point of X and q = f(p). Then we have

codimX(p) ≤ codimY (q) + codim
f−1(q)

(p).
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10.1 Invertible sheaves and maps to projective space

An invertible sheaf (or equivalently, a line bundle) on a scheme X is a locally free sheaf L
of rank 1. Let’s recall some of the basic properties of invertible sheaves:

(1) Given any morphism f : X → Y , the pullback of an invertible sheaf on Y is an
invertible sheaf on X. (See Exercise 9.5.20.)

(2) For any invertible sheaf L on X, there is an open cover {Ui} of X such that L|Ui ∼=
OUi . Conversely, given an open cover {Ui} of X and transition maps φij : OUi∩Uj →
OUi∩Uj that satisfy the cocycle condition we can construct an invertible sheaf L. (See
Section 9.5.2.)

(3) Given two invertible sheaves L,M their tensor product L ⊗M is also an invertible
sheaf.

We will need a couple more basic results about invertible sheaves.

Proposition 10.1.1. Let X be a scheme and let L be an invertible sheaf on X. Then
L∨ ⊗ L ∼= OX .

In fact this result motivates the term “invertible sheaf”: it turns out that the invertible
sheaves are exactly the same as the OX -modules which admit an “inverse” under the tensor
product.

Proof. Let R be a ring and let M be a rank 1 free R-module. There is a canonical
isomorphism φR : M∨ ⊗R M → R given by sending ψ ⊗m 7→ ψ(m). Note that this map
is compatible with localization, in the sense that for any element f ∈ R the map φRf is
(φR)f .

Choose an open cover of X by open affines Ui such that L|Ui is isomorphic to OUi .
The map φOX(Ui) defines an isomorphism φi : (L∨ ⊗ L)|Ui → OX |Ui . By Corollary 7.6.4,
these local φi glue together to give a global morphism φ : L∨ ⊗ L → OX . Since φ induces
isomorphisms of stalks at every point x ∈ X, it is an isomorphism.

Recall that for any global section s of an invertible sheaf L we can define a closed
subscheme of X known as the vanishing locus of s; its ideal is the image of the map
L∨ → OX corresponding to s.

Proposition 10.1.2. Let X be a scheme. Let L be an invertible sheaf and let s ∈ L(X).
Denote by U the complement of the zero locus Z(s). Then there is an isomorphism ψ :
L|U → OU such that ψ(U)(s) = 1.

Proof. Let V ⊂ U be any open affine such that there is an isomorphism φV : L|V → OV .
Define t = φV (V )(s). By construction t is an element of OX(V ) that does not vanish
anywhere on V ; by Exercise 8.2.18 we see that t is a unit in OX(V ). Thus we can define
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µV : OV → OV by multiplication by t−1. Finally, we set ψV to be the composition
µV ◦ φV : L|V → OV .

If V ′ is an open affine contained in V , it is clear that ψV |V ′ = ψV ′ . By Corollary 7.6.4
the various ψV glue together to give a global map ψ : L|U → OU . This is an isomorphism
since it defines an isomorphism of stalks at every point. Using the condition ψV (V )(s) = 1
and gluing we see that ψ(U)(s) = 1.

10.1.1 Picard group

Definition 10.1.3. Let X be a scheme. The Picard group Pic(X) is the set of invertible
sheaves on X up to isomorphism. Pic(X) is a group under ⊗: the identity is OX and the
inverse of L is L∨.

Note that if we have a morphism f : X → Y then the pullback defines a homomorphism
f∗ : Pic(Y )→ Pic(X).

Example 10.1.4. We claim that every invertible sheaf on P1
K is isomorphic to O(d) for

some integer d. Using the classification of finitely generated modules over a PID, we see
that the restriction of any invertible sheaf to the affine charts D+,x, D+,y will be isomorphic
to the structure sheaf. Thus we only need to specify the gluing data: every invertible sheaf
on P1

K is determined by an isomorphism ψ : OU → OU where U = Spec(K[t, t−1]). Since
the units of K[t, t−1] all have the form ctd for some c ∈ K× and some integer d, every
isomorphism of this ring has the form t 7→ ctd. The resulting invertible sheaf is isomorphic
to O(d).

Using the relation O(d)⊗O(e) ∼= O(d+ e) we see that Pic(P1
K) ∼= Z.

Exercise 10.1.5. Let K be a number field and let OK be the ring of integers in K. Show
that the Picard group of Spec(OK) is isomorphic to the class group of OK .

10.1.2 Globally generated sheaves

We next introduce the notion of a globally generated sheaf.

Definition 10.1.6. Let X be a scheme and let F be an OX -module. We say that F is
globally generated if there is a surjection O⊕IX → F for some index set I.

As indicated by the name, global generation should be thought of as a “global” condition
on the sheaf F and not a “local” one.

Exercise 10.1.7. Show that every quasicoherent sheaf on an affine scheme is globally
generated.

Example 10.1.8. The sheaf O(−1) on Pn is not globally generated. Indeed, since O(−1)
has no global sections, it admits no non-zero morphisms from OPn .
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The following definition identifies

Definition 10.1.9. Given a point x ∈ X, we say that F is globally generated at x if there
is a map O⊕IX → F such that the induced map on stalks at x is surjective.

Warning 10.1.10. To say that F is globally generated at x does not mean that there is
a surjection O⊕IX,x → Fx. (Indeed, we basically always have such a surjection for any F .)
We need a global map that induces the surjection.

Remark 10.1.11. An OX -module F is globally generated if and only if it is globally
generated at every point x ∈ X. Indeed, since the indexing set for our direct sum is
arbitrary we can define a surjection O⊕IX → F by taking the union of the indexing sets for
all the points in X.

Often Definition 10.1.6 is rephrased using the correspondence between the space of
morphisms OX → F and the space F(X) of global sections. For example, F is globally
generated at x if and only if Fx is generated as an OX,x-module by the restrictions of global
sections. In particular:

Definition 10.1.12. Let X be a scheme and let L be an invertible sheaf on X. Fix global
sections s1, . . . , sn ∈ L(X). We say that these sections generate L if the induced map
⊕ni=1OX → L is surjective.

Exercise 10.1.13. Let X be a quasicompact scheme and let F be a finitely generated
quasicoherent sheaf. Prove that F is globally generated if and only if there is a finite
number of global sections which define a surjection O⊕r → F .

A key feature of global generation is that it is an open property for finitely generated
quasicoherent sheaves:

Exercise 10.1.14. Let X be a scheme and let F be a finitely generated quasicoherent
sheaf on X. Fix a point x ∈ X. Suppose that the fiber F(x) := Fx/mxFx is spanned (as a
κ(x)-vector space) by the restrictions of global sections of F . Prove that there is an open
neighborhood U of x such that F is globally generated at every point of U .

We will exclusively be interested in the globally generated property when we have a
finitely generated quasicoherent sheaf F and we are looking at a finite number of global
sections. In fact, for the rest of this chapter we focus on invertible sheaves L. For invert-
ible sheaves we can measure the failure of the global generation condition using a closed
subscheme known as the base locus.

Definition 10.1.15. Let X be a scheme and let L be an invertible sheaf on X. Suppose
we fix a finite set {si}ri=1 of global sections of L. Consider the evaluation map

O⊕rX → L.
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After tensoring by L∨, we obtain a map (L∨)⊕r → OX . The image of this map is a
quasicoherent ideal sheaf. The corresponding closed subscheme of X is known as the base
locus of L.

In other words, the base locus is the scheme-theoretic intersection of the zero loci Z(si).
Note that L is globally generated by the si if and only if the corresponding base locus is
the empty set.

10.1.3 Maps to projective space

The following fundamental theorem describes the universal property of projective space.

Theorem 10.1.16. Fix a ring R and let X be a Spec(R)-scheme. There is a bijection
between the set of Spec(R)-morphisms f : X → PnR and the isomorphism classes of tuples

(L, s0, . . . , sn)

where L is a invertible sheaf on X and the {si}ni=0 are a set of global sections which generate
L.

Here we say that two tuples (L, s0, . . . , sn) and (L′, t0, . . . , tn) are isomorphic if there is
an isomorphism φ : L → L′ such that φ(si) = ti. In brief, Theorem 10.1.16 is saying that
we can define a map X → PnR via the equations (s0 : s1 : . . . : sn).

Proof. First suppose given an R-morphism f : X → PnR. Define L = f∗OPnR(1). The

surjection O⊕n+1
PnR

→ OPnR(1) defined by the tuple of sections x0, x1, . . . , xn of OPnR(1) pulls

back to give a surjection On+1
X → L. We let si be the section of L defined by the ith direct

summand.
Conversely, suppose given a line bundle L with sections {si}. Let Ui be the complement

of Z(si); since the si generate L we see that the Ui give an open cover of X. By Proposition
10.1.2 we have isomorphisms ψi : L|Ui → OUi with ψi(Ui)(si) = 1. We define fi : Ui →
D+,xi ⊂ PnR by the ring map

R

[
x0

xi
, . . . ,

xn
xi

]
→ OX(Ui)

xj
xi
7→ ψi(Ui)(sj |Ui)

It is clear that the fi agree on overlaps and thus define a global morphism f : X → PnR.
These two constructions are inverse to each other.

The main geometric content is the choice of line bundle L and the R-submodule of
L(X) generated by the si. Let’s briefly discuss how the map f changes as we vary the
choice of sections:
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• Suppose that (L, s0, . . . , sn) and (L, s′0, . . . , s′n) are two tuples such that the OX(X)-
submodule of L(X) generated by the s′i coincides with the submodule generated by
the si. Then the two maps f, f ′ : X → PnR vary by an automorphism of PnR induced
by an element of GLn+1(R).

• Suppose that we add in a section sn+1 that is contained in the R-submodule generated
by the sections s0, . . . , sn so that sn+1 =

∑n
i=0 risi. Then the image of the new map

X → Pn+1
R is the composition of the original map X → PnR with the inclusion of

PnR → Pn+1
R as a hyperplane defined by the equation xn+1 =

∑n
i=0 rixi.

Conversely, if we can remove the section sn without changing the corresponding R-
submodule of L(X), the resulting map X → Pn−1

R is the composition of the original
map X → PnR with projection away from the locus x0 = . . . = xn−1 = 0.

As an immediate consequence of Theorem 10.1.16, we obtain:

Corollary 10.1.17. Let X be a Spec(R)-scheme, let L be an invertible sheaf on X, and
let s0, . . . , sn be global sections of L. Let U denote the complement of the base locus of
{si}ni=0. This collection of data induces a morphism U → PnR over Spec(R).

Theorem 10.1.16 is particularly important when we are working in the category of
quasiprojective K-schemes. Given a quasiprojective K-schemeX, any morphism f : X → Y
can be composed with an injection Y ↪→ PnK to yield a morphism f̂ : X → PnK. In this way,
understanding the set of all morphisms from X is roughly equivalent to understanding the
set of all morphisms from X to PnK. Via Theorem 10.1.16, the latter set is determined by
the set of line bundles on X and their sections.

In particular, computing the Picard group of X can be seen as the first step toward
understanding all the morphisms from X.

10.1.4 Exercises

Exercise 10.1.18. Let X be a scheme. Suppose that F and G are globally generated at
a point x ∈ X. Prove that F ⊗ G is also globally generated at x.

Exercise 10.1.19. Let X be a scheme and let L be an invertible sheaf on X. Fix a point
x ∈ X. Prove that L is globally generated at x if and only there exists a section s ∈ F(X)
whose zero locus does not contain x.

Exercise 10.1.20. Let A be a ring. Prove that the set of A-valued points of PnA is the
same as the set of rank 1 projective modules M equipped with a surjection An+1 →M up
to isomorphism. Here, an isomorphism of two sets of data is a commuting diagram

An+1

��

id // An+1

��
M

∼= //M ′
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In particular, show that if a0, . . . , an are elements of A which generate the unit ideal
then we obtain an A-valued point of PnA and two such (n+ 1)-tuples define the same point
if and only if they can be identified by rescaling by a unit in A. Find an example of a ring
(e.g. A = Z[

√
−5]) such that there are A-valued points of PnA which do not have this form.

Exercise 10.1.21. Let X be the affine line with the doubled origin. Prove that Pic(X) ∼=
Z. Identify which line bundles on X are globally generated.

Exercise 10.1.22. Let f : P1 → Pd be a rational normal curve. What is the function
f∗ : Pic(Pd)→ Pic(P1)?
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10.2 Cartier divisors

Suppose that L is an invertible sheaf on a scheme X and s ∈ L(X). The zero locus Z(s)
is locally defined by the vanishing of a single equation. As we have seen when discussing
Krull’s PIT, subschemes defined by principal ideals have special properties not shared by
arbitrary schemes, and thus they are worthy of further attention.

In this section we study Cartier divisors. These objects are locally defined by a single
rational function (i.e. a function which is allowed to have poles). In the special case when
the local data consists of regular functions, our construction will yield a subscheme locally
defined by principal ideals (see Exercise 10.2.20). The advantage of working with rational
functions is that we will be able to define a group structure.

10.2.1 Cartier divisors on integral schemes

We start by defining Cartier divisors in a special situation – when X is an integral scheme.
In this setting we have a function field K(X) equal to the residue field of the generic point
of X (or equivalently, the fraction field for any open affine in X). We let K(X) denote
the locally constant sheaf on X corresponding to the abelian group K(X) and let K(X)×

denote the locally constant sheaf on X corresponding to the abelian group K(X)×. Note
that there is an injection of sheaves of abelian groups O×X → K(X)×.

Definition 10.2.1. Let X be an integral scheme. A Cartier divisor L on X is a global
section of the sheaf K(X)×/O×X .

It is hard to see the geometric meaning of a Cartier divisor directly from the definition,
so frequently another construction is used. Since K(X)× → K(X)×/O×X is surjective, we
can lift sections of K(X)×/O×X locally to sections of K(X)×. These local rational functions
need not agree on overlaps, but they will agree up to multiplication by an element in O×X .

Construction 10.2.2. Let X be an integral scheme and let {Ui} be an open cover of
X. Suppose that for each Ui we choose an element fi ∈ K× in such a way that fi/fj ∈
O×X(Ui ∩ Uj). Then the set of data {(Ui, fi)} defines a Cartier divisor on X. If we set
tij = fi/fj in O×X(Ui ∩ Uj), then the tij satisfy the cocycle conditions

tii = 1 tij = t−1
ji tik = tjktij .

Note that the representation of a Cartier divisor is not unique; {(Ui, fi)} and {(Vj , f ′j)}
define the same Cartier divisor if fif

′−1
j ∈ OX(Ui ∩ Vj)× for all i, j.

Remark 10.2.3. The local gluing data for Cartier divisors should remind us of the local
gluing data for line bundles. Indeed, our main goal in this section is to investigate the close
relationship between these two types of objects. One can conceptualize a Cartier divisor as
a “twisted” version of a rational function, just as an invertible sheaf is a “twisted” version
of the structure sheaf.
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As global sections of a sheaf of abelian groups, Cartier divisors admit the structure of
an abelian group CDiv(X) (whose operation we denote using +). Precisely, if refine our
open cover {Ui} so that L1 is represented by (Ui, fi) and L2 is represented by (Ui, f

′
i) then

L1 + L2 is represented by (Ui, fif
′
i). The inverse −L1 is represented by {(Ui, f−1

i )}.
The Cartier divisors which admit no “twisting” play an important role in the theory.

Definition 10.2.4. Let X be an integral scheme. A Cartier divisor which can be repre-
sented as (X, f) for some f ∈ K(X)× is called a principal Cartier divisor. The principal
Cartier divisors form a subgroup of CDiv(X).

Two Cartier divisors L1, L2 are said to be linearly equivalent – written L1 ∼ L2 – if
L1−L2 is a principal divisor. We denote the group of linear equivalence classes of Cartier
divisors by CaCl(X). In other words, CaCl(X) is the quotient of CDiv(X) by the subgroup
of principal divisors.

Example 10.2.5. Consider the open cover U0 = D+,x0 , U1 = D+,x1 of P1. Since the units
on the overlap U0 ∩ U1 have the form cx0x1

d, one can define a Cartier divisor L on P1 by

choosing rational functions f0 and f1 such that f1 = cx0x1
d · f0 for some integer d. Note

that such a divisor is determined by f0 and by the transition function cx0x1
d. (Of course,

one could also use a different open cover to define a Cartier divisor.)
If we replace f0 by some other rational function f ′0 and define f ′1 = c′ x0x1

d · f ′0 for some
constant c′ then the resulting Cartier divisor L′ is linearly equivalent to L. In other words,
the linear equivalence class of L is determined solely by the exponent d.

There is one more important type of Cartier divisor: those which are locally defined by
regular functions (and not just rational functions).

Definition 10.2.6. Let X be an integral scheme. A Cartier divisor L on X is effective if
for some (equivalently any) representative consisting of local data {(Ui, fi)} the functions
fi satisfy fi ∈ OX(Ui) for all i.

We will see that effective Cartier divisors correspond to “locally principal” ideal sheaves.
In other words, these are the Cartier divisors with the most geometric significance: they
actually come from closed subschemes of X.

10.2.2 Cartier divisors and invertible sheaves

Our first task to associate to every Cartier divisor L an invertible sheaf OX(L). One option
is to use local gluing data {(Ui, fi)} for L. As in Construction 10.2.2 let tij = fi/fj denote
the element of OX(Ui ∩ Uj)× which defines the local gluings. Since the tij satisfy the
cocycle condition, we can glue the sheaves OUi along the local isomorphisms φij defined
by multiplication by tij to obtain an invertible sheaf.

It is more traditional to use the following equivalent formulation. For simplicity, suppose
we define L by the gluing data {(Ui, fi)} where the Ui are all open affines. On the set Ui,
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consider the free rank 1 OUi-submodule Fi of K(X)|Ui generated by f−1
i . Since fi and fj

only differ by an element of OX(Ui ∩ Uj)× we have an equality

Fi|Ui∩Uj = Fj |Ui∩Uj .

Thus the various Fi glue together (with the identity maps) to give an invertible sheaf
OX(L) with the transition maps described above. As a consequence, the invertible sheaf
OX(L) is described explicitly as:

Construction 10.2.7. Let X be an integral scheme and let L = {(Ui, fi)} be a Cartier
divisor on X. We define the invertible sheaf OX(L) via the prescription

OX(L)(V ) = { f ∈ K(X) | fif ∈ OX(Ui ∩ V ) ∀i }

where the restriction maps are the inclusions.

Remark 10.2.8. Note that OX(L) comes equipped with an inclusion into K(X).

Remark 10.2.9. At first it is unclear why we would define OX(L) using the local functions
f−1
i instead of just fi. Conceptually this choice is similar to the decision about whether a

vector bundle should be associated to its sheaf of sections or the dual sheaf. The choice
f−1
i guarantees that the sections of OX(L) will satisfy the same gluing properties as L (see

Proposition 10.2.17).

The following proposition outlines the key properties of this construction.

Proposition 10.2.10. Let X be an integral scheme and let L1, L2 be two Cartier divisors
on X.

(1) We have OX(L1 + L2) ∼= OX(L1)⊗OX(L2) and OX(−L1) ∼= OX(L1)∨.

(2) We have OX(L1) ∼= OX(L2) if and only if L1 and L2 are linearly equivalent.

Precisely, if L1 and L2 are linearly equivalent then OX(L1) and OX(L2) are isomorphic
invertible sheaves equipped with different embeddings into K(X).

Proof. (1) By refining our open cover we may suppose that L1 corresponds to local data
{(Ui, fi)} and L2 corresponds to local data {(Ui, f ′i)} where the Ui are affine. Then L1 +L2

is defined by {(Ui, fif ′i)}. Thus for every open affine V we have

OX(L1 + L2)(Ui) = { f ∈ K(X) | fif ′if ∈ OX(Ui) }.

On the other hand, for any open affine Ui we have

(OX(L1)⊗OX(L2))(Ui) = OX(L1)(Ui)⊗OX(Ui) OX(L2)(Ui)

= OX(Ui) · f−1
i ⊗OX(Ui) OX(Ui) · f ′−1

i
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Since quasicoherent sheaves are determined by what happens on an open affine cover, it is
clear that these constructions define isomorphic sheaves. The proof of the second statement
is similar.

(2) It suffices to show that L is a principal Cartier divisor if and only if OX(L) ∼= OX .
To see the forward direction, suppose L is defined by the global function f ∈ K(X)×. Then
the multiplication by f map defines an isomorphism OX(L) → OX . Conversely, suppose
given an isomorphism φ : OX(L) → OX . By taking the image of the constant section 1
under φ−1 we get an element s ∈ OX(L)(X) ⊂ K(X). If {(Ui, fi)} denotes local data for
L, we see that on each Ui we must have that fis ∈ OX(Ui)

×. Thus the principal divisor
(X, s−1) defines the same Cartier divisor.

Example 10.2.11. Consider the Cartier divisor L on P1 defined by f0, f1 satisfying f1 =
cx0x1

d·f0 as in Example 10.2.5. Then the corresponding line bundleOX(L) will be isomorphic
to O(d). The choice of f0 (which determines f1) will only affect how this line bundle is
embedded into K(X).

Proposition 10.2.10 shows that we get an injective group homomorphism CaCl(X) →
Pic(X). In our setting of integral schemes, it turns out that this map is an isomorphism.

Theorem 10.2.12. Let X be an integral scheme. Then the map CaCl(X) → Pic(X) is
an isomorphism of groups.

Proof. It suffices to show that for any invertible sheaf L there is a Cartier divisor L such
that OX(L) ∼= L. Consider the inclusion OX → K(X) and tensor by L to get a morphism
φ : L → L⊗OX K(X). Since L is locally isomorphic to OX , the map φ is injective.

We claim that L ⊗OX K(X) ∼= K(X). Indeed, since L is locally isomorphic to OX , X
admits an open cover by sets U such that (L⊗OXK(X))|U is the locally constant sheaf on U
associated to K(X). Since X is irreducible, this implies that the entire sheaf L⊗OX K(X)
is locally constant, and thus isomorphic to K(X).

Choose an open cover {Ui} which trivializes L. The map φ identifies L|Ui with a free
OX -submodule of K(X)|Ui generated by some element gi ∈ K(X)×. By the construction
we must have that on Ui∩Uj the quotient gi/gj is an element of OX(Ui∩Uj)×. If we define
a Cartier divisor L by the local data {(Ui, g−1

i )} then OX(L) is the same as the φ-image
of L.

10.2.3 Cartier divisors and sections

Having associated an invertible sheaf to every Cartier divisor, we now construct a map
in the “reverse direction.” More precisely, there are many Cartier divisors associated to
an invertible sheaf. What extra data on L do we need to specify to allow us to recover a
Cartier divisor uniquely?
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Definition 10.2.13. Let X be an integral scheme and let L be an invertible sheaf on X.
Consider a pair (U, s) where U is a dense open subset and s ∈ L(U). We say that two pairs
(U, s) and (V, t) are equivalent if s|U∩V = t|U∩V . A rational section of L is an equivalence
class of pairs (U, s). We will often omit the open set U from our notation.

Suppose we are given two invertible sheaves equipped with rational sections (L, s) and
(L, s′). We say that these two pairs are isomorphic if there is an isomorphism φ : L → L′
and an open set U where s, s′ are defined such that φ(U)(s) = s′.

In particular, suppose we have two rational sections s, s′ of the same line bundle L. By
Exercise 9.5.21 we have

Hom(L,L) ∼= Hom(OX ,OX) ∼= OX(X)

so every isomorphism φ : L → L is defined by global multiplication by an element of
OX(X)×. Thus (L, s) and (L, s′) are isomorphic if and only if s and s′ are related by an
element of OX(X)×.

Construction 10.2.14. Let X be an integral scheme, L an invertible sheaf on X, s a
rational section of L. The divisor of zeros and poles of s is the Cartier divisor defined
as follows. First choose an open affine cover {Ui} trivializing L and choose isomorphisms
φi : L|Ui → OUi . If s is defined on all of Ui then we take the local datum (Ui, φi(s)). If not,

then we take the local datum (Ui, φ̂i(s)) where φ̂i is the restriction of φi to a distinguished
open affine in Ui where s is defined. (The function φ̂i maps to a localization of OX(Ui)
and thus to K(X).)

Note that our choices of the open cover Ui and the isomorphisms φi only affect the
local functions φi(s) up to rescaling by a unit in OX(Ui)

×. Thus altogether the local data
define a Cartier divisor which is independent of all choices.

Remark 10.2.15. The Cartier divisor in Construction 10.2.14 only depends upon the
isomorphism type of the pair (L, s).

Remark 10.2.16. If in Construction 10.2.14 the rational section s is defined on the open
set Ui then φi(s) is actually an element of OUi . In particular, if s ∈ L(X) then the resulting
Cartier divisor is effective.

Proposition 10.2.17. Let X be an integral scheme and let L be an invertible sheaf on X.
Then:

(1) There is a bijection between global sections s ∈ L(X) up to rescaling by OX(X)× and
effective Cartier divisors L such that OX(L) ∼= L.

(2) There is a bijection between rational sections of L up to rescaling by OX(X)× and
Cartier divisors L such that OX(L) ∼= L.
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Proof. Given a rational section s of L, consider the Cartier divisor L obtained by taking
the divisor of zeros and poles. Recall that L is effective whenever s is a global section and
that rescaling s by an element of OX(X)× does not change L. We still need to check that
OX(L) ∼= L. But this follows from the fact that the transition maps for L are the same as
the transition maps for s, which in turn define the transition maps for OX(L).

Conversely, suppose given a Cartier divisor L such that OX(L) is isomorphic to L.
Note that the function 1 ∈ K(X) defines a rational section of OX(L); when L is effective,
1 ∈ K(X) is even a global section of OX(L). Under our isomorphism φ : OX(L)→ L the
rational section 1 is taken to a rational section s of L. Note that this construction only
identifies (L, s) up to isomorphism.

These two constructions are inverses: the Cartier divisor L corresponds to the rational
section 1 of OX(L) and this identification is compatible with both constructions.

10.2.4 Cartier divisors on arbitrary schemes

Our definition of Cartier divisors does not extend to arbitrary schemes since we used the
function field K(X) in an essential way. Here is how to extend the notion more generally.

For any scheme X we can define the sheaf of total quotient rings (also denoted K(X)×)
as follows. For each open affine U let S(U) denote the subset of functions in OX(U) whose
restriction to the stalk OX,x is a non-zerodivisor for every x ∈ U . (This condition on S(U)
implies, but is stronger than, the condition that each element of S(U) be a non-zerodivisor
in OX(U).) The assignment U 7→ S(U)−1OX(U) is a presheaf of OX -algebras. We let
K(X)× be the sheafification of this presheaf.

We can define Cartier divisors using K(X)× in place of the locally constant sheaf
with value K(X)×. Unfortunately this construction is somewhat subtle when X is not
Noetherian (see [Kle79]). However, in practice this still amounts to defining Cartier divisors
via local invertible functions which satisfy a compatibility fromO×X on overlaps. A principal
divisor is a Cartier divisor associated to a global section of K(X)×, and CaCl(X) is the
group of Cartier divisors modulo the principal ones.

For an arbitrary scheme X we still have an inclusion CaCl(X) ↪→ Pic(X). However,
this map need not be surjective in general, since there may be invertible sheaves which
do not embed in K(X). It is an isomorphism in most common situations: when X is an
integral scheme, or when X is projective over a Noetherian ring, or when X is a Noetherian
scheme without embedded points.

For an arbitrary scheme X and an invertible sheaf L, we define a rational section of
L to be (an equivalence class of) a section defined on a scheme-theoretically dense open
subset U . (When X is Noetherian, this means that U contains every associated point of
X.) Furthermore, we are only interested in those rational sections s which are invertible, in
the sense that there is a rational section s∨ of L∨ such that under the pairing L⊗L∨ → OX
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we have s⊗s∨ 7→ 1. (When X is Noetherian, this amounts to saying that the restriction of
s to the closure of any associated point does not vanish.) With these definitions the group
of Cartier divisors is isomorphic to the group of pairs (L, s) of an invertible sheaf L and
an invertible rational section s up to isomorphism; see [Sta].

10.2.5 Exercises

Exercise 10.2.18. Consider the standard open covering U0, . . . , Un of Pn by affine charts.
We will define a Cartier divisor L on Pn using this open covering. To U0 we associate the
function f0 and to U1 we associate the function f1 = cx0x1

d · f0. Explain why this data
uniquely determines the values of L on every other open chart Ui.

(This exercise is an avatar of the fact that a function or invertible sheaf on a normal
variety is determined uniquely over the complement of a codimension 2 closed subset.)

Exercise 10.2.19. Suppose that f : X → Y is a dominant morphism of integral schemes.
In particular we have an induced injection f ] : K(Y )→ K(X). Given a Cartier divisor L =
{(Vi, gi)} on Y , we define the pullback f∗L by the prescription f∗L := {(f−1Vi, f

](gi))}.

(1) Prove that f∗L is a Cartier divisor.

(2) Prove that f∗ preserves linear equivalence.

(3) Prove that OX(f∗L) ∼= f∗OY (L).

In fact, we can define pullbacks in much more general situations. Given any morphism of
integral schemes f : X → Y , we can define the pullback of a Cartier divisor L so long as
f(X) is not contained in the closure of the vanishing locus of the denominator of one of
the functions gi defining L (and the results of this exercise will still hold).

Exercise 10.2.20. Let X be an integral scheme and let L = {Ui, fi} be an effective Cartier
divisor. For each index i let IUi be the quasicoherent ideal sheaf on Ui generated by fi.

(That is, for every open affine V ⊂ Ui we have IUi(V ) = (̃fi|V ).)

(1) Explain why the various IUi can be glued to yield a quasicoherent ideal sheaf I on
X.

(2) Prove the important relation I ∼= OX(−L).

It is quite common to implicitly identify the effective Cartier divisor L with the closed
subscheme Z defined by I.

Exercise 10.2.21. Let X be an integral affine scheme and let L be an effective Cartier
divisor on X. The support of L is defined to be the closed subset underlying the corre-
sponding subscheme defined in Exercise 10.2.20. Prove that the complement of the support
of L is again an affine scheme. (Hint: show that the inclusion U → X is an affine morphism
by arguing locally.)
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10.3 Weil divisors

Throughout this section X will denote an integral normal Noetherian scheme. Recall that
a scheme is normal if all of the stalks of its structure sheaf are integrally closed; for integral
schemes, this is the same as saying that every affine open is defined by an integrally closed
ring.

Definition 10.3.1. Let X be an integral normal Noetherian scheme. A prime divisor on
X is an integral closed subscheme of codimension 1.

A Weil divisor is a formal sum of prime divisors, i.e. a finite sum
∑n

i=1 aiYi where
ai ∈ Z and Yi is a prime divisor. The group of Weil divisors is denoted WDiv(X). The
multiplicity of a Weil divisor D along a prime divisor Y , denoted by multY (D), is the
coefficient of Y in D. The support of a Weil divisor D, denoted Supp(D), is the union of
all prime divisors Y such that multY (D) 6= 0.

A Weil divisor D is said to be effective if every coefficient ai is non-negative; we denote
this condition by writing D ≥ 0.

Exercise 10.3.18 shows how any closed subscheme Z ⊂ X of pure codimension 1 yields
an effective Weil divisor which records only the “codimension 1 information” of Z.

Construction 10.3.2. Given a prime divisor Y , let ηY denote its generic point. Since X
is normal and Y has codimension 1, OX,ηY will be an integrally closed local Noetherian
ring with Krull dimension 1. In other words, OX,ηY is a discrete valuation ring yielding a
discrete valuation valY on the function field K(X).

To any f ∈ K(X)× we can associate a Weil divisor via the prescription

div(f) :=
∑

valY (f)Y.

We call div(f) the divisor of zeros and poles of f – prime divisors with positive valuations
are known as “zeros” of f and prime divisors with negative valuations are known as “poles”
of f . The fact that div(f) is a well-defined Weil divisor is a result of the following claim.

Claim 10.3.3. Let X be an integral normal Noetherian scheme with function field K(X).
For any f ∈ K(X)× there are only finitely many prime divisors Y such that valY (f) 6= 0.

Proof. Let U ⊂ X be an open affine such that f ∈ OX(U). The complement X\U is a
proper closed subscheme. Since any prime divisor contained in X\U must be an irreducible
component of X\U , this set can only contain finitely many prime divisors. Thus, it suffices
to prove that there are only finitely many prime divisors Y which intersect U and have
valY (f) 6= 0.

Since f ∈ OX(U), any prime divisor Y which intersects U will have valY (f) ≥ 0.
Furthermore, valY (f) > 0 if and only if Y ⊂ V (f). Since V (f) has only finitely many
irreducible components, we obtain the desired statement.
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Remark 10.3.4. Lemma 10.3.10 will show that the kernel of the map div : K(X)× →
WDiv(X) is OX(X)×.

Definition 10.3.5. A divisor of the form div(f) for f ∈ K(X)× is called a principal
divisor. The set of all principal divisors forms a subgroup of WDiv(X) (since div is a
homomorphism).

Two Weil divisors D1, D2 are said to be linearly equivalent – written D1 ∼ D2 – if their
difference is a principal divisor. The group of linear equivalence classes of Weil divisors is
known as the class group and is denoted Cl(X). In other words, Cl(X) is the quotient of
WDiv(X) by the subgroup of principal divisors.

Example 10.3.6. Let’s analyze the group Cl(Pn). We can define a homomorphism deg :
WDiv(X)→ Z via the prescription

deg
(∑

aiYi

)
=
∑

ai deg(Yi).

Recall that K(PnK) is the set of quotients f
g where f, g are homogeneous polynomials in

K[x0, . . . , xn] which have the same degree. Then div(fg ) is the Weil divisor V+(f)− V+(g).
In particular, every principal Weil divisor on Pn has degree 0.

Conversely, suppose D =
∑
aiYi is a Weil divisor of degree 0. Recall that every

prime divisor on Pn is defined by a single irreducible homogeneous equation (by applying
Proposition 4.4.8 on an affine chart). Suppose that Yi = V+(fi). If we set f =

∏
faii , then

f is an element of K(PnK) with div(f) = D. We conclude that the principal divisors are
exactly the same as the divisors of degree 0. Thus Cl(Pn) ∼= Z.

Example 10.3.7. Let R be a Noetherian UFD. Then Spec(R) is an integral normal
Noetherian scheme. We claim that Cl(Spec(R)) = 0. Indeed, Proposition 4.4.8 shows
that every prime divisor Y is the vanishing locus of a principal ideal (f). Then div(f) = Y
and so every prime divisor is principal.

It turns out that the converse is also true: if R is an integrally closed Noetherian domain
with Cl(Spec(R)) = 0 then R is a UFD. The proof is not too hard but we will not need it.

10.3.1 Cartier divisors and Weil divisors

In Construction 10.3.2 we saw how to associate a Weil divisor to any element in K(X)×.
In fact this construction can be extended to arbitrary Cartier divisors as follows.

Construction 10.3.8. Let X be an integral normal Noetherian scheme and let {(Ui, fi)}
be local data determining a Cartier divisor L. For any prime divisor Y , we define the
multiplicity of L along Y by choosing an open set Ui such that Y ∩ Ui 6= 0 and setting

multY (L) := valY (fi).
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Referring to the discussion of representations of a Cartier divisor in Construction 10.2.2,
it is clear that this definition is independent of the choice of open set Ui and the choice of
local data {(Ui, fi)} determining L. We then define the Weil divisor associated to L as

div(L) =
∑
Y

multY (L)Y.

Note that this sum is finite since we can choose a finite cover of opens and apply Claim
10.3.3 on each.

We thus obtain a map div : CDiv(X)→WDiv(X). Note that this map sends effective
Cartier divisors to effective Weil divisors: if the local data for L is defined by equations in
OX(Ui), then all the valuations of fi for divisors intersecting Ui are non-negative and thus
div(L) ≥ 0.

Example 10.3.9. Suppose that L is the Cartier divisor on Pn corresponding to a rational
section f/g of OPn(d) where deg(f)− deg(g) = d. Then we have div(L) = V+(f)− V+(g).

Lemma 10.3.10. Let X be an integral normal Noetherian scheme. The map div : CDiv(X)→
WDiv(X) is injective.

Proof. Suppose L = {(Ui, fi)} is in the kernel of div. After refining the cover we may sup-
pose that each Ui is affine. Then the valuations of fi along every prime divisor intersecting
Ui is zero. In particular, fi|U is contained in every localization of OX(U) along a height
one prime. Since OX(Ui) is integrally closed, this implies that fi ∈ OX(Ui). By the same
argument f−1

i ∈ OX(Ui) so that fi is a unit on Ui. But the only Cartier divisor defined
locally by units is the trivial Cartier divisor.

By quotienting out by the group of prinicipal divisors we obtain an injection CaCl(X)→
Cl(X). Note that a Weil divisor D will be linearly equivalent to a Cartier divisor L if and
only if D is itself Cartier.

Loosely speaking, the image of the map div : CDiv(X) → WDiv(X) has image the
Weil divisors which can locally be defined by a single equation. The following example
illustrates that the map CDiv(X) → WDiv(X) need not be surjective. As we will see in
Theorem 10.4.2, this failure of surjectivity is related to the singularities of X.

Example 10.3.11. Consider the quadric cone X := Spec(K[x, y, z]/(xy−z2)). The prime
ideal (x, z) defines one of the lines through the origin; we call this Weil divisor D. In
Exercise 5.1.16 we used the Zariski tangent space to show that D is not locally principal
– there is no open neighborhood of the origin along which the ideal of D is defined by a
single equation. Thus D is not in the image of the map div.

However div(x) = 2D is a Cartier divisor (since 2D is locally defined by x = 0). In fact,
it turns out that the cokernel of the map CDiv(X)→WDiv(X) is the abelian group Z/2Z
and this cokernel is generated by D. (This is related to the fact that X is the quotient of
A2 by the Z/2Z-action sending (x, y) 7→ (−x,−y).)
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10.3.2 The sheaf associated to a Weil divisor

Suppose that D =
∑
aiYi is a Weil divisor. We would like to associate to D a sheaf OX(D)

consisting of all rational functions whose poles are “at worst −D”.

Definition 10.3.12. Let X be an integral normal Noetherian scheme and let D =
∑
aiYi

be a Weil divisor on X. We define the sheaf OX(D) via the prescription

OX(D)(U) = {f ∈ K(X)|(div(f) +D)|U ≥ 0}
= {f ∈ K(X)| valY (f) ≥ multY (D) ∀Y s.t. Y ∩ U 6= ∅}.

and whose restriction maps are the inclusion maps.

Since multiplying a rational function by an element of OX(U) can only increase the
valuations along divisors which intersect U , we see that OX(D) is actually an OX -module.
In fact it turns out that:

Lemma 10.3.13. Let X be an integral normal Noetherian scheme and let D =
∑
aiYi be

a Weil divisor on X. Then OX(D) is a coherent sheaf on X whose rank at the generic
point of X is equal to 1.

Remark 10.3.14. There is an important subtlety concerning Definition 10.3.12. Suppose
that L is a Cartier divisor. We claim that the sheaf OX(div(L)) of Definition 10.3.12 is
isomorphic to the sheaf OX(L) of Construction 10.2.7 (resolving a potential conflict in
notation).

The key observation is that since X is normal, if U is an open affine and f ∈ K(X) is
a rational function which is well-defined on all of U then f ∈ OX(U) (as we saw before in
the proof of Lemma 10.3.10). Thus, for integral normal Noetherian schemes the two sheaf
descriptions in Definition 10.3.12 and Construction 10.2.7 exactly coincide.

However, if X is not normal, we can only define OX(L) using Construction 10.2.7 and
not Definition 10.3.12; see Exercise 10.3.16.

Theorem 10.3.15. Let X be an integral normal Noetherian scheme. A Weil divisor D is
Cartier if and only if OX(D) is an invertible sheaf.

Proof. Remark 10.3.14 shows that if D is a Cartier divisor then OX(D) is an invertible
sheaf. Conversely, suppose that D is a Weil divisor such that OX(D) is an invertible sheaf.
Choose a trivializing cover of open affines {Ui} for OX(D); for each Ui, there is an element
si ∈ K(X) which generates OX(D)(Ui) as a OX(Ui)-submodule of K(X). If we consider
the Cartier divisor L defined by {(Ui, s−1

i )} then it is clear that div(L) = D.

It turns out that the interaction between Weil divisors and the sheaves OX(D) is similar
to the interaction between Cartier divisors and the sheaves OX(L) (see [Sch]):
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(1) The sheaves of the form OX(D) are precisely the reflexive sheaves (i.e. the coherent
sheaves satisfying F∨∨ ∼= F) which have rank 1 at the generic point.

(2) Given Weil divisors D1, D2 we have OX(D1 + D2) ∼= (OX(D1) ⊗ OX(D2))∨∨ and
OX(−D1) = OX(D1)∨.

(3) The set of global sections of a reflexive rank 1 sheaf D up to rescaling by OX(X)× is
in bijection with the set of effective Weil divisors D such that OX(D) ∼= D.

10.3.3 Exercises

Exercise 10.3.16. Consider the “pinched plane” defined by the subringR = K[x3, x2, xy, y2]
of K[x, y]. Then Spec(R) is an example of a scheme that is regular in codimension 1 but
is not normal.

Since the singularities of Spec(R) all have codimension 2, we can still define div :
CDiv(Spec(R)) → WDiv(Spec(R)) in the same way. Show however that for a Cartier
divisor L we might have OX(L) 6∼= OX(div(L)).

Exercise 10.3.17. Let X be the cone over a smooth quadric surface, i.e. X is defined by
the ring K[w, x, y, z]/(wy−xz). Consider the prime divisor D ⊂ X defined by the equation
w = x = 0. Show that the complement X\D is not an affine variety. (Hint: if it were
affine, then its intersection with the plane y = z = 0 in X would also be affine. What is
this intersection?)

Exercise 10.2.21 shows that the complement of an effective Cartier divisor in an integral
affine scheme is always affine. Conclude that no multiple of the prime divisorD ⊂ X defined
by the equation w = x = 0 is Cartier.

Exercise 10.3.18. Let X be an integral normal Noetherian scheme and let Z ⊂ X be
a closed subscheme of pure codimension 1. For every irreducible component Zi ⊂ Z let
ηi ∈ X denote the generic point of Zi. Let IZ denote the ideal sheaf of Z and let multηi(IZ)
denote the minimal power of the maximal ideal mηi that is contained in the stalk IZ,ηi .
We define the Weil divisor underlying Z to be the effective Weil divisor∑

i

multηi(IZ)Zi.

Show that two closed subschemes Z and Z ′ define the same Weil divisor if and only if there
is a locally closed subscheme U ⊂ X that is a (set-theoretically) dense open subscheme of
both Z and Z ′.
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10.4 Computing the Picard group

Let X be an integral normal Noetherian scheme. The following diagram summarizes the
relationships between the various constructions in the chapter:

{(L, s)}/iso

��

CDiv(X)oo //

��

WDiv(X)

��
Pic(X) CaCl(X)oo // Cl(X)

Here the two left hand arrows are isomorphisms by Theorem 10.2.12 and Proposition
10.2.17 and the two right hand arrows are injections by Lemma 10.3.10. Our next result
gives a condition for the right hand arrows to be isomorphisms as well.

Definition 10.4.1. Let X be an integral normal Noetherian scheme. We say that X is
locally factorial if every local ring OX,x is a UFD.

Theorem 10.4.2. Let X be an integral normal Noetherian scheme that is locally factorial.
Then the map div : CDiv(X)→WDiv(X) is an isomorphism.

In practice the group of Weil divisors is sometimes easier to compute than the group
of Cartier divisors, so this result is often applied by computing the group of Weil divisors
to deduce facts about Cartier divisors.

Proof. It suffices to show that div is surjective. Let D be a Weil divisor and let x ∈ X
be any point. The intersection of D with Spec(OX,x) defines a Weil divisor Dx on this
scheme. Since OX,x is a UFD by assumption, this means that there is a Cartier divisor Lx
on Spec(OX,x) such that div(Lx) = Dx. We let fx ∈ K(X)× be a defining equation for Lx
on an open neighborhood of x.

Let Ux ⊂ X be an open neighborhood of x ∈ X. By shrinking Ux, we may ensure that
it only intersects the components of D which contain x. After shrinking further, we may
ensure that it only intersects the components of div(fx) which contain x. It is then clear
that on such an open set Ux we have div(fx) = D ∩ Ux.

As we vary the pairs (Ux, fx) we obtain a Cartier divisor D on X. Indeed, if y ∈ Ux
then according to Lemma 10.3.10 the functions fy and fx on Uy ∩Ux only differ by a unit.
Furthermore it is clear that div(L) = D.

Corollary 10.4.3. Let X be a regular K-variety. Then Pic(X) ∼= Cl(X).

Proof. Since a regular local ring is an integrally closed UFD, Theorem 10.4.2 applies in
this situation to show that CaCl(X) ∼= Cl(X). Theorem 10.2.12 shows that Pic(X) ∼=
CaCl(X).
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10.4.1 Computing the class group

The following theorem facilitates the computation of the class group (and thus, in settings
where Theorem 10.4.2 applies, the Picard group).

Theorem 10.4.4. Let X be an integral normal Noetherian scheme. Let Z be a closed
subscheme and let U = X\Z. Suppose that Z1, . . . , Zr are the prime divisors contained in
Z. Then there is an exact sequence

r⊕
i=1

ZZi → Cl(X)
ψ−→ Cl(U)→ 0

where the map ψ sends D 7→ D ∩ U .

Proof. If D is a prime divisor on U , then the closure of D in X is a prime divisor whose
ψ-image is D. Thus the map on the right is surjective.

To show exactness in the middle, suppose that D is a Weil divisor on X whose image
in the class group is in the kernel of ψ. The means that D ∩ U is a prinicipal divisor,
i.e. D∩U = div(f) for some f ∈ K(U)× = K(X)×. In other words, D−div(f) is a divisor
that is supported on Z, and thus is a linear combination of the Zi.

This theorem combines well with Example 10.3.7, which shows that an open affine
U ⊂ X has trivial class group if its ring of functions is a Noetherian UFD.

Example 10.4.5. Let X = P1 × P1. We will let OX(1, 0) denote the pullback of OP1(1)
under the first projection map, and similarly for OX(0, 1) and the second projection map.
We will denote by OX(a, b) the tensor product of a copies of OX(1, 0) and b copies of
OX(0, 1) (where if a or b is negative we replace these bundles by their duals.)

We claim that Pic(X) ∼= Z2 is generated by OX(0, 1) and OX(1, 0). If we let U ⊂ X
denote the open set D+,s × D+,u

∼= A2, then the complement X\U is the union F1 ∪ F2

where Fi is a fiber of the ith projection map. Theorem 10.4.4 yields an exact sequence

ZF1 ⊕ ZF2 → Cl(P2)→ Cl(A2) = 0→ 0.

We now translate back to invertible sheaves. Theorem 10.4.2 shows that Cl(P2) ∼= Pic(P2)
and it is clear that OX(F1) ∼= OX(1, 0) and OX(F2) ∼= OX(0, 1). We then have a surjection

ZOX(1, 0)⊕ ZOX(0, 1)→ Pic(P2)

and it suffices to show that this map is injective. Note however that the restriction of
OX(a, b) to F1 is isomorphic to OP1(b) and the restriction to F2 is isomorphic to OP1(a).
Thus the sheaves OX(a, b) are non-isomorphic when a, b are different.

Exercise 10.4.6. Consider the embedding P1×P1 ↪→ P3 as a quadric hypersurface. What
is the image of the restriction map Pic(P3)→ Pic(P1 × P1)?
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10.4.2 Lefschetz hyperplane theorem

Suppose that X is a smooth projective K-variety equipped with a closed embedding into
Pn. Let H be a general hyperplane on Pn. There is a collection of results known as the
Lefschetz Hyperplane Theorems which show that the cohomology of X ∩ H is similar to
the cohomology of X. This implies a similar comparison result for the Picard group:

Theorem 10.4.7 (Grothendieck-Lefschetz Theorem). Let K be an algebraically closed
field. Let X be a projective variety equipped with a closed embedding X ↪→ Pn and let H
be a hyperplane in Pn.

(1) If X and X ∩ H are smooth and dim(X) ≥ 4 then the restriction map Pic(X) →
Pic(X ∩H) is an isomorphism.

(2) If X and X ∩ H are smooth and dim(X) ≥ 3 then the restriction map Pic(X) →
Pic(X ∩H) is injective.

(3) If K has characteristic 0, X is a normal variety of dimension ≥ 4, and H is a general
hyperplane on Pn then there is an isomorphism Cl(X)→ Cl(X ∩H).

This theorem significantly extends the class of varieties for which we can compute the
Picard group; for example, a smooth complete intersection X in Pn of dimension ≥ 3 will
have Pic(X) ∼= Z.

Example 10.4.8. When dim(X) = 2 the restriction map Pic(X) → Pic(X ∩ H) will
usually not be an isomorphism. For example, a smooth curve in P2 will only have Picard
group isomorphic to Z when it has degree 2 or 1 (see Example 10.5.11 and Theorem 10.5.16)
and the restriction map is only an isomorphism in the latter case.

The situation is a little more delicate when dim(X) = 3.

Example 10.4.9. Consider the restriction map Pic(P3) → Pic(X) when X is a smooth
degree 4 surface in P3. It turns out that the restriction map is an isomorphism for very
general hypersurfaces of degree 4 where “very general” means “away from a countable union
of proper closed subsets”. Each hypersurface X is a K3 surface, and the proof involves an
analysis of the Picard groups of degree 4 K3 surfaces using Hodge theory.

This example is a special case of the Noether-Lefschetz theorem showing that the
restriction map Pic(P3)→ Pic(X) is an isomorphism when X is a very general hypersurface
of degree ≥ 4.

10.4.3 Hodge theory

Our final technique for computing the Picard group comes from Hodge theory. Suppose
that X is a smooth projective C-variety. We will implicitly identify X and the holomorphic
manifold obtained by taking the closed points of X. Under this identification there is a
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bijection between isomorphism classes of invertible sheaves on X and holomorphic line
bundles on the associated holomorphic manifold.

We can associate to any line bundle L its first Chern class c1(L) ∈ H2(X,Z). Recall
that line bundles are classified up to topological equivalence by their first Chern class;
however, the algebraic equivalence of line bundles is finer. Thus we get a map

c1 : Pic(X)→ H2(X,Z).

The Lefschetz-Hodge theorem (which is a special case of the Hodge Conjecture) describes
the image of this map:

Theorem 10.4.10 (Lefschetz-Hodge Theorem). Let X be a smooth projective C-variety.
A class α ∈ H2(X,Z) is in the image of c1 : Pic(X) → H2(X,Z) if and only if its image
in H2(X,C) has type (1,1) under the Hodge Decomposition.

This suggests that we can take a two-step approach to computing Pic(X). First, we can
compute the (1, 1)-classes in H2(X,C) using homological techniques. The second step is to
compute the kernel of the map c1. To execute this second step we will need the following
definition:

Definition 10.4.11. An abelian variety over K is a projective K-variety that carries the
structure of a group scheme (as in Exercise 8.4.18).

The definition of an abelian variety is not so enlightening. It turns out that this is a
very restrictive condition.

Example 10.4.12. An abelian variety of dimension 1 is the same thing as an elliptic curve
– i.e. a curve with trivial tangent bundle equipped with a K-point representing the identity
element. The group law on an elliptic curve (in characteristic 6= 2, 3) can be described
by embedding the curve into P2 as the vanishing locus of an elliptic equation; given three
closed points p, q, r ∈ C we set p+ q + r = 0 if and only if OC(p+ q + r) ∼= OP2(1)|C .

Example 10.4.13. Suppose that X is an abelian variety of dimension n over C. It turns
out that the corresponding holomorphic manifold is always isomorphic to a quotient of Cn
by a lattice of rank 2n. Conversely, it is clear that any quotient of Cn by a rank 2n lattice is
a compact holomorphic manifold with a group structure. However, not every such quotient
corresponds to a projective variety; projectivity requires an extra property of the lattice
known as the “Riemann conditions”.

We are now equipped to describe the kernel of the first Chern class:

Theorem 10.4.14. Let X be a smooth projective C-variety. The kernel of the first Chern
class map c1 : Pic(X) → H2(X,Z) is an abelian variety (known as the Picard variety)
which can be defined as a lattice quotient using sheaf cohomology groups:

Pic0(X) =
H1(X,OX)

H1(X,Z)
.
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10.4.4 Exercises

Exercise 10.4.15. Compute the Picard groups of:

(1) Any product of projective spaces.

(2) The Grassmannian G(k, n).

(3) The complement Pn\Y of a degree d hypersurface Y ⊂ Pn. (This is related to the
fact that π1(Pn\Y ) = Z/dZ.)

Exercise 10.4.16. Let X be the projective cone over a smooth quadric surface, i.e. X ⊂
P4
v,w,x,y,z is defined by the ideal (wy − xz). Suppose that f is a rational function on X.

Explain why the intersection of X with the hyperplane v = 0 is isomorphic to a quadric
surface Q. Explain why the pullback of f to the hyperplane v = 0 must define an invertible
sheaf of the form O(d, d) on Q.

Use this to give another proof of the fact that no multiple of the prime divisor D ⊂ X
defined by the equation w = x = 0 will be Cartier.

Exercise 10.4.17. Find an example of a threefold X and a closed embeddingX ↪→ Pn such
that the restriction map Pic(X)→ Pic(X ∩H) is not an isomorphism for any hyperplane
H such that X ∩H is smooth.
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10.5 Divisors on curves

In this section we will work over a fixed field K. A curve C will mean an integral separated
scheme of finite type over a field K with dimension 1. Thus every point of C beside the
generic point will be a closed point. For a closed point p on C the following are equivalent:

(1) C is normal at p.

(2) C is regular at p.

(3) OC,p is a DVR.

The next statement summarizes some results from Section 9.7.

Proposition 10.5.1. Let f : C → Z be a finite morphism of regular K-curves. Then f is
flat and f∗OC is locally free.

In this setting the degree of f : C → Z is equivalently the degree [K(C) : K(Z)], the
K-dimension of the Artinian ring defining any fiber of f , and the rank of the locally free
sheaf f∗OC .

10.5.1 Weil divisors on curves

By Theorem 10.4.2 Weil divisors and Cartier divisors are the same things for regular curves.
A prime divisor is just a closed point of C. Note however that not all closed points are the
same; the basic invariant of a closed point x is dimK κ(x).

Definition 10.5.2. Let C be a regular proper curve. Let D =
∑
aipi be a Weil divisor

on X. We define the degree of D to be

deg(D) =
∑

ai dimK κ(pi).

Note that this definition is compatible with the notion of degree introduced in Section
6.2. In order to study the degree, we will need to study how it behaves with respect to
morphisms of curves.

Construction 10.5.3. Suppose that C,Z are regular proper curves and that f : C → Z
is a finite morphism. Given a Weil divisor D =

∑
aipi on Z, we define

f∗D :=
∑

aif
−1(pi)

This definition is compatible with the more general notion of pullback of Cartier divisors
discussed in Exercise 10.2.19.

Exercise 10.5.4. Suppose that f : C → Z is a finite morphism of curves. Prove that
for any Cartier divisor L on Z our two notions of pullback coincide, i.e. we have f∗L =
f∗(div(L)).
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We then have the obvious result:

Proposition 10.5.5. Let f : C → Z be a finite morphism of regular proper curves. For
any Weil divisor D on Z we have

deg(f∗D) = deg(f) · deg(D).

One useful application of this proposition is to study principal divisors on curves.

Exercise 10.5.6. Let C be a regular proper curve and let g ∈ K(C). Show that there is
a finite morphism f : C → P1 such that under the induced inclusion f ] : K(P1) → K(C)
we have f ](xy ) = g. (Hint: you can construct f explicitly on by identifying two particular
open affine subsets of X and mapping them to D+,x0 and D+,x1 . Alternatively, you can
appeal to the construction in Theorem 2.6.10.)

Theorem 10.5.7. Let C be a regular proper curve. Then any principal divisor D on C
satisfies deg(D) = 0.

Proof. Suppose that D = div(g). By Exercise 10.5.6 there is a finite morphism f : C → P1

such that g is the pullback of xy . This means that D is the pullback of the divisor (0)− (∞)

on P1. By Proposition 10.5.5 we obtain the desired result.

This implies that the degree function descends to linear equivalence classes of divisors.
In particular:

Definition 10.5.8. Let C be a regular proper curve. We define the degree deg : Pic(X)→
Z by descending the degree map on Cartier divisors. More generally, if C is a proper curve,
we define deg(L) to be the degree of the pullback of L to the normalization of C.

Remark 10.5.9. If C is a Riemann surface then H2(C,Z) ∼= Z. In this setting we can
identify the degree map deg : Pic(X) → Z with the first Chern class map c1 : Pic(X) →
H2(C,Z).

Since the degree is compatible with the group operation + on WDiv(C), it is also
compatible with the group operation ⊗ on Pic(C) and so deg is a homomorphism. However,
in general deg is not surjective.

Example 10.5.10. Consider the conic x2 + y2 + z2 = 0 in P2
Q. We claim that the image

of deg : Pic(C)→ Z is 2Z.

Note that C has invertible sheaves of even degree. For example, the restriction of
OP2(1) to C will have degree 2, since a section will represent the intersection of C with a
line. By taking tensor powers of this line bundle and its dual, we obtain invertible sheaves
of any even degree.
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We need to show that C has no line bundles of odd degree. If it did, then by tensoring
by an appropriate line bundle of even degree we obtain a line bundle L of degree 1. By
Exercise 9.1.24 we have

dimQ(L(C)) = dimQ(OP1(1)(P1)) 6= 0.

But a global section of L will be an effective Weil divisor of degree 1, or equivalently, a
point on X with residue field Q. But C has no Q-points, since on any affine chart it is
defined by the equation x2 + y2 + 1 = 0.

10.5.2 Examples

We next compute the Picard groups of a couple curves.

Example 10.5.11. Let K be an algebraically closed field of characteristic 6= 2. Let X be
the regular curve y2z = x3 − xz2 in P2. (This is an example of an elliptic curve.) Since
X is regular, we have Pic(X) ∼= Cl(X) and we will compute the latter group. Note that
any Weil divisor on X is a formal sum of closed points and (since K is algebraically closed)
every closed point is isomorphic to Spec(K).

First, let’s observe that our UFD trick no longer works. For example, the intersection
of X with the affine chart D+,z is the affine scheme defined by R = K[x, y]/(y2 − x3 + x).
Since X is regular, R is an integrally closed domain. We claim that the units in R are just
the elements of K×. Indeed, let σ denote the involution of R defined by y ↔ −y. For any
r ∈ R we define N(u) = r · σ(r). If u is a unit in R, then N(u) is also a unit. However,
the subring of R fixed by the involution is simply K[x]. Thus we see that N(u) ∈ K×. It’s
easy to see directly that this implies that u ∈ K×.

We are now equipped to show that R is not a UFD. It suffices to show that the height 1
prime ideal (x, y) is not principal. Indeed, since the units in R are all contained in K×, for
degree reasons both x and y are irreducible elements of R and there is no common divisor
of both.

Now we return to the computation of Cl(X). Consider the degree morphism deg :
Cl(X)→ Z sending

deg

(∑
i

aipi

)
=
∑

ai.

Let Cl0(X) denote the kernel of this map. We will show that there is a bijection alb from
the closed points of X to Cl0(X). (In particular, this will impose a group structure on the
points of X, the famous “group law” for an elliptic curve.)

Let o denote the point (0 : 1 : 0) in X. We define the map alb by associating to any
p ∈ X the divisor p−o ∈ Cl0(X). We first show that this map is injective. Indeed, suppose
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that p, q ∈ X are different points which satisfy p− o ∼ q − o. This implies that p ∼ q. In
other words, there is a rational function f on X such that div(f) = p− q. Then f defines
a morphism f : X → P1 such that f−1(0) = p and f−1(∞) = q. This f will be a bijective
finite flat morphism of degree 1, hence will be an isomorphism. But X is not isomorphic
to P1. (For example, every open affine subset of P1 is defined by a UFD.)

Finally, we show that the map alb : X → Cl0(X) is surjective. Note that the line z = 0
is triply tangent to X at the point o. Thus, if any line ` meets X along the points p, q, r we
have p+ q + r ∼ 3o, or equivalently. Similarly, if we take the line connecting r with o and
let r′ denote the third point of intersection with X, we see that r+ o+ r′ ∼ 3o. Altogether
we have

(p− o) + (q − o) ∼ −(r − o) ∼ (r′ − o). (10.5.1)

Now, let D =
∑
aipi be any divisor in the kernel of deg. Since

∑
ai = 0, we have

D ∼
∑
ai(pi − o). Using the two relations in Equation (10.5.1) repeatedly, we can replace

D by a linearly equivalent divisor of the form q − o. This proves surjectivity of the map
X → Cl0(X).

Remark 10.5.12. The map alb used in Example 10.5.11 is the Albanese map that is often
studied in a course on Riemann surfaces.

Remark 10.5.13. A posteriori we see that there is no open affine U in the elliptic curve
X of Example 10.5.11 such that OX(U) is a UFD. Indeed, if there were then by Theorem
10.4.4 the class group of X would be a finitely generated abelian group.

Our next example is similar: we look at a cuspidal plane cubic. Although the curve is
birational to P1, the presence of the singularity forces its Picard group to look more similar
to the Picard group of an elliptic curve.

Example 10.5.14. Let K be an algebraically closed field of characteristic 6= 2. Let X be
the cuspidal curve y2z = x3 in P2. We claim that Pic(X) fits into an exact sequence

0→ K× → Pic(X)→ Z→ 0.

Since X is not normal, we cannot compute the Picard group of X using Weil divisors.
However, we know that CaCl(X) ∼= Pic(X) and thus we can use Cartier divisors instead.

Given any Cartier divisor L on X, its pullback under the normalization map ν : P1 → X
will be a Cartier divisor on P1. In this way we can define a degree morphism deg :
CaCl(X)→ Z, and we would like to compute the kernel CaCl0(X) of this map.

Let s denote the singular point (0 : 0 : 1) of X. Note that X\{s} is isomorphic to
P1\{0} ∼= A1. Let o denote the point (0 : 1 : 0) of X. To each closed point p ∈ Xsm we
associate the Cartier divisor which associates to the open set Xsm ∼= A1 the ratio of linear
functions with a zero at p and a pole at o, and which is the constant function 1 on a small
open neighborhood of s. We claim that this map a : Xsm → CaCl0(X) is a bijection.



378 CHAPTER 10. LINE BUNDLES

First we show a is injective. Suppose that p, q ∈ Xsm are different points such that
p − o ∼ q − o. Then we see that p ∼ q, and as in Example 10.5.11 we obtain a birational
morphism f : X → P1. Although these two curves are birational, there is no birational
morphism in this direction, yielding a contradiction.

Next we show that a is surjective. It is clear that any Cartier divisor is linearly equiv-
alent to a divisor whose local function on a neighborhood of s is invertible. Thus we can
associate to any class in CaCl(X) a (not uniquely defined) Weil divisor on Xsm. We then
mimic the argument of Example 10.5.11. The only additional subtlety is that we must
verify that any line through two points of Xsm cannot go through s; this is because s is
singular so the local intersection number of any line through s with X will be at least 2.

Remark 10.5.15. Example 10.5.14 implicitly gives a group structure on the open set
X\{s}. This corresponds to the standard group structure Ga on the isomorphic scheme
A1.

10.5.3 Jacobians

In Example 10.5.11 we saw that for a particular elliptic curve X the kernel of the degree
map could be associated with the closed points of an algebraic variety (in this case X
itself). It turns out that that this statement holds for every “nice” curve.

Theorem 10.5.16. Let C be a smooth, projective, geometrically integral K-curve that
admits a K-point. Then the set of invertible sheaves of degree 0 on X are parametrized
by the K-points of an abelian variety known as the Jacobian of C. In fact, for any field
extension L/K there is a bijection between degree 0 invertible sheaves on XL and L-points
of the Jacobian of C.

Using the identification of the degree map with the first Chern class, Theorem 10.5.16
is closely related to Theorem 10.4.14. This result gives an essentially complete description
of Pic(C): it is a disjoint union of copies of Jac(C) indexed by the degree Z.

Example 10.5.17. Suppose that C is an elliptic curve equipped with a K-point. Then
Pic(Z) ∼= C × Z and the Jacobian of C is isomorphic to C itself. We checked this by hand
for a particular elliptic curve in Example 10.5.11.

10.5.4 Numerical equivalence

Let X be a projective K-variety of arbitrary dimension. Given any curve C ⊂ X and any
invertible sheaf L on X, we define the intersection product

L · C := deg(ν∗L)

where ν : Cν → X is the normalization of C. In this way we obtain for each curve C a
homomorphism Pic(X)→ Z.
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Definition 10.5.18. Let X be a projective K-variety. We say that two line bundles L1,L2

are numerically equivalent, and write L1 ≡ L2, if for every curve C we have

L1 · C = L2 · C.

When X is a curve, then two line bundles are numerically equivalent if and only if they
have the same degree. Thus one can think of numerical equivalence as a “generalization”
of the degree map to higher dimension.

Note that the set of line bundles that are numerically equivalent to the trivial line bundle
OX is a subgroup of Pic(X). We will denote the quotient of Pic(X) by this subgroup by
N1(X).

Theorem 10.5.19. Let X be a projective variety over an algebraically closed field K.
Then:

(1) The group N1(X) of invertible sheaves up to numerical equivalence is a free finitely
generated abelian group.

(2) Suppose that X is regular. Then the kernel of the map Pic(X)→ N1(X) is a disjoint
union of abelian varieties indexed by a finite group.

Loosely speaking, the map Pic(X) → N1(X) is similar to taking a line bundle and
sending it to its first Chern class. In other words, the space N1(X) acts like a “homology
space” for invertible sheaves. The following example clarifies this loose analogy for C-
varieties.

Example 10.5.20. Let X be a smooth projective C-variety. Then the quotient map
Pic(X) → N1(X) factors through the first Chern class map c1 : Pic(X) → H2(X,Z). In
fact, it turns out that N1(X) is obtained by taking the image of c1 and quotienting out by
the torsion subgroup.

10.5.5 Exercises

Exercise 10.5.21. Let C be a projective K-curve equipped with a closed embedding
f : C → Pn. Show that the degree of f∗O(1) is the same as the degree of C as defined in
Section 6.2.

Exercise 10.5.22. Let X = P1 × P1. Prove that the map Pic(X)→ N1(X) is an isomor-
phism.

Exercise 10.5.23. Let X be a projective K-variety. Prove that Pic(X) is not a torsion
group. (Hint: first use Exercise 10.5.21 to show that it is non-zero.)

Exercise 10.5.24. Let X be a projective K-variety. Suppose that L is a basepoint free
invertible sheaf defining a morphism f : X → Pn. Show that a closed curve C ⊂ X is
contracted by f if and only if deg(L|C) = 0.
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Exercise 10.5.25. Suppose that f : C → D is a finite morphism of regular K-curves.
Suppose we fix a point p ∈ D and let {qi}si=1 be the points in f−1p. We know that f−1p
is defined by an Artinian ring over κ(p) of length deg(f). In this exercise we compute the
local contributions of the various points qi to the length.

(1) Suppose we fix a uniformizer t of OD,p (that is, a rational function on D which
generates the maximal ideal mp ⊂ OD,p). Fix a point qi in the fiber over p. Show

that the valuation valqi(f
∗t) is the same as the integer e such that f ]p(mp) = me

q under

the map f ]p : OD,p → OC,qi .

(2) Show that we have

deg(f) =

s∑
i=1

valqi(f
∗t) deg(κ(qi)/κ(p)).

Of course this same computation works whenever f is a morphism of schemes which are
locally defined by Dedekind domains. In particular, there is a similar formula using inertia
degrees that controls the splitting of primes in rings of integers.

Exercise 10.5.26. Let X be the nodal cubic zy2 = x3 − x2 in P2
K (where ch(K) 6= 2, 3)

and let f : P1
K → X denote the normalization map. Show that the data of an invertible

sheaf L on X is the same as the data of the pullback f∗L on P1 and an isomorphism of

fibers φ : L((x − 1))
∼=−→ L((x + 1)). Use this identification to prove that Pic(X) fits into

an exact sequence
0→ K× → Pic(X)→ Z→ 0.
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10.6 Ample line bundles

Let X be a complex manifold and let L be a holomorphic line bundle on X. The line
bundles L which have positive curvature – that is, whose Chern class is represented by a
Kähler metric – have particularly nice properties. In this section we develop the analogous
notion of a “positive line bundle” in algebraic geometry – an ample invertible sheaf.

It turns out that the “positive” line bundles are also the ones which have the best
behavior with regards to global generation. In general the global generation of a sheaf is a
subtle issue, but ample invertible sheaves give us a systematic way of finding many globally
generated sheaves. Thus ampleness plays a key role in the theory of schemes as developed
by Serre and Grothendieck.

10.6.1 Very ample line bundles

Definition 10.6.1. Let X be a proper scheme over a Noetherian ring A and let L be an
invertible sheaf on X. We say that L is very ample if there exists a closed embedding
f : X → PnA such that L ∼= f∗O(1). Equivalently, L is very ample if there is a finite set of
global sections {s0, . . . , sn} which generate L such that the induced morphism X → PnA is
a closed embedding.

The main example of very ample invertible sheaves comes from the O(d) construction.

Proposition 10.6.2. Let S be a Z≥0-graded ring that is finitely generated in degree 1 over
a Noetherian ring S0. Then OProj(S)(d) is a very ample invertible sheaf on Proj(S) for
every d > 0.

Proof. Proposition 2.7.7 shows that Proj(S) ∼= Proj(S(d)). Furthermore S(d) is still finitely
generated in degree 1 over S0 so that there is a surjection S0[x0, . . . , xn] → S(d). This
induces a closed embedding Proj(S) ↪→ PnS0

and the pullback of OPnS0
(1) under this map is

OProj(S)(d).

Using the relative Segre embedding, we see that very ample invertible sheaves are
compatible with tensor products:

Lemma 10.6.3. Let X be a proper scheme over a Noetherian ring A. Suppose that L is
a very ample invertible sheaf on X and that M is a globally generated invertible sheaf on
X. Then L ⊗M is again a very ample invertible sheaf.

Note that if L is very ample, then in particular it must be globally generated so that
this lemma also shows that very ampleness is preserved by tensor products.

Proof. Let f : X → PnA be the closed embedding defined by L and g : X → Pm the
morphism defined by M. Then the induced map (f, g) : X → PnA ×Spec(A) PmA is a closed

embedding by Proposition 8.6.6. Under the Segre embedding PnA ×Spec(A) PmA → Pnm+n+m
A
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the pullback of OPnm+n+m
A

(1) is equal to π∗1OPnA(1) ⊗ π∗2OPmA (1). Thus the pullback of

OPnm+n+m
A

(1) under the closed embedding X → Pnm+n+m
A is isomorphic to L ⊗M.

10.6.2 Ample line bundles

Many theorems involving very ample line bundles require us to first take a high tensor
product. (We have seen the first instances of this principle in the fact that if S is a finitely
generated S0-algebra then some Veronese subring will be generated in degree 1.) It is thus
very natural to expand our attention to a more general class of invertible sheaves.

Definition 10.6.4. Let X be a proper scheme over a Noetherian ring A. We say that an
invertible sheaf L on X is ample if L⊗n is very ample for some positive integer n.

Warning 10.6.5. An ample invertible sheaf need not be globally generated, and in fact,
need not have any sections at all; see Example 12.6.8.

Remark 10.6.6. Kodaira’s Theorem shows that ample invertible sheaves are the algebraic
analogue of “positive” line bundles in complex geometry.

The following fundamental theorem shows that ample divisors can be characterized in
several different ways.

Theorem 10.6.7. Let X be a proper scheme over a Noetherian ring A. Suppose L is an
invertible sheaf on X. The following are equivalent:

(1) L is ample.

(2) There is some constant M such that L⊗m is very ample for all m > M .

(3) For every finitely generated quasicoherent sheaf F there is a constant M such that
L⊗m ⊗F is globally generated for every m ≥M .

(4) As we vary over all positive integers n and all global sections s ∈ L⊗n(X) the open
sets X\Z(s) form a base for the topology on X.

Note that even if L is very ample, we cannot avoid using the exponent m in Conditions
(3) and (4).

Remark 10.6.8. Let us briefly explain why we might expect Condition (4) to hold. Recall
that the complement of every hypersurface V+(f) in PnA is affine and that as we vary f
these distinguished open affines form a base for the topology. If f : X → PnA is a closed
embedding, then the intersections of these open sets with X will again be open affines
which form a base for the topology. We can interpret these open sets as complements of
certain sections of the line bundles f∗O(m). Condition (4) says that this is a defining
property of an ample line bundle.
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Proof. (1)⇒ (3): We first prove this under the additional assumption that L is very ample.
Let f : X → PnA be a closed embedding defined by L. Since f is a closed embedding, f∗F
is a coherent sheaf on PnA. It suffices to show that (f∗F)(m) is globally generated for
sufficiently large m; indeed, the global sections of F ⊗L⊗m and of (f∗F)(m) are the same.

Consider the standard open cover {D+,xi} of PnA. For every i there is a finitely generated

OX(U)-module Mi such that F|D+,xi

∼= M̃i. Choose a generating set {tij} of Mi. Since
X is quasicompact quasiseparated, Exercise 9.5.28 shows that for every pair of indices
i, j there some exponent k such that the section xki tij extends to a global section of F .
Letting m0 denote the supremum over all such powers k, we find a collection of sections
t̃ij ∈ (i∗F)(m0)(PnA) such that the restriction of t̃ij to D+,xi is a power of xi times tij . It
is clear that for any m ≥ m0 the sections xm−m0

i t̃ij generate (i∗F)(m), or equivalently,
generate F ⊗ L⊗m.

To prove the statement when L is only ample, choose an integer N such that L⊗N is very
ample. We apply the argument above to the very ample sheaf L⊗N and to the coherent
sheaves F ⊗ L⊗i for i = 1, 2, . . . , N − 1. For each i, we find a power mi of L⊗n that
guarantees global generation of F ⊗L⊗i+mN for m ≥ mi. We then set M = sup{i+miN}.

(3) ⇒ (4): We want to show that for any open set U ⊂ X and any point x ∈ U there
is an open neighborhood of x contained in U defined by a section of L⊗m. Let Z = X\U
denote the closed subscheme of X with the reduced structure. Since X is Noetherian the
ideal sheaf IZ is a coherent sheaf on X. Thus there is some positive integer m such that
IZ ⊗L⊗m is globally generated. Choose a section s which does not vanish at p. Then the
image of s under the inclusion (IZ ⊗ L⊗m)(X)→ L⊗m(X) has the desired property.

(4)⇒ (1): We first note that we can find a base of the topology consisting of affine open
subsets of the form X\Z(s). Indeed, if U is an open affine subset of X and X\Z(s) ⊂ U
then X\Z(s) ∼= U\Z(s) is also affine by Exercise 10.2.21.

Choose a finite open cover of X by open affine sets of the form Ui := X\Z(si). By
replacing each si by a power, we may suppose that all the si are sections of the same power
L⊗N . Since Ui is affine and X is finite type, the ring OX(Ui) is finitely generated as an
A-algebra. Furthermore, each generator has the form tij/s

rij
i for some positive integer rij

and some tij ∈ L⊗Nrij . Set R = supij rij . Using the relation tij/s
rij
i = tijs

R−rij
i /sRi , we see

that OX(Ui) is generated by elements of the form t̃ij/s
R
i where t̃ij ∈ L⊗NR.

We claim that L⊗NR is very ample. Since sRi is a section, we see that L⊗NR is globally
generated, yielding a morphism f : X → PnA. If xi is the coordinate on PnA that corresponds
to sRi , then the map Ui → D+,xi is a closed embedding since it corresponds to a surjection
of the defining rings. Since X is proper, this implies that f is a closed embedding.

(1) + (3) ⇔ (2): suppose that L⊗m is very ample and that L⊗n is globally generated
for every n ≥ n0. Then by Lemma 10.6.3 L⊗q is very ample for every q ≥ m+N . For the
reverse direction, (2) =⇒ (1) is clear and thus (2) =⇒ (3) by the argument above.

Remark 10.6.9. We used the Noetherian assumption in the implication (3) =⇒ (4) to
see that IZ is coherent. The statement is still true without the Noetherian assumption but
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the argument is harder.

Remark 10.6.10. If X is any quasicompact quasiseparated scheme, a similar argument
shows that the following conditions on an invertible sheaf L are equivalent:

(1) Set S = ⊕n≥0Γ(X,L⊗n). Then as we vary s ∈ Γ(X,L⊗n) the corresponding open
sets X\Z(s) cover X and the induced map X → Proj(S) is an open embedding.

(2) As we vary over all positive integers n and all sections s ∈ L⊗n(X), the open sets
X\Z(s) form a base of the topology on X.

(3) For every finitely generated quasicoherent sheaf F there is a constant N such that
L⊗n ⊗F is globally generated for every n ≥ N .

We use these three conditions to define ampleness in this more general setting. For example,
every invertible sheaf on an affine scheme is ample under this definition (since every finitely
generated quasicoherent sheaf is globally generated).

Exercise 10.6.11. Let X be a proper scheme over a Noetherian ring A and suppose that
L is an ample invertible sheaf. Prove that for any invertible sheaf M there is a constant
N such that Ln ⊗M is very ample for every n ≥ N .

Use this fact to deduce that if X carries an ample invertible sheaf then every invertible
sheaf M is isomorphic to A1 ⊗A∨2 for some very ample invertible sheaves A1,A2.

10.6.3 Serre twisting sheaves

As we saw in Section 9.6, the invertible sheaves OPn(d) play a key role in the theory of
coherent sheaves on projective space via Hilbert’s Syzygy Theorem. Although we do not
obtain similarly strong statements for arbitrary projective schemes, these line bundles still
play a crucial role.

Proposition 10.6.12 (Serre’s Theorem A). Let S be a Z≥0-graded ring that is finitely
generated in degree 1 over a Noetherian ring S0. Let F be any finitely generated quasico-
herent sheaf on Proj(S). Then there is some positive integer n such that F(n) is globally
generated by a finite set of global sections.

The only reason we insist that S0 be Noetherian is because our definition of ampleness
only holds for proper schemes over Noetherian rings. If we instead use Remark 10.6.10,
then we can drop this condition (both here and in the following corollary).

Proof. Follows from Proposition 10.6.2 and Theorem 10.6.7.

We will often leverage this result via the following consequence:
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Corollary 10.6.13. Let S be a Z≥0-graded ring that is finitely generated in degree 1 over a
Noetherian ring S0. Let F be any finitely generated quasicoherent sheaf on Proj(S). Then
there is a surjection

O(d)⊕r → F

for some integer d.

Proof. By Serre’s Theorem A we know that F(d) is globally generated for some n. This
yields a surjection O⊕rProj(S) → F(d), hence a surjection O(−d)⊕r → F(n).

10.6.4 Exercises

Exercise 10.6.14. Suppose we have a finite morphism f : X → Y of proper schemes over
a Noetherian ring A. Suppose that L is an ample invertible sheaf on Y . Prove that f∗L is
an ample invertible sheaf on X.

Exercise 10.6.15. Let X be a proper scheme over a Noetherian ring A. Let L be an
ample invertible sheaf and let M be an invertible sheaf that is either ample or globally
generated. Prove that L ⊗M is ample.

Exercise 10.6.16. Let X be a proper K-scheme. Suppose that there exists an invertible
sheaf L such that both L and L∨ are ample. Prove that X has dimension 0.
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10.7 Relative Proj

Suppose that X is a scheme and that A is a quasicoherent sheaf of OX -algebras. In
Construction 9.5.8 we discussed the relative Spec construction: an affine morphism π :
Spec(A)→ X obtained locally by the Spec construction. In particular, whenA = Sym(F∨)
for a locally free sheaf F , the relative Spec of A yielded a vector bundle over X. In this
section we will discuss the analogous projective construction.

Definition 10.7.1. Let X be a scheme. We will say that A is a graded OX -algebras to
mean more precisely that:

(1) A = ⊕n≥0An is a graded quasicoherent OX -module,

(2) A is a sheaf of rings such that the OX -module structure gives A the structure of a
Z≥0-graded OX -algebra,

(3) A0
∼= OX .

We will define the relative Proj construction by taking the usual Proj construction over
open affines in X and gluing. The following exercise will allow us to glue:

Exercise 10.7.2. Let S be a Z≥0-graded ring. Suppose we fix an element f in S0. Then
Sf is also a Z≥0-graded ring.

(1) Prove that Proj(Sf ) admits an open embedding into Proj(S) that realizes it as the
pullback Df ×Spec(S0) Proj(S).

(2) Prove that the restriction of the quasicoherent sheaf OProj(S)(d) to Proj(Sf ) is iso-
morphic to OProj(Sf )(d).

Construction 10.7.3. Let X be a scheme equipped with a quasicoherent sheaf of Z≥0-
graded OX -algebras A. For every open affine U ⊂ X, consider the scheme Proj(A(U))
equipped with the structure map to U . As we vary the open affine U , Exercise 10.7.2
(and Nike’s Lemma) show that the resulting schemes can naturally be glued to obtain a
scheme Proj(A) equipped with a morphism to X. Furthermore, Proj(A) comes equipped
with quasicoherent sheaves obtained by gluing the local O(d); we denote this sheaf by
OProj(A)/X(d).

Definition 10.7.4. From now on we will impose the following simplifying conditions on
A:

(1) for every open affine U the ring A(U) is a finitely generated graded OX(U)-algebra
that is generated in degree 1.

We will call this condition “Condition (*)”. In this case the sheaf OProj(A)/X(1) will be an
invertible sheaf.
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Proposition 10.7.5. Let X be a scheme and A is a graded OX-algebra that satisfies
Condition (*). Then the map Proj(A)→ X is proper.

Proof. Since proper is local on the target, this reduces to the fact that for a Z≥0-graded ring
that is finitely generated in degree 1 the structural map Proj(S)→ Spec(S0) is proper.

Exercise 10.7.6. Let X be a scheme and let A be a graded OX -algebra that satisfies
Condition (*). In particular, this means that there is a surjection of graded OX -algebras
g] : Sym(A1)→ A. Prove that φ induces a closed embedding g : Proj(A)→ Proj(Sym(A1))
that commutes with the structure maps and such that g∗O(1) ∼= O(1).

The following exercises describes the universal property of Proj. Note that it is the
“relative” version of the universal property of Proj.

Exercise 10.7.7. Let X be a scheme and let A be a graded OX -algebra that satisfies
Condition (*). Let g : Y → X be any morphism. Prove that there is a bijection between
morphisms f : Y → Proj(A) such that g = π ◦ f and equivalence classes of pairs (L, φ)
where L is an invertible sheaf on Y and φ : g∗A → L is a surjection. (Two such pairs
(L, φ) and (L′, φ′) are said to be equivalent if there is an isomorphism ψ : L → L′ making
a commutating diagram with the maps φ, φ′.)

Suppose that A satisfies Condition (*). Let L be an invertible sheaf on X. Then we
can define a new graded algebra AL via the description

AL,n := An ⊗ L⊗n

with product induced by the multiplications on A and by the tensor product on the L⊗n.
Note that AL also satisfies Condition (*).

Theorem 10.7.8. Let X be a scheme, let A be a sheaf of OX-algebras satisfying Condition
(*), and let L be an invertible sheaf on X. Then there is an isomorphism

φ : Proj(A)
∼=−→ Proj(AL)

such that φ∗OProj(AL)/X(1) ∼= OProj(A)/X(1)⊗ π∗L.

In other words, the two schemes are abstractly isomorphic but the relative O(1) is
modified by tensoring by the pullback of L. This may feel counterintuitive – the Specs of
the two algebras certainly need not be the same. The point is that the transition functions
for the invertible sheaf L are just rescaling by a local unit and this rescaling “drops out”
when computing the projectivization (but is remembered by the homogeneous coordinate
ring).
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Proof. Let U be any open affine subset in X such that we have an isomorphism ψ : L|U
∼=−→

OX |U . If we choose a different isomorphism ψ′, then there is a unit f ∈ OX(U) such that
we have a commuting diagram

L|U
ψ //

ψ′ ""

OX |U
×f
��

OX |U
These two maps ψ,ψ′ induce isomorphisms ψ•, ψ

′
• : AL|U → A|U and we obtain a com-

muting diagram using the isomorphism A|U → A|U which is multiplication by fn on the
nth graded piece. Taking Proj, we get maps

Proj(AL|U ) Proj(A|U )
ψ•oo

Proj(A|U )

ψ′•

gg

id

OO

The key point is that the upwards map is the identity: multiplying by a degree 0 unit does
not change the homogeneous primes or the structure sheaves. This shows that the gluing
data for Proj(AL) can be canonically identified with the gluing data for Proj(A) and thus
the two constructions are isomorphic.

However, when we construct the invertible sheaf O(1) the transition maps come from
the degree 1 part of ψ•, and thus must be modified using the transition functions for L.

10.7.1 Projective bundles

Definition 10.7.9. Suppose that F is a locally free sheaf of rank r on X for some r ≥ 2.
We define the projective bundle PX(F) to be Proj(Sym(F)). This comes equipped with a
morphism π : PX(F)→ X.

Note that Sym(F) satisfies Condition (*) so that OPX(F)/X(1) is an invertible sheaf.

Furthermore, the fiber of π over a point x ∈ X is isomorphic to Pr−1
κ(x). Since sections

of OPX(F)/X(d) over sufficiently small open affines U ⊂ X locally look like the degree d
submodule of OX(U)[x1, . . . , xr], we see that

π∗OPX(F)/X(d) ∼=


Symd(F) if d > 0
OX if d = 0
0 if d < 0

Finally, we note that there is a canonical surjective map π∗F → OPX(F)/X(1). Using the
adjunction between π∗ and π∗, this map is locally defined over an open affine U ⊂ X by
the identity map

F|U → Γ(U, π∗O(1)|U ) ∼= F|U .
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Remark 10.7.10. In contrast to Definition 9.5.10, we do not dualize F when making this
construction. (Some authors do, but our convention is by far the predominant one.) This
may seem surprising, so let’s briefly analyze the geometry of the situation.

Consider the vector bundle ρ : V → X defined by taking Spec(Sym(F∨)). We would
like to say that we obtain PX(F) by projectivizing the fibers of ρ. However, there are two
possible ways to projectivize:

(1) We can replace each fiber V with the parameter space of 1-dimensional subspaces of
V .

(2) We can replace each fiber V with the parameter space of 1-dimensional quotients of
V .

Although both of these are abstractly isomorphic to Pr−1, they are naturally “dual” to
each other: the 1-dimensional subspaces of V are the same as 1-dimensional quotients of
V ∨.

With our conventions, PX(F) is the space of 1-dimensional quotients of the fibers
of V. This is the “Grothendieck convention”: every projective space and Grassmannian
parametrizes quotients, not subspaces. While we have been content to hide this confusing
point thus far, we will be more careful about it from here on out.

Example 10.7.11. Consider the rank 2 vector bundle Ee := O ⊕ O(−e) on P1
K. The

corresponding projective bundle is known as the eth Hirzebruch surface Fe. Consider the
invertible sheaf OFe/P1(1). We have

dim Γ(Fe,OFe/P1(1)) = dim(P1, Ee) = 1

so that OFe/P1(1) has a unique global section up to rescaling. We will call the zero locus of
this section the “contractible section” C0 of Fe. The name arises from the fact that there
is a birational map from Fe to the cone Z over a degree e rational normal curve which is
an isomorphism away from C0 and contracts C0 to the cone point of Z.

(We will see later that any rank 2 vector bundle on P1
K is isomorphic to the twist of some

Ee by an invertible sheaf. Thus by Theorem 10.7.8 every P1-bundle over P1 is isomorphic
to a Hirzebruch surface.)

10.7.2 Projective morphisms

The notion of a projective morphism is surprisingly subtle. The following definition does
not satisfy the three conditions necessary to be a “well-behaved morphism” without some
further finiteness constraints.

Definition 10.7.12. We say that a morphism f : X → Y is projective if there is a graded
OY -algebra A satisfying Condition (*) and an isomorphism φ : X → Proj(A) such that f
is the composition of φ with the structure map Proj(A)→ Y .
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In particular, every projective morphism is proper. (As we discussed earlier, the con-
verse is false.) The following variant may be closer to what you were expecting.

Proposition 10.7.13. Suppose that f : X → Y is a morphism and that Y admits an
ample line bundle T . Then f is projective if and only if f factors as a closed embedding
X ↪→ PnY followed by the projection map.

Here we can define an ample line bundle either as in Definition 10.6.4 (if Y is proper
over a Noetherian scheme) or as in Remark 10.6.10 (if Y is quasicompact quasiseparated).

Proof. The interesting direction is the forward implication. Suppose X is isomorphic to
Proj(A) where A satisfies Condition (*). In particular A1 is a finitely generated quasico-

herent sheaf. Thus A1 ⊗ T ⊗k is globally generated for k sufficiently large. This yields a
surjection O⊕NY → A1 ⊗ T ⊗k and hence a closed embedding Proj(AT ) ↪→ PNY commuting
with the maps to Y . By Theorem 10.7.8 we know that the former scheme is isomorphic to
X.

10.7.3 Exercises

Exercise 10.7.14. Consider the Hirzebruch surface Fe := PP1(O ⊕O(−e)). As discussed
in Example 10.7.11 the sheaf OFe/P1(1) has a unique section up to rescaling, defining a
curve C0. We let L denote the pullback of OP1(1) under the projection map. Any global
section of L will define a fiber F of the projection map.

(1) Prove that Pic(Fe) ∼= Z2 is generated by OFe/P1(1) and L.

(2) Show that the only line bundles which have global sections will have the form
OFe/P1(1)⊗a ⊗ L⊗b where a, b ≥ 0.

(3) Show that deg(L|C0) = 1 and deg(OFe/P1(1)|C0) = −e. Show that deg(L|F ) = 0 and
deg(OFe/P1(1)|F ) = 1. Conclude that Pic(X)→ N1(X) is an isomorphism.

(4) Consider the invertible sheaf T = OFe/P1(1) ⊗ L⊗e. Show that T is basepoint free.
Show that deg(T |C0) = 0 and that C0 is the only curve with this property. Conclude
that the sections of T define a morphism to projective space which contracts C0.
(Hint: use Exercise 10.5.24.)

Exercise 10.7.15. Suppose that f : X → Y is a finite morphism. Define a OY -algebra A
where A0

∼= OY and An ∼= f∗OX for any n ≥ 1 with the natural multiplication structure.
Prove that Proj(A) recovers the map f .

Deduce that every finite morphism is projective.

Exercise 10.7.16. Let X be a scheme and let F be a locally free sheaf on X. Show
that Spec(Sym(F)) admits an open embedding into Proj(Sym(OX ⊕ F)) as a “relative
distinguished open affine.”



Chapter 11

Cotangent sheaves

Suppose that M is a smooth manifold. There are several approaches one can take to
defining the tangent space TxX at a point x ∈M :

(1) Chart structure: one can first define the tangent space for points on Rn and then
“transform” these spaces to M using the chart structure. One must verify that the
definition does not depend on the choice of chart.

(2) Jets of curves: consider the set of curves σ : J →M which are smooth at x. We can
define an equivalence relation on such curves by setting σ1 ∼ σ2 if for every smooth
function f : M → R defined on a neighborhood of x the derivatives of f ◦ σ1 and
f ◦ σ2 coincide. We can define the tangent space to be the set of equivalence classes
of such σ.

(3) Derivations: let C∞x denote the set of germs of smooth real-valued functions near
x. A derivation is a linear map T : C∞x → R satisfying the product rule T (fg) =
f(x)T (g) + g(x)T (f). Then the vector space of derivations is the tangent space at x.

In algebraic geometry we will use the space of derivations as the foundation for building
the theory of tangent spaces. This is motivated by the fact that the fundamental object in
algebraic geometry is the space of functions instead of points. In particular in our setting
the cotangent space is the most natural object: it allows us to work with derivations
directly, whereas the tangent space requires taking a dual.

In contrast to the Zariski cotangent space, the theory of cotangent sheaves is best
thought of as a “relative” theory: given a finitely presented morphism f : X → Y , we
will construct a cotangent sheaf ΩX/Y that represents the “relative cotangent space” of X
over Y . (We can recover the “absolute” cotangent sheaf of a K-scheme by considering the
structure map X → Spec(K).)

It turns out that all three of the above definitions of the tangent space admit loose
analogues in various settings:

391
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(1) Chart structure: suppose we have a finitely presented morphism f : X → Y . Since
the construction of the tangent space is “local”, we may reduce to the case where X
and Y are schemes. While X and Y need not look anything like affine space, we can
give a local “algebraic” construction of ΩX/Y which can then be glued to form the
cotangent sheaf.

Thus suppose that X and Y are affine. Since f is finitely presented we see that X is
a closed subscheme of AnY defined by a finite set of equations {fi}. If we were working
in the usual geometric setting, we would know how to compute the cotangent space
of X: it can be defined as the kernel (or cokernel, depending on your conventions) of
the Jacobian matrix defined by the {fi}. This computation will work equally well in
our setting.

(2) Jets: suppose that X is a K-scheme. As discussed in Definition 5.3.1, given an L-point
x ∈ X we can construct the tangent space of x at X using the space of morphisms
from Spec(L[t]/(t2)) to X with image x. Conceptually, any such morphism represents
taking the “first order jet” of a curve through the point x.

(3) Derivations: as discussed above this will be our foundational definition. We will give
a purely algebraic description of the space of derivations associated to a ring map
B → A. Since this construction is compatible with localization, it will extend to
define the relative cotangent sheaf of a morphism of schemes.
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11.1 Modules of differentials

Let B → A be a ring homomorphism and let M be an A-module. A B-linear derivation
from A into M is a B-module homomorphism d : A→M satisfying the Leibniz rule

d(fg) = f · d(g) + g · d(f)

It is important to note that we have d(b) = 0 for any b ∈ B (i.e. the ring B acts like the
“scalars” for our derivations). This is a formal consequence of the B-module structure and
the Leibniz rule via the computation

b · d(f) = d(bf) = b · d(f) + f · d(b).

As discussed in the introduction to the chapter, our definition of B-linear derivations
mimics the analogous notion in a geometric setting.

Warning 11.1.1. Even though M is an A-module, the map d is usually not an A-module
homomorphism. We only require it to be linear in B. (The argument above shows that d
is only an A-module homomorphism when it is the zero map.)

Definition 11.1.2. Let B → A be a ring homomorphism and let M be an A-module. We
let DerB(A,M) denote the set of B-linear derivations from A intoM . Although a derivation
is not an A-module map, the set DerB(A,M) carries the structure of an A-module where
the action of a sends d 7→ a · d.

11.1.1 Module of differentials

Let B → A be a ring homomorphism. The module of relative differentials ΩA/B is a
“universal” construction of a B-linear derivation for A.

Construction 11.1.3. Let B → A be a ring homomorphism. We define the A-module
ΩA/B by taking the free module generated by the symbols da for a ∈ A and then imposing
the relations

(1) d(a+ a′) = da+ da′ for every a, a′ ∈ A.

(2) d(aa′) = a · da′ + a′ · da for every a, a′ ∈ A.

(3) db = 0 for every b ∈ B.

The module ΩA/B comes with a canonical B-linear derivation d : A → ΩA/B sending
a 7→ da.

Based on the construction, it should be no surprise that ΩA/B satisfies a universal
property.
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Proposition 11.1.4. Let B → A be a ring homomorphism and let M be an A-module.
Every B-linear derivation φ : A → M can be written in a unique way as the composition
of the universal map d : A→ ΩA/B with an A-module homomorphism ψ : ΩA/B →M and
the induced map DerB(A,M)→ HomA(ΩA/B,M) is an isomorphism of A-modules.

In other words, the functor M 7→ DerB(A,M) is representable by ΩA/B.

Exercise 11.1.5. Prove the previous proposition.

Although the definition of ΩA/B looks a little intimidating (as it uses a module with
infinitely many generators) in practice it behaves quite well. In particular, it behaves
compatibly with finite generation. (See also Lemma 11.1.12.)

Lemma 11.1.6. Let B → A be a ring homomorphism. Suppose that A is finitely generated
over B. Then ΩA/B is a finitely generated A-module.

Proof. Suppose that a1, . . . , ar are the generators for A over B. Then ΩA/B is generated
by da1, . . . , dar. Indeed, using the Leibniz axiom repeatedly we see that the d-image of
any polynomial in the ai with coefficients in B will be in the submodule generated by the
dai.

11.1.2 Compatibilities

In this section we prove two basic compatibilities of the module of relative differentials
with algebraic operations.

First, the construction of ΩA/B is compatible with localization in a strong sense where
we allow ourselves to localize A and B along different multiplicatively closed sets. In geo-
metric language, the result shows the compatibility of relative differentials with localization
upon passing to open subsets (both in the domain and in the target).

Proposition 11.1.7. Let B → A be a ring homomorphism, let T ⊂ B be a multiplicatively
closed subset, and let S ⊂ A be a multiplicatively closed subset containing the image of T .
Then there is an isomorphism of S−1A-modules

S−1A⊗ ΩA/B
∼= ΩS−1A/T−1B.

Explicitly the isomorphism is the map S−1A⊗ ΩA/B → ΩS−1A/T−1B given by sending
1
s ⊗ da 7→ d(as ). We will describe the inverse map in the proof below, and you should check
carefully that these two explicit descriptions are inverse to each other.

Proof. Suppose that M is an S−1A-module. Given any derivation d ∈ DerT−1B(S−1A,M),
by precomposing d with A → S−1A we obtain an element of DerB(A,M). This function
is injective: the Leibniz rule shows that d(as ) = 1

s · da −
a
s2
· ds and so d is determined

by its action on A. This function is surjective: given a B-linear derivation d̃ : A → M
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we extend it to S−1A by sending d(as ) = 1
s · d̃a −

a
s2
· d̃s. (Note that this extension is

automatically a derivation over T−1B and not just B.) We can equip DerB(A,M) the
“naive” S−1A-module structure where the action of a

s sends d 7→ a
s ·d. With this definition

the map above is an isomorphism of S−1A-modules.

We now appeal to the universal property of the module of differentials. For any S−1A-
module M we can identify DerT−1B(S−1A,M) as the R-module HomR(ΩS−1A/T−1B,M).
Since as an A-module DerB(A,M) is isomorphic to HomA(ΩA/B,M) we see that as an
S−1A-module it is isomorphic to

HomS−1A(S−1A⊗ ΩA/B,M).

Since these two Hom-modules are isomorphic for every choice ofM , Yoneda’s lemma implies
the desired statement.

Second, the construction of ΩA/B is compatible with base change.

Proposition 11.1.8. Let B → A and B → S be ring homomorphisms. Set R = S ⊗B A.
Then there is an isomorphism of R-modules

R⊗A ΩA/B
∼= ΩR/S .

Explicitly the isomorphism is the map R⊗A ΩA/B → ΩR/S given by sending r ⊗ da 7→
r ·d(a). We will describe the inverse map in the proof below, and you should check carefully
that these two explicit descriptions are inverse to each other.

Proof. Fix an R-module M . Given any derivation d ∈ DerS(R,M), its restriction to A is
an element of DerB(A,M). The restriction map is injective: since d acts trivially on S its
action on R is entirely determined by its action on A via the Leibniz rule. The restriction
map is surjective: given a B-linear derivation d′ : A → M , we extend it to R by defining
d(s ⊗ a) = s · d′a. Note that the restriction map is in fact an isomorphism of R-modules
if we equip DerB(A,M) with the “naive” R-module structure where the action of r sends
d 7→ r · d.

We now appeal to the universal property of the module of differentials. For any R-
module M we can identify DerS(R,M) as the R-module HomR(ΩR/S ,M). Furthermore,
as an A-module DerB(A,M) is isomorphic to HomA(ΩA/B,M), which means that as an
R-module it is isomorphic to

HomR(R⊗A ΩA/B,M).

Since these two Hom-modules are isomorphic for every choice ofM , Yoneda’s lemma implies
the desired statement.
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11.1.3 Exact sequences

Suppose we have a sequence of ring homomorphisms C → B → A. We might then hope
that ΩA/C is “built up” out of ΩA/B and ΩB/C in some way.

Proposition 11.1.9 (Cotangent sequence). Let C → B → A be ring homomorphisms.
Then there is an exact sequence of A-modules

A⊗B ΩB/C
ψ−→ ΩA/C

φ−→ ΩA/B → 0

Here the map on the right sends da 7→ da; the map on the left sends a⊗ db 7→ a · db.

Proof. It is clear that the map φ : ΩA/C → ΩA/B sending da 7→ da is a surjective A-module
homomorphism. To show that ker(φ) = im(ψ), note that ΩA/C and ΩA/B are defined by
quotienting the same free module by the same relations except for the additional relations
db = 0 in ΩA/B. Thus the kernel is generated by elements in the image of ΩB/C .

While is a bit frustrating that the cotangent sequence is not exact on the left, there
is one special situation where we can continue the exact sequence by adding an explicit
kernel on the left. Suppose we have ring homomorphisms C → B → A and that B → A is
surjective. This easily implies that ΩA/B = 0, so the rightmost entry in Proposition 11.1.9
vanishes. In this case we can extend by one term on the left:

Proposition 11.1.10 (Conormal sequence). Let C → B → A be ring homomorphisms
and suppose that B → A is surjective. Then there is an exact sequence of A-modules

A⊗B I
η−→ A⊗B ΩB/C

ψ−→ ΩA/C → 0

where I is the kernel of the surjection B → A and the map η = 1⊗ d sends a⊗ i 7→ a⊗ di.

It is more traditional to write I/I2 for the leftmost term, where we use the identification

A⊗B I ∼= B/I ⊗B I ∼= I/I2

and thus we will use this notation henceforth.

Proof. Recall that A ⊗B ΩB/C is the A-module generated by the symbols db subject to
the relations described by the additivity and Leibniz rules and by the requirement dc = 0.
Since A is a quotient of B, ΩA/C can be defined in the same way but subject to the extra
relations di = 0 as we vary i ∈ I. But this is exactly the image of the map on the left.

Remark 11.1.11. In general, it is natural to look for algebraic constructions which further
continue the exact sequence of Proposition 11.1.9 on the left. This goal is achieved via the
theory of the cotangent complex.
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11.1.4 Jacobians

If A is a finitely presented B-module, then we can compute ΩA/B using the Jacobian
matrix. We will usually restrict ourselves to situations where the module of differentials
can be computed in this way.

Lemma 11.1.12. Let B → A be a ring homomorphism. Suppose that

A = B[x1, . . . , xn]/(f1, . . . , fr)

is a finitely presented B-algebra. Then ΩA/B is the finitely presented A-module which is
the cokernel of the map A⊕r → A⊕n defined by the Jacobian matrix

Jacf1,...,fr(x) =


∂f1
∂x1

. . . ∂fr
∂x1

...
. . .

...
∂f1
∂xn

. . . ∂fr
∂xn

 .
Note that since we are working cotangent spaces, our definition of the Jacobian is the

transpose of the more commonly used convention.

Proof. We first consider the case when A = B[x1, . . . , xn]. Then we claim that ΩA/B is
freely generated by dx1, . . . , dxn. As in Lemma 11.1.6 we see that these symbols generate
and we just need to show that the dxi are independent. This follows from the fact that
the map d

dxi
: A→ B is an example of a B-linear derivation that sends dxi 7→ 1 and every

other dxj 7→ 0.
In general, consider the sequence of ring homomorphisms B → B[x1, . . . , xn]→ A and

let I be the ideal defining A. By Proposition 11.1.10 we obtain an exact sequence

I/I2 φ−→ Adx1 ⊕ . . .⊕Adxn → ΩA/B → 0.

The map φ sends a generator fj to dfj , which by the Leibniz rule is the same as
∑ ∂f

∂xi
dxi.

Thus the image of I/I2 under φ is the same as the image of the Jacobian matrix.

11.1.5 Exercises

Exercise 11.1.13. Let K be a field and set A = K[x, y]/(x2 + y2). Compute ΩA/K. (Hint:
it will depend on the characteristic of K.)

Exercise 11.1.14. Suppose that B → A is a ring homomorphism. Let I be the ideal in
A⊗B A which is the kernel of the ring map A⊗B A→ A that sends a1 ⊗B a2 7→ a1a2.

(1) Verify that I is generated by elements of the form 1⊗ a− a⊗ 1.

(2) Show that the map d̃ : A→ I/I2 sending a 7→ 1⊗ a− a⊗ 1 is a derivation.
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(3) Show that the A-module homomorphism φ : ΩA/B → I/I2 induced by d̃ is an isomor-
phism. (Hint: to see that φ is injective, show that the map A⊗ A → ΩA/B sending
x ⊗ y 7→ x · dy yields a one-sided inverse when descended to I/I2.) In particular,
we can use I/I2 equipped with the derivation d̃ as an alternative definition of the
module of relative differentials.

Exercise 11.1.15. Let K be a field. Show that DerK(A,A) carries the structure of a Lie
algebra where [d1, d2] = d1 ◦ d2 − d2 ◦ d1.



11.2. FIELD EXTENSIONS 399

11.2 Field extensions

In this section we will systematically analyze the module of differentials for extensions of
fields L/K. These form the foundation for some of our later results.

11.2.1 Basic extensions

Every finitely generated extension of fields can be decomposed into a sequence of extensions
of three types: finite separable extensions, finite purely inseparable extensions, and finitely
generated purely transcendental extensions. We begin by studying each type separately.

Proposition 11.2.1. If K→ L is a separable algebraic extension then ΩL/K = 0.

Proof. Let a ∈ L and let P be its minimal polynomial; since the extension is separable we
know that the formal derivative P ′ of P evaluated at a is non-zero. Taking the d-image
of the equation P (a) = 0 in ΩL/K we obtain the relation P ′(a) · da = 0. We conclude
that every element da is torsion in the L-module ΩL/K. Since L is a field this implies that
da = 0 for every a.

Proposition 11.2.2. Suppose that K → L is a purely inseparable finite extension. Let r
denote the minimal number of elements in L needed to generate L over K. Then ΩL/K is
an r-dimensional L-vector space.

Proof. Let p denote the characteristic and define F = LpK. Let s be the minimal number
of elements in L needed to generate L over F. We claim that s = r. It is clear that s ≤ r.
Conversely, suppose that L = LpK(α1, . . . , αs). Then arguing inductively we see that

L = LpK(α1, . . . , αs) = Lp
2
K(α1, . . . , αs) = . . . = Lp

d
K(α1, . . . , αs)

Since L/K is a finite purely inseparable extension, we have LpdK = K for some sufficiently
large d. In this way we see that s ≥ r.

We next claim that ΩL/K ∼= ΩL/F. Indeed, by Proposition 11.1.9 we have an exact
sequence

L⊗F ΩF/K → ΩL/K → ΩL/F → 0.

Note that the image of the leftmost module is 0 (since d vanishes on K and on pth powers
in L). This shows the claim.

It only remains to compute ΩL/F. As before write L = F(α1, . . . , αr). By construction
the pth power of every element in L is contained in F, so

L = F[x1, . . . , xr]/(x
p
1 − α

p
1, . . . , x

p
r − αpr).

We conclude the desired statement by Lemma 11.1.12.

Corollary 11.2.3. If K→ L is a non-separable finite extension then ΩL/K 6= 0.
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Exercise 11.2.12 shows that this statement may fail for non-finite extensions.

Proof. In this case the extension L/K factors as a separable extension F/K followed by
a purely inseparable extension L/F. Proposition 11.1.9 shows that there is a surjection
L/K→ L/F, yielding the result.

Proposition 11.2.4. If L = K(x1, . . . , xn) is a finitely generated purely transcendental
extension, then ΩL/K is the free L-module generated by the dxi.

Proof. Let A = K[x1, . . . , xn]. We have shown that ΩA/K is the free A-module generated
by the dxi. Proposition 11.1.7 implies the desired statement for the localization L of A.

11.2.2 Finitely generated field extensions

We next combine these results to address the behavior of ΩL/K for any finitely generated
extension L/K.

Lemma 11.2.5. Suppose that K→ L is a finitely generated extension. Suppose that F is
an intermediate field such that L/F is finite separable. Then there is an isomorphism

L⊗F ΩF/K ∼= ΩL/K

defined by the leftmost map in the cotangent sequence.

Proof. Consider the cotangent sequence

L⊗F ΩF/K → ΩL/K → ΩL/F → 0.

By Proposition 11.2.1 we know that ΩL/F = 0 and so the leftmost map is surjective. To
show injectivity, it suffices to check that any K-linear derivation d : F → M extends to a
derivation d̃ : L→M⊗FL. Indeed, using the identifications DerK(F,M) ∼= HomF(ΩF/K,M)
and similarly for L, a surjection of spaces of derivations leads to an injection on the modules
of differentials.

Choose a primitive element α for L/F and let f(x) =
∑
cjx

j denote its minimal poly-
nomial in F. We start by defining a derivation D : F[x]→M ⊗F L by setting D(c) = d(c)
for any c ∈ F, defining

D(x) = −
∑
d(cj)α

j

f ′(α)

which is well-defined by our separability assumption, and then extending D to all of F[x]
via the Leibniz rule. (Here we are realizing M ⊗F L as an F[x]-module by letting x act via
α.) Since we have the relation

D(f(x)) = D
(∑

cjx
j
)

=
(∑

d(cj)α
j
)

+ f ′(α)D(x) = 0

this derivation D descends to the quotient F[x]/f(x) ∼= L.
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Theorem 11.2.6. Suppose that K → L is a finitely generated separable extension. Then
ΩL/K is a free L-module of rank trdeg(L/K).

Proof. Since L is a separable extension of K, we can find an intermediate field F such that
L/F is separable algebraic and F/K is purely transcendental. The desired statement follows
from Lemma 11.2.5 and Proposition 11.2.4.

Corollary 11.2.7. Suppose that K→ L is a finitely generated extension. Then ΩL/K = 0
if and only if L is a finite separable extension of K.

Proof. The reverse implication has been proved already. To see the forward implication,
suppose that α1, . . . , αr is a minimal generating set for L over K. For ease of notation
we set Fj = K(α1, . . . , αj) and F0 = K. Let j be the largest index such that L is not a
finite separable extension of Fj and suppose for a contradiction that j 6= 0. Since L is a
finite separable extension of Fj+1, we see that the extension Fj+1/Fj is either inseparable
or a transcendental. In either case ΩFj+1/Fj 6= 0, and using the surjection in the cotangent
sequence this implies that ΩFj+1/K 6= 0. By Lemma 11.2.5 the map L⊗ΩFj+1/K → ΩL/K is
an isomorphism, giving a contradiction.

The situation for finitely generated non-separable extensions is very similar to Propo-
sition 11.2.2.

Theorem 11.2.8. Suppose that K → L is a finitely generated non-separable extension in
characteristic p. Let α1, . . . , αr be a minimal set of generators of L over LpK. Then ΩL/K
is a free L-module generated by the dαi.

Note that the αi may or may not be transcendental elements over K. The proof is
exactly the same as Proposition 11.2.2 but easier since we can omit the first paragraph. In
turn this implies:

Corollary 11.2.9. Suppose that K→ L is a finitely generated extension. Then

dimL(ΩL/K) ≥ trdeg(L/K)

with equality if and only if L/K is a separable extension.

Proof. We have already proved the case when L/K is separable, so it suffices to consider
the situation when L is non-separable over K. Let α1, . . . , αr be as in Theorem 11.2.8 and
set F = K(α1, . . . , αr). We claim that L is a finite separable extension of F. Indeed, since
dα1, . . . , dαr also generate ΩF/K the leftmost map in the cotangent sequence is surjective.
We deduce that ΩL/F = 0 and so Corollary 11.2.7 shows that L is a finite separable
extension of F. In particular, since the number of generators must be strictly larger than
the transcendence degree (as L is non-separable over K) we see that

trdeg(L/K) = trdeg(F/K) < r = dimL(ΩL/K).
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Remark 11.2.10. The previous corollary does not hold for non-finitely generated exten-
sions. [ML39, Section 10] gives an example of a field extension L/K of transcendence degree
2 such that ΩL/K is 1-dimensional.

11.2.3 Artinian rings

Our work thus far allows us to analyze the module of differentials for any Artinian ring.

Proposition 11.2.11. Let A be an Artinian ring over a field K. Then ΩA/K = 0 if and
only if Spec(A) is a finite disjoint union tri=1 Spec(Li) such that each extension Li/K is
finite separable.

Proof. The reverse implication follows from Proposition 11.2.1. To prove the forward
implication, since ΩA/K is compatible with localization it suffices to consider the case when
Spec(A) is irreducible and thus has a unique prime ideal m. Let L denote the residue field
of the unique point of Spec(A). Proposition 11.1.10 shows that we have an exact sequence
of L-modules

m/m2 → L⊗A ΩA/K → ΩL/K → 0.

Since the middle term vanishes, so does the rightmost term. By Corollary 11.2.3 we deduce
that the finite extension L/K must be separable.

We claim that the sequence above is exact on the left as well. Suppose that f1, . . . , fr
form a basis for m/m2. We need to show that for any fi the element dfi in ΩA/K does
not vanish upon tensoring with L. To do this, we will construct an explicit derivation.
First consider the K-linear quotient map g : A → A/m2. As a K-vector space A/m2 is
isomorphic to L⊕ Lf1 ⊕ . . .⊕ Lfr. Thus we can define a K-linear function h : A/m2 → L
by sending the basis vector fi 7→ 1 and every other basis vector to 0. The composition
d = h ◦ g is a K-linear derivation, since if we choose bi, ci ∈ L so that g(a1) = b0 +

∑
bifi

and g(a2) = c0 +
∑
cifi then

d(a1a2) = h(g(a1)g(a2)) = h(b0c0 +
∑

(c0bi + b0ci)fi)

= c0bi + b0ci = a1 · d(a2) + a2 · d(a1).

Since our construction of this derivation respected the L-vector space structure, we see
that it does not vanish upon tensoring with L, proving injectivity on the left.

Since ΩA/K = 0 by assumption, we conclude that m/m2 = 0, or equivalently, that A is
a field. The desired statement then follows from Corollary 11.2.7.

11.2.4 Exercises

Exercise 11.2.12. Set K = Fp(T ). Consider the chain of finite extensions

K = L0 ⊂ L1 ⊂ L2 ⊂ . . .
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where L1 is generated by a pth root of T and each subsequent Li is generated by a pth
root of the previous generator. Set L = ∪iLi. Prove that ΩL/K = 0.



404 CHAPTER 11. COTANGENT SHEAVES

11.3 Cotangent sheaves

Suppose that f : X → Y is a smooth morphism of differentiable manifolds. We then
obtain a pullback map df∗ : f∗ΩY → ΩX . The cokernel of this map is known as the
relative cotangent sheaf and is denoted by ΩX/Y . In this section we will develop a similar
picture in the setting of algebraic geometry.

11.3.1 Relative cotangent sheaf

We first globalize the construction of the module of differentials from the previous section.

Definition 11.3.1. Let f : X → Y be a morphism of schemes. Suppose that V ⊂ Y is
an open affine and that U ⊂ f−1V is an open affine. The ring map f ] : OY (V )→ OX(U)
induces an OX(U)-module of relative differentials ΩU/V . As demonstrated in Proposition
11.1.7 these modules are compatible with localization. Thus, as we vary U and V the

sheaves Ω̃U/V glue together to yield a quasicoherent sheaf ΩX/Y on X.
ΩX/Y is called the relative cotangent sheaf for the morphism f .

Remark 11.3.2. Note that (again appealing to Proposition 11.1.7) the stalk of ΩX/Y at
a point x can be identified with ΩOX,x/OY,f(x) .

If we are working in the category of S-schemes (particularly when S = Spec(K)) we will
think of ΩX/S as the “absolute” cotangent sheaf. In this setting we think of the relative
cotangent sheaf ΩX/Y as expressing the “difference” between the two cotangent sheaves
ΩY/S and ΩX/S . This intuition is captured by the following basic property of ΩX/Y .

Proposition 11.3.3. Let f : X → Y and g : Y → Z be morphisms of schemes. Then we
have an exact sequence

f∗ΩY/Z → ΩX/Z → ΩX/Y → 0.

Proof. Follows from Proposition 11.1.9 and compatibility with localization.

We will usually work with relative cotangent sheaves for finitely presented morphisms.
In this case, the relative cotangent sheaf can be computed locally using the Jacobian matrix.

Remark 11.3.4. Suppose that X is a K-scheme and that x ∈ X is a K-point. Then the
Zariski cotangent space T∨X,x is the same as the fiber of ΩX/K at the point x. Indeed, by
Corollary 5.3.5 and Lemma 11.1.12 both spaces can be computed via the Jacobian.

However, Example 5.1.9 shows that for arbitrary closed points x the Zariski cotangent
space T∨X,x and the fiber ΩX/K(x) can be different. The fiber ΩX/K(x) is defined using
derivations on a neighborhood of x, while T∨X,x is defined using the derivations of mx. We
discuss this comparison more in Section 11.4.1.

Before moving on, we record another basic property of the relative cotangent sheaf.
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Proposition 11.3.5. Let f : X → Y be a morphism of schemes. Fix a morphism Z → Y
and let g : X ×Y Z → X denote the projection map. Then we have ΩX×Y Z/Z = g∗ΩX/Y .

Proof. Follows from Proposition 11.1.8 and compatibility with localization.

11.3.2 Relative tangent sheaf

We define the relative tangent sheaf by dualizing.

Definition 11.3.6. Given a morphism f : X → Y , we define the relative tangent sheaf
TX/Y to be the dual Ω∨X/Y .

If ΩX/Y is locally free then the relative cotangent sheaf can be recovered from the
relative tangent sheaf by dualizing again. However, if ΩX/Y is not locally free then TX/Y
can “carry less information” than ΩX/Y ; for example, any information about the torsion
submodule of ΩX/Y is lost upon dualizing. For this reason it is much less common to work
with the relative tangent sheaf unless we include a local freeness hypothesis.

11.3.3 Differential forms

Given a morphism f : X → Y , we define the sheaf of relative differential p forms to be

Ωp
X/Y =

p∧
ΩX/Y .

Just as with the tangent sheaf, the sheaves of differential forms are most useful when ΩX/Y

is locally free (in which case the Ωp
X/Y are also locally free). Using the sheaves of differential

forms one can develop an “algebraic de Rham theory” which closely parallels the geometric
theory.

The most important example of a sheaf of differential forms is the top exterior power
Ωn
X/K when X is a K-scheme of dimension n. We will return to this example in Section

11.5.4.

11.3.4 Projective space

Since projective space Pn is obtained by gluing together copies of An, the conormal sheaf of
projective space Pn is a locally free sheaf of rank n. However this locally free sheaf cannot
be decomposed into simpler sheaves (e.g. it will not split into a direct sum of invertible
sheaves). The best way of working with ΩPn is a fundamental exact sequence known as
the Euler sequence.

Proposition 11.3.7. Let Y = Spec(R) be an affine scheme. Then the conormal sheaf of
PnR over Y fits into an exact sequence

0→ ΩPnR/Y → O(−1)⊕n+1 → O → 0.
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The rightmost map is defined by multiplying the ith summand of O(−1)⊕n+1 by the variable
xi.

Our strategy to construct ΩPnR/Y is to glue together the constant bundles over the
various affine charts using the derivatives of the transition maps.

Proof. Set S = R[x0, . . . , xn]. We define E = S(−1)⊕n+1 and let ei denote the ith basis
vector of E (so that ei has degree 1). Consider the graded homomorphism φ : E → S
sending ei to xi and let M denote the kernel of this map. Note that although φ is not
surjective, it is surjective in degree ≥ 1. Thus we obtain an exact sequence of sheaves

0→ M̃+ → O(−1)⊕n+1 → O → 0.

Suppose we localize at xj . Using the fact that the kernel of φ is generated by the various
xiej − xjei, we see that the localized kernel Mxj is the free Sxj -module generated by the
various ei− xi

xj
ej . Taking degree 0 parts, we see that (Mxj )0 is a free module generated by

the various 1
xj
ei − xi

x2j
ej .

We now construct an isomorphism ψ : ΩPnR/Y → M̃+. On the open affine Uj := D+,xj

note that ΩPnR/Y is generated by d(x0xj ), . . . , d(xnxj ). We define

ψj : ΩPnR/Y |Uj → M̃+|Uj

d(
xi
xj ) 7→ 1

xj
ei −

xi
x2
j

ej

Since both sides are represented by free modules of the same rank, this map is an isomor-
phism. (Conceptually speaking ei is representing “dxi” and the isomorphism is just the
quotient rule for xi

xj
.)

We claim that as we vary i the ψi glue to give a global isomorphism ψ. Indeed, on
Ui ∩ Uj we have the identification xk

xi
=

xj
xi
· xkxj . Taking derivatives and rearranging we

obtain the coordinate transformation rule for projective space:

d(
xk
xj ) =

xi
xj · d(

xk
xi

)−
xixk
x2
j
· d(

xj
xi

).

These transform in the same way as the basis vectors for M̃+|Uj :(
1

xj
ek −

xk
x2
j

ej

)
=
xi
xj

(
1

xi
ek −

xk
x2
i

ei

)
− xixk

x2
j

(
1

xi
ej −

xj
x2
i

ei

)
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The dual sequence is also known as the Euler sequence:

0→ O → O(1)⊕n+1 → TPnR/Y → 0

Proposition 11.3.7 constructs the cotangent sheaf of projective space using a “gluing”
perspective. We can also construct it using a “quotient” perspective:

Example 11.3.8. Consider the quotient map f : An+1\{0} → Pn. Note that the vector
field d

dxi
does not descend to Pn since it is not rescaling invariant. However, for a linear

function ` the vector field ` d
dxi

will descend to Pn. Since O(1) on Pn parametrizes the linear

functions on An+1, the sheaf O(1)⊕n+1 parametrizes the linear vector fields on An+1\{0}
and we get a map φ : O(1)⊕n+1 → TPn .

Suppose that
∑
fi

d
dxi

is a linear vector field in the kernel of the pushforward map. This

means that it should be “radial”, i.e. proportional to the vector field
∑
xi

d
dxi

obtained by
taking the normal vectors to spheres. Thus we see that the kernel of the map φ is isomorphic
to O and the map O → O(1)⊕n+1 is exactly multiplication by xi on the ith coordinate
vector.

Let’s make this more precise using sheaves.

Construction 11.3.9. The quotient morphism f : An+1\{0} → Pn is locally described by
coordinate maps

K[
x0
xi
, . . . ,

xn
xi ]→ K[x0, . . . , xn]xi .

Note that the right hand side is simply the polynomial ring over the left hand side ob-
tained by adjoining the single variable xi (reflecting the fact that the preimage of D+,xi is
isomorphic to A1 ×D+,xi). Consider the cotangent sequence

0→ f∗ΩPn → ΩAn+1\{0} → ΩAn+1\{0}/Pn → 0.

Over the chart D+,xi the leftmost map map sends

d
(xj
xi

)
7→ 1

xi
dxj −

xj
x2
i

dxi.

The cokernel ΩAn+1\{0}/Pn is spanned by dxi; in fact, the “natural” generator is dxi
xi

since
this expression is invariant as we change charts. The rightmost map in the cotangent
sequence is the quotient assigning d(

xj
xi

) = 0 for j 6= i, or in other words, the map sending

dxj 7→ xj
dxi
xi

.
We now pushforward the cotangent sequence to Pn to get

0→ ΩPn ⊗ f∗ΩAn+1\{0} → f∗Ω
⊕n+1
An+1\{0} → f∗ΩAn+1\{0}/Pn

Note that f∗OAn+1\{0} ∼= ⊕d∈ZO(d). Furthermore, as explained above the maps in the
cotangent sequence are naturally graded: the leftmost map has image in degree −1 and
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the rightmost map increases the degree by 1. Thus after adjusting the grading we get an
exact sequence of graded OPn-algebras

0→ ⊕d∈ZΩPn(d)→ ⊕d∈ZO(d− 1)⊕n+1 → ⊕d∈ZO(d).

The degree 0 part is the Euler sequence.

11.3.5 Exercises

Exercise 11.3.10. Let X be a K-scheme. Show that for every point x ∈ X we have that
rkx ΩX/K is at least the local dimension of x in X. (Hint: reduce to the case when X is a
variety and consider the generic point of X.)

Exercise 11.3.11. Let X be a scheme and let E be a locally free sheaf of rank r on X.
Let P(E) denote the projective bundle associated to E equipped with the structure map
π : P(E)→ X. Prove that there is a “relative Euler sequence”

0→ ΩP(E)/X → O(−1)⊗ π∗E → OP(E) → 0.

Exercise 11.3.12. Suppose we have morphisms f : X → Z and g : Y → Z. Construct
an isomorphism ΩX×ZY/Z

∼= p∗1ΩX/Z × p∗2ΩY/Z where p1, p2 are the two projection maps.
Show that the cotangent sequence

p∗1ΩX/Z → ΩX×ZY/Z → ΩX×ZY/Y → 0

is exact on the left and is split exact (and similarly if we swap the roles of X and Y ).



11.4. CONORMAL SHEAVES 409

11.4 Conormal sheaves

Suppose that f : X → Y is a closed embedding of smooth manifolds. The cokernel of the
map TX → f∗TY is called the normal bundle of X in Y and is denoted by NX/Y . Dually,
the conormal bundle is the kernel of the map f∗ΩY → ΩX . Our next goal is to transport
this construction to the realm of algebraic geometry.

Definition 11.4.1. Let f : Z → X be a closed embedding and let I denote the quasi-
coherent ideal sheaf defining Z. The quotient I/I2 can be thought of as a quasicoherent
sheaf on Z via the identification I/I2 ∼= f∗I. With this identification I/I2 is called the
conormal sheaf of Z in X and is frequently denoted by N∨Z/X .

The dual Hom(N∨Z/X ,OZ) is called the normal sheaf and is denoted by NZ/X . Note

however that (just as for tangent sheaves) we may be “losing” information when we dualize
so that the conormal sheaf is the more fundamental construction. When N∨Z/X is locally
free we call it the conormal bundle of Z in X, and the dual NZ/X the normal bundle.

Example 11.4.2. Let D be an effective Cartier divisor in X. Then the ideal sheaf for D
is the invertible sheaf OX(−D). This means that the conormal sheaf for D is the invertible
sheaf OX(−D)|D on D. It is important to note that this formula holds no matter what
kinds of singularities D has.

Our terminology is motivated by the following result.

Theorem 11.4.3. Let f : Z → X be a closed embedding of S-schemes. We have an exact
sequence

N∨Z/X → f∗ΩX/S → ΩZ/S → 0.

The sequence of Theorem 11.4.3 is known as the conormal sequence.

Proof. Follows immediately from Proposition 11.1.10 and compatibility with localization.

Remark 11.4.4. Based on the analogy with the theory of manifolds we might expect the
conormal sequence to be exact on the left. Although this can fail to be true (see Exercise
11.4.13), it turns out that it is true if we impose a smoothness hypothesis (see Theorem
11.5.8).

11.4.1 Zariski cotangent space

We next discuss the relationship between the Zariski cotangent space and the cotangent
sheaf for a K-scheme X.
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Suppose that x ∈ X is a closed point. Then the conormal sheaf of x at X is the sheaf
m/m2, i.e. the Zariski cotangent space at x. By Theorem 11.4.3 we get an exact sequence

m/m2 → ΩX/K(x)→ Ωκ(x)/K → 0

where as usual ΩX/K(x) denotes the fiber of ΩX/K at x. In other words, we get a morphism
from the Zariski cotangent space to the fiber of the cotangent sheaf.

Example 11.4.5. Let K = Fp(u) and let X = Spec(K[x, y]/(y2 − xp + u)). We claim
that the Zariski cotangent space of the point m = (y, xp − u) is not isomorphic to the
fiber of the cotangent sheaf. As an L-vector space the quotient m/m2 is just Ly, hence
one-dimensional. However ΩX/K(m) is 2-dimensional, since the Jacobian

Jacf (x) =

[
0
2y

]
.

evaluates to 0 at the point m. The difference between these two computations is explained
by the fact that Ωκ(m)/K 6= 0.

The previous example shows that the map T∨X,x → ΩX/K(x) need not be an isomor-
phism. However, it will be an isomorphism under certain circumstances:

Proposition 11.4.6. Let X be a K-scheme. Suppose that x ∈ X is a regular closed point
such that κ(x) is separable over K. Then the morphism from the Zariski cotangent space
T∨X,x to the fiber ΩX/K(x) is an isomorphism.

Proof. Consider the morphism i : Spec(OX,x) → X. By Proposition 11.1.7 we have
ΩSpec(OX,x)/K ∼= i∗ΩX/K. Consider the conormal sequence for the closed point x in Spec(OX,x):

m/m2 → ΩX/K(x)→ Ωκ(x)/K → 0

Proposition 11.2.1 shows that the term on the right is zero, so we get a surjection φ :
m/m2 → ΩX/K(x). However Exercise 11.3.10 shows that

dimκ(x) ΩX/K(x) ≥ dim(X) = dimκ(x) m/m
2

showing that φ is an isomorphism.

Remark 11.4.7. In general the kernel of m/m2 → ΩX/K(x) can be identified by extending
the conormal sequence to the left. The next term in the sequence turns out to be Γ =
ker(ΩK/Z ⊗ κ(x)→ Ωκ(x)/Z).

When x ∈ X is not a closed point, the comparison between the Zariski cotangent
space and the fiber of the cotangent sheaf is a little different. Consider the morphism
i : Spec(OX,x)→ X. Just as before, the conormal sheaf of x in Spec(OX,x) is equal to the
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Zariski cotangent space at x. Since the cotangent sheaf ΩSpec(OX,x)/K is the same as i∗ΩX/K
by Proposition 11.1.7, just as before we get a map m/m2 → ΩX/K(x) from the conormal
sequence of x in Spec(OX,x). However, now in the exact sequence

m/m2 → ΩX/K(x)→ Ωκ(x)/K → 0

the rightmost term is no longer zero. If x ∈ X is a regular point and κ(x) is separable over
X, then the leftmost term has dimension codim(x) and the rightmost term has dimension
dim(x) so this sequence is exact by a similar argument as before.

11.4.2 Regular embeddings

Definition 11.4.8. A closed embedding f : Z → X is a regular embedding of codimension
r at a point x ∈ Z if the stalk of IZ at the point x is defined by a regular sequence of
length r in the local ring OX,x.

A regular embedding of codimension r is a closed embedding f : Z → X which is
regular at every point of Z.

Example 11.4.9. If X is a locally Noetherian scheme, then a regular embedding of codi-
mension 1 is the same thing as a Cartier divisor on X. Indeed, in this situation every
ideal sheaf I is locally finitely generated. If the stalk of Ix is generated by a single ele-
ment then using Geometric Nakayama’s lemma we see that I is also principal on an open
neighborhood of X.

The terminology is motivated by the following important example.

Theorem 11.4.10. Let X be a regular Noetherian scheme. Suppose that Z is a closed
subscheme of X that is also regular. Then the closed embedding f : Z → X is a regular
embedding.

Proof. Fix a point x ∈ Z. Let A = OX,x be the local ring at x with maximal ideal m.
Let I be the ideal in OX,x defining Z, and define B := A/I with the maximal ideal n.
By assumption B is a regular local ring; we must show that I is generated by a regular
sequence.

Suppose that dim(A) = n and that dim(B) = d. We can lift generators of n to A to
get d linearly indepedent elements in m\m2. Choose any n − d elements in the kernel of
m/m2 → n/n2 which complete the basis; by lifting these elements to A we obtain elements
f1, . . . , fn−d in I. Since A is regular, the sequence f1, . . . , fn−d is a regular sequence in A.
Indeed, for any i < n− d Krull’s PIT shows that dim(A/(f1, . . . , fi)) ≥ n− i and Exercise
5.1.6 shows that the Zariski tangent space of this ring has dimension ≤ n− i. By Theorem
5.2.1 we see that both quantities must be equal to n − i. Thus A/(f1, . . . , fi) is regular,
hence a domain by Proposition 5.2.5. So fi+1 cannot be a zero divisor in this ring.

We claim that I = (f1, . . . , fn−d). Note that there is a surjection A/(f1, . . . , fn−d)→ B.
Since both are regular local rings, they are both domains. But a surjection of two integral
domains which have the same dimension must be an isomorphism.
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We next show that the normal sheaf for a regular embedding has particularly nice
properties.

Proposition 11.4.11. Let A be a Noetherian ring, I ⊂ A an ideal generated by a regular
sequence (f1, . . . , fr). Then the map φ : (A/I)⊕r → I/I2 sending (a1, . . . , ar) 7→

∑
aifi is

an isomorphism of A/I-modules. In particular, I/I2 is a free A/I-module of rank r.

Proof. It is clear that φ is surjective. To see that φ is injective, we consider the analogous
map A⊕r → I/I2 and analyze the kernel. More precisely, we claim that if (a1, . . . , ar)
is in the kernel of φ then ar ∈ I. Indeed, since

∑
aifi = 0 we see that arfr = 0

in A/(f1, . . . , fr−1) + I2. In other words, we have an equality arfr = bf2
r in the ring

A/(f1, . . . , fr−1). Since the fi form a regular sequence fr is not a zero divisor in the quo-
tient ring A/(f1, . . . , fr−1) and we deduce that ar− bfr ∈ (f1, . . . , fr−1). We conclude that
ar ∈ I.

Since A is Noetherian the order of elements can be permuted in a regular sequence.
We conclude that the kernel of A⊕r → I/I2 consists exactly of the tuples of elements in I,
showing that φ is injective.

Applying the previous proposition locally, we obtain:

Corollary 11.4.12. Let f : Z → X be a regular embedding of Noetherian schemes of
codimension r. Then the conormal sheaf N∨Z/X is a locally free sheaf of rank r.

11.4.3 Exercises

Exercise 11.4.13. Let Z ⊂ A2
K be the subscheme defined by (x2, y2). Show that the map

I/I2 → ΩA2/K|Z is not injective. What is its kernel?

Exercise 11.4.14. Let f : X → Y be morphism of schemes. Prove that the conormal
sheaf I/I2 of ∆X/Y is isomorphic to the relative cotangent sheaf ΩX/Y . (Note that ∆X/Y

is in general only a locally closed subscheme and not necessarily a closed subscheme. To
define the “conormal sheaf” of a locally closed subscheme, we first choose an open set U so
that our subscheme is closed in U . One can show that the resulting sheaf is independent
of the choice of U .)

This construction is often used as the definition of the relative cotangent sheaf. It
should be compared to the well-known fact that if X is a smooth manifold then the normal
bundle of ∆X in X ×X is isomorphic to TX .

Exercise 11.4.15. Suppose that f : X → Y and g : Y → Z are both closed immersions.
Prove that there is an exact sequence of sheaves on X given by

f∗N∨Y/Z → N∨X/Z → N∨X/Y → 0

Find an example where the leftmost map is not injective.
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11.5 Smooth varieties

If X is an n-dimensional K-variety then Exercise 11.3.10 shows that the rank of ΩX/K is
at least n at every point. Just as with the Zariski cotangent space, we can expect the
cotangent sheaf to have rank > n when X is “singular” in some way. We will use this
intuition to define smooth varieties.

Definition 11.5.1. Suppose that X is a finite type scheme over a field K. We will say
that X is smooth (over Spec(K)) at a point x if ΩX/K is locally free at x with rank equal
to the local dimension of x in X.

We say that X is smooth if it is smooth at every point – that is, ΩX/K is locally free
and its rank at every point is the local dimension.

Note that smoothness does not require any separability hypothesis (although we will
often add it in unnecessarily since the focus of this section is K-schemes).

Remark 11.5.2. The Zariski-Lipman conjecture predicts that a complex variety is smooth
if and only if its tangent sheaf TX/C is locally free. This has been verified in many cases
but is still open in general.

Smoothness behaves well with respect to change of base field. (This is one of the key
properties that distinguishes smoothness from regularity.)

Proposition 11.5.3. Let X be a K-scheme. Suppose that L/K is an extension of fields.
Then X is smooth if and only if the base change XL is smooth.

Proof. Let ρ : XL → X be the base change morphism. By arguing as in Exercise 4.3.23 we
see that the local dimension is preserved by base change. Proposition 11.3.5 shows that
ΩXL/L

∼= ρ∗ΩX/K. We claim that ΩX/K is locally free of rank r if and only if its ρ-pullback
is locally free of rank r. For the forward implication, we simply note that the pullback of
a locally free sheaf is still locally free. Conversely, if ρ∗ΩX/K is locally free, then it is flat
over X. Thus the original sheaf ΩX/K is flat and coherent, hence locally free. It is clear
that the rank is preserved by pullback, finishing the proof.

11.5.1 Smoothness versus regularity

We next compare smoothness and regularity. The next example shows that these two
notions are not the same.

Example 11.5.4. Let K = Fp(u) and let X = mSpec(K[x, y]/(y2−xp+u)). As showed in
Example 11.4.5, the Zariski cotangent space of the point m = (y, xp − u) is 1-dimensional
while the fiber ΩX/K(m) is 2-dimensional. Since X has dimension 1 by Krull’s PIT, we see
that m is a regular point which is not smooth.

The following result summarizes the relationship between smoothness and regularity:
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Theorem 11.5.5. Let X be a K-scheme. Then:

(1) If x is a smooth point of X, then x is also a regular point.

(2) If x is a regular point of X and κ(x) is separable over K, then x is a smooth point.

Proof. The proof of the first implication will be deferred to Proposition 11.9.10. To see
the second, recall that we have an exact sequence

0→ m/m2 → ΩX/K(x)→ Ωκ(x)/K → 0

The term on the left has rank codim(x) and the term on the right has rank dim(x), so
OmegaX/K has rank dim(X) at x. By upper semicontinuity the rank of ΩX/K is ≤ dim(X)
on an open neighborhood of x. Since by Exercise 11.3.10 dim(X) is a lower bound on the
rank, we see that the rank is equal to dim(X) on an open neighborhood of x.

Since x is regular, it is a reduced point of X. The reduced locus of X is closed, so
we conclude that there is an open neighborhood of x which is reduced. Combining with
the discussion above, we see that x has a reduced open neighborhood on which ΩX/K has
constant rank, and thus ΩX/K is locally free at x.

We obtain as an important corollary:

Corollary 11.5.6. Suppose that X is a smooth K-scheme. Then X is reduced and no two
irreducible components of X can intersect.

The following bullet points summarize the relationship between smoothness and regu-
larity:

• Smoothness is a relative concept – the definition of the relative cotangent sheaf ΩX/K
implicitly depends on the structure morphism X → Spec(K). In contrast, regularity
is an absolute concept that does not depend upon a morphism.

• Regularity is more sensitive than smoothness: every smooth variety is regular but
a regular variety need not be smooth. Thus theorems with a regularity hypothe-
sis are stronger than theorems with a smoothness hypothesis. On the other hand,
smoothness is better behaved than regularity and is easier to work with.

• Smoothness can be thought of as “geometric regularity”: Proposition 11.4.6 shows
that after a base change to an algebraically closed field the Zariski cotangent space
at a closed point can be identified with the fiber of the cotangent sheaf. Thus a
K-scheme will be smooth if and only if its base change to an algebraic closure is
regular.
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11.5.2 Generic smoothness

Recall that a finitely generated field extension is separably generated if it is the composition
of a purely transcendental extension followed by a separable algebraic extension.

Proposition 11.5.7 (Generic smoothness for varieties). Let X be a K-variety. Then there
is an open subset U ⊂ X such that every point in U is smooth if and only if the function
field K(X) is separable over K.

In particular the proposition applies to any variety X defined over a perfect field K.

Proof. Since the rank is an upper semicontinuous function and X is reduced, we see that
the rank of ΩX/K will be equal to dim(X) along an open subset of X if and only if the rank
of ΩX/K at the generic point is equal to dim(X). We can identify the stalk of ΩX/K at the
generic point of X with ΩK(X)/K. Then Corollary 11.2.9 shows that the rank of ΩX/K at
the generic point is equal to dim(X) if and only if K(X) is separable over K.

11.5.3 Conormal bundles of smooth varieties

The conormal sheaf sequence is exact on the left under a smoothness hypothesis.

Theorem 11.5.8. Let X and Z be smooth K-varieties with a closed embedding f : Z → X.
Then the conormal sheaf sequence is exact on the left, that is, the sequence

0→ N∨Z/X → f∗ΩX/K → ΩZ/K → 0

is exact.

The assumptions of Theorem 11.5.8 are stronger than necessary in order to simplify
the proof. It turns out that it is enough to assume that Z is smooth over K (see [Sta15,
06CD]).

Proof. By Theorem 11.5.5 a smooth scheme is also regular. Thus Theorem 11.4.10 and
Corollary 11.4.12 show that the conormal sheaf of Z in X is locally free of rank dim(X)−
dim(Z). Note that f∗ΩX/K and ΩZ/K are also locally free of ranks dim(X) and dim(Z)
respectively. By comparing ranks, we see that the image of the map N∨Z/X → f∗ΩX/K must

have rank dim(X)−dim(Z) at every point. But since N∨Z/X is locally free this implies that
the map is injective.

11.5.4 Canonical bundle

Instead of working directly with the cotangent sheaf, it is often easier to work with its top
exterior power.
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Definition 11.5.9. Suppose that X is a smooth K-variety of dimension n. The canonical
bundle on X is the top exterior power of the cotangent sheaf:

ωX =
n∧

ΩX/K.

In a topological setting, the first chern class of ωX will coincide with the first chern class
of ΩX/K. Thus one can think of ωX as a line bundle which captures the “curvature” of X.
There are a number of deep conjectures predicting that the positivity (i.e. ampleness) of
the canonical bundle controls the geometric features of X, such as the existence of rational
points.

Example 11.5.10. The canonical bundle of Pn is isomorphic to OPn(−n − 1). This can
be deduced from the Euler sequence

0→ ΩPn → O(−1)⊕n+1 → O → 0

by taking top exterior powers. More explicitly, ωPn is locally generated on our standard
chart D+,xi by the meromorphic n-form

σi :=
xi
x0
d

(
x0

xi

)
∧ xi
x1
d

(
x1

xi

)
∧ . . . ∧ xi

xn
d

(
xn
xi

)
.

The main tool for computing the canonical bundle is called the adjunction formula.
The most important case is when we have a smooth Cartier divisor Y in a smooth variety
X.

Proposition 11.5.11 (Adjunction). Let Y be a smooth Cartier divisor in a smooth variety
X. Then

ωY ∼= (ωX ⊗OX(Y ))|Y .

Proof. The conormal sequence for Y ⊂ X is left exact by Theorem 11.5.8. Since the
leftmost term is simply OX(−Y )|Y , the desired formula follows from taking top exterior
powers in the conormal sequence.

11.5.5 Exercises

Exercise 11.5.12 (Jacobian Criterion). Let X ⊂ An be a closed subscheme defined by a
homogeneous ideal (f1, . . . , fr). For any point x ∈ X, show that x is a smooth point of X
if and only if the rank of the Jacobian Jacf1,...,fr(x) is equal to n − dimx(X). (Hint: for
the reverse implication, first show that X is regular, hence reduced.)

This means that the local freeness assumption in our definition of smoothness is redun-
dant and can be left out.
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Exercise 11.5.13 (Projective Jacobian Criterion). Let X ⊂ Pn be a closed subscheme
defined by a homogeneous ideal (f1, . . . , fr). For any point x ∈ X, show that x is a smooth
point of X if and only if the rank of the projective Jacobian (r×(n+1))-matrix Jacf1,...,fr(x)
is equal to n− dimx(X).

Note that the partial derivatives of the projective Jacobian matrix are not well-defined
functions on the points of X – however, the rank of the matrix is well-defined.

Exercise 11.5.14. Let f : X → Y be a closed embedding of irreducible K-schemes.
Suppose that X and Y are smooth and have the same dimension. Show that f is an
isomorphism from X to Y . (Hint: use the fact that smooth schemes are regular.)

Exercise 11.5.15. Let K be a perfect field. Let X be a smooth K-variety and let Z be an
integral K-variety equipped with a regular embedding f : Z → X. Show that the conormal
sheaf sequence

0→ I/I2 → f∗ΩX/K → ΩZ/K → 0

is exact. (Hint: use the fact that Z is generically smooth.)

Exercise 11.5.16. Suppose that X and Y are birationally equivalent smooth projective
K-varieties. Show that for every i ≥ 1 we have an isomorphism

Γ(X,Ωi
X/K) ∼= Γ(Y,Ωi

Y/K).

(Hint: fix a birational equivalence φ : X 99K Y . By Exercise 8.8.16 there is an open subset
UX whose complement has codimension 2 such that φ is a morphism on U . Use this open
subset to construct a pullback map Γ(Y,Ωi

Y/K)→ Γ(X,Ωi
X/K) and apply Exercise 9.5.29.)
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11.6 Cotangent bundles of curves

In this section we systematically discuss the cotangent sheaf of projective geometrically
integral curves defined over a field. The most important definition in this section is the
genus, a fundamental invariant of a curve that we will use many times in the future.

11.6.1 Genus

For a smooth curve C over a field K the cotangent sheaf ΩC/K is an invertible sheaf. The
following definition identifies the basic invariant of a smooth projective curve.

Definition 11.6.1. Let C be a smooth projective geometrically integral curve. The genus
of C is defined by the formula

deg(ΩC/K) = 2g(C)− 2

Remark 11.6.2. As always, one should think of the degree as a “topological” invariant.
It turns out that complex curves are classified up to topological equivalence (but not up
to algebraic equivalence) by their genus.

Exercise 11.6.3. Prove that the genus is preserved by base change: if C is a smooth
projective geometrically integral curve over a field K, then for any field extension L/K we
have g(C) = g(CL).

Later on we will see how to connect this definition with various other notions (including
the more traditional definition using the Betti numbers of C). In particular, in Section
12.5.1 we will prove the following fact:

Fact 11.6.4. Let C be a smooth projective geometrically integral curve over a field K.
Then the genus of C is a non-negative integer.

This implies that the cotangent sheaf of C always has even degree and that deg(ΩC/K) ≥
−2. For now we will assume this fact and see how to work with this important definition.

Example 11.6.5. Suppose that C is a smooth geometrically integral plane curve of degree
d. We can compute the genus of the curve using the adjunction formula of Proposition
11.5.11:

deg(ΩC/K) = deg(O(−3 + d)|C)

= 3d− d2.

In this way we obtain the genus formula for C:

g(C) = 1 +
3d− d2

2
=

(
d− 1

2

)
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11.6.2 Hyperelliptic curves

We next give an extended example giving us the opportunity to work with the cotangent
sheaf in a hands-on way. In particular, this example illustrates how to construct a curve
of arbitrary genus.

Example 11.6.6 (Hyperelliptic curves). Let K be an algebraically closed field of char-
acteristic 6= 2. Let d be a positive even integer and fix a degree d polynomial f(x) with
non-zero constant coefficient. Let C be the curve in A2

K defined by the equation y2 = f(x).
The sheaf ΩU/K will be defined by the quotient

Adx⊕Ady/(2y dy − f ′(x) dx)

where A = K[x, y]/(y2−f(x)) is the coordinate ring of U . This sheaf will be locally free so
long as y and f ′(x) do not simultaneously vanish at any point of U . (Since y = 0 implies
f(x) = 0, this is equivalent to asking that f(x) has no double roots.) With this assumption

ΩU/K will be generated by f ′(x)
2y dx when y 6= 0 and by 2y

f ′(x) dy when f ′(x) 6= 0.

Although we could naturally compactify C in P2, the resulting curve would almost
never be smooth. (Check!) Instead, a better way to compactify C is to take the map
f : C → A1 given by projecting onto the x-coordinate and compactify it to obtain a
morphism f : C → P1. Let’s use the coordinates u, x for the base P1. One way to execute
this plan is to think of C as a closed subscheme of P1 × A1

x and then take a flat limit in
P1 × P1

u,x. It is even better to take the flat limit inside of the Hirzebruch surface Fd/2
equipped with the projection map Fd/2 → P1

u,x. The effect of this change is that to work
on the other coordinate patch, the appropriate coordinates are

u =
1

x
z =

y

xd/2
.

Thus the intersection of C with the other coordinate patch A2
u,z is given by the equation

z2 = udf
(x
u

)
which has the same form as our original equation. In particular C is a smooth projective
curve.

Let’s compute the degree of ΩC/K. To do this, we should compute a rational section and
identify its zeros and poles. For example, consider the section dx of ΩC/K. This will only

vanish at points where ΩC/K is generated by dy. Since dx = 2y
f ′(x)dy, the section dx will

vanish precisely at the points defined by y = 0, i.e. at the d distinct roots of the equation
f(x). (This should be no surprise; if we think of dx as the pullback of the cotangent bundle
on A1

x we see that dx will vanish precisely where the curve has vertical tangent lines.) The
section dx will not have any poles on the chart C
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We next turn to the new chart C ′. In the new coordinates we have dx = − 1
u2
du. We

only care about zeros and poles which didn’t appear on our earlier chart, or in other words,
which appear at the points where u = 0. There are two such points (corresponding to two
options of the sign of z), and the section − 1

u2
du has a double pole at each. Altogether the

total contribution of the poles to the degree is −4. Thus the degree of ΩC/K is d − 4 and

the genus of C is d
2 − 1.

11.6.3 Nodal curves

Suppose that C is a (possibly reducible) reduced curve over an algebraically closed field
K. We say that C is nodal at a point p if the completion of the local ring OC,p along the
maximal ideal satisfies

ÔC,p ∼= K[[x, y]]/(xy).

As discussed earlier, this ring represents the “formal analytic neighborhood” of the point
p and is roughly analogous to looking at a small open neighborhood in the Euclidean
topology. From this formal-local description we can see that C has two local branches
through the point p.

The point of this definition is that many of the important local algebraic properties at
p can be detected upon passing to the completion. In particular, we can understand how
these properties behave for an arbitrary nodal curve by first analyzing a specific example
and then using the “completion principle” to generalize to all nodes. Often the most
convenient example is the union of the coordinate axes in A2.

Example 11.6.7. Let C be the union of the two coordinate axes in A2
K defined by the

ring R = K[x, y]/(xy). We then know that ΩC/K is equal to Rdx⊕Rdy/(x dy + y dx).
Consider the element α = x dy = −y dx. Then xα = yα = 0, so α is a torsion element

of ΩC/K. Taking the quotient ΩC/K/Rα is the same as adding in the relations x dy = 0
and y dx = 0, so that

ΩC/K/Rα ∼= R/(y) · dx⊕R/(x) · dy.

Note that the first term in the summand is the same as the cotangent sheaf for the y-axis
and the second term is the cotangent sheaf for the x-axis.

This is indicative of the general picture:

Theorem 11.6.8. Let K be an algebraically closed field. Let C be a reduced (possibly
reducible) nodal curve and let ν : Cν → C denote the normalization map. Then ΩCν/C = 0.
Furthermore, by pushing forward the cotangent sequence under ν the surjection

ΩC/K
φ−→ ν∗ΩCν/K

has kernel which is the torsion subsheaf of ΩC/K consisting of the direct sum of a skyscraper
sheaf of dimension 1 at each node.
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To prove this, one uses flatness of the completion operation to reduce the computation
to the local version done earlier. While it is not true that the stalk of ΩC/K at a node is
always the same up to isomorphism – most curves do not have isomorphic open subsets
– the theorem shows that in some sense the behavior of ΩC/K at the node is always the
same.

11.6.4 Exercises

Exercise 11.6.9. Suppose that C is a smooth complete intersection curve in P3 – that
is, C is scheme-theoretically the intersection of two hypersurfaces H1, H2 of degrees d, e
respectively. Compute the genus of C in terms of d, e.

Exercise 11.6.10. In this exercise we see another way to construct curves of arbitrary
genus.

Consider the surface P1 × P1 equipped with the two projections maps π1, π2.

(1) Show that ΩP1×P1
∼= π∗1O(−2)⊕ π∗2O(−2).

(2) Choose positive integers a, b. Show that a general curve in the linear series |O(a, b)|
is smooth.

(3) Using the adjunction formula, show that a general curve in the linear series |O(a, b)|
has genus (a− 1)(b− 1).

In particular this argument shows that P3 contains curves of every genus.

Exercise 11.6.11. Let C be the nodal cubic in A2
C defined by the equation y2 − x3 −

x2. Write down the cotangent sequence for the normalization map and explicitly verify
Theorem 11.6.8. (How would this problem change in characteristic p?)

Exercise 11.6.12. Let C be the cuspidal cubic in A2
C defined by the equation y2 − x3.

Write down the cotangent sequence for the normalization map and interpret each part of
the diagram. (How would this problem change in characteristic p?)

Exercise 11.6.13. Let C be the hyperelliptic curve defined by taking the closure of y2 =
f(x) as in Example 11.6.6. Let g = deg(f)

2 − 1 denote the genus of C. Let’s analyze the
space of global sections of ΩC/K.

(1) Show that dx/y is a well-defined element of ΩC/K(C). (That is, show that by express-
ing the same rational section in a different way we can obtain well-defined expressions
along each open set in an open cover of C.)

(2) Show that for every 0 ≤ i < g the differential xi

y dx is a well-defined element of
ΩC/K(C).
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(3) Show that the differentials in part b are linearly independent so that the space of
global sections satisfies dimK ΩC/K(C) ≥ g. (It turns out that it is exactly equal to
g.)

Exercise 11.6.14 (Dualizing sheaf). Any nodal curve C carries an invertible sheaf ωC
called the dualizing sheaf which is closely related to the cotangent sheaf. In many situations
the dualizing sheaf can be used in place of the cotangent sheaf.

Here is the construction over an algebraically closed field K. We can construct ωC
locally, so we may assume that C has a single node p. Let ν : Cν → C denote the
normalization of Cν and let x, y ∈ Cν denote the preimages of the nodal point. Consider
the exact sequence

0→ Ω1
Cν → Ω1

Cν (x+ y)→ K(x)⊕K(y)→ 0.

By pushing forward to C (which is exact since ν is finite), we get an exact sequence

0→ ν∗Ω
1
Cν → ν∗Ω

1
Cν (x+ y)

ψ−→ K(p)⊕2 → 0.

Then ωC is the subsheaf of ν∗Ω
1
Cν (x + y) which is the ψ-preimage of the kernel of the

addition map K(p)2 → K(p).

(1) Prove that ωC is an invertible sheaf fitting into an exact sequence

0→ ν∗Ω
1
Cν → ωC → K(p)→ 0.

(2) Suppose C is the union of the coordinate axes in A2. Compute the module defining
ωC and show that the restriction of ωC to each axis is the ideal sheaf of the origin.

(3) By composing the map in (1) above with the cotangent sequence map we obtain a
morphism Ω1

C → ωC . Identify the kernel and cokernel of this map.
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11.7 Smooth morphisms

Suppose f : X → Y is a differentiable map of smooth manifolds. We say that f is a
submersion if the induced maps on tangent bundles TX → f∗TY is surjective. This class of
morphisms has several special properties. For example, the regular value theorem shows
that locally a submersion looks like a coordinate projection map. In particular, the fibers
of a submersion are submanifolds of dimension dim(X)− dim(Y ).

11.7.1 Smooth morphisms

The algebro-geometric analogue of a submersion is known as a smooth morphism. The
definition is the relative analogue of the “absolute” notion of a smooth K-variety.

Definition 11.7.1. Suppose that f : X → Y is a morphism of schemes. We say that f is
smooth of relative dimension n if:

(1) f is locally of finite presentation,

(2) f is flat of relative dimension n, and

(3) ΩX/Y is locally free of rank n.

More generally, we say that f is smooth at a point x ∈ X if it is smooth (of some relative
dimension) on some open neighborhood of x, and we say that f is smooth if it is smooth
(of some relative dimension) at every point.

Exercise 11.7.2. Prove that this definition of smoothness agrees with Definition 11.5.1
for a K-scheme X → Spec(K).

The flatness condition guarantees that the fibers of f “vary nicely”. For example, this
condition guarantees that X does not consist of a disjoint union of A1s with one lying over
each point of Y . It is not immediately clear how the definition of a smooth morphism
relates to the geometric notion of a submersion; it will take us some time to develop the
connection.

Remark 11.7.3. Note that smoothness is compatible with open subsets: if f : X → Y is
smooth and U is an open subscheme of X then f |U : U → Y is also smooth. On the other
hand, closed embeddings are almost never flat, hence almost never smooth.

Remark 11.7.4. Suppose that f : X → Y is a smooth morphism. Since ΩX/Y pulls back
under base change, we see that for every fiber Xy the cotangent sheaf ΩXy/κ(y) is locally
free of rank dim(Xy). Thus Xy is a smooth κ(y)-scheme.

This is a very strong condition for a morphism f that will fail to be satisfied even in
basic examples (see Example 11.7.13). We will soon show that (under the right hypotheses)
the smoothness of fibers of f is equivalent to the smoothness of f .
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There is one class of smooth maps that plays a special role in the theory:

Definition 11.7.5. A morphism f : X → Y is said to be étale if it is smooth of relative
dimension 0. In particular we must have ΩX/Y = 0.

We will analyze étale morphisms systematically in a later section.

11.7.2 Alternative definitions

Our first task is to give several alternate characterizations of smoothness. One of these
alternate characterizations will rely on the following definition.

Definition 11.7.6. Let f : Spec(R) → Spec(S) be a morphism of affine schemes. We
say that f is standard smooth if it is finitely presented and if we use f ] to identify R as
S[x1, . . . , xn]/(g1, . . . , gr) we have that r ≤ n and that the Jacobian matrix

Jacg1,...,gr(x) =


∂g1
∂x1

. . . ∂gr
∂x1

...
. . .

...
∂g1
∂xn

. . . ∂gr
∂xn

 .
has an r × r minor which maps to an invertible element in R.

Recall that the Jacobian criterion for smoothness of an affine K-scheme requires the
Jacobian to have full rank. A standard smooth morphism captures the notion of “relative
smoothness” by again requiring the Jacobian to have full rank. One can think of this as
an “algebraic” definition of smoothness (in contrast to the “geometric” Definition 11.7.1).

Lemma 11.7.7. Let R = K[x1, . . . , xn]/(g1, . . . , gr) be a finitely generated K-algebra and
suppose that R is standard smooth over K. Then every closed point of Spec(R) is regular
and every component of Spec(R) has dimension n− r.

Proof. Fix a closed point x ∈ X and consider the image in An. The local ring OSpec(R),x

is cut out in the local ring OAn,x by the functions g1, . . . , gr. Furthermore, the Jacobian
condition guarantees that the images of the gi in Zariski cotangent space of An at x are
linearly independent. By Exercise 5.1.6 we see that the Zariski cotangent space ofOSpec(R),x

has dimension n−r. On the other hand, Krull’s PIT shows that the dimension of OSpec(R),x

is at least n − r. Applying Theorem 5.2.1 we see that OSpec(R),x is a regular local ring.
This computation also shows that dim(Spec(R)) = n− r.

Remark 11.7.8. Since the Auslander-Buchsbaum theorem implies that the localization
of a regular ring is still regular, this implies that all the points of a standard smooth K-
scheme Spec(R) are regular. We will give a different proof (not relying on the Auslander-
Buchsbaum theorem) in Proposition 11.9.10.



11.7. SMOOTH MORPHISMS 425

The following theorem is our main result in this section.

Theorem 11.7.9. Let f : X → Y be a morphism of schemes. Fix a point x ∈ X and set
y = f(x). The following are equivalent:

(1) f is smooth at x.

(2) f is flat and locally presented on a neighborhood of x and the fiber Xy is smooth at
x.

(3) There is an open affine neighborhood U of x and an open affine neighborhood V of y
such that f(U) ⊂ V and f |U : U → V is standard smooth.

Proof. (1) =⇒ (2): By definition if f is smooth at x then it is flat at x. This implies that
locdimx(Xy) is the difference in the local codimensions of x in X and y in Y . Furthermore,
the restriction of ΩX/Y to Xy is equal to ΩXy/y. Since pullbacks preserve local freeness we
see that ΩXy/y is locally free of rank dim(Xy) at x.

(2) =⇒ (3): Since the question is local, we may suppose that X = Spec(R) and
Y = Spec(S) where R is a finitely presented S-algebra. Thus

R ∼= S[x1, . . . , xn]/(g1, . . . , gr)

We also let q ⊂ S denote the prime ideal defining y. Note that locally near x the fiber
Xy is defined by S/q[x1, . . . , xn]/(g1, . . . , gr). Let d denote the dimension of Xy. Since Xy

is smooth at x, the Jacobian matrix for g1, . . . , gr in S/q[x1, . . . , xn] has rank n − d at x.
In particular this implies that n − d ≤ r. After relabeling we may suppose that the first
(n− d)× (n− d)-minor of this Jacobian is non-vanishing.

Consider the morphisms

Spec(S[x1, . . . , xn]/(g1, . . . , gr))
h //

f

**

Spec(S[x1, . . . , xn]/(g1, . . . , gn−d))
f ′

tt
Spec(S)

Note that h is a closed embedding. By construction the local dimension of the fibers of f ′

and f at x are the same. Furthermore both fibers over y are smooth at x by construction.
Thus by Exercise 11.5.14 there is an open neighborhood of x in the fibers on which h
induces an isomorphism.

We claim that this isomorphism spreads out to an open neighborhood of x in X. It
suffices to show that h induces an isomorphism on stalks of the structure sheaf at x. If we
let p denote the prime ideal in S[x1, . . . , xn] defining the image of x, we must show that h
induces an isomorphism

S[x1, . . . , xn]p/(g1, . . . , gn−d)→ S[x1, . . . , xn]p/(g1, . . . , gr)
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Considering this as a map of Sq-modules, let K denote the kernel

K =
(g1, . . . , gn−d) · S[x1, . . . , xn]p
(g1, . . . , gr) · S[x1, . . . , xn]p

.

In this exact sequence of Sq-modules, the rightmost entry S[x1, . . . , xn]p/(g1, . . . , gr) is a
flat Sq-module by assumption. Thus the tensor product of this sequence by Sq/q ∼= κ(y) is
still exact. But as observed above we have an isomorphism of fibers over y, showing that
K ⊗ κ(y) = 0. By Nakayama’s Lemma we see that K = 0 as well.

Altogether we see that r = n − d. Since by construction the Jacobian matrix for
g1, . . . , gn−d has rank n− d at x, it will have full rank on an open neighborhood of x and
we conclude that X is smooth on a neighborhood of x.

(3) =⇒ (1): Since all three conditions in Definition 11.7.1 are local on the source and
on the target, it suffices to consider the case when f : Spec(A) → Spec(B) is a standard
smooth morphism. We will write A = B[x1, . . . , xn]/(g1, . . . , gr). It is clear that f is finitely
presented. To prove that f is flat, we will appeal to the following algebraic result:

Theorem 11.7.10 (Slicing criterion for flatness). Suppose that A is a B-algebra, M is a
finitely generated A-module, and f ∈ A has the property that for every maximal ideal n ⊂ B
multiplication by f is injective on M/nM . If M is B-flat, then M/fM is also B-flat.

We will prove that by induction on i that the ring B[x1, . . . , xn]/(g1, . . . , gi) is a
flat B-algebra. For the base case, it is clear that B[x1, . . . , xn] is flat over B. For
the induction step, by appealing to the slicing criterion it suffices to show that for ev-
ery maximal ideal m ⊂ B the restriction of gi is not a zero divisor in the quotient
Ti−1 := B/m[x1, . . . , xn]/(g1, . . . , gi−1). Note that Ti defines a standard smooth scheme
over the field B/m, and in particular Lemma 11.7.7 shows that Spec(Ti−1) has dimension
n − i − 1 and every closed point is regular. In particular, the localization of Ti at every
maximal ideal is an integral domain; this implies that Ti−1 must be a product of integral
domains. Similarly Spec(Ti) has dimension n − i. Since intersecting with the vanishing
locus of gi must lower the dimension of every component of Ti−1, we see gi cannot vanish
identically on any component of Spec(Ti−1) and thus cannot be a zero divisor.

Finally, we show that the sheaf of relative differentials of f is locally free. Recall that
ΩA/B can be computed as the cokernel of the Jacobian. By assumption there is some
r × r submatrix of the Jacobian which is invertible over A. This implies that the map
A⊕r → A⊕n defined by the Jacobian admits a splitting. Thus the cokernel is a projective
A-module, hence locally free.

Remark 11.7.11. The argument shows that a smooth morphism f : X → Y of relative
dimension d can locally be expressed in the form S[x1, . . . , xr+d]/(g1, . . . , gr) for some
integer r.

In other words, locally f is the composition of a closed embedding X → Y ×Ar+d and
the projection map Y × Ar+d → Y and furthermore the ideal of X in Y × Ar+d is defined



11.7. SMOOTH MORPHISMS 427

by a regular sequence. One refers to this important property of f by saying that it is a
“local complete intersection morphism”.

11.7.3 Exercises

Exercise 11.7.12. Let f : X → Y be a morphism of smooth K-varieties. Suppose that
the map TX/K → f∗TY/K is surjective. Prove that f is a smooth morphism.

(Hint: the most challenging step is to show that f is flat. One option is to show that
the fibers of f are equidimensional and appeal to the Miracle Flatness Theorem. Another
option is to use the slicing criterion for flatness for the induced maps of regular local rings
as in the proof of Theorem 11.7.9.)

Exercise 11.7.13. Let K be an algebraically closed field. Fix a positive integer d ≥ 2 and
consider the moduli space Md parametrizing degree d curves in P2.

(1) Show that the singular curves are parametrized by a hypersurface in Md. (Hint: use
the resultant.)

(2) Suppose that T be a K-variety. Let C ⊂ T × P2 be a closed subscheme such that the
map f : C → T is flat over T and has fibers which are plane curves. Show that if f
is smooth then C is the product of a smooth curve with T .
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11.8 Properties of smooth morphisms

In this section we continue our study of smooth morphisms. In particular, we are now
able to clarify the relationship between smoothness and submersions by identifying a list
of analogous properties. We first show that smoothness is a well-behaved property of
morphisms.

Proposition 11.8.1. Smoothness is preserved under composition, stable under base change,
and local on the target.

Proof. Note that both flat and locally finitely presented are well-behaved properties, so
it suffices to restrict our attention to the local freeness of the sheaf of differentials. Since
ΩX/Y is pulled back under base change we deduce that smooth morphisms are stable under
base change. Similarly, since the local freeness of ΩX/Y at a point is determined locally we
see that smoothness is local on the target (and on the source).

It only remains to show that smoothness is preserved under composition. By Theorem
11.7.9 we may reduce to the situation where f : Spec(A) → Spec(B) and g : Spec(B) →
Spec(C) are standard smooth morphisms of affine schemes. We can then write

A = B[x1, . . . , xn]/(p1, . . . , pr) = C[y1, . . . , ym, x1, . . . , xn]/(q1, . . . , qs, p1, . . . , pr).

Note that the corresponding Jacobian matrix has a block of zeros since each ∂qi/∂xj = 0.
In particular, we can choose an (r + s) × (r + s) submatrix whose determinant is the
product of the invertible r × r matrix for A/B and the invertible s × s matrix for B/C.
This concludes the proof.

11.8.1 Local structure

We next prove a new “local structure” theorem for smooth morphisms. In a geometric
setting, a submersion of manifolds has the local structure of a coordinate projection. This
is not true for schemes in the Zariski topology, but the following result shows that it is true
up to an étale map.

Proposition 11.8.2. Let f : X → Y be a morphism. Then f is smooth of relative
dimension d at a point x ∈ X if and only if there is an open neighborhood U of x such that
f |U factors as a composition

U
g−→ Y × Ad h−→ Y

where g is étale and h is the projection map.

Proof. The reverse implication follows from the fact that the composition of two smooth
morphisms is smooth. To see the forward implication, we will use the fact that f is
standard smooth in an open neighborhood U of x. As in Remark 11.7.11, locally near x
the morphism is defined by a ring map S → S[x1, . . . , xr+d]/(f1, . . . , fr) where some r × r
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minor of the Jacobian matrix is invertible. After rearranging, we may suppose that it is
the last r × r minor which is invertible. Now consider the factorization

S → S[x1, . . . , xd]→ S[x1, . . . , xr+d]/(f1, . . . , fr).

The first map defines the projection Spec(S) × Ad → Spec(S). The second map is still
standard smooth and has relative dimension 0, thus it is étale. Finally, since open im-
mersions are étale we can equally well replace the map U → Spec(S) × Ad with the map
U → Y × Ad.

11.8.2 Left exactness of the cotangent sequence

In a geometric setting, a submersion is defined as a map which induces a surjection of tan-
gent spaces. The following statement proves that a smooth morphism induces an injection
of cotangent sheaves.

Proposition 11.8.3. Suppose that f : X → Y is a smooth morphism of Z schemes. Then
the cotangent sequence is exact on the left:

0→ f∗ΩY/Z → ΩX/Z → ΩX/Y → 0.

The proof relies on a property of étale morphisms that we will prove in the next section.

Proof. Since f : X → Y is smooth, Proposition 11.8.2 shows that f locally factors as the
composition of an étale morphism g : X → Y × Ad and the projection map. Since the
injectivity of a map of sheaves can be checked locally, we may assume we are in this special
situation. Consider the commuting diagram with exact rows:

f∗ΩY/Z
ψ1 // ΩX/Z

// ΩX/Y
// 0

f∗ΩY/Z
ψ2 //

=

OO

g∗ΩY×An/Z //

φ

OO

g∗ΩY×An/Y //

OO

0

To show that ψ1 is injective, it suffices to show that ψ2 and φ are injective. Exercise 11.3.12
shows that the bottom row is split exact so that ψ2 is injective. Theorem 11.9.6 shows that
φ is an isomorphism (and thus injective). We conclude that ψ1 is injective.

Remark 11.8.4. The converse of Proposition 11.8.3 is false: there are many examples
of morphisms of smooth K-varieties which are not smooth but do induce an injection of
cotangent sheaves (see Proposition 11.10.2). The issue is that when we take the dual of

0→ f∗ΩY/K → ΩX/K → ΩX/Y → 0
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we only obtain a left-exact sequence

0→ TX/Y → TX/K → f∗TY/K.

Thus having a surjection of tangent sheaves is a priori stronger than injectivity of the
cotangent sequence.

Although having an injection of cotangent sheaves does not imply smoothness, under
the right assumptions having a surjection of tangent sheaves does imply smoothness (see
Exercise 11.7.12). This highlights again the analogy between submersions and smooth
morphisms.

Remark 11.8.5. It turns out that if f : X → Y is a smooth morphism of Z-schemes then
the dual to the cotangent sequence is also exact:

0→ TX/Y → TX/Z → f∗TY/Z → 0.

The easiest way to show this is to appeal to the Ext sheaves which will be defined in
Definition 13.7.1. Since ΩX/Y is locally free Exercise 13.7.2 shows that Ext1(OX ,ΩX/Y ) =
0. Then Proposition 13.7.5 proves the exactness of the sequence above.

11.8.3 Generic smoothness

Just as in the absolute case, we have a generic smoothness for morphisms. There are two
versions of the statement, with slightly different hypotheses and conclusions – be sure to
keep them straight!

Proposition 11.8.6. Let f : X → Y be a dominant finitely presented morphism of integral
schemes. Then K(X) is separable over K(Y ) if and only if there is a dense open set U ⊂ X
such that f |U is smooth.

Proof. Set r = dim(X)−dim(Y ). We first prove the forward implication. If K(X) is sepa-
rable over K(Y ) then there are elements t1, . . . , tr in K(X) which are algebraically indepen-
dent over K(Y ) such that K(X) is a separable algebraic extension over K(Y )(t1, . . . , tr).
Thus ΩK(X)/K(Y ) is a free module of rank r. By upper semicontinuity, ΩX/Y has rank r
over a dense open subset of X. Since X is reduced, this implies that ΩX/Y is locally free
of rank r over a dense open subset. By generic flatness f is flat of relative dimension r
over a dense open subset of Y . Taking the intersection of these two open subsets proves
the result.

We next prove the reverse implication. Suppose that there is an open set U ⊂ X such
that f |U is smooth. Since smoothness is preserved by base change we see that the fiber
over the generic point K(Y ) is smooth. Since smoothness is preserved by localization,
we see that K(X) is smooth over K(Y ). Since K(X) is finitely generated over K(Y ),
by combining Corollary 11.2.3 with the cotangent sequence we conclude that K(X) is
separable over K(Y ).
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To set up our next version of generic smoothness, we will need the following lemma.

Lemma 11.8.7. Let K be a field of characteristic 0. Let f : X → Y be a morphism of
K-schemes and define

Xr = {x ∈ X| rk(TX/K → f∗TY/K)|x ≤ r}.

Then dim(f(Xr)) ≤ r.

Proof. We replace Y by an irreducible component of the closure of f(Xr) and we replace
X by an irreducible component of Xr that dominates Y , giving both of them their reduced
structures. Note the rank of the image of the map TX/K → f∗TY/K can only drop when we
replace X by a closed subscheme since a closed embedding induces an injection of tangent
space. Thus that after these changes we have X = Xr.

Now we have reduced to case where f : X → Y is a dominant morphism of K-varieties
and X = Xr. We want to show that dim(Y ) ≤ r. Since Y is a variety, by generic
smoothness we may shrink Y (and replace X by the preimage of this open set) to ensure
that Y is smooth. Applying Proposition 11.8.6 we may also replace X by an open subset
so that X is smooth and f |X is smooth (without changing the dimension of the image).
By Remark 11.8.5 we have an exact sequence

0→ TX/Y → TX/K → f∗TY/K → 0.

Since we are assuming that the rightmost map has rank ≤ r at every point of X, we deduce
that rk(f∗TY/K) ≤ r. In particular, the rank of ΩY/K at the generic point of Y is also at
most r. In turn this implies that dim(Y ) ≤ r.

The previous lemma quickly yields:

Proposition 11.8.8. Let K be a field of characteristic 0. Let f : X → Y be a dominant
morphism of K-varieties such that X is smooth. Then there is a dense open subset V ⊂ Y
such that f is smooth over V .

Proof. Define Xr as in Lemma 11.8.7. By generic smoothness, we can shrink Y to assume
that it is smooth. This implies that TY/K has rank dim(Y ). Lemma 11.8.7 shows that
f(Xdim(Y )−1) is contained in a proper closed subset of Y ; after removing this closed subset
we may ensure that the map

(TX/K → f∗TY/K)|x
is surjective for every point x ∈ X. Since Y is reduced we see that TX/K → f∗TY/K is
surjective. But this implies that f is smooth by Exercise 11.7.12

Warning 11.8.9. The analogue of Proposition 11.8.8 does not hold in characteristic p
even when K(X) is a separable extension of K(Y ); see Exercise 11.8.10. The issue is that
the map f can have singularities along subvarieties of X whose function fields are not
separable over K(Y ). We can recover some kinds of generic smoothness if we require that
every residue field extension induced by f is separable, but this condition is extremely rare.
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11.8.4 Exercises

Exercise 11.8.10. In this exercise we show that the analogue of Proposition 11.8.8 does
not hold in characteristic p. Let K be an algebraically closed field of characteristic p > 2,
let Y = Spec(K[t]) and let X = Spec(K[t, x, y]/(y2 − xp + t)).

(1) Show that every fiber of the map f : X → Y over a point t 6= 0 is a non-regular
integral curve.

(2) Show that the generic fiber of the map f : X → Y is an integral curve that is regular
but not smooth.

(3) Show that K(X) is separable over K(Y ).

In particular, regularity is not an open property for families of K-schemes.
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11.9 Étale maps

Recall that an étale morphism is a smooth morphism of relative dimension 0. Étale mor-
phisms are analogous to the notion of a “local isomorphism” in a geometric setting. Thus
a finite étale morphism is the algebraic geometer’s version of a covering map. For example,
just as one the topological fundamental group classifies covering spaces, one can define an
“étale fundamental group” which classifies finite étale morphisms.

Étale morphisms play a central role in the theory of étale cohomology. The goal of this
theory is to transport results from the setting of singular cohomology into algebraic geom-
etry. Unfortunately the Zariski topology is unsuited to the task – it simply is not sensitive
enough to capture the information we want. Grothendieck realized that by systemati-
cally using étale maps in place of open subsets, one could construct a “more sensitive”
cohomology theory that does match up well with singular cohomology computations.

Proposition 11.9.1. Let f : X → Y be a morphism of schemes. Then f is étale if and
only if it is flat, locally finitely presented, and for every point y ∈ Y the fiber over y is a
finite disjoint union of Spec(Li) where each Li is a finite separable extension of κ(y).

Proof. The forward implication follows from Proposition 11.2.11 and the compatibility
of cotangent sheaves with base change. The reverse implication follows from Theorem
11.7.9.

11.9.1 Local isomorphisms

One of the main themes of this section is that étale morphisms f : X → Y are analogous
to the geometric notion of a local isomorphism. Note that this is not literally true; there
need not be any open set in X which is isomorphic to an open set in Y . (However, it is
true that an étale morphism of smooth complex varieties will be a local isomorphism in
the Euclidean topology.)

Exercise 11.9.2. Find an étale morphism f : X → Y such that no open set in X is
isomorphic to any open set in Y . (Hint: let K be algebraically closed and choose a smooth
plane cubic E ⊂ P2. Define a dominant finite morphism E → P1 by projecting away from
a general point. Show that there is an open subset Y ⊂ P1 such that the restriction of f
to the preimage of Y is étale. Prove the last claim by appealing to the Picard group.)

As we have seen before, one way to translate topological properties into algebraic
geometry is to use the diagonal. This perspective works for étale morphisms as well.

Lemma 11.9.3. Let f : X → Y be an étale morphism. Then the diagonal ∆X/Y : X →
X ×Y X is an open embedding.

This diagonal property is shared by local isomorphisms. (However, it does not charac-
terize étale maps; see Exercise 11.9.11.)
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Proof. Take open affines U ⊂ X, V ⊂ Y satisfying f(U) ⊂ V . Since ΩX/Y = 0, Exercise
11.4.14 shows that the ideal I that defines the diagonal inside of U×V U satisfies I/I2 = 0.
Since I is finitely generated Nakayama’s lemma shows that I is a principal ideal generated
by an idempotent element. Thus on this open subset ∆X/Y defines the inclusion of some
connected components. Since open embeddings are local on the source and the target we
conclude that ∆X/Y is an open embedding everywhere.

One of the geometric consequences of the fact that a covering map is a local isomorphism
is the lifting property: any path on the base admits a unique lift (once we fix the starting
point). In algebraic geometry schemes are much more “rigid” and thus finding lifts is
more difficult. We should think of the following theorem as a loose analogue of the lifting
property.

Theorem 11.9.4. Let f : X → Y be a morphism. Suppose that g : Y → X is a section
(that is, f ◦ g is the identity map). If f is étale, then g is an open embedding. If f is
étale and separated then g is an isomorphism from Y onto a union of some connected
components of X.

Proof. By Lemma 11.9.3 the diagonal ∆X/Y is an open embedding. Applying cancellation
(Proposition 8.6.6) to the diagram

Y
g //

id ��

X

f��
Y

we see that g is an open embedding as well.
To see the last statement, recall that if f is separated then the diagonal is a closed

embedding. Repeating the argument we see that g is an open and closed embedding, thus
an isomorphism onto a union of connected components of X.

Using this result, we can show that a finite étale morphism f : X → Y is “étale locally”
a local isomorphism. (This result is based on the same intuition as Proposition 11.8.2;
while the literal analogue of a geometric result need not be true in algebraic geometry, it
is often true up to passing to an étale cover.)

Corollary 11.9.5. Let f : X → Y be a finite étale morphism of degree d. For any point
y ∈ Y , there is an étale map g : V → Y whose image contains y such that X ×Y V is the
disjoint union of d copies of V .

Proof. Let x1, . . . , xd be the points in the preimage of y. We construct a sequence of étale
base changes

V = Vd → Vd−1 → . . .→ V1 → V0 = Y

and points vi ∈ Vi such that:
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(1) v0 = y and the image of vi+1 in Vi is vi,

(2) each map Vi+1 → Vi is étale, and

(3) for each i and for every j ≤ i there is a section gj : Vi → X ×Y Vi whose image
contains the preimage of xj lying above vi.

We construct the Vi inductively. For the (i+1)st step, choose any open neighborhood Ui+1

of the preimage of xi+1 over vi ∈ Vi. Set Vi+1 = Ui+1 and vi+1 = xi+1. We let Vi+1 → Vi
be the restriction of the projection map X ×Y Vi → Vi to Ui+1; in particular, since the
projection map is étale (being the base change of an étale map) the map Vi+1 → Vi is also
étale. By combining the identity map Vi+1 → Vi+1 and the inclusion Vi+1 → X ×Y Vi we
obtain a section g of the projection map X ×Y Vi+1 → Vi+1. Furthermore, the existence of
the sections gj : Vi → X ×Y Vi for j ≤ i is preserved by base changing to Vi+1.

Putting all the steps together, we see that X×Y Vd → Vd admits sections through every
point in the fiber above vd. By Theorem 11.9.4 we obtain the desired statement.

11.9.2 Cotangent sheaves

Our next property shows another way in which étale morphisms are similar to local iso-
morphisms.

Theorem 11.9.6. Suppose that f : X → Y is an étale morphism of S-schemes. Then
f∗ΩY/S

∼= ΩX/S.

We will prove this result by interpreting the cotangent sheaf via the diagonal as in
Exercise 11.4.14.

Proof. Consider the diagram

X
∆X/S //

f
��

X ×S X

(f,f)
��

Y
∆Y/S // Y ×S Y

We let I denote the ideal sheaf of ∆Y/S and J denote the ideal sheaf of ∆X/S . (More
accurately, I and J are ideal sheaves on suitably chosen open subsets of Y ×S Y and
X ×S X.) Since (f, f) is flat, the pullback (f, f)∗I is the ideal sheaf of the base change

Y ×Y×SY (X ×S X) ∼= X ×Y X

inside of an open subset of X×SX. Since f is étale, Lemma 11.9.3 shows that ∆X/Y : X →
X ×Y X is an open embedding. Furthermore, the composition of ∆X/Y with X ×Y X →
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X ×S X is the diagonal ∆X/S . Thus the ideal sheaves (f, f)∗I and J agree when pulled
back under ∆X/S . We conclude that

f∗ΩY/S = f∗∆∗Y/SI = ∆∗X/S(f, f)∗I

= ∆∗X/SJ = ΩX/S .

This completes the last step in the proof of Proposition 11.8.3, showing that the cotan-
gent sequence is left exact under a smoothness assumption.

11.9.3 Permanence properties

We have already seen (essentially by definition) that Krull dimension is preserved by étale
maps. It turns out that there are many other local properties which are left unchanged by
étale morphisms.

Theorem 11.9.7. Let P be one of the following properties: reduced, regular, normal,
Cohen-Macaulay.

Suppose that f : X → Y is an étale morphism. Let x ∈ X and let y = f(x). Then X
satisfies property P at x if and only if Y satisfies property P at y.

Note that if we have a finitely presented local homomorphism φ : A→ B of local rings,
then φ defines an étale morphism if and only if B is a flat A-algebra, φ(mA)B = mB, and
the residue field B/mB is a finite separable extension of the residue field A/mA. Using this
condition the theorem essentially boils down to algebraic properties of local rings.

Remark 11.9.8. This is our first glimpse of a more general theory of “descent”: the
study of which properties of a scheme can be passed back and forth over a faithfully flat
quasicompact morphism.

We will only prove one special case of Theorem 11.9.7.

Lemma 11.9.9. Let f : X → Y be an étale morphism. Let x ∈ X and let y = f(x).
Suppose that y is a regular point of Y such that OY,y has dimension n. Then x is also
regular and OX,x has dimension n.

Proof. We prove the statement by induction on n. The base case is when n = 0, in which
case the statement follows immediately from Proposition 11.2.11.

For the induction step, we cut down by hyperplanes. Choose any function f ∈ my\m2
y.

By Lemma 5.2.4 the quotient OY,y/(f) is a regular local ring of dimension n−1. Since étale
maps are preserved by base change, OX,x/(f) is still étale over OY,y/(f). The induction
assumption implies that OX,x/(f) is étale of dimension n−1. We then apply Lemma 5.2.4
again to see that OX,x is regular of dimension n.
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By combining the permanence properties of étale morphisms with the local structure
theorem for smooth morphisms (Proposition 11.8.2), one obtains permanence properties
for smooth morphisms. For example:

Proposition 11.9.10. Let f : X → Y be a morphism which is smooth at some point
x ∈ X. If f(y) is regular, then x is also regular.

The converse statement is also true, but we will not prove it.

Proof. By Proposition 11.8.2 there is an open neighborhood U of x and a factoring U →
Y ×Ad → Y . By Proposition 5.2.8 every point of Y ×Ad lying over y is regular. By Lemma
11.9.9 we deduce that every point in U lying over y is regular.

In particular this implies that a smooth point of a K-scheme is regular, finishing the
proof of Theorem 11.5.5. A similar argument works for normality, reducedness, etc.

11.9.4 Exercises

Exercise 11.9.11. We say that a morphism f : X → Y is unramified if it is locally
of finite type and ΩX/Y = 0. In other words, we drop the “flatness” condition for étale
morphisms and weaken “finitely presented” to “finite type.” (The main reason we weaken
the definition is to ensure that all closed embeddings are unramified.)

The relationship between unramified morphisms and étale morphisms is similar to the
relationship between finite morphisms and finite flat morphisms.

(1) Show that every closed embedding is unramified. Thus unramified morphisms form
a larger class than étale morphisms.

(2) Show that f is an unramified map if and only if f is locally of finite type and the
diagonal map ∆X/Y is an open embedding. (Hint: it suffices to argue locally, so we
may assume X = Spec(R). Show that if I ⊂ R is a finitely generated ideal satisfying
I = I2 then V (I) = De for some idempotent element e. You will need to use the
finite type assumption to show that the ideal sheaf of the diagonal is locally finitely
generated.)

(3) Conclude that every monomorphism which is locally of finite type is unramified.

Exercise 11.9.12. Show that the normalization of a nodal curve satisfies ΩX/Y = 0 but
is not étale. (It is an example of an unramified morphism.)

Exercise 11.9.13. Suppose that f : X → Y is a morphism which is smooth at a point
x ∈ X. Prove that if f(x) is a normal point of Y then x is also normal.

Exercise 11.9.14. Remark 11.7.11 shows that any étale morphism can locally be described
via ring maps S → S[x1, . . . , xr]/(g1, . . . , gr). It turns out that one can do a little bit better.
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Definition 11.9.15. Let S be a ring and suppose that R ∼= S[x]/g where g ∈ S[x] is a
monic polynomial. Let b ∈ S[x] be an element such that image of g′ in the localization Rb
is a unit. Then the corresponding map Spec(Rb)→ Spec(S) is said to be a standard étale
morphism.

In other words, a standard étale morphism is defined by a ring extension of the form

S[x, t]/(g, tb− 1)

where g, b satisfy the conditions above. It turns out that every étale morphism locally has
the form of a standard étale morphism.

Theorem 11.9.16 ([Sta15] Tag 02GU). Let f : X → Y be a morphism of schemes. Then
f is étale if and only if there for any point x ∈ X there is an open affine neighborhood U
of X and an open affine neighborhood V of f(x) such that f(U) ⊂ V and f |U : U → V is
standard étale.

(1) Show that every standard étale morphism is étale.

(2) Use Theorem 11.9.16 to deduce the Primitive Element Theorem for separable exten-
sions.

(3) Show that not every étale morphism can be written locally in the form S[x]/g for a
single monic polynomial g ∈ S[x]. (Hint: show that this defines a finite morphism.
What is an example of an étale morphism that is not “locally finite”?)
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11.10 Ramified covers

As discussed earlier, finite étale morphisms are analogous to covering maps and finite flat
morphisms are analogous to ramified covers. In this section we will study how cotan-
gent sheaves behave for finite flat morphisms of curves. By “curve” we will mean a (not
necessarily geometrically integral) K-variety of dimension 1.

Suppose that f : C → Z is a finite morphism of smooth projective curves over a field K.
The miracle flatness theorem shows that f is automatically flat as well. In this situation
we obtain an exact sequence

f∗ΩZ/K
φ−→ ΩC/K → ΩC/Z → 0.

In general this sequence need not be exact on the left. For example, if f is the Frobenius
morphism then the leftmost map is the zero map and the rightmost map is an isomorphism.
We will mainly be interested in the situation where we actually do have an exact sequence.

Definition 11.10.1. Let f : X → Y be a finite morphism of two K-varieties. We say that
f is separable if f is dominant and the field extension K(X)/K(Y ) is separable.

Proposition 11.10.2. Let f : C → Z be a finite separable morphism of smooth projective
curves over a field K. Then ΩC/Z is a torsion sheaf on C and the cotangent sequence is
left exact:

0→ f∗ΩZ/K
φ−→ ΩC/K → ΩC/Z → 0.

Proof. Note that f∗ΩZ/K and ΩC/K are both invertible sheaves on C. We first show that φ
is injective at the generic point. Since the stalk of ΩC/Z at the generic point is ΩK(C)/K(Z),
the separability assumption implies that the stalk is zero. On the other hand the stalks of
f∗ΩZ/K and ΩC/K are both one-dimensional K(C)-vector spaces. Using middle exactness
we see that φ induces an isomorphism at the generic point, proving the injectivity of φ at
the generic point.

Spreading out, this means that φ is injective on an open subset of C. In particular the
kernel of φ is a torsion sheaf. But since f∗ΩZ/K is torsion-free we see that the kernel of φ
is zero and thus φ is injective.

Since the stalk of ΩC/Z at the generic point is zero, it must be a torsion sheaf.

Since ΩC/Z is supported on a 0-dimensional subscheme, it corresponds to an effective
Weil divisor R. The easiest way to construct R explicitly is as follows. After tensoring by
Ω∨C/K we obtain an injection

f∗ΩZ/K ⊗ Ω∨C/K → OC .

We let R denote the closed subscheme of C defined by the image of this injection. Since
any invertible sheaf on Spec(R) is isomorphic to the structure sheaf, we see that

OR ∼= OR ⊗ ΩC/K ∼= ΩC/Z .
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Definition 11.10.3. Let f : C → Z be a finite separable morphism of smooth projective
curves over a field K. The ramification divisor R is the effective Weil divisor defined by
ΩC/Z .

This leads us to our first version of the Riemann-Hurwitz fomula.

Theorem 11.10.4 (Riemann-Hurwitz formula). Let f : C → Z be a finite separable
morphism of smooth projective geometrically integral curves over a field K. Then we have

ΩC/K ∼= f∗ΩZ/K(R).

where R denotes the ramification divisor. Taking degrees, we can relate the genus of C and
Z via the formula

2g(C)− 2 = deg(f)(2g(Z)− 2) + deg(R).

Proof. As discussed above, we know that f∗ΩZ/K ⊗ Ω∨C/K is isomorphic to the ideal sheaf

OX(−R) of R. We obtain the first statement by tensoring both sides by ΩC/K(R). Recall
that deg(OC(R)) = deg(R). Thus by taking degrees we get

2g(C)− 2 = deg(f∗ΩZ/K ⊗ ΩC(R))

= deg(f∗ΩZ/K) + deg(ΩC(R))

= deg(f)(2g(Z)− 2) + deg(R)

where we applied Proposition 10.5.5 to obtain the last line. This rearranges to give the
desired formula.

Here are some important consequences of the Riemann-Hurwitz formula.

Example 11.10.5. Suppose that C and Z are smooth projective geometrically integral
curves such that g(Z) > g(C). Then there are no finite separable morphisms f : C → Z.
Indeed, in this situation we must have deg(f) ≥ 2 and g(Z) ≥ 1 by Fact 11.6.4. But then
the Riemann-Hurwitz formula implies that

g(C)− g(Z) = (g(Z)− 1)(deg(f)− 1) +
deg(R)

2
≥ 0.

Example 11.10.6. Assume for simplicity that K is a perfect field. Then P1 is “alge-
braically simply connected”, in the sense that there are no non-trivial finite étale morphisms
f : C → P1 from a geometrically integral curve C.

Suppose for a contradiction that there were such a map. Since f is étale C is regular,
and thus (due to our assumption on K) a smooth curve. Arguing for each geometrically
connected component separately, we may as well suppose that C is integral. Since f is
étale it must be a separable morphism, so we may apply the Riemann-Hurwitz formula:

2g(C)− 2 = deg(f) · (−2) + deg(R).

Since f is étale we have deg(R) = 0. But this contradicts Fact 11.6.4 unless deg(f) = 1.
Since C is geometrically integral, we see that C ∼= P1 and f is an isomorphism.
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11.10.1 Computing the ramification divisor

We next discuss how to compute the ramification divisor explicitly. Our intuition will
be guided by the behavior of Riemann surfaces. If f : C → Z is a degree d morphism
of Riemann surfaces, then generically f will look like a d-sheeted covering. Over special
points on Z (known as branch points) it is possible for multiple sheets of the covering to
“coalesce” along a single point. If k sheets come together at a point c ∈ C, then in local
coordinates near c the function f has the form f(z) = uzk for some local unit u. We can
compute the behavior of the derivative using these local coordinates.

For algebraic curves the argument we can make a similar argument using local rings.
However our computation will require an additional separability assumption for the point
in question.

Construction 11.10.7. Let C be a smooth projective curve and let c ∈ C be a closed
point such that κ(c) is separable over K. Consider the discrete valuation ring R := OC,c
and let t be a uniformizer. In this situation we know that ΩR/K is a rank 1 free R-module.
Since by Proposition 11.4.6 the map mc/m

2
c → ΩR/K(c) sending t 7→ dt is injective, by

applying Nakayama’s lemma we see that ΩR/K is generated by dt.
Now suppose we have a finite separable morphism f : C → Z of smooth projective

geometrically integral curves. Let z = f(c) and let S = OZ,z with uniformizer s. Since
κ(c) is separable over K, so is κ(z). Thus both ΩR/K and ΩS/K are free rank 1 modules
generated by dt and ds respectively. We have an exact sequence

R⊗S ΩS/K
φ−→ ΩR/K → (ΩC/Z)c → 0

and since ΩC/Z is torsion the stalk at c is the same as the fiber at c. The map f ] : S → R
has the form s 7→ ute for some unit u ∈ R and some positive integer e. Thus φ identifies

ds 7→ te du+ eute−1 dt = te−1(t du+ eu dt).

Since dt generates ΩR/K we know that du = w dt for some function w. Then we can write
ds 7→ te−1(tw+eu) dt. Thus the part of ΩC/Z supported on c depends on the characteristic:

• If char(K) does not divide e, then tw+eu is a unit. Thus, the part of ΩC/Z supported
at c is isomorphic to R/te−1 and so has dimension e − 1 over the residue field κ(c).
In this situation we say that f is tamely ramified at c.

• If char(K) divides e, then tw+eu = tw is not a unit. Thus the part of ΩC/Z supported
at c is isomorphic to R/tr for some r ≥ e and so has dimension ≥ e over the residue
field κ(c). In this situation we say that f is wildly ramified at c.

The integer e defined above is called the ramification index of f at the point c. When f is
tamely ramified, c will be contained in the support of the ramification locus if and only if
its ramification index is ≥ 2.
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Putting everything together, we obtain our second version of the Riemann-Hurwitz
formula:

Theorem 11.10.8 (Riemann-Hurwitz formula). Let f : C → Z be a finite separable
morphism of smooth projective geometrically integral curves over a field K. Suppose that
f is tamely ramified. Then we have

2g(C)− 2 = deg(f)(2g(Z)− 2) +
∑
c∈C

(ec − 1) · [κ(c) : K]

where ec denotes the ramification index at c.

This theorem pairs naturally with the result of Exercise 10.5.25: if we fix a point z ∈ Z,
then we have

deg(f) =
∑

c∈f−1z

ec · [κ(c) : κ(z)].

Thus the degree of f imposes a combinatorial bound on the possible contributions of the
fiber f−1z to the ramification divisor.

Remark 11.10.9. There is a similar analysis in higher dimensions for canonical bundles
that is also known as the Riemann-Hurwitz formula. Suppose that f : X → Y is a
finite separable morphism of smooth projective geometrically integral K-varieties. Then
we obtain an equality of canonical bundles

ωX ∼= f∗ωY (R)

where R is an effective Weil divisor known as the ramification divisor. Just as for curves,
R can be computed explicitly by analyzing the behavior of f along the discrete valuation
rings which are the generic points of prime divisors on X.

To prove this, the key is to show that the map φ : f∗ΩY → ΩX is injective. Since
f∗ΩY is locally free the injectivity of this map can be checked on the generic fiber, and we
reduce to a local computation as in Proposition 11.10.2. Once we know φ is injective, we
also obtain injectivity of the map f∗ωY → ωX obtained by taking top exterior products,
and the rest of the argument is similar.

11.10.2 Exercises

Exercise 11.10.10. Let K be an algebraically closed field. Suppose that C is a smooth
plane curve of degree d. Note that if we project away from a general point the rational map
φ : P2 99K P1 defines a morphism on C. Use the Riemann-Hurwitz formula to compute the
genus of C (and compare against Example 11.6.5).
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Exercise 11.10.11. Let K be a field of characteristic 0. Prove that there are no non-trivial
finite étale morphisms f : C → A1 where C is a geometrically integral curve.

Prove that if K has characteristic p then the curve defined in K[x, t] by the equation
xp − x− t defines an étale cover of Spec(K[t]). Thus the analogous result does not hold in
characteristic p even when K is perfect. (In fact, a result of Katz shows that in characteristic
p every curve admits a morphism to P1 which is only ramified over a single point, yielding
many étale covers of A1.)
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Chapter 12

Čech cohomology

Let X be a topological space. We will associate to any sheaf F on X the Čech cohomology
groups H̆ i(X,F) for indices i ≥ 0. The first couple groups can be understood explicitly:
H̆0(X,F) is just the space of global sections F(X), and H̆1(X,F) detects whether a set
of local sections of F which satisfy the “cocycle condition” can come from a global set of
data. However, as i increases it becomes more challenging to identify the geometric content
of H̆ i.

The key property of the Čech cohomology groups is that they control the failure of the
global sections functor to be right exact. That is, if the topology on X is “nice enough”
(e.g. Hausdorff paracompact) then a SES of sheaves

0→ F φ−→ G ψ−→ H → 0

leads to a long exact sequence of Čech cohomology groups

0→ H̆0(X,F)→ H̆0(X,G)→ H̆0(X,H)→
→ H̆1(X,F)→ H̆1(X,G)→ H̆1(X,H)→
→ H̆2(X,F)→ H̆2(X,G)→ H̆2(X,H)→ . . .

Let’s motivate the construction of H̆1(X,F) from this perspective. Since G → H is a
surjective morphism of sheaves, we know that for any t ∈ H(X) there is an open cover
{Ui} such that t|Ui is in the image of ψ(Ui). For each i, choose a lift si of t|i. If we knew
that the si agreed on overlaps, we could glue them to get a global section which maps to t.

Note that we can modify each si by an element of F(Ui) without changing the image in
H(Ui). The key question is: can we choose local elements of F(Ui) to “fix” the discrepancies
si|Ui∩Uj − sj |Ui∩Uj? Although we have arrived at this question using an exact sequence, in
the end we are really interested in a property intrinsic to F : given an open cover {Ui} and
a collection of sections in the various F(Ui ∩ Uj), is it possible to choose sections of the
various F(Ui) whose differences yield our original set of data?

445
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We can also ask the analogous question where we replace a pair of open sets by a
collection of r open sets. Letting r vary, one constructs a complex of abelian groups (the
Čech complex) recording the behavior of the restriction maps for the open sets in a fixed
open cover. The Čech cohomology of F is defined to be the limit of the homology groups
of this complex as we pass to further and further refinements of our open cover. The first
section develops the basic theory of Čech complexes and Čech cohomology groups.

When X is a scheme, then it does not have the necessary nice topological properties
to obtain a “clean” theory of Čech complexes. However, for quasicoherent sheaves on
X, the behavior of restrictions for open affine subsets is defined via localization and is
thus sufficiently nice to obtain a well-behaved theory. (Recall that surjectivity of a sheaf
morphism can always be detected on the level of open affines for quasicoherent sheaves.) We
develop the necessary tools for working with quasicoherent sheaves in the second section.

The remaining sections are dedicated to calculations. The first and most important
example is coherent sheaves on Pn. We can calculate the Čech cohomology groups of
the sheaves O(d) “by hand”; using Hilbert’s Syzygy Theorem we can derive interesting
consequences for arbitrary coherent sheaves on Pn. We obtain the best cohomological
behavior when we allow a “twist” by a large invertible sheaf O(d). For arbitrary projective
schemes, the analogous theory is developed by studying ample invertible sheaves and their
cohomology. Finally, we focus on the special case of invertible sheaves and curves and
prove some classical statements about the behavior of global sections.

12.0.1 Algebraic preliminaries

Let C be an abelian category. A complex of objects in C is a sequence

. . .
di−2

−−−→ Ai−1 di−1

−−−→ Ai
di−→ Ai+1 di+2

−−−→ Ai+2 di+2

−−−→ . . .

such that the composition of any two consecutive maps di ◦ di−1 is the zero map. We
will denote such a complex using the notation A•; we will always denote the maps inside
the complex using di. Note that our conventions are compatible with the “cohomological
grading”.

Definition 12.0.1. Let A• be a complex of objects in the abelian category C. The ith
cohomology of A• is

H i(A•) :=
ker(di)

im(di−1)
.

Conceptually, cohomology groups measure the failure of the complex A• to be an exact
sequence.
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Definition 12.0.2. A morphism of complexes φ• : A• → Bbullet is a commuting diagram

. . .
di−2
// Ai−1 di−1

//

φi−1

��

Ai
di //

φi

��

Ai+1 di+1
//

φi+1

��

Ai+2 di+2
//

φi+2

��

. . .

. . .
di−2
// Bi−1 di−1

// Bi di // Bi+1 di+1
// Bi+2 di+2

// . . .

This yields a category Com(C) of complexes of objects in C.

Given a morphism of complexes φ•, we define ker(φ•) by taking the complex whose ith
piece is ker(φi) (equipped with the natural maps between them induced by the di for A•).
Similarly, we define cok(φ•) to be the complex whose ith piece is cok(φi). These are part
of the data giving Com(C) the structure of an abelian category.

A morphism of complexes φ• : A• → B• induces a collection of morphisms between
cohomology groups φ∗ : H i(A•)→ H i(B•).

Proposition 12.0.3. Suppose we have an exact sequence of complexes

0→ A• → B• → C• → 0.

Then we obtain a long exact sequence of cohomology groups

. . .→ H i(A•)→ H i(B•)→ H i(C•)
δi−→

→ H i+1(A•)→ H i+1(B•)→ H i+1(C•)
δi+1

−−−→
→ H i+2(A•)→ . . .

where the connecting morphisms δi are defined as in the Snake Lemma.
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12.1 Čech cohomology for sheaves

As discussed in the introduction to the chapter, the purpose of Čech cohomology is to
measure the failure of the global sections functor to be right exact.

12.1.1 Čech complex for an open cover

Notation 12.1.1. Let X be a topological space and let {Ui}i∈I be an open cover of X. In
this section we will always assume that the index set I is equipped with a total ordering.
We do allow Ui = Ui′ for different indices i, i′.

Given distinct indices i0, . . . , ip we denote by Ui0...ip the intersection Ui0 ∩ . . . ∩ Uip .

Definition 12.1.2. Let X be a topological space and let F be a presheaf of abelian groups
on X. Let U = {Ui}i∈I be an open cover of X. The Čech complex for F with respect to U
is the sequence

C̆•(U,F) := C̆0(U,F)
d0−→ C̆1(U,F)

d1−→ C̆2(U,F)
d2−→ . . .

where

C̆0(U,F) =
∏
i0

F(Ui0)

C̆1(U,F) =
∏
i0<i1

F(Ui0i1)

and in general

C̆p(U,F) =
∏

i0<...<ip

F(Ui0i1...ip).

Given an element σ ∈ C̆p(U,F) and a multi-index i0, . . . , ip, we will denote by σi0...ip the
image of σ under the i0, . . . , ip projection.

The differentials are defined by the following rule: for any σ ∈ C̆p−1(U,F), the compo-
nent of dp−1σ corresponding to i0, . . . , ip is

(dp−1σ)i0...ip :=

p∑
j=0

(−1)j(σi0...îj ...ip)|Ui0...ip

where as usual the notation i0 . . . îj . . . ip means we omit the jth element from our indexing
set.
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We claim that dp ◦ dp−1 = 0. Indeed, since

(dp−1σ)i0...ip :=

p∑
j=0

(−1)j(σi0...îj ...ip)|Ui0...ip

we see that that the sums defining (dp ◦ dp−1(σ))i0...ip+1 will come in cancelling pairs:
if we remove the indices ij and ik with j < k then Ui0...îk...ip+1

contributes the term

(−1)j+kσi0...îj ...îk...ip+1
and Ui0...îj ...ip+1

contributes the term (−1)j+k−1σi0...îj ...îk...ip+1
. We

conclude that C̆•(U,F) is a complex of abelian groups. An element σ ∈ C̆p(U,F) is said
to be a cocycle if it lies in the kernel of dp and a coboundary if it lies in the image of dp−1.
The subgroup of cocycles in denoted by Zp and the subgroup of coboundaries is denoted
by Bp.

Definition 12.1.3. The pth Čech cohomology of F with respect to U, denoted by H̆p(U,F),
is the cohomology group of the sequence C̆•(U,F):

H̆p(U,F) = Zp/Bp.

Suppose that F is a sheaf. Given an element σ = (σi ∈ F(Ui)) in C̆0(U,F), its image
under d0 is

(d0σ)ij = σj − σi.

By the gluing axiom for sheaves, the 0th cocycles for C̆•(U,F) are exactly the same as the
tuples (σi) which glue to yield a global section of F . In other words,

H̆0(C̆•(U,F)) = F(X).

The next map d1 has the form

(d1σ)ijk = σjk − σik + σij .

Thus the cocycles in C̆1(U,F) will be the set of data (σij) which “satisfies the cocycle
condition”. The first homology group H̆1(C̆•(U,F)) measures whether such data can be
obtained from by taking differences of sections (σi). We can continue to give explicit
descriptions of the maps for higher values of p, but unfortunately the geometric meaning
of these cohomology groups can be a bit obscure.

It is important to note that computing the sequence C̆•(U,F) is not much harder than
computing the values of F on open subsets of X. If we are able to accomplish the latter,
then we can also accomplish the former using some basic algebra.
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12.1.2 Čech cohomology groups

In general the cohomology groups H̆p(U,F) will depend heavily on the choice of open cover
U. To obtain an invariant of the sheaf F , we will need to think more carefully about how
to choose U. Suppose we had an exact sequence of sheaves

0→ F φ−→ G ψ−→ H → 0.

As we have seen before, ψ need not induce a surjection on global sections. However, for
any global section s of H we can choose a sufficiently small open cover {Ui} such that s|Ui
is in the image of ψ(Ui). This is an indication that the Čech cohomology groups are the
most sensitive to geometric information when we use a small open cover.

Definition 12.1.4. Suppose that U = {Ui}i∈I is an open cover of X (where as always the
index set is equipped with an order). A refinement of U is an open cover V = {Vj}j∈J and
a monotonic function τ : J → I such that Vj ⊂ Uτ(j) for every j ∈ J . Define a partial
ordering on the set of open covers of X by saying that V ≤ U if there is a function τ
making V a refinement of U.

Note that if τ makes V a refinement of U then it induces a map

Φ : C̆•(U,F)→ C̆•(V,F)

defined by
Φ(σ)j0...jp = στ(j0)...τ(jp)|Vj0...jp .

Since the differentials in the Čech complex are also defined by restriction we have Φ ◦
dp = dp ◦ Φ, showing that Φ induces a homomorphism of cohomology groups H̆p(U,F)→
H̆p(V,F).

One can show that this induced map of homology groups does not depend upon the
choice of the function τ . In other words, to any refinement V ≤ U we have associated a
well-defined map of Čech cohomology groups.

Definition 12.1.5. Let X be a topological space and let F be a presheaf of abelian groups
on X. We define the Čech cohomology groups

H̆p(X,F) = lim
−→

H̆p(U,F)

where the direct limit is taken over all open covers under the ordering ≤. (Technically
speaking the collection of all open covers of X need not be indexed by a set; we will ignore
this issue.)

Example 12.1.6. When F is a sheaf our earlier discussion shows that H̆0(X,F) = F(X).
But when F is a presheaf then H̆0(X,F) need not be the global sections of F .
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12.1.3 Exactness properties

As with other cohomology theories, a key property of Čech cohomology is the existence of
a LES in various situations. However, one needs to be a little bit careful: it is not true in
full generality that a SES of sheaves induces a LES of cohomology. In fact this defect was
one of the motivating factors behind the development of sheaf cohomology, an alternative
theory we will develop in Section 13.2.

In this section we discuss a few results that do hold for general topological spaces; we
will revisit the existence of a LES in the setting of quasicoherent sheaves in Theorem 12.2.4.

Theorem 12.1.7. Let X be a topological space. Suppose we have an exact sequence of
presheaves

0→ F → G → H → 0.

Then we obtain a long exact sequence of Čech cohomology groups

. . .→ H̆p(X,F)→ H̆p(X,G)→ H̆p(X,H)→ H̆p+1(X,F)→ . . .

When we discuss an “exact sequence of presheaves”, we mean a sequence with the
presheaf notions of image and cokernel.

Proof. For an exact sequence of presheaves G(U) → H(U) is surjective for every open set
U . Thus for any open cover U we get an exact sequence of complexes

0→ C̆•(U,F)→ C̆•(U,G)→ C̆•(U,H)→ 0.

By taking the usual LES of cohomology coming from an exact sequence of complexes,
we see that for any open cover U we get a LES of cohomology groups. A direct limit of
exact sequences is still exact; taking a limit over all refinements, we obtain the desired
statement.

Corollary 12.1.8. Let X be a topological space. Suppose we have an exact sequence of
sheaves

0→ F → C0 → C1 → C2 → . . .

Suppose furthermore that for every i > 0 and for every j ≥ 0 we have H̆ i(X, Cj) = 0.
Set V k := H̆0(X, Ck). Then H̆k(X,F) is isomorphic to the kth cohomology group of the
complex V •.

When we have a complex C̆• whose higher cohomologies vanish as above, it is called
an acyclic resolution of F .

Proof. Since the first map is injective, the presheaf image of F in C0 is isomorphic to F .
Set Q0 := F . By taking presheaf images and presheaf cokernels, the LES splits into a
sequence of short exact sequences

0→ Qi → Ci → Qi+1 → 0.
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By Theorem 12.1.7 and the assumption on cohomology vanishing, we obtain

H̆k(X,F) ∼= H̆k−1(X,Q1) ∼= . . . ∼= H̆1(X,Qk−1) ∼=
H̆0(X,Qk)

im H̆0(X, Ck−1)
.

It only remains to note that the kernel of the map H̆0(X, Ck)→ H̆0(X, Ck+1) is the same
as the kernel of the map H̆0(X, Ck) → H̆0(X,Qk+1), so that both can be identified with
H̆0(X,Qk).

12.1.4 Leray’s Theorem

One of the main challenges in computing Čech cohomology is fact that we must take a
direct limit over sufficiently refined open covers. The following important theorem allows
us to identify a single open cover which computes the Čech cohomology.

Theorem 12.1.9 (Leray’s Theorem). Let X be a topological space and let F denote a
sheaf on X. Let U = {Ui} be an open cover of X. Suppose that for every i > 0 and every
non-empty open set V which is a finite intersection of open sets in U we have H̆ i(V,F) = 0.
Then

H̆ i(U,F) = H̆ i(X,F)

for all i ≥ 0.

To apply this theorem, one must first identify criteria which guarantee that the higher
cohomology of F vanishes along open sets of a certain type. The theorem then tells us
that using these open sets is “good enough” to compute the Čech cohomology.

To prove Leray’s Theorem, we will need a new object called the Čech sheaf complex.
This is a “sheafified” version of the Čech complex.

Definition 12.1.10. Let X be a topological space equipped with a sheaf F . Let U = {Ui}
be an open cover of X. We define

C p(U,F) =
∏

i0<...<ip

(ji0...ip)∗F|Ui0...ip

where ji0...ip denotes the inclusion of Ui0...ip into X. These groups form a complex of sheaves
C •(U,F) under the Čech differential.

The key property of C • is that its cohomology groups encode the Čech cohomologies
of the intersections of the Ui.

Lemma 12.1.11. For every p and k, we have H̆k(X,C p(U,F)) =
∏
i0<...<ip

H̆k(Ui0...ip ,F).
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Proof. First suppose we fix an open cover V of X. Then

C̆k(V,C p(U,F)) =
∏

`0<...<`k

C p(U ,F)(V`0...`k)

=
∏

`0<...<`k

∏
i0<...<ip

F(V`0...`k ∩ Ui0...ip)

=
∏

i0<...<ip

C̆k(V ∩ Ui0...ip ,F|Ui0...ip )

Since the differentials in the chain complex C̆•(V,C p(U,F)) will respect the product struc-
ture in the last statement, we get an equality of cohomology groups

H̆k(V,C p(U,F)) =
∏

i0<...<ip

H̆k(V ∩ Ui0...ip ,F|Ui0...ip )

Taking a direct limit over all refinements of V we obtain the desired statement.

We are now equipped to prove Leray’s Theorem.

Proof of Theorem 12.1.9: Consider the complex of sheaves

0→ F → C 0(U,F)→ C 1(U,F)→ C 2(U,F)→ . . .

It is a consequence of the sheaf axioms that this sequence is exact. Note also that
H̆0(X,C k(U,F)) = C̆k(U,F).

Under the hypotheses of Leray’s Theorem, Lemma 12.1.11 shows that this resolution
of F is acyclic. By Corollary 12.1.8 this implies that the kth homology groups of F agree
with the kth homology groups of the global sections functor applied to this sequence:

H̆k(X,F) =
ker H̆0(X,C k(U,F))→ H̆0(X,C k+1(U,F))

im H̆0(X,C k−1(U,F))→ H̆0(X,C k(U,F))

=
ker C̆k(U,F)→ C̆k+1(U,F)

im C̆k−1(U,F)→ C̆k(U,F)

= H̆k(U,F).

12.1.5 Geometric applications

Before moving on to the special case of quasicoherent sheaves, we briefly mention a few geo-
metric results. The first result gives conditions on the topological space X which guarantee
that a SES of sheaves yields a LES of Čech cohomology groups.
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Theorem 12.1.12. Let X be a Hausdorff paracompact topological space. Suppose we have
an exact sequence of sheaves

0→ F → G → H → 0.

Then we obtain a long exact sequence of Čech cohomology groups

. . .→ H̆p(X,F)→ H̆p(X,G)→ H̆p(X,H)→ H̆p+1(X,F)→ . . .

Note that this theorem will almost never apply in the setting of schemes. Our next
result shows the equality of Čech cohomology and singular cohomology.

Theorem 12.1.13. Let X be a topological space that is locally contractible. Fix an abelian
group A. Then the Čech cohomology groups H̆ i(X,AX) are isomorphic to the singular
cohomology groups H i(X,A).

Suppose that X is a complex manifold and let OX denote the sheaf of holomorphic
functions on X. By composing with the exponential function, we obtain a map exp :
OX → O×X . Since the kernel of the exponential map consists of constant multiples of 2πi,
we obtain an exact sequence of sheaves of abelian groups

0→ 2πiZX → OX → O×X → 0.

(Since invertible holomorphic functions need not admit a global logarithm, the map on the
right is not surjective on global sections, but it is locally surjective due to the existence of
local logarithms.)

Since X is paracompact we obtain a LES of sheaf cohomology. The various pieces of this
sequence have interesting geometric significance. For example, we see that H̆1(X, 2πiZX) =
H1(X,Z) is the obstruction to the global surjectivity of the exponential map. Next consider
the portion of the LES

. . .→ H̆1(X,OX)→ H̆1(X,O×X)
ρ−→ H̆2(X, 2πiZX)→ H̆2(X,OX)→ H̆2(X,O×X)→ . . .

The term H̆1(X,O×X) can be identified with the Picard group of holomorphic line bundles
up to isomorphism (see Exercise 12.1.18). On the right, the connecting homomorphism
ρ is the first Chern class map with values in H2(X,Z). On the left, we see that we can
identify

Pic(X) ∼=
H̆1(X,OX)

H̆1(X, 2πiZX)
∼=

H0,1(X,C)

imH1(X,Z)

12.1.6 Exercises

Exercise 12.1.14. Suppose that X is an irreducible topological space and that AX is a
locally constant sheaf on X with value A. Prove that H̆ i(X,AX) = 0 for every i > 0.
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Exercise 12.1.15. Prove that the Čech cohomology groups of F ⊕ G are the direct sums
of the cohomology groups of F and G.

Exercise 12.1.16. Let X be a topological space and suppose that

0→ F → G → H → 0

is an exact sequence of sheaves. Prove that we have an exact sequence

0→ H̆0(X,F)→ H̆0(X,G)→ H̆0(X,H)→ H̆1(X,F)

without any extra assumptions on X.

Exercise 12.1.17. Compute the cohomology groups of the circle and the sphere with
respect to the locally constant sheaf with value Z. (Feel free to use the fact that all the
higher cohomology of the locally constant sheaf ZX along a contractible topological space
will vanish.)

Exercise 12.1.18. Let X be an integral scheme. Prove that the Picard group of X is
isomorphic to H̆1(X,O×X).

(Remark: in fact this theorem holds for any ringed space. While you should prove this
theorem “by hand”, it may be enlightening to compare this result against the connecting
homomorphism in the sequence

H̆0(X,K×) //
OO
∼=
��

H̆0(X,K×/O×X) //
OO
∼=
��

H̆1(X,O×X) // H̆1(X,K×)
OO
∼=
��

K(X)× CDiv(X) 0

Can you prove these isomorphisms?)
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12.2 Čech cohomology for quasicoherent sheaves

Since most schemes do not have a well-behaved topology, we can not expect the abstract
theory of Čech cohomology to be well-behaved. However, it turns out that Čech cohomology
is well-behaved for quasicoherent sheaves. In this section we develop the foundational
properties of this theory.

12.2.1 Vanishing for affines

We saw in Proposition 9.2.8 that for quasicoherent sheaves on affine varieties the global
sections functor is exact. Thus we might expect that the first cohomology group of a
quasicoherent sheaf on an affine scheme is equal to 0. The following result is a step in this
direction.

Theorem 12.2.1. Let X = Spec(R) be an affine scheme and let F be a quasicoherent
sheaf on X. Then we have H̆ i(X,F) = 0 for every i > 0.

Proof. Since F is quasicoherent, we have F = M̃ for some R-module M . Since distin-
guished open affines form a base for the topology on X, it suffices to show that

H̆ i(U,F) = 0

whenever U = {U1, . . . , Ur} is an open cover consisting of distinguished open affines Ui =

Dfi . Since F|Ui = M̃fi , we must show that the following sequence is exact:

0→M
d0−→
∏
i

Mfi
d1−→
∏
i<j

Mfifj
d2−→

∏
i<j<k

Mfifjfk
d3−→ . . .

Note that we have already proved exactness of the first few terms in the proof of Proposition
9.2.1. The proof of exactness of the other terms is essentially the same.

Let us show exactness at the pth term. Suppose that σ ∈
∏
i0<...<ip

Mfi0 ...fip
is in the

kernel of dp. Since the index set is finite, by passing to common denominators we may
write

σi0...ip =
mi0...ip

(fi0 . . . fip)
t

for some mi0...ip ∈ M and some non-negative integer t. Since σ ∈ ker(dp), for any p + 1
indices j0 < . . . < jp+1 we have that dσj0...jp+1 = 0, or in other words,

p+1∑
k=0

(−1)k
f tjkmj0...ĵk...jp+1

(fj0 . . . fjp+1)t
= 0

as elements of Mfj0 ...fjp+1
. We can rewrite this equation inside of Mfj0 ...fjp

by clearing

denominators at the cost of adding in an additional power f ljp+1
for a non-negative integer
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l (to put our element in the kernel of the localization map). Since there are only finitely
many indices, we may also ensure that l is independent of the choice of indices. In this
way we obtain the equation

p∑
k=0

(−1)kf ljp+1

f tjkmj0...ĵk...jp+1

(fj0 . . . fjp)
t

= (−1)pf ljp+1

f tjp+1
mj0 . . . jpĵp+1

(fj0 . . . fjp)
t

. (12.2.1)

Since the Dfi form an open cover, we have a relation 1 =
∑

(−1)pgif
t+l
i in R. We define

τ ∈
∏
i0<...<ip

Mfi0 ...fip−1
by setting

τi0...ip−1 =
∑
i

gif
l
i

mii0...ip−1

(fi0 . . . fip−1)t

where as usual we implicitly allow ourselves to reorder the indices in mii0...ip−1 . We claim
that dτ = σ. Indeed, we have

(dτ)i0...ip =

p∑
k=0

(−1)k
∑
i

gif
l
i

f tikmii0...îk...ip

(fi0 . . . fip)
t

=
∑
i

gi

p∑
k=0

(−1)kf li
f tikmii0...îk...ip

(fi0 . . . fip)
t

=
∑
i

gi

(
(−1)pf l+ti

mi0...ip

(fi0 . . . fip)
t

)
by Equation (12.2.1)

=
mi0...ip

(fi0 . . . fip)
t

This concludes the proof of exactness at the pth term.

12.2.2 Applications

Our first application of Theorem 12.2.1 allows us to find a specific open cover which com-
putes Čech cohomology for quasicoherent sheaves. Leray’s Theorem 12.1.9 has the following
immediate consequence:

Theorem 12.2.2. Let X be a quasicompact scheme and let F denote a quasicoherent sheaf
on X. Suppose that U = {Ui} is an open cover of X by open affines Ui such that all the
non-empty intersections Ui0 ∩ . . . ∩ Uip are affine. Then H̆ i(U,F) = H̆ i(X,F).

Note that the quasicompactness hypothesis is necessary to ensure that we can find a
finite open cover of X by open affines. The best case is when X is separated.

Corollary 12.2.3. Let X be a quasicompact separated scheme and let F denote a quasico-
herent sheaf on X. Then for any open affine cover U of X we have H̆ i(U,F) = H̆ i(X,F).
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Now that we have shown that Čech cohomology can be computed on specific open
covers, we can construct a LES of Čech cohomology for quasicoherent sheaves.

Theorem 12.2.4. Let X be a quasicompact separated scheme. Suppose we have an exact
sequence of quasicoherent sheaves

0→ F → G → H → 0.

Then we obtain a long exact sequence of Čech cohomology groups

. . .→ H̆p(X,F)→ H̆p(X,G)→ H̆p(X,H)→ H̆p+1(X,F)→ . . .

Proof. If we let U be an open cover by open affines then Corollary 12.2.3 shows that for
every quasicoherent sheaf F we have H̆ i(X,F) ∼= H̆ i(U,F). Since every open set V that
is an intersection of elements in our open cover is affine and since all our sheaves are
quasicoherent, the map G(V )→ H(V ) is surjective for every such open set V . Thus for an
cover U by open affines we have an exact sequence of complexes

0→ C̆•(U,F)→ C̆•(U,G)→ C̆•(U,H)→ 0.

The corresponding LES of cohomology groups yields the desired sequence.

Our next application of Theorem 12.2.1 is an important vanishing result.

Theorem 12.2.5. Let X be a quasiprojective K-scheme of dimension n and let F be a
quasicoherent sheaf on X. Then H̆ i(X,F) = 0 for every i > n.

The idea is to show that X admits an open cover consisting of (n+ 1) open affines. If
X is projective we can find such a cover as follows. First, we take a closed embedding of X
into some projective space. Since intersecting a projective scheme by a general hypersurface
drops the dimension by 1, we can find (n+1) hypersurfaces Hi such that X∩H1∩. . .∩Hn+1

is empty. The complements Ui of these hypersurfaces are affine, and the subschemes X∩Ui
give the desired open cover.

Since we are only assuming that X is quasiprojective, we need to be a little more
careful: if we repeat the argument above the sets X ∩Ui may not be closed subschemes of
Ui and thus are not necessarily affine. Nevertheless a similar argument will work.

Proof. We claim that X admits an open cover U consisting of n + 1 open affine sets. For
such a cover it is clear that H̆ i(U,F) = 0 for i > n. Since X is quasicompact separated,
this also implies H̆ i(X,F) = 0 for i > n by Corollary 12.2.3.

Consider the composition of an open embedding from X into a projective K-scheme X
followed by a closed embedding X ↪→ Pn. We set Z = X\X. We claim that there is a
hypersurface H1 which contains Z but does not contain any component of X. Indeed, if IZ
denotes the radical of the homogeneous ideal defining Z and Ij denotes the radical of the



12.2. ČECH COHOMOLOGY FOR QUASICOHERENT SHEAVES 459

homogeneous ideal defining the jth component of X then none of the Ij contain IZ and
thus we can let H1 be the vanishing locus of any homogeneous element of IZ\(∪jIj). Since
H1 does not contain any component of X Exercise 4.4.16 shows that dim(H1∩X) = n−1.
Since H1 does contain Z we see that X\H1

∼= X\H1 is affine (since it is a closed subscheme
of the affine scheme Pn\H1).

We now repeat the argument to find a hypersurface H2 which contains Z but does not
contain any component of X ∩H1. Inducting, we find hypersurfaces H1, . . . ,Hn such that
each X\Hi is affine and dim(H1∩. . .∩Hj∩X) = dim(X)−j. Finally, since H1∩. . .∩Hn∩X
is 0-dimensional, we can take one more hypersurface Hn+1 that contains Z and avoids this
0-dimensional subset. Then the open affines X\Hi form an open cover of X.

12.2.3 Exercises

Exercise 12.2.6. Let X be the complement of the origin in A2
K. Using the cover U

consisting of the complements of the two axes, show that H̆1(X,OX) is isomorphic to the
K-vector space spanned by {xiyj |i, j < 0}. In particular, this space is infinite dimensional.

Exercise 12.2.7. Let X ⊂ P2
K be a degree d hypersurface. Prove that

dimK H̆
0(X,OX) = 1

dimK H̆
1(X,OX) = (d− 1)(d− 2)/2

Exercise 12.2.8. Let L/K be a field extension. Suppose that X is a K-scheme and that
F is a quasicoherent sheaf on X. Let p : XL → X be the base change map. Prove that

H̆ i(XL, p
∗F) ∼= H̆ i(X,F)⊗K L.

Exercise 12.2.9. Let f : X → Y be an affine morphism of Noetherian separated schemes.
Prove that for any quasicoherent sheaf F on X we have isomorphisms

H̆ i(X,F) ∼= H̆ i(Y, f∗F).

In particular, this applies to closed embeddings and finite morphisms.

Exercise 12.2.10. Let X be a quasicompact separated scheme and let F and G be qua-
sicoherent sheaves on X. In this exercise we construct a cup product

∪ : H̆p(X,F)× H̆q(X,G)→ H̆p+q(X,F ⊗ G).

Let U denote a finite open affine cover of X. Define the map

∪ : Cp(U,F)× Cq(U,G)→ Cp+q(U,F ⊗ G)

where for any ordered subset K = {i0, . . . , ip+q} of the index set for U we define

(σ ∪ τ)K = σi0...ip ⊗ τip...ip+q .

Prove the relation d(σ∪ τ) = (dσ∪ τ) + (−1)p(σ∪ dτ) and use it to show that the function
∪ descends to cohomology.
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12.3 Cohomology of sheaves on projective space

In this section we prove several foundational results about the cohomology of sheaves on
projective space. We will fix a ring A and consider the cohomology groups of sheaves on
PnA := Proj(A[x0, . . . , xn]).

12.3.1 Cohomology of invertible sheaves

Our starting point will be to compute the Čech cohomology of the invertible sheaves on
projective space.

Theorem 12.3.1. (1) For m ≥ 0, we have

H̆ i(PnA,O(m)) ∼=

{
A⊕(n+mn ) if i = 0

0 otherwise

(2) For −n ≤ m ≤ −1, we have H̆ i(PnA,O(m)) = 0 for every i.

(3) For m ≤ −n− 1, we have

H̆ i(PnA,O(m)) =

{
A⊕(−m−1

n ) if i = n
0 otherwise

Note that the cohomology groups for all i 6= 0, n are vanishing. For the remaining
degrees 0, n the cohomology groups are free and we have a symmetry H̆0(PnA,O(m)) ∼=
H̆n(PnA,O(−n− 1−m)). For example, on P2

A the cohomology groups are free modules of
the following ranks

O(−6) O(−5) O(−4) O(−3) O(−2) O(−1) O O(1) O(2) O(3)

H̆0 0 0 0 0 0 0 1 3 6 10

H̆1 0 0 0 0 0 0 0 0 0 0

H̆2 10 6 3 1 0 0 0 0 0 0

Our strategy is to use the standard covering of PnA by open affine charts

Proof. It is notationally simpler to compute the cohomology of the graded sheaf F =
⊕m∈ZO(m) and use the grading to recover the cohomology of the pieces at the end. Set Ui =
D+,xi and consider the open cover U = {Ui}. By Corollary 12.2.3 we have H̆k(PnA,F) =

H̆k(U,F).
The Čech complex in this situation is

n∏
i=0

Rxi →
∏

I⊂{0,...,n}
|I|=2

RxI →
∏

I⊂{0,...,n}
|I|=3

RxI → . . .→
∏

I⊂{0,...,n}
|I|=n

RxI → Rx0x1...xn → 0
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where for a subset I ⊂ {0, . . . , n} we denote by xI the product of the variables indexed
by I. Using our usual localization exact sequence we see that H̆0(U,F) ∼= R. Since this

isomorphism respects the grading, we see that H̆0(PnA,O(m)) ∼= Rm ∼= A(n+mn ).

We next address the top cohomology groups H̆n. Consider the last map∏
I⊂{0,...,n}
|I|=n

RxI → Rx0x1...xn

in the sequence. The module on the right is a free A-module spanned by products of
the form xk00 x

k1
1 . . . xknn where the exponents ki ∈ Z. The image of the module on the

left consists of those products which have at least one non-negative exponent. Thus the
cokernel of this map is the free A-module with basis

{xk00 . . . xknn | ki < 0 ∀i }.

Note that the degree is the sum of the exponents. Thus there are no basis vectors in degree
m ≥ −n, and in degree m ≤ −n − 1 the number of basis vectors is exactly

(−m−1
n

)
as

desired.

Finally, we address the cohomology groups H̆ i for 0 < i < n. Consider the exact
sequence

0→ O(−1)
·xn−−→ O → i∗OPn−1

A
→ 0

where i : Pn−1 → Pn is the inclusion of the hyperplane V+(xn). Since F is free, the
exactness is preserved by tensoring by F . By the projection formula we have

F ⊗ i∗OPn−1
A

∼= i∗

(
F|Pn−1

A

)
∼= i∗F ′

where F ′ is the sheaf ⊕m∈ZO(m) on Pn−1. Thus we get a long exact sequence of Čech
cohomology groups associated to the SES of sheaves

0→ F(−1)→ F → i∗F ′ → 0.

By Exercise 12.2.9 the pushforward i∗ under a closed embedding preserves all the coho-
mology groups. Thus by induction on n we see that H̆ i(PnA,F(−1)) → H̆ i(PnA,F) is an
isomorphism for 1 < i < n − 1. We claim that this map is also an isomorphism for
i = 1, n − 1. To show that H̆1(PnA,F(−1)) → H̆1(PnA,F) is an isomorphism, it suffices to

show that the restriction map H̆0(PnA,F) → H̆0(Pn−1
A ,F ′) is surjective. This is just the

map R 7→ R/(xn).

To show this map is an isomorphism for i = n− 1, consider the last piece of the LES

H̆n−1(Pn−1
A ,F ′) δ−→ H̆n(PnA,F(−1))→ H̆n(PnA,F)→ 0.
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As we described earlier H̆n(PnA,F) is a free A-module over the monomials whose exponents
are all negative. The surjection on the right is the map ·xn and its kernel is the set of
monomials xk00 . . . xknn with kn = −1. The leftmost module is a free A-module over the
monomials in x0, . . . , xn−1 with negative exponents. We claim that the leftmost map δ
is multiplication by x−1

n and is thus injective. To see this we return to the SES of Čech
complexes which define this LES. The relevant portion is

0 //
∏n
i=0R(−1)x0...x̂i...xn

·xn //

��

∏n
i=0Rx0...x̂i...xn

//

��

(R/(xn))x0...xn−1
//

��

0

0 // R(−1)x0...xn
·xn // Rx0...xn

// 0

where the columns are the last two entries in the Čech complex and the rows are induced
by the SES of sheaves. Tracing through the construction of the Snake Lemma, suppose
we have an element xj00 . . . x

jn−1

n−1 in the cohomology at the top right place. One choice of a
lift to the top middle place is the (n+ 1)-tuple consisting of this element in the last entry
with 0s in the other entries. The image of this choice of lift in the bottom middle place is
xj00 . . . x

jn−1

n−1 . Finally, the preimage in the bottom left is xj00 . . . x
jn−1

n−1 x
−1
n , proving the claim.

Altogether we have shown that multiplication by xn induces isomorphisms between
H̆ i(PnA,F(−1)) and H̆ i(PnA,F) for 0 < i < n. It only remains to show that this property
forces these cohomology groups to vanish. Suppose we take the Čech complex constructed
above and localize it along xn. The result will be a Čech complex for the sheaf ⊕d≥0OUi of
the affine chart Un with respect to the open cover given by the various Ui∩Un. By Corollary
12.2.3 the cohomology of this localized sequence will compute the Čech cohomology groups
of the sheaf ⊕d≥0OUi on Ui and by Theorem 12.2.1 all the higher cohomology groups of
this sheaf 0. Since localization is exact, we conclude that H i(PnA,F)xn = 0. In other words,
every element of this group is annihilated by some power of xn. Since we have also shown
that multiplication by xn is an isomorphism, we conclude that H i(PnA,F) = 0.

Remark 12.3.2. In fact the proof shows a little more. Using the functoriality of coho-
mology, we have a natural pairing

Hom(O(−n− 1− d),O(−n− 1))× H̆n(Pn,O(−n− 1− d))→ H̆n(Pn,O(−n− 1)) ∼= A.

The left-most term can be identified with H̆0(Pn,O(d)). The proof shows that for any
d ≥ 0 this identification is a perfect pairing of free A-modules obtained by multiplication.

12.3.2 Cohomology of other sheaves

Hilbert’s Syzygy Theorem guarantees that any sheaf on projective space admits a finite
resolution by direct sums of line bundles. We use this structure to prove a key result.
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Theorem 12.3.3. Let A be a Noetherian ring and let X be a projective scheme over
Spec(A). Then for any coherent sheaf F on X, the cohomology group H̆ i(X,F) is is a
coherent A-module for every i.

Proof. Since every affine scheme admits an ample line bundle, Proposition 10.7.13 shows
that X admits a closed embedding into some projective space PnA. Exercise 12.2.9 shows
that cohomology groups are unchanged when we push forward by a closed embedding. Thus
we may assume that F is a coherent sheaf on PnA. We show that H̆ i(PnA,F) is coherent by
decreasing induction on the index i. By Corollary 10.6.13 we have an exact sequence

0→ G → O(d)⊕r → F → 0

for some coherent sheaf G. Since PnA is quasicompact and separated, Theorem 12.2.4 shows
that we obtain a LES of Čech cohomology. The end of the sequence is

H̆n(PnA,O(d)⊕r)→ H̆n(PnA,F)→ 0

since by Theorem 12.2.5 all the higher cohomology groups vanish. Theorem 12.3.1 shows
that the term on the left is a coherent A-module, thus the term in the middle is also finitely
generated and thus (since A is Noetherian) coherent. For i < n, we have an exact sequence

H̆ i(PnA,O(d)⊕r)→ H̆ i(PnA,F)→ H̆ i+1(PnA,G).

The leftmost term is a coherent A-module by Theorem 12.3.1 and thus its image in the
middle term is finitely generated. The kernel of the rightmost map is coherent by induction.
We conclude that the middle term is a coherent A-module.

In particular, we can prove a special case of Theorem 9.4.9:

Corollary 12.3.4. Let f : X → Y be a projective morphism to a locally Noetherian scheme
Y . If F is a coherent sheaf on X then f∗F is a coherent sheaf on Y .

Proof. It suffices to prove this when Y is an affine scheme. In this case the desired statement
follows from Theorem 12.3.3.

Corollary 12.3.5. Let f : X → Y be a morphism to a locally Noetherian scheme Y . Then
f is projective and affine if and only if f is finite.

Proof. We have already proved the reverse implication. To prove the forward implication,
the projectivity assumption shows that f∗OX is a coherent sheaf. Since f is affine, we
see that for every open affine V ⊂ Y the ring OX(f−1V ) is a finitely generated OY (V )-
module.

Corollary 12.3.6. Let f : X → Y be a projective morphism with finite fibers. Then f is
a finite morphism.
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Proof. We first show that f is an affine morphism. Fix a point y ∈ Y and let V be an
open affine neighborhood of y. Since V admits an ample invertible sheaf, the preimage XV

admits a closed embedding into PnV . Since f has finite fibers there is a hyperplane H ⊂ PnV
which does not meet the fiber of f over y. Let U ⊂ V denote the open neighborhood of
V which is the complement of f(H ∩X). Note that U contains y and that f−1U is affine.
Since every point y admits an open neighborhood whose preimage is affine, we deduce that
f is an affine morphism.

By Corollary 12.3.5 we conclude that f is finite.

12.3.3 Exercises

Exercise 12.3.7. Recall that the cotangent bundle Ω1 of projective space PnA fits into an
exact sequence

0→ Ω1 → O(−1)⊕n+1 → O → 0.

Use this exact sequence to compute the cohomology groups of Ω1.

Exercise 12.3.8. Let I be the ideal sheaf of the twisted cubic in P3
K. Compute the

cohomology groups of I(m) for every m ≥ 0.
(Hint: there are two approaches. One is to use the LES of cohomology associated to

the exact sequence
0→ I(m)→ OPn(m)→ i∗OC(m)→ 0.

In this case one must understand the maps H̆0(Pn,OPn(m))→ H̆0(P1,OP1(3m)) explicitly
in some way. Another method is to use the fact that I is generated by three quadrics to
construct an exact sequence

0→ O(−3)⊕2 → O(−2)⊕3 → I → 0

where the leftmost map describes the relations between the generators of I.)

Exercise 12.3.9. Recall that every line bundle on Pm× Pn has the form O(a, b) for some
a, b ∈ Z. Prove a Kunneth formula for the corresponding Čech cohomology groups:

H̆k(Pm × Pn,O(a, b)) ∼= ⊕i+j=kH̆ i(Pm,O(a))⊗K H̆
j(Pn,O(b)).

(Hint: construct the Čech complex on Pm × Pn using the open cover that consists of the
products of the standard opens in Pm and Pn. Show that the complex you get is the tensor
product of the complexes from the two factors.)
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12.4 Cohomology and ample line bundles

It is easiest to perform geometric computations with sheaves which have vanishing higher
cohomology. The most important way to find sheaves with vanishing higher cohomology
is to leverage the properties of ample line bundles.

12.4.1 Serre’s Criterion

Theorem 12.4.1. Let A be a Noetherian ring, let X be a proper scheme over Spec(A).
Suppose that L is an invertible sheaf on X. Then the following are equivalent:

(1) L is ample.

(2) For every coherent sheaf F on X there exists a positive integer m0 such that H̆ i(X,F⊗
Lm) = 0 for every i > 0 and m ≥ m0.

The forward implication is known as Serre Vanishing; the reverse implication is known
as Serre’s Criterion.

Proof. ( =⇒ ): We first prove the forward implication in the case when L is very ample.
Since X is proper and L is very ample, X must be projective and is thus equipped with
a closed embedding φ : X → PnA such that φ∗O(1) = L. By the projection formula and
Exercise 12.2.9 we have

H̆ i(X,F ⊗ L⊗m) = H̆ i(PnA, φ∗F ⊗O(m)).

Furthermore φ∗F is coherent since φ is a closed embedding. Thus we may assume hence-
forth that X ∼= PnA and L = O(1).

We prove the vanishing of the higher cohomology H̆ i(PnA,F ⊗ O(m)) by decreasing
induction on i. By Corollary 10.6.13 any coherent sheaf F on projective space fits into a
short exact sequence

0→ K → OPnA(d)⊕r → F → 0

If we choose m0 large enough, then H̆ i(Pn,OPnA(d + m)) = 0 for every m > m0. We

conclude that H̆n(Pn,F(m)) = 0, proving the base case of the induction. We also see that
for m > m0 we have H̆ i(Pn,F(m)) ∼= H̆ i+1(Pn,G(m)) for 0 < i < n. By the inductive
assumption, after possibly increasing m0 we can ensure that the (i + 1) cohomology of
G(m) vanishes. We can then conclude the vanishing of the ith cohomology for F(m).

Finally suppose that L is only ample. Choose a positive integer M such that L⊗M is
very ample. We can then deduce the statement for the original L by applying the very
ample case for L⊗M to the sheaves F ⊗ L⊗i for i = 0, 1, 2, . . . ,M − 1.
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(⇐=): Fix any closed point x ∈ X. Tensor the surjection OX → i∗Ox by F and let K
denote the kernel of the resulting map. Since K is coherent, for sufficiently large exponents
m we have H̆1(X,K ⊗ L⊗m) = 0. We deduce that there is a surjection

H̆0(X,F ⊗ L⊗m)→ H̆0(X,F ⊗ i∗Ox ⊗ L⊗m).

Thus for sufficiently large exponents m we have that F ⊗ L⊗m is globally generated at x.
Applying Exercise 10.1.14 we see that for every point x there is a constant mx such that
for every m ≥ mx there is an open neighborhood Um,x of x such that F ⊗L⊗m is globally
generated at every point in Um,x. (Note that Um,x depends on the choice of m, so that we
do not yet know that we can choose one open neighborhood at x to work for all m. The
rest of the argument is devoted to removing this dependence.)

Applying the above argument to F = OX , we see there is some power L`x which is
globally generated on a neighborhood V of x. For each i = 0, 1, . . . , `x−1, let Vi = Umx+i,x

denote an open neighborhood of x along which F ⊗ L⊗mx+i is globally generated. Taking
intersections of V and all the Vi, we obtain an open set Wx. Suppose that m ≥ mx and
write m = mx + i + q`x for some integer q ≥ 0 and some non-negative i ≤ `x − 1. By
Exercise 10.1.18 the sheaf

F ⊗ L⊗m ∼= (F ⊗ L⊗mx+i)⊗ (L⊗`x)⊗q

is globally generated at every point of Wx.
Since X is quasicompact closed points are dense in X. Again applying quasicompact-

ness, we can choose a finite set of points xi such that the corresponding sets Wxi cover
X. If we set m0 to be the supremum of the various mxi we see that F ⊗ L⊗m is globally
generated for every m ≥ m0. This shows that L is ample.

12.4.2 Kodaira vanishing

Suppose that X is a smooth projective variety over a Noetherian ring A and that L is an
ample invertible sheaf on X. Theorem 12.4.1 guarantees that the higher cohomology groups
H̆ i(X,L⊗m) = 0 vanish when m is sufficiently large. It is natural to ask for an explicit
bound on m which guarantees the vanishing of the higher cohomology. As discussed in
Remark 12.4.4 such a bound is vital for explicit computations.

Siu’s version of Matsusaka’s Big Theorem identifies an explicit bound for m in Theorem
12.4.1 using the intersection numbers of L and of the canonical bundle ωX . Unfortunately
the bound is enormous (for example it is doubly exponential in dim(X)) and thus hard to
apply in practice.

Instead of focusing on the constant m, it is usually better to use the following founda-
tional theorem to give explicit bounds on vanishing of cohomology.

Theorem 12.4.2 (Kodaira’s Theorem). Let K be a field of characteristic 0 and let X be a
smooth projective K-scheme. Then for any ample invertible sheaf L and any i > 0 we have

H̆ i(X,ωX ⊗ L) = 0.
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There are also vanishing theorems for cohomology which use other sheaves of differential
forms Ωp

X , but Kodaira’s Theorem is the most famous and the most frequently used. The
assumption on the characteristic is essential – the theorem does not hold in characteristic
p – but some of the ideas can be extended to arbitrary characteristic.

Kodaira’s Theorem indicates that the theory of ample invertible sheaves works best
when we include a “twist” by the canonical line bundle. In fact, it turns out that many
features of the geometry of X are controlled by the positivity of the canonical line bundle.
For example, if X is a Fano variety (i.e. a variety such that ωX is antiample) then Kodaira’s
theorem shows the vanishing of the higher cohomology groups of every ample line bundle
on X.

12.4.3 Euler characteristic

In most cohomology theories we obtain an interesting invariant by taking an alternating
sum of the dimensions of the cohomology groups. For example, when X is a manifold
then the alternating sum of its cohomology groups is known as the Euler characteristic.
The Euler characteristic of a manifold satisfies many nice properties that the cohomology
groups do not: for example, it is additive for inclusion/exclusion and is multiplicative for
fibrations.

The corresponding construction for the Čech cohomology groups is also known as the
Euler characteristic.

Definition 12.4.3. Let X be a projective K-scheme and let F be a coherent sheaf on X.
We define the Euler characteristic of F to be

χX(F) :=
∑
i≥0

(−1)i dimK H̆
i(X,F).

By dimensional vanishing (Theorem 12.2.5) only finitely many cohomology groups are
non-zero and by Theorem 12.3.3 the dimension of each H̆ i will be finite. Thus we see that
χX(F) will always be an integer.

Remark 12.4.4. Just like its counterpart for manifolds the Euler characteristic of a co-
herent sheaf is “topological” in nature, depending only on the Chern classes of the sheaf
F . (This principle is made precise by the Hirzebruch-Riemann-Roch theorem; we will see
an instance of this principle in Theorem 12.5.5.)

Remember, one of our motivating problems is to the computation of the space of global
sections of a coherent sheaf. Although this problem is challenging, it is much easier to
compute the Euler characteristic. In the best situations the higher cohomology will vanish,
in which case the two constructions coincide and we can compute global sections using
“topological techniques.”

Exercise 12.4.5. Compute the Euler characteristic of O(m) on PnK.
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Exercise 12.4.6. Let X be a projective K-scheme and let 0 → F → G → H → 0 be an
exact sequence of coherent sheaves on X. Prove that

χX(G) = χX(F) + χX(H).

12.4.4 Exercises

Exercise 12.4.7. Let X be a projective scheme over a Noetherian ring A and let L be an
invertible sheaf on X. Prove that L is ample if and only if L|Xred is ample. (Hint: for the
reverse implication, suppose that Xred is defined by the ideal sheaf I. For a coherent sheaf
F on X and consider the filtration

0 = IrF ⊂ Ir−1F ⊂ . . . ⊂ IF ⊂ F

Show that each quotient InF/In−1F can be interpreted as a sheaf on Xred and thus is a
suitable candidate for Serre Vanishing.)

Exercise 12.4.8. Let X be a projective scheme over a Noetherian ring A and let L be
an invertible sheaf on X. Prove that L is ample if and only if the restriction of L to each
component of X is ample. (Hint: it may be convenient to apply the previous exercise to
assume that X is reduced. Then use a similar trick as in the hint to that exercise.)
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12.5 Cohomology of line bundles on curves

As discussed in Section 10.1, we can study the morphisms from a projective scheme X by
classifying the invertible sheaves on X and then studying their sections. In general the
problem of identifying the space of global sections for an invertible sheaf is quite difficult.
In this section we discuss this problem for curves.

12.5.1 Riemann-Roch for curves

For the rest of this section our standing assumption is that C is a projective, smooth,
geometrically integral curve over a field K. We will condense these assumptions by saying
that C is a “good” curve. In Section 10.5 we analyzed the Picard group of a good curve
C; the main tool was the degree homomorphism deg : Pic(C)→ Z.

In this section we will systematically analyze the Čech homology groups of invertible
sheaves on C. We will need one key fact:

Fact 12.5.1 (Serre duality). Let C be a good curve over a field K and let L be an invertible
sheaf on X. We have a duality

H̆1(C,L)∨ ∼= H̆0(C,ΩC ⊗ L∨).

This fact gives a geometric interpretation to the higher cohomology groups of invertible
sheaves.

We now can give two new definitions of the genus:

Definition 12.5.2. Let C be a good curve. The geometric genus of C is defined to be
H̆0(C,ΩC/K). The arithmetic genus of C is defined to be 1− χ(OC).

Remark 12.5.3. Both definitions make sense in more general situations (including for
higher dimensional varieties). The arithmetic genus is defined for singular curves in exactly
the same way. In contrast, the geometric genus is usually defined by first replacing C by
its normalization.

Applying Serre duality, we quickly see:

Corollary 12.5.4. Let C be a good curve over a field K. Then the arithmetic genus and
geometric genus coincide and are both equal to dim H̆1(C,OC).

Proof. Let g denote the geometric genus of C. Then dimH1(C,OC) = g by Serre duality.
Furthermore since C is geometrically integral we see that dimH0(C,OC) = 1. This implies
that the arithmetic genus is also g.

The key theorem in this section is Riemann-Roch which relates the cohomology groups
of L to its degree. As discussed earlier, this is the first instance of the general principle
that the Euler characteristic is “topological” in nature.
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Theorem 12.5.5 (Riemann-Roch). Let C be a good curve of genus g over a field K. Then
for any invertible sheaf L on C we have

χC(L) = deg(L) + χC(OC)

= deg(L) + 1− g.

This statement is the “easy” version of Riemann-Roch. Sometimes people combine
Serre duality with Riemann-Roch to obtain the “hard” version of Riemann-Roch.

Proof. For any closed point p we have an exact sequence

0→ Ip → OC → i∗Op → 0.

Note that the leftmost sheaf is isomorphic to OC(−p) since p is a Cartier divisor on C.
Tensoring by an invertible sheaf T , we obtain

0→ T (−p)→ T → i∗Op ⊗ T → 0.

Since the rightmost term is supported on a single point, we have

χC(i∗Op ⊗ T ) = dimK H̆
0(C, i∗Op ⊗ T )

= dimK H̆
0(p, T |p) = dimK H̆

0(p,Op)

Using additivity of the Euler characteristic we conclude that χC(T ) = χC(T (−p))+deg(p).
Now suppose that L has a rational section

∑
aipi. By applying the formula above

repeatedly while we add on the closed points one-by-one to OC , we see that χC(L) =
χC(OC) +

∑
ai deg(pi). But the latter quantity is how we defined deg(L).

Finally, we are able to compare the new definitions of genus in Definition 12.5.2 with
our original definition in Definition 11.6.1.

Corollary 12.5.6. Let C be a good curve over a field K of geometric genus g. Then
deg(Ω1

C) = 2g − 2.

Proof. By definition H̆0(C,Ω1
C) = g and by Serre duality H̆1(C,Ω1

C) = 1. We then apply
Theorem 12.5.5.

12.5.2 Cohomology groups of invertible sheaves

Riemann-Roch is most useful when we can understand either H̆0 or H̆1.

Proposition 12.5.7. Let C be a good curve over a field K and let L be an invertible sheaf
on C.

(1) If deg(L) < 0 then H̆0(C,L) = 0.
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(2) If deg(L) > 2g − 2 then H̆1(C,L) = 0 and dim H̆0(C,L) = deg(L) + 1− g.

Proof. (1) If L has a global section, then this section defines an effective Cartier divisor D
such that OC(D) ∼= L. Since there is no effective divisor with negative degree, we deduce
that no invertible sheaf of negative degree can have a section. (2) follows from (1) by Serre
duality.

In particular, in these degree ranges the behavior of cohomology is entirely determined
by the degree. This is a very useful property!

deg(L) < 0 0 1 . . . 2g − 3 2g − 2 > 2g − 2

dim H̆0 0 ? ? . . . ? ? deg(L) + 1− g
dim H̆1 g − 1− deg(L) ? ? . . . ? ? 0

The cohomology groups in the intermediate range are more subtle. In this range, the
cohomology groups will depend upon the isomorphism type of the bundle (and not just
the degree). The first instance of this principle can be seen in the “boundary” cases:

Proposition 12.5.8. Let C be a good curve over a field K.

(1) If deg(L) = 0 then H̆0(C,L) = 0 unless L ∼= OC (in which case H̆0(C,L) ∼= K).

(2) If deg(L) = 2g − 2 then dim H̆0(C,L) = g − 1 unless L ∼= Ω1
C (in which case

dim H̆0(C,L) = g).

Proof. (1) Suppose that L has a global section. This defines a non-zero morphism φ :
OX → L. This morphism is necessarily injective: since L is torsion-free the image must
be a locally free sheaf of rank 1. This implies that the kernel of φ is a torsion sheaf, and
since OX is torsion-free we conclude that the kernel is 0. Let K denote the cokernel of L.
Then we have

H̆0(C,K) = χC(K) = χC(L)− χ(OC) = deg(L)− deg(OX) = 0.

This means that K = 0 and φ must be a bijection. (2) follows from (1) by Serre duality.

We could continue to discuss the next “boundary” cases explicitly. For example:

Exercise 12.5.9. Let C be a good curve over a field and suppose that L is an invertible
sheaf on C of degree 1. Prove that dim H̆0(C,L) ≤ 2 and that equality is attained if and
only if C ∼= P1 and L ∼= O(1).
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12.5.3 Twisting by a fixed point

Suppose that C admits a K-point p. Let Picd(C) denote the set of line bundles of degree
d; note that each Picd(C) is a coset of the subgroup Pic0(C). Then ·p defines a bijection
Picd(C)→ Picd+1(C).

Here is our plan: suppose we start with an invertible sheaf L ∈ Pic0(C). We can
then study the behavior of the cohomology groups of L(kp) as we increase the coefficient
k. Note that as we vary L ∈ Pic0(C) the set of twists will exhaust all possible invertible
sheaves on C. Thus if we can understand this operation well enough we will in obtain a
somewhat complete picture of the cohomology groups of invertible sheaves on C. (Note
however that our sequences will depend very heavily on the choice of p – there certainly is
not a “canonical” choice!)

Exercise 12.5.10. Suppose that C is a good curve with a K-point p. Let T be any
invertible sheaf on p. Show that either

• dim H̆0(C, T (p)) = dim H̆0(C, T ) + 1, or

• dim H̆1(C, T (p)) = dim H̆1(C, T )− 1.

The previous exercise shows that the sequence of cohomology groups of L(kp) is very
simple: at each step either dim H̆0 increases by 1 or dim H̆1 decreases by 1. It turns out
that for a general invertible sheaf L ∈ Pic0(C) we expect to get the simplest sequence
possible:

k 0 1 2 . . . g − 2 g − 1 g . . . 2g − 3 2g − 2

dim H̆0(C,L(kp)) 0 0 0 . . . 0 0 1 . . . g − 2 g − 1

dim H̆1(C,L(kp)) g − 1 g − 2 g − 3 . . . 1 0 0 . . . 0 0

For non-general invertible sheaves L ∈ Pic0(C) it is possible for both H̆0 and H̆1 to be
larger than this “expected value” by the same amount. The behavior can be a bit subtle,
depending on the bundle L in interesting ways.

Example 12.5.11. Let K be an algebraically closed field. We say that a good curve C
over K is hyperelliptic if C admits a degree 2 finite dominant morphism f : C → P1. (This
condition is usually studied only when the genus of C is ≥ 2.)

If C is hyperelliptic, then L := f∗O(1) is a degree 2 invertible sheaf on C (sometimes
called the “hyperelliptic line bundle”). It is clear that L is basepoint free and by Exercise
12.5.14 we have dim H̆0(C,L) ≥ 2. In fact, we claim that if the genus is ≥ 1 then we must
have dim H̆0(C,L) = 2. Indeed, since L is basepoint free, for any point p ∈ C we have
dim H̆0(C,L − p) = dim H̆0(C,L)− 1 and we conclude by Exercise 12.5.9. (Note that the
dimension of the space of global sections “differs” from the expected value for a general
degree 2 line bundle on C.)
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Suppose now that C is hyperelliptic of genus ≥ 2. Since L is basepoint free, for any
positive integer r we have

dim H̆0(C,L⊗r) ≥ dim Symr(H̆0(C,L))

= r + 1

Applying this result with r = g − 1, Proposition 12.5.8 shows that L⊗g−1 ∼= Ω1
C . Further-

more, since in this case we have equality in the equation above we see that H̆0(C,Ω1
C) ∼=

Symg−1(H̆0(C,L)) and thus the sections of Ω1
C define the map which is the composition of

f : C → P1 with the (g − 1)-Veronese embedding P1 → Pg−1.
Since every section of H̆0(C,L⊗g−1) comes from a symmetric product of H̆0(C,L), the

same must be true for all smaller tensor powers so that we have an equality dim H̆0(C,L⊗r) =
r + 1 for any 1 ≤ r ≤ g − 1.

In fact, Clifford’s theorem shows that the “largest possible” space of sections occur for
tensor products of the hyperelliptic line bundle as in Example 12.5.11.

Theorem 12.5.12 (Clifford’s Theorem). Let C be a good curve over a field K. If T is an
invertible sheaf on a curve C such that H̆1(C, T ) > 0 then

dim H̆0(C, T ) ≤ deg(T )

2
+ 1

with equality iff T = OC , Ω1
C , or C is hyperelliptic and T is a positive tensor power of the

hyperelliptic line bundle L.

12.5.4 Exercises

Exercise 12.5.13. Let C be a good curve over an algebraically closed field. Prove that if
L is an invertible sheaf on C and deg(L) ≥ 2g then L is basepoint free.

Exercise 12.5.14. Let C,Z be good curves over a field K and suppose that f : C → Z is a
finite morphism. Let L be an invertible sheaf on Z. Show that we have dim H̆0(C, f∗L) ≥
dim H̆0(Z,L). Give an example where a strict inequality is achieved.

Exercise 12.5.15. Let C be a good curve of genus 0 over a field K.

(1) Show that C ∼= P1
K if and only if C has a K-point.

(2) Show that there is a closed embedding of C into P2 as a conic curve. In particular
show that C has a point of degree ≤ 2.

Exercise 12.5.16. Let C be a good curve of genus 2 over an algebraically closed field.

(1) Show that Ω1
C is basepoint free but not very ample. Since H0(C,Ω1

C) = 2, we obtain
a morphism f : C → P1.
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(2) Show that the morphism f is a finite morphism of degree 2. In particular, every
genus 2 curve is hyperelliptic.

Exercise 12.5.17. Let C be a good curve of genus 3 over an algebraically closed field.
Suppose that C is not hyperelliptic. Then show that C admits a closed embedding into P2

as a degree 4 curve.
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12.6 Ample line bundles on curves

In this section our goal is to classify the ample line bundles on a smooth projective curve.
Along the way we will develop a new criterion for showing that a line bundle is very ample.

12.6.1 Closed embedding criterion

Definition 12.6.1. Let K be an algebraically closed field. Suppose that f : X → Y is a
morphism of K-schemes. We say that:

(1) f is injective on points, if f is set-theoretically injective on closed points.

(2) f is injective on tangent vectors, if for any closed point p ∈ X the induced map of
Zariski tangent spaces TX,p → TY,f(p) is injective. (Note that since K is algebraically
closed we do indeed have a morphism of Zariski tangent spaces.)

The following theorem describes one of the most useful tests for a morphism to be a
closed embedding over an algebraically closed field K. It is essentially a repackaging of
Theorem 4.2.12 which shows that a finite morphism whose fibers are defined by Artinian
rings of dimension 1 will be a closed embedding.

Theorem 12.6.2. Let K be an algebraically closed field. Suppose that f : X → Y is
a projective morphism of K-schemes that is injective on points and injective on tangent
vectors. Then f is a closed embedding.

The projective hypothesis is necessary, e.g. to rule out open embeddings. The assump-
tion on the ground field is also necessary: it is only when K is algebraically closed that the
“injective on tangent vectors” condition guarantees that the fibers have degree 1. (If we
tried to weaken the hypothesis to allow arbitrary fields, the morphism Spec(C)→ Spec(R)
would give a counterexample.)

Proof. Since closed embeddings are local on the target, it suffices to consider the case when
Y is affine. We know that every non-empty fiber of f over a closed point of Y has dimension
0. Since fiber dimension is upper semicontinuous, we deduce that every non-empty fiber
of f has dimension 0. Then f is a projective morphism with finite fibers, hence a finite
morphism by Corollary 12.3.6.

We claim that the the degree of f over every closed point is either 0 or 1. Indeed,
suppose that q ∈ Y is a (reduced) closed point with non-empty fiber. Since f is injective
on points, the fiber over q consists of a unique point p. Since f is injective on tangent
spaces, the map mq/m

2
q → mf/m

2
f is surjective. By Nakayama’s lemma we deduce that the

image of the map OY,q → OX,p contains the maximal ideal. Since K is algebraically closed
the residue field of both p and q is isomorphic to K, and thus we deduce that OY,q → OX,p
is surjective. By tensoring we see that the map OY,q/mq → OX,p/mq is also surjective,
showing that this latter ring has dimension 1 over the residue field.
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Since the degree of the fiber is an upper semicontinuous function, we conclude that the
degree of f over every point is either 0 or 1. We conclude that f is a closed embedding by
Theorem 4.2.12.

We now translate Theorem 12.6.2 into a criterion for very ampleness.

Definition 12.6.3. Let K be an algebraically closed field. Let X be a projective K-scheme
and let L be an invertible sheaf on X. Let V ⊂ H̆0(X,L) be a subspace. We say that:

(1) V separates points, if for any two distinct closed points p, q ∈ X there is a Cartier
divisor D parametrized by V such that p ∈ Supp(D) but q 6∈ Supp(D).

(2) V separates tangent vectors, if for any closed point p ∈ X and any vectors t in the
Zariski tangent space TX,p there is a Cartier divisor D parametrized by V such that
p ∈ Supp(D) but t is not in the codimension 1 subspace of TX,p cut out by D.

Corollary 12.6.4. Let X be an algebraically closed field. Let X be a projective K-scheme
and let L be an invertible sheaf on X. If sections of L separate points and tangent vectors
then L is very ample.

Proof. Let f : X 99K PN be the morphism defined by sections of L. Since the sections of L
separate points, we see that L is globally generated and the morphism f is injective. We
claim that f is also injective on tangent vectors. Indeed, suppose we fix a point p ∈ X
and consider the linear subspace W of H̆0(X,L) parametrizing Cartier divisors containing
p. We can then identify TPN ,f(p) as the set of codimension 1 subspaces of W . Then the
map of Zariski cotangent spaces TX,p → TPN ,f(p) is defined by sending a tangent vector t to
the subspace Wt parametrizing Cartier divisors which contain p and whose tangent planes
contain t. Since sections of L separate tangent vectors we see that the kernel of this map
is 0.

Often it is useful to reformulate Definition 12.6.3 as follows.

Corollary 12.6.5. Let X be an algebraically closed field. Let X be a projective K scheme
and let L be an invertible sheaf on X. Suppose that for every closed subscheme Z ⊂ X
which has dimension 0 and length 2 we have that the induced map

H̆0(X,L)→ H̆0(Z,L|Z)

is surjective. Then L is very ample.

Proof. First suppose that Z is the union of two distinct closed points. Applying the
hypothesis to Z, we see that sections of L separate points. Next fix a tangent vector
t at a closed point p and let Z denote the image of the morphism Spec(K[t]/t2) → X
which defines this tangent vector. Applying the hypothesis to Z, we see that sections of L
separate tangent vectors.
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12.6.2 Ample invertible sheaves on curves

We can now classify ample invertible sheaf on curves. We start with a special case:

Lemma 12.6.6. Let C be a smooth projective integral curve over an algebraically closed
field K and let L be an invertible sheaf on C. Then L is ample if and only if deg(L) > 0.

Proof. If L is ample, then for some positive integer r the sheaf L⊗r must admit global
sections. By Proposition 12.5.7 we see that 0 < deg(L⊗r) < r deg(L).

Conversely, it suffices to show that any invertible sheaf T of degree ≥ 2g + 1 is very
ample. We will apply Corollary 12.6.5. First choose two different points p, q ∈ C. Then
we have an exact sequence

0→ T (−p− q)→ T → (i∗Op ⊕ i∗Oq)⊗ T → 0.

Since both p and q must be K-points (as K is algebraically closed), the degree of the
leftmost term is at least 2g − 1. By Proposition 12.5.7 we have H̆1(C, T (−p − q)) = 0.
This means that the map on the right induces a surjective map of global sections so that
sections of T separate points. Consider now the sequence

0→ T (−2p)→ T → (i∗O2p)⊗ T → 0.

Note that i∗O2p represents the structure sheaf of a non-reduced scheme at p which records
the data of a tangent vector at p. Furthermore since T is invertible tensoring by T does
not change the isomorphism type of the underlying module. Repeating the argument from
above, the rightmost map induces a surjection on global sections. Thus sections of T
separate tangent vectors.

We deduce the statement over an arbitrary field using a base change argument.

Theorem 12.6.7. Let C be a smooth projective geometrically integral curve over a field
K and let L be an invertible sheaf on C. Then L is ample if and only if deg(L) > 0.

Proof. If L is ample, then for some positive integer r the sheaf L⊗r must admit global
sections and as before Proposition 12.5.7 implies that deg(L) > 0.

Conversely, it suffices to show that any invertible sheaf T of degree ≥ 2g + 1 is very
ample. By Lemma 12.6.6 we know that the base change TK is very ample. Exercise 9.1.24
shows that H0(C, T ) ⊗ K ∼= H0(CK, TK). In particular, this implies that T is basepoint
free if and only if TK is basepoint free. Furthermore, since f : CK → PnK is injective we see

that f : C → PnK is also injective. Finally, since K is a flat K-module we also see that the

surjectivity of the sheaf map f
]

implies the surjectivity of f ]. Altogether we see that since
f is a closed embedding, the map f is as well.
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Example 12.6.8. Let C be a curve of genus 2 over an algebraically closed field and let
p, q, r be general points of C. Then OC(p + q − r) is an ample invertible sheaf with no
sections. Indeed, it is ample since it has positive degree. To see that it has no sections, we
need to use the Jacobian. The degree 1 line bundles which admit sections will lie in the
image of the map C → Jac(C) sending p 7→ OC(p). In particular, since dim Jac(C) = 2,
a general invertible sheaf of degree 1 has no sections. On the other hand, every degree 2
line bundle can be written as O(p + q) for some choices p, q ∈ C. By generality of p, q, r
we obtain the desired statement.

12.6.3 Exercises

Exercise 12.6.9. Let X be an smooth K-variety of dimension 1. Suppose that X is not
proper over K. Prove that X is affine. (Hint: embed X in a regular projective curve
X. Identify a very ample divisor on X whose support is exactly equal to the complement
X\X.
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12.7 Hilbert polynomials

Using the Euler characteristic, we can obtain a general definition of the Hilbert polynomial
(extending the definition of Section 6.1).

Definition 12.7.1. Let X be projective K-scheme equipped with a very ample divisor L.
Let F be a coherent sheaf on X. We define the Hilbert polynomial of F with respect to L
to be the function PF : Z→ Z which sends d 7→ χX(F ⊗ L⊗d).

The Hilbert polynomial for X is defined to be the Hilbert polynomial of OX . We will
denote it by PX .

Since the choice of a very ample divisor L is equivalent to the choice of a closed embed-
ding X ↪→ PnK (up to change of coordinates), it is also quite common to discuss the Hilbert
polynomials of coherent sheaves on closed subschemes of PnK.

The following result justifies our nomenclature for PF .

Proposition 12.7.2. Let X be a projective K scheme equipped with a very ample divisor
L and let F be a coherent sheaf on X. Then the function PF in Definition 12.7.1 is a
polynomial function.

Proof. By pushing forward F under a closed immersion X ↪→ PnK we reduce to the case
where F is a coherent sheaf on PnK. By performing a base change to an algebraically closed
field, we may also assume that K is infinite. In particular, this implies that there is a
hyperplane H that doesn’t contain any of the (finitely many) associated points of F . Let
f be the function defining H.

Tensor the exact sequence

0→ O(−1)→ OPn → i∗OH → 0

by F to obtain the exact sequence

F(−1)→ F → i∗F|H → 0.

We claim that this sequence is exact on the left as well. Indeed, suppose we fix an open
affine U and let M denote the module defining F on U . By assumption the vanishing locus
of f |U does not contain any associated point of M . Equivalently, this means that f is not

a zero divisor on M so that M
·f−→M is injective.

Note that O(m) is flat and that Om|H is identified with O(m) on the smaller projective
space. Thus for every m we have an exact sequence

0→ F(m− 1)→ F(m)→ i∗(F|H(m))→ 0.

Thus we have PF (m)− PF (m− 1) = PF|H (m). By induction on dimension the rightmost
term is a polynomial. Since a function whose difference equation is polynomial will itself
be polynomial, we conclude the desired statement.
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Our main theorem in this section gives a direct relationship between flatness and the
Hilbert polynomial.

Theorem 12.7.3. Let f : X → Y be a projective morphism with Y locally Noetherian.
Suppose that F is a coherent sheaf on X. If F is flat over Y , then the Hilbert polynomial
of the fibers PF|Xy (d) is locally constant. If Y is reduced, then the converse is also true.

As usual, we need a reducedness assumption when we hope to deduce something about
a sheaf from a property of its fibers.

Proof. Since the statement is local on Y , we may assume Y = Spec(S) is affine and S is
a Noetherian ring. In this case f factors through a closed embedding g : X → PnS . Since
F is flat over Y if and only if g∗F is flat over Y and since Exercise 12.2.9 shows that the
Hilbert polynomial can be computed after taking a closed embedding, we reduce to the
case where X = PnS .

Claim 12.7.4. F is flat over Y if and only if for m sufficiently large the S-module
H̆0(PnS ,F(m)) is locally free.

Proof of claim: To prove the forward implication, choose m sufficiently large so that the
higher cohomology of F(m) on PnS vanishes. Consider the Čech complex C̆•(U,F(m)) for
F(m) with respect to the standard affine cover of PnS . Since F is flat over Spec(S), each
term in the sequence will be a flat S-module. Furthermore, since the cohomology vanishes
this sequence is exact except at the 0th term where the kernel is H̆0(PnS ,F(m)). This

implies that H̆0(PnS ,F(m)) is also flat. In particular, since it is a flat coherent sheaf on
Spec(S) it is locally free.

To prove the reverse implication, choose m0 sufficiently large so that H̆0(PnS ,F(m)) is
locally free. Let M be the graded S[x0, . . . , xn]-module⊕

m≥m0

H̆0(PnS ,F(m))

As a direct sum of flat S-modules, M is flat over A. Furthermore by Theorem 9.6.19 we
have that M̃+ ∼= F . In particular, since flatness is preserved by localization, we see that
all the stalks of F are flat over the corresponding localizations of S. We conclude that F
is flat over Y .

Since Y is affine, the S-module H̆0(PnS ,F(m)) defines the sheaf f∗F(m). The next step
is to compare the stalks f∗F(m)y with the fiberwise sections fPny |∗(F|Pny ). (Recall that in
general there is no easy comparison between these two objects; this is a very special feature
of our specific situation.)

Claim 12.7.5. Fix a point y ∈ Y . Then for sufficiently large m the rank of H̆0(PnS ,F(m))
at y is the same as PF|Pny

(m).



12.7. HILBERT POLYNOMIALS 481

Proof. We first prove this when y is a closed point. Since S is Noetherian we have an exact
sequence

O⊕rY → OY → κ(y)→ 0. (12.7.1)

This sequence remains exact upon tensoring by f∗F (since ⊗ is right exact). We now apply
Serre vanishing to the kernel of OY → κ(y) to see that we get an exact sequence of global
sections

H̆0(PnS ,F(m)⊕r)→ H̆0(PnS ,F(m))→ H̆0(PnS ,F(m)|Pny )→ 0

for m sufficiently large. On the other hand, if we tensor Equation 12.7.1 by H̆0(PnS ,F(m))
we get

H̆0(PnS ,F(m))⊕r → H̆0(PnS ,F(m))→ H̆0(PnS ,F(m))⊗ κ(y)→ 0. (12.7.2)

Comparing, we see that for m sufficiently large the fiber of H̆0(PnS ,F(m)) is isomorphic

to H̆0(PnS ,F(m)|Pny ). In turn, this latter group has dimension PF|Pny
(m) for m sufficiently

large by Serre vanishing.
For arbitrary points y, we first base change over OY,y. Since this is a flat OY -module,

the base change preserves exactness of the Čech complex and thus we have the identification

H̆0(PnS ,F(m))⊗OY,y ∼= H̆0(PnOY,y ,F(m)|Spec(OY,y))

(see Proposition 13.4.4 for more details). We then repeat the argument above.

By combining the two claims, we immediately see that if F is flat then the Hilbert
polynomial is constant. Conversely, if the Hilbert polynomial is constant then the second
claim shows that f∗F has constant rank. Since Y is reduced, Theorem 9.5.5 shows that
f∗F is locally free and then the first claim shows that F is flat.

In particular, this shows:

Corollary 12.7.6. Let Y be a locally Noetherian scheme. Suppose that X is a closed
subscheme of PnY and consider the projection map f : X → Y . If f is flat, then the
dimension and the degree of the fibers Xy is locally constant over Y .

Proof. As discussed in Chapter 6 both properties of Xy can be detected from the Hilbert
polynomial.

We also point out the following important special case:

Theorem 12.7.7. Let f : X → Y be a projective morphism with Y locally Noetherian.
Suppose that F is a coherent sheaf on X that is flat over Y . Then as we vary y ∈ Y the
Euler characteristic of the fibers

χXy(F|Xy) =
∑
i≥0

(−1)i dim H̆ i(Xy,F|Xy)

is a locally constant function.
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12.7.1 Exercises

Exercise 12.7.8. Let K be an algebraically closed field. Compute the Hilbert polynomials
of:

(1) A smooth degree d hypersurface in Pn.

(2) The dth Veronese embedding of Pm.

Exercise 12.7.9. Show that if X ⊂ Y are two closed subschemes of Pn then we have
PX(d) ≤ PY (d) for every sufficiently large integer d.

Exercise 12.7.10. Let R = K[t, t−1] and consider the closed subscheme X ⊂ P3
R defined

by the ideal
I = (t2(xw + w2)− z2, tx(x+ w)− yz, xz − twy)

This is a flat family whose fibers are twisted cubics in P3. We are interested in taking a
flat limit as t→ 0.

(1) Show that the limit is set-theoretically contained in the plane z = 0.

(2) Compute the Hilbert polynomial of a twisted cubic and the Hilbert polynomial for a
nodal plane curve. Show that their Hilbert polynomials are not the same.

(3) Show that the flat limit is defined by the ideal

(z2, yz, xz, y2w − x2(x+ w)).

In other words, the flat limit is a non-reduced planar curve with an associated point
at the node whose non-reduced structure points “out of the plane.” (By the previous
step, we could have predicted the existence of the non-reduced structure from a
Hilbert polynomial calculation.)



Chapter 13

Derived functors

Up to this point we have defined many left-exact functors F on the category of OX -modules
(such as the global sections functor, the pushforward, etc.). In this chapter we will study the
associated right derived functors: a sequence of functors RiF which measure the “failure”
of F to be exact.

Since the construction of right derived functors is purely formal, our first task is usually
to recast these functors in more concrete language. We will ask similar questions in each
case: do these right derived functors preserve quasicoherence? What happens if we apply
them to an affine scheme?

We will also give two types of applications. First, our results will clarify the geometric
behavior of the pushforward functor f∗. More precisely, we will discuss two important the-
orems – the Cohomology and Base Change theorem and the Theorem on Formal Functions
– which sometimes allow us to understand the stalks and fibers of f∗F more explicitly.
When these theorems apply, we can get a better handle on the (somewhat mysterious)
sheaf f∗F .

The second application is Serre Duality. One of the fundamental properties of Hodge
groups is the duality Hp,q(X) ∼= Hn−p,n−q(X)∨ obtained via integration of differential
forms. Serre Duality translates this duality into the setting of algebraic geometry. Just
as in the complex setting, the key player is the canonical bundle ωX =

∧dimX Ω1
X and its

homology groups.

13.0.1 Algebraic preliminaries

We will briefly review the foundations of derived functors.

483
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Injective objects

Definition 13.0.1. Let C be an abelian category. An object I ∈ C is said to be injective
if for every monomorphism f : X ↪→ Y and for every map g : X → I there admits a “lift”
g̃ : Y → I fitting into a commutative diagram

X �
� f //

g

��

Y

g̃~~
I

Equivalently, I is injective if the functor Hom(−, I) is exact.

Example 13.0.2. The injective objects in Ab are the divisible abelian groups.

Injective resolutions

Let C be an abelian category. An injective resolution of an object A ∈ C is an exact
sequence

0→ A→ I0 d0−→ I1 d1−→ I2 d2−→ . . .

where each Ij is an injective object of C.

Remark 13.0.3. There is a dual theory of projective resolutions of an object A (which
extend to the left from A). We won’t discuss it here.

Definition 13.0.4. Let C be an abelian category. We say that C has enough injectives if
every object A ∈ C admits a monomorphism into an injective object I.

It is clear that if C has enough injectives, then every object admits an injective resolu-
tion. In fact, even more is true:

Lemma 13.0.5. Let C be an abelian category.

(1) Suppose we have objects A,B ∈ C with an arbitrary resolution 0→ A→ Q• and an
injective resolution 0 → B → I•. Given a morphism f : A → B, there is a lift to a
map of complexes f• : Q• → I• making a commutative diagram

0 // A //

f

��

Q0 d0 //

f0

��

Q1 d1 //

f1

��

Q2 d2 //

f2

��

. . .

0 // B // I0 d0 // I1 d1 // I2 d2 // . . .

Furthermore, this map of complexes f• is unique up to chain homotopy.
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(2) Suppose we have an exact sequence 0 → A1 → A2 → A3 → 0 in C and injective
resolutions g1 : A1 → I•1 and g3 : A3 → I•3 . Then there is an injective resolution
g2 : A2 → I•2 and a commutative diagram with exact rows

0 // A1
//

g1
��

A2
//

g2
��

A3
//

g3
��

0

0 // I•1
// I•2

// I•3
// 0

Right derived functors

Let C,D be abelian categories and suppose that F : C→ D is a left-exact functor, i.e. for
any exact sequence 0→ A1 → A2 → A3 → 0 in C the sequence

0→ F (A1)→ F (A2)→ F (A3)

is exact. We can extend this sequence to the right using the right derived functors.

Definition 13.0.6. Let F : C → D be a left-exact functor. Suppose that C has enough
injectives. For each i ≥ 0 we define the right-derived functor RiF as follows.

Given an object A ∈ C, let

0→ A→ I0 d0−→ I1 d1−→ I2 d2−→ . . .

be an injective resolution. Then we define RiF (A) to be the ith cohomology group of the
sequence

0→ F (A)→ F (I0)
F (d0)−−−→ F (I1)

F (d1)−−−→ F (I2)
F (d2)−−−→ . . .

One can show that the cohomology groups of this complex do not depend on the choice of

injective resolution by applying Lemma 13.0.5.(1) several times to A
id−→ A.

Given a morphism f : A → B in C, we get an induced morphism RiF (A) → RiF (B)
from Lemma 13.0.5.(1).

It is clear that R0F = F . The key property of the right derived functors is that a short
exact sequence 0→ A1 → A2 → A3 → 0 in A yields a long exact sequence

0→ F (A1)→ F (A2)→ F (A3)
δ0−→

→ R1F (A1)→ R1F (A2)→ R1F (A3)
δ1−→

→ R2F (A1)→ . . .

In fact, the following result shows that this property can be used to characterize derived
functors.
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Definition 13.0.7. Let F : C → D be a left exact functor between abelian categories.
Suppose we have a sequence of functors Gi : C → D for i ≥ 1 which satisfy the following
properties:

(1) The Gi form a δ-functor: for any short exact sequence 0 → A1 → A2 → A3 → 0 in
C, there are maps δj for j ≥ 0 which form a long exact sequence

0→ F (A1)→ F (A2)→ F (A3)
δ0−→

→ G1(A1)→ G1(A2)→ G1(A3)
δ1−→

→ G2(A1)→ . . .

Furthermore, any morphism of SES in C (that is, morphisms between corresponding
entries which form a commuting diagram) induces a morphism of the above LES in
D.

(2) The functor Gi is effaceable for every i > 0: or every object M of C, there is a
monomorphism φ : M → N to an object N of C that satisfies Gi(N) = 0.

We say that the Gi form an effaceable δ-functor for F .

Theorem 13.0.8. Let F : C→ D be a left exact functor between abelian categories. Sup-
pose that Gi, H i are effaceable δ-functors for F . Then Gi and H i are naturally isomorphic.

In particular, suppose that C has enough injectives. Then any effaceable δ-functor is
isomorphic to the right derived functors for F .

Acyclic objects

Definition 13.0.9. Let C,D be abelian categories and let F : C → D be a left exact
functor. Suppose that C has enough injectives. We say that an object A ∈ C is acyclic for
F if we have RiF (A) = 0 for all i > 0.

One can use acyclic objects in the place of injective objects when computing right
derived functors.

Proposition 13.0.10. Let F : C→ D be a left exact functor. Suppose that C has enough
injectives. Given an object A ∈ C, suppose we have an exact sequence

0→ A→ J0 → J1 → . . .

where J i is F -acyclic for every i ≥ 0. Then there is a natural isomorphism RiF (A) ∼=
H i(F (J•)).

Proof. The argument is the same as the proof of Corollary 12.1.8.
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13.0.2 Spectral sequences

We will avoid spectral sequences for the most part. However, there is one key result:
spectral sequences naturally arise from composition of left-exact functors.

Theorem 13.0.11 (Grothendieck spectral sequence). Let F : C → D and G : D →
E be left-exact functors between abelian categories. Suppose that C and D have enough
injectives. Suppose further that for any injective object I of C the image F (I) in D is
acyclic for G. Then for every object A ∈ C there is a spectral sequence with E2-page

Ep,q2 = RqG(RpF (A))

that converges to Rp+q(G ◦ F )(A).
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13.1 Injective and projective sheaves

Suppose that C,D are abelian categories. When constructing the derived functors of a left
exact (resp. right exact) functor F : C→ D, the key issue is whether the category A has
enough injectives (resp. projectives).

This issue is a little delicate when C is a category of sheaves on a scheme X. There
are many possible categories we could work in – abelian sheaves, OX -mod, quasicoherent
mod, coherent mod – and the injective/projective objects will behave a little differently
in each category. Generally speaking, the “looser” the category the easier it should be to
construct enough injectives/projectives, but the further away we are from the objects we
really care about. In particular, it is a priori possible that the same functor (e.g. the global
sections functor) could yield different derived functors as we vary the underlying category.

13.1.1 Enough injectives

Categories of sheaves often have enough injectives.

Theorem 13.1.1. Let (X,OX) be a ringed topological space. Then the category of OX-
modules has enough injectives.

Applying the result with OX = ZX we see that in particular the category of sheaves of
abelian groups on X has enough injectives. The proof is very similar to the construction
given in Exercise 7.4.10.

Proof. Let F be an OX -module. For every point x the category of OX,x-modules has
enough injectives, so there is an monomorphism Fx → Ix to an injective OX,x-module. We
let Ix denote the skyscraper sheaf with value Ix concentrated at the point x.

We claim that Ix is an injective OX -module. Indeed, for any OX -module G there is a
bijection

HomOX (G, Ix)↔ HomOX,x(Gx, Ix).

Using the lifting property for Ix we obtain the lifting property for Ix.
Note that F admits a monomorphism into the sheaf defined by U 7→

∏
x∈U Fx. The

sheaf in turn injects into the product sheaf
∏
x∈X Ix. Since a product of injective objects

is injective, this gives us the desired injection.

It is also true that the category of quasicoherent sheaves has enough injectives.

Theorem 13.1.2. Let X be a scheme. The category of quasicoherent sheaves on X has
enough injectives.

WhenX is a Noetherian scheme, one can use basically the same argument as in Theorem
13.1.1. Namely, given a quasicoherent sheaf F we fix a cover of open affines {Ui}, choose
a monomorphism from F(Ui) into an injective OX(Ui)-module Ii, and then use the sheaf
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⊕ifi∗(Ĩi). However in general this approach does not work and the theorem is more difficult
to prove.

Remark 13.1.3. One possible approach for constructing injective objects in QCoh(X) is
to show that for any injective OX -module I the corresponding sheaf Ĩ is an injective object
in the category of OX -modules. This approach works well when R is a Noetherian ring
(see [Har66, Chapter II Corollary 7.14]). However, for an arbitrary ring R and injective
R-module I the sheaf Ĩ may fail to be either injective or flasque. (This is closely related
to the fact that the injectiveness of a module need not be preserved under localization for
non-Noetherian rings.)

It is important to note that the category of coherent modules almost never has enough
injectives. This is true even for affine schemes: if R is an integral domain that is not
a field then the only finitely generated injective R-module is the 0 module. By similar
logic, injective objects in the categories QCoh(X) and OX−Mod are almost never finitely
generated.

13.1.2 Enough projectives

It is quite rare for a category of sheaves to have enough projectives. (This is unfortunate,
since projective objects in the category of R-modules are much easier to understand than
injective objects.)

Example 13.1.4. Let us show that the category of coherent sheaves on P1
K does not have

enough projectives.

Suppose we had a non-zero projective object P in the category of quasicoherent sheaves.
By Corollary 10.6.13 there is a surjection from a direct sum of line bundles onto F :

O(d)⊕r → F .

Note that the map O(d− 1)⊕O(d− 1)→ O(d) which is multiplication by x0 on the first
factor and multiplication by x1 on the second is a surjection. Replacing each instance of
O(d) by O(d− 1)⊕2, we find a surjection

O(d− 1)⊕2r φ−→ F

We claim that φ does not admit a splitting. Indeed, there is no non-zero morphism O(d)→
O(d− 1) and since O(d)⊕r surjects onto F we see that F also does not admit a non-zero
morphism to O(d− 1).

In fact, the category of sheaves of abelian groups on a locally connected topological
space has enough projectives if and only if every intersection of open sets in X is open (see
[Cla]). This condition will almost never hold for schemes.
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13.1.3 Comparing functors

As discussed in the introduction to the chapter, one can also compute derived functors
using acyclic objects. There is one type of acyclic object (for various functors) which is
used quite frequently.

Definition 13.1.5. Let X be a topological space and let F be a sheaf of abelian groups
on X. We say that F is flasque (or flabby) if for every inclusion of open sets V ⊂ U the
restriction map F(U)→ F(V ) is surjective.

The key advantage of this definition is that the notion of “flasque” is independent of the
underlying category. In particular, flasque sheaves can be useful for comparing the different
versions of a right derived functor arising from changing the underlying category of sheaves.
On the other hand, it is rare for flasque sheaves to show up in geometric situations – for
example, coherent sheaves are rarely flasque – so this notion is mainly useful as a tool for
proving theoretical statements.

In view of later applications, we prove a few basic properties of flasque sheaves.

Lemma 13.1.6. Let X be a topological space. Suppose that

0→ F φ−→ G ψ−→ H → 0

is an exact sequence of sheaves and that F is flasque. Then the sequence of global sections

0→ F(X)→ G(X)→ H(X)→ 0

is exact.

Proof. It suffices to show that ψ(X) : G(X)→ H(X) is surjective. Fix a section t ∈ H(X).
Consider the set of all pairs (U, s) such that U is an open subset of X and ψ(U)(s) = t|U .
Since t admits local lifts, this is a non-empty set.

We define a partial ordering on these pairs by setting (U, s) ≤ (U ′, s′) if U ⊂ U ′ and
s′|U = s. We claim that any chain of pairs

(U1, s1) ≤ (U2, s2) ≤ (U3, s3) ≤ . . .

has an upper bound. Indeed, since the sections si agree on overlaps, we can glue them to
define a section sV on the open set V = ∪iUi, and it is clear that ψ(V )(sV ) = t|V . By
Zorn’s lemma, we conclude that there is a maximal element (Ũ , s̃) in the set of pairs.

We claim that Ũ = X. Suppose for a contradiction that Ũ ( X. Since ψ is surjective,
we can find a pair (V, r) such that V 6⊂ Ũ . Since s̃|

V ∩Ũ−r|V ∩Ũ is in the kernel of ψ(V ∩ Ũ),

it is an element of F(V ∩ Ũ). Using the fact that F is flasque, we can find an element
u ∈ F(V ) whose restriction to V ∩ Ũ is this difference. Then the section r + u on V can
be glued to the section s̃ on Ũ . Since the ψ-image of the resulting section on V ∪ Ũ is the
restriction of t, this contradicts the maximality of the pair (Ũ , s̃).
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The following proposition shows that there are many flasque sheaves on a topological
space.

Proposition 13.1.7. Let X be a scheme. Suppose that I is an injective object in the
category OX−Mod. Then I is flasque.

The same argument shows that injective sheaves on any topological space are flasque.
However, the statement does not hold for quasicoherent sheaves: an injective object in
QCoh(X) need not be flasque in general.

Proof. Suppose we have inclusion of open sets V ⊂ U . Let iV (respectively iU ) denote the
inclusion from V (respectively U) into X. We then have an injection

iV !OV → iU !OU

of OX -modules (where ! denotes the extension-by-zero functor). Since I is injective, we
get a surjection

Hom(iU !OU , I)→ Hom(iV !OV , I).

However, we can identify

Hom(iU !OU , I) ∼= Hom(OU , f−1I) ∼= I(U)

and similarly for V . We conclude there is a surjection I(U)→ I(V ) as desired.

As a demonstration of the utility of flasque sheaves, we will analyze the behavior of the
right derived functors of the global section functor in several different categories.

Definition 13.1.8. Let X be a topological space. We define H i(X,−) to be the ith right
derived functor of the global sections functor Γ(X,−) : Sh(X)→ Ab.

Note that we define sheaf cohomology in this way even when F carries additional
structure, e.g. when F is a quasicoherent sheaf. We next show that flasque sheaves of
abelian groups are acyclic for the global sections functor.

Lemma 13.1.9. Let X be a topological space and suppose that F is a flasque sheaf on X.
Then H i(X,F) = 0 for every i > 0.

Proof. Since the category Sh(X) has enough injectives, we can find an injection φ : F → I
into an injective sheaf in Sh(X). Let G denote the cokernel of φ so that we have an exact
sequence

0→ F → I → G → 0.

Since F is flasque by assumption and I is flasque by Proposition 13.1.7, Exercise 13.1.12
shows that G is flasque as well.
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We now prove the statement by induction on i. To prove the base case i = 1, we note
that H1(X, I) = 0 (since I is injective) and the map H0(X, I) → H0(X,G) is surjective
by Lemma 13.1.6. For the induction step, consider the LES of cohomology corresponding
to the exact sequence above. Since I is acyclic, we have H i(X,F) ∼= H i−1(X,G) for every
i > 1. Since G is also flasque, we conclude by induction.

Altogether, we obtain a fundamental comparison between right-derived functors in
different categories:

Theorem 13.1.10. Let X be a scheme. Then the right derived functors of Γ(X,−) :
OX−Mod→ Ab coincide with the functors H i(X,−).

Proof. The action of the right derived functors for Γ(X,−) : OX−Mod→ Ab on an OX -
module F can be computed by taking an injective resolution 0→ F → I• in the category
of OX -modules and taking the cohomology of the complex Γ(X, I•). Since every term of
I• is flasque, by Lemma 13.1.9 we can compute H i(X,F) in the same way.

Warning 13.1.11. It is not in general true that the right derived functors of Γ(X,−) :
QCoh(X)→ Ab agree with the functors H i(X,−).

However, when X is Noetherian any injective object in QCoh(X) is flasque (see [Har77,
Corollary III.3.6] and [Har77, Exercise III.3.6]). Since flasque sheaves are acyclic for every
variant of the global sections functor, by repeating the argument of Theorem 13.1.10 we
see that when X is a Noetherian scheme the sheaf cohomology of a quasicoherent sheaf
agrees with the right derived functors of Γ(X,−) : QCoh(X)→ Ab.

13.1.4 Exercises

Exercise 13.1.12. Let X be a topological space. Suppose that 0 → F → G → H → 0 is
an exact sequence of sheaves. Prove that if F ,G are flasque then H is flasque as well.

Exercise 13.1.13. Show that if X is a topological space and F is a flasque sheaf on X
then H̆ i(X,F) = 0 for every i > 0.

Exercise 13.1.14. Let X be a scheme. Suppose that I is an injective object in OX−Mod
(resp. Sh(X)). Show that for any open subset U the restriction I|U is an injective object
in OU−Mod (resp. Sh(U)). (Hint: given an inclusion of sheaves F → G in OU−Mod,
consider their image in OX−Mod under the extension-by-zero functor.)
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13.2 Global sections functor

Let X be a scheme. Recall that H i(X,−) denote the right derived functors of the global
sections functor Γ(X,−) : Sh(X)→ Ab. While these functors satisfy nice formal proper-
ties, unfortunately they are difficult to compute.

The goal of this section is to compare the sheaf cohomology groups H i(X,−) with the
Čech cohomology groups H̆ i(X,−). While we cannot expect these two functors to agree in
full generality – for example, we know that we don’t always get a LES of Čech cohomology
– we will show that these two functors agree for most “nice” schemes X. In particular, in
“nice” situations we can use Čech cohomology techniques to compute the H i.

13.2.1 Vanishing for affines

The key in the comparison is to prove the vanishing of the groups H i(X,−) when X is an
affine scheme.

Theorem 13.2.1. Let X = Spec(R) be an affine scheme and let F be a quasicoherent
sheaf on X. Then H i(X,F) = 0 for all i > 0.

Remark 13.2.2. There is a minor subtlety in the statement. We proved in Proposition
9.2.8 that when X = Spec(R) the functor Γ(X,−) : QCoh(X) → R−Mod is exact.
However, since we cannot compute the functors H i directly in the category QCoh(X) this
fact does not suffice to prove the vanishing of the H i. (When X is Noetherian, then one
can appeal to this approach as discussed in Warning 13.1.11.)

Even though this exactness does not immediately prove Theorem 13.2.1, as we will see
it lies at the heart of the proof. In particular, Lemma 13.2.3 can be seen as an analogue
for the higher cohomology groups of the fact that we have “local lifts” of global sections
for the rightmost term in a SES of quasicoherent sheaves.

Before proving Theorem 13.2.1, we will need the following lemma. Given a topological
space X, an open set h : V ↪→ X, and a sheaf of abelian groups F on X, we will denote
by FV the sheaf h∗h

−1F .

Lemma 13.2.3. Let X be a topological space and let F be a sheaf on X. Let U be a base
for the topology on X. Suppose that there is a positive integer n such that H i(U,F|U ) = 0
for every open set U in U and every 0 < i < n. Then given any element α ∈ Hn(X,F)
there is an open cover U = {Uj}j∈J consisting of open sets in U such that the image of α
in Hn(X,FUj ) is zero for every j ∈ J .

Proof. By Proposition 13.1.7 there is an injection from F into a flasque sheaf G. Let H be
the cokernel. Note that the restriction of G to any open subset of X is still flasque. Since
flasque sheaves are acyclic for the global sections functor, for any open set U ⊂ X we have
exact sequences

0→ H0(U,F|U )→ H0(U,G|U )→ H0(U,H|U )→ H1(U,F|U )→ 0
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and isomorphisms H i(U,H|U ) ∼= H i+1(U,F|U ).
We prove the statement by induction on n. The base case is when n = 1. Since inverse

image is exact and pushforward is left-exact, for any open set V we have an inclusion
FV → GV . Denoting the cokernel by KV , we have a commuting diagram with exact rows:

0 // F //

��

G //

��

H //

��

0

0 // FV // GV // KV // 0

Note that any α ∈ H1(X,F) is the image of some β ∈ H0(X,H). Choose the open cover
U = {Uj} of open sets coming from U so that there are local sections γj ∈ G(Uj) which
map to β|Uj . Using the LES for the bottom row of the diagram above with V = Uj we see
that the image of α in H1(X,FUj ) vanishes.

We next prove the induction step for n > 1. For any open subset V of X we have a
commuting diagram with exact rows:

0 // F //

��

G //

��

H //

��

0

0 // FV // GV // HV

We will need one basic observation:

Let V be an element of U . Then the morphism GV → HV is surjective.

Indeed, suppose that U is an open subset in U that is contained in V . By assumption
H1(U,F|U ) = 0. Thus we have a surjection

H0(U,GV |U ) ∼= H0(U,G|U )→ H0(U,H|U ) = H0(U,HV |U ).

Since such U form a base for the topology on V , we obtain the desired surjection GV →
HV . In particular, since GV is still flasque, we have exact sequences relating the sheaf
cohomologies of FV and HV .

Using these isomorphisms, we see that H satisfies the hypotheses for the integer n− 1.
Using the diagram

Hn−1(X,H)
∼= //

��

Hn(X,F)

��
Hn−1(X,HV )

∼= // Hn(X,FV )

for open sets V contained in U we see that the induction assumption applied to H yields
the desired statement for F .



13.2. GLOBAL SECTIONS FUNCTOR 495

Proof of Theorem 13.2.1: We prove the statement by induction on i. For the base case
i = 1, since the category of OX -modules has enough injectives we can find an injection from
F into a flasqueOX -module G. The cokernelH is also anOX -module. By Lemma 13.1.6 the
map H0(X,G)→ H0(X,H) is surjective. Thus we have an injection H1(X,F)→ H1(X,G)
and since the latter group vanishes by Lemma 13.1.9 the former group does as well.

For the induction step, let U be the basis of X consisting of distinguished open affines.
By applying the induction hypothesis to each Df , we see that the hypotheses of Lemma
13.2.3 are satisfied. Thus given any element α ∈ H i(X,F) we can find a finite set of
elements {fj}mj=1 in R which generate the unit ideal and satisfy the following property:

For every j define Fj to be the pushforward under the inclusion map Dfj ↪→ X of
F|Ui . Then the image of α in H i(X,⊕jFj) = 0.

For a given α ∈ H i(X,F), consider the corresponding SES of quasicoherent sheaves

0→ F → ⊕jFj → K → 0.

By construction α must be in the image of the map H i−1(X,K) → H i(X,F). But by
induction the former group vanishes. We conclude that H i(X,F) = 0.

In fact, a famous result of Serre shows that the vanishing of higher cohomology is a
distinguishing property of affine schemes:

Theorem 13.2.4 ([Sta15] Tag 01XF). Let X be a quasicompact scheme. Then the follow-
ing conditions are equivalent:

(1) X is affine.

(2) H i(X,F) = 0 for every quasicoherent sheaf F and every i > 0.

13.2.2 Comparing Čech cohomology and sheaf cohomology

We are now prepared to compare Čech cohomology and sheaf cohomology. First note that
for any topological space X and any sheaf F we obtain a morphism H̆ i(X,F)→ H i(X,F).
Indeed, suppose we fix an open cover Ŭ of X. As explained in the proof of Theorem 12.1.9,
the Čech cohomology group H̆ i(U,F) is computed by applying the global sections functor
to the complex

0→ F → C 0(U,F)→ C 1(U,F)→ . . .

and taking homology groups of the resulting complex of OX(X)-modules. If we fix any
injective resolution 0 → F → I• of F , then by Lemma 13.0.5.(1) there is a map of
complexes C •(U,F)→ I• that induces an isomorphism on the 0th homology F . Applying
the global sections functor and taking homology, we get a map H̆ i(U,F)→ H i(X,F).
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Furthermore, given a refinement V of U, if we choose a suitable injective resolution of
F then the map of complexes assigned to U factors through the map of complexes assigned
to V. Thus we have a commuting diagram

H̆ i(U,F)

&&

// H̆ i(V,F)

xx
H i(X,F)

Thus these morphisms descend to the direct limit to yield a morphism H̆ i(X,F) →
H i(X,F).

Theorem 13.2.5. Let X be a quasicompact separated scheme and let F be a quasicoherent
sheaf on X. Then for every i ≥ 0 we have

H̆ i(X,F) ∼= H i(X,F).

In fact more is true – these identifications are functorial in F and compatible with LES
– but we won’t worry about these more precise statements.

Proof. Let U be an open cover ofX by open affines. By Corollary 12.2.3 we have H̆ i(X,F) =
H̆ i(U,F). Thus it suffices to show that H̆ i(U,F) ∼= H i(X,F). More precisely, we will show:

Claim 13.2.6. Let F be any sheaf such that H i(V,F|V ) = 0 for every open set V obtained
as a (non-empty) intersection of open sets in our cover. Then H̆ i(U,F) ∼= H i(X,F)

We show this claim by induction on i. The base case i = 0 has been discussed earlier.
To prove the statement when i = 1, embed F into a flasque sheaf G and let H denote the
cokernel. We have a morphism of exact sequences

0 // H̆0(U,F) //

∼=
��

H̆0(U,G) //

∼=
��

H̆0(U,H) //

∼=
��

H̆1(U,F) //

��

0

0 // H0(X,F) // H0(X,G) // H0(X,H) // H1(X,F) // 0

which immediately yields the desired isomorphism.
Now we prove the induction step. Suppose that we know the claim in all degrees up to

i for some i ≥ 1. Embed F into a flasque sheaf G and let H denote the cokernel. For every
open set V obtained as an intersection of the Ui, we have a SES

0→ F(V )→ G(V )→ H(V )→ 0

since by hypothesis H1(V,F|V ) = 0. This implies that the sequence of Čech complexes

0→ C̆•(U,F)→ C̆•(U,G)→ C̆•(U,H)→ 0
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is also exact. In particular, we get a long exact sequence of Čech cohomology associated
to the open cover U and the sheaves F , G, and H.

Since G is flasque, by Exercise 13.1.13 the higher Čech cohomology of G vanishes. Thus
we get for i > 0

H̆ i(U,H) ∼= H̆ i+1(U,F).

Since the higher sheaf cohomology of a flasque sheaf also vanishes by Lemma 13.1.9, we
also know that for i > 0

H i(X,H) ∼= H i+1(X,F).

Note that since the restriction of G to any open set in X is still flasque, hence acyclic for
the global sections functor by Lemma 13.1.9, it is clear that H also satisfies the property
that H i(V,H|V ) = 0 for every open set V obtained as an intersection of open sets in our
cover. Thus we can deduce the desired isomorphism H̆ i+1(U,F) ∼= H i+1(X,F) by applying
our induction hypothesis to H.

Remark 13.2.7. More generally, there is a spectral sequence relating Čech cohomology
and sheaf cohomology; see [Sta15, Tag 01ES].

We end this chapter by stating without proof a general theorem about sheaf cohomology.
This result should be compared against the dimension-vanishing result for Čech cohomology
in Theorem 12.2.5.

Theorem 13.2.8 ([Har77] Theorem III.2.7). Let X be a Noetherian topological space of
dimension n. Then for all sheaves of abelian groups F and all i > n we have H i(X,F) = 0.
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13.3 Higher direct images

Suppose that f : X → Y is a continuous map of topological spaces. Since the pushforward
f∗ : Sh(X)→ Sh(X) is left exact, we can define its derived functors.

Definition 13.3.1. Let f : X → Y be a continuous map of topological spaces. The higher
direct image functors Rif : Sh(X)→ Sh(Y ) are the right derived functors of f∗.

Since right derived functors are somewhat abstract, it would be nice to have a more
explicit description of these functors. Thus our first result shows that the higher direct
image functors really are a “relative” version of sheaf cohomology.

Proposition 13.3.2. Let f : X → Y be a continuous map of topological spaces and let
F be a sheaf on X. For every i ≥ 0, Rif∗(F) is isomorphic to the sheafification of the
presheaf

V 7→ H i(f−1V,F|f−1V ).

Proof. We will denote by Si(F) the sheaf on Y constructed by the description above,
i.e. the sheafification of the presheaf constructed from the ith sheaf cohomology groups.

Note that S0 is the sheafification of the assignment V 7→ F(f−1V ). Since this assign-
ment already defines a sheaf, we have S0(F) ∼= f∗F . To show that the other functors agree
with the right derived functors of f∗, we will use Theorem 13.0.8.

First, we show that the Si define a δ-functor. Suppose we have an SES of sheaves

0→ F1 → F2 → F3 → 0.

Using the LES of cohomology, it is clear that the assignment V 7→ H i(f−1V,F|f−1V ) yields
a LES of presheaves. Since the sheafification functor is exact, we obtain a LES of shaves

. . .→ Si(F1)→ Si(F2)→ Si(F3)→ Si+1(F1)→ . . .

Furthermore, the compatibility with this LES with a morphism of SES of sheaves is a
consequence of the functoriality of the LES for sheaf cohomology and the universal property
of sheafification.

Second, we need to show that Si are effaceable. Suppose that I is an injective object of
Sh(X). By Exercise 13.1.14 the restriction I|f−1V is also injective for every open set V ⊂ Y .
This means that H i(f−1V, I|f−1V ) = 0 and consequently Si(I) is the 0 sheaf. Since every
object of Sh(X) admits an injection into an injective object, this proves effaceability.

Since the functors H i for an OX -module can be computed in either Sh(X) or in
OX−Mod, we might expect that the functors Rif∗ have the same property. As before,
the key is to show that flasque sheaves are acyclic.

Corollary 13.3.3. Let f : X → Y be a continuous map of topological spaces and let F be
a flasque sheaf on X. Then Rif∗(F) = 0 for all i > 0.
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Proof. Follows from Proposition 13.3.2 and the fact that flasque sheaves are acyclic for
sheaf cohomology.

Corollary 13.3.4. Let f : X → Y be a morphism of schemes. Then the restriction of the
functors Rif∗ to the category of OX-modules are the same as the right derived functors of
f∗ : OX−Mod→ OY−Mod.

Proof. Just as in the proof of Theorem 13.1.10, this follows from the fact that injective
objects of OX−Mod are flasque, and thus acyclic for f∗ by Corollary 13.3.3.

Note that Rif∗ need not be the right derived functor of f∗ for the category of qua-
sicoherent sheaves (since the H i are also not right derived functors for the category of
quasicoherent sheaves).

13.3.1 Quasicoherent sheaves

Suppose now that f : X → Y is a morphism of schemes and that F is a quasicoherent
sheaf on X. It is natural to ask: is Rif∗F a quasicoherent sheaf on Y ? If so, is Rif∗F(V )
for open affines V ⊂ Y defined by the cohomology group H i(f−1V,F|f−1V )? (Note that
this is not guaranteed by Proposition 13.3.2 since the statement includes a sheafification.)

It turns out that if we impose some finiteness hypotheses on f then we can hope for
these statements to be true. We will start with a lemma that proves the analogue of
Proposition 13.3.2 for Čech cohomology.

Lemma 13.3.5. Let f : X → Y be a quasicompact and separated morphism of schemes.
For every i ≥ 0, Rif∗(F) is isomorphic to the sheafification of the presheaf

V 7→ H̆ i(f−1V,F|f−1V ).

Proof. Let Sipre(F) denote the presheaf V 7→ H i(f−1V,F|f−1V ) and let Si(F) denote
its sheafification. We also denote by T ipre and T i the corresponding constructions using

Čech cohomology. We will consider these constructions as functors from QCoh(X) →
OY−Mod. Using the Čech-to-sheaf cohomology map, we obtain a natural transformation
Φpre : T ipre → Sipre. This also induces a natural transformation Φ : T i → Si.

For every open affine V ⊂ Y the preimage f−1V is quasicompact and separated, thus
for every quasicoherent sheaf F we have Φpre(F)(V ) : T ipre(F)(V ) → Sipre(F)(V ) is an
isomorphism by Theorem 13.2.5. Since such open sets V form a base for the topology and
since the sheafification functor is determined by its values on a base, we conclude that
Φ(F) : T i(F) → Si(F) is also an isomorphism. We conclude the desired statement by
Proposition 13.3.2.

The following result is the key result of the chapter.
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Proposition 13.3.6. Suppose that f : X → Y is a quasicompact and separated morphism
and that F is a quasicoherent sheaf on X. Then for any open affine V ⊂ Y we have

Rif∗F(V ) ∼= ˜H i(f−1V,F|f−1V ) ∼= ˜H̆ i(f−1V,F|f−1V ).

In particular every higher direct image Rif∗F is a quasicoherent sheaf on Y .

It turns out that higher direct images are quasicoherent even when f is only quasicom-
pact quasiseparated.

Proof. It suffices to prove the statement when Y is affine. We claim that for any distin-
guished open affine Dg in Y the natural map

H̆ i(X,F)→ H̆ i(f−1Dg,F|f−1Dg)

is the same as localization by g. To check this, fix a finite open affine cover U of X.
Then the Čech cohomology of F can be computed as the cohomology of the Čech complex
C•(U,F). For each open affine Ui in U, consider the distinguished open affine Vi ⊂ Ui
defined by g. Then the Vi form a finite open cover V of f−1Dg. Furthermore, the Čech
complex of F|f−1Dg with respect to V is simply the localization of the Čech complex for
F on X. This proves the claim.

By Lemma 13.3.5, Rif∗F is the sheafification of the presheaf assigning to any open
V the ith Čech cohomology group of F|f−1V . But the argument above combined with

Exercise 9.2.11 shows that this is just the sheaf ˜H̆ i(X,F). Due to Theorem 13.2.5 we can
equally well sheaf cohomology in place of Čech cohomology when computing the value of
Rif∗F along an open affine.

13.3.2 Coherent sheaves

Suppose that f : X → Y is a morphism of sheaves and that F is a coherent sheaf on X.
In general we cannot expect f∗F to be a coherent sheaf. However, when f is proper and
Y is locally Noetherian we asserted (without proof) that f∗F is coherent, and we proved
this statement when f is projective. In this section, we extend these results to the higher
derived pushforwards Rif∗F .

Theorem 13.3.7. Let f : X → Y be a proper morphism to a locally Noetherian scheme
Y . Suppose that F is a coherent sheaf on X. Then for every i > 0 the sheaf Rif∗F is
coherent on Y .

As before, we will only prove this statement when f is projective.

Proof. Assume f is projective. It suffices to consider the case when Y = Spec(S) is affine.
Then Theorem 12.3.3 shows that the Čech cohomology groups H̆ i(X,F) are coherent S-
modules. We conclude the desired statement from Proposition 13.3.6.
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13.3.3 Leray spectral sequence

One of the fundamental tools for computing higher direct images is the Leray spectral
sequence.

Theorem 13.3.8 (Leray spectral sequence). Let f : X → Y be a morphism of schemes.
For any OX-module F there is a spectral sequence with E2 page given by Hq(Y,Rpf∗F)
which abuts to Hp+q(X,F).

This is a special case of the Grothendieck spectral sequence from the introduction to
the chapter.

Proof. Our plan is to apply Theorem 13.0.11 to the composition of the left exact functors
f∗ and Γ(Y,−). It only remains to note that if I is an injective OX -module then I is
flasque, thus f∗I is flasque and hence acyclic for Γ(Y,−).

13.3.4 Dimension vanishing

In Theorem 12.2.5 we showed that when X is a quasiprojective K-scheme the Čech co-
homology groups H̆ i vanish for i > dim(X). Our next statement is a relative version of
dimension vanishing.

Theorem 13.3.9. Suppose that f : X → Y is a projective morphism and that Y is locally
Noetherian. Let d be the maximum dimension of any fiber of f . Then for any quasicoherent
sheaf F on X we have that Rif∗F = 0 for every i > d.

Proof. We can check whether a sheaf is 0 locally, so it suffices to consider the case when
Y is affine. Since affine varieties always carry ample invertible sheaves, by Proposition
10.7.13 we have a closed embedding of X into PnY .

Fix any point y ∈ Y . Then the fiber f−1y admits a closed embedding into Pnκ(y). Copy-
ing the argument of Theorem 12.2.5, we can find distinguished open affinesD+,f1 , . . . , D+,fd+1

in Pnκ(y) whose intersections with f−1y form an open cover.

We next “spread out” these open subsets to a neighborhood of y. There is an open affine
neigborhood V of y such that each homogeneous function fi extends to a homogeneous
function over all of V . Then the intersection of X with V+(f1, . . . , fd+1) defines a closed
subset of PnV . By properness, the image of this closed subset is a closed subset of V , and
by construction this closed subset does not contain y. After shrinking V , we may ensure
that V+(f1, . . . , fd+1) is disjoint from f−1V ⊂ X. By construction f−1V admits an open
cover by d + 1 open affine subsets, and thus (again mimicking the argument in Theorem
12.2.5) the cohomology H̆ i vanishes for i > d. Proposition 13.3.6 allows us to conclude that
Rif∗F|V = 0 whenever i > d. Since this is true for every point y, we see that Rif∗F = 0
for every i > d.
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Warning 13.3.10. In contrast to the absolute case in Theorem 12.2.5, the projectivity
assumption for f in Theorem 13.3.9 is crucial. (That is, we used the fact that f is a closed
morphism in a crucial way, so the theorem need not hold when f is a “quasiprojective
morphism”.) For example, Exercise 13.3.12 shows that when f is an open embedding there
can be (many) non-vanishing higher direct images.

13.3.5 Exercises

Exercise 13.3.11. Show that if f : X → Y is an affine morphism and F is a quasicoherent
sheaf on X then Rif∗F = 0 for every i > 0. In particular this is true if f is a finite
morphism.

Exercise 13.3.12. Let X = An − {0} and consider the open embedding f : X → An.
Show that Rn−1f∗OX 6= 0.

Exercise 13.3.13. Let X be a scheme and let E be a locally free sheaf of rank r + 1 on
X. Consider the projection map π : Proj(E) → X. Compute Riπ∗O(d) for all integers d
and for all i ≥ 0.

Exercise 13.3.14. Let f : X → Y be a continuous map of topological spaces. Suppose
that F is a sheaf of abelian groups on X such that Rif∗(F) = 0 for i > 0. Prove that
H i(Y, f∗F) ∼= H i(X,F). (This is a degenerate case of the Leray spectral sequence which
shows that Hp(Y,Rqf∗F) =⇒ Hp+q(X,F).)

Exercise 13.3.15. Let f : X → Y be a morphism of schemes, let F be an OX -module
and let E be a locally free OY -module of finite rank. Prove the projection formula

Rif∗(F ⊗ f∗E) ∼= Rif∗F ⊗ E .
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13.4 Cohomology and base change I

Let f : X → Y be a quasicompact and separated map of schemes and suppose F is a
quasicoherent sheaf on X. By Proposition 13.3.2 Rif∗(F) assigns to an open set V ⊂ Y
the cohomology of F along f−1V . While this is more explicit than the description as a
derived functor, unfortunately it is still a bit hard to understand geometrically.

By taking limits we might hope that the fiber of Rif∗(F) at a point y is somehow related
to the cohomology of the fiber H i(f−1y,F|f−1y). Of course this can’t be true in general
– we don’t have such an easy description even for the pushforward f∗F . Nevertheless, in
situations when we can find an advantageous comparison between these two objects, we
will be much better equipped to understand the higher pushforwards explicitly.

In fact, we might hope for even more. Suppose we have a pullback diagram

X ×Y Z
φ //

g

��

X

f
��

Z
ψ

// Y

Recall that the fibers of g : X×Y Z → Z are “pullbacks” of the fibers of f : X → Y . When
the geometry of the higher pushforwards of f has a close relationship with the cohomology
of fibers, then we can hope to apply similar logic to g as well.

13.4.1 Comparing cohomology groups

Suppose we have a pullback diagram as before

X ×Y Z
φ //

g

��

X

f
��

Z
ψ

// Y

where f (and hence g) is quasicompact quasiseparated. Given a quasicoherent sheaf F on
X, there are two ways to obtain a quasicoherent sheaf on Z: we can consider ψ∗f∗F or
g∗φ
∗F . We would like to compare these two sheaves (and also the corresponding higher

direct images ψ∗(Rif∗F) and Rig∗(φ
∗F)). The starting point is to show that there is a

natural morphism between them.

Lemma 13.4.1. Suppose given a diagram as above with f quasicompact and separated
where F is a quasicoherent sheaf on X. Then for every i ≥ 0 there is a natural morphism

Θi : ψ∗(Rif∗F)→ Rig∗(φ
∗F).
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Here as usual “naturality” is meant in the functorial sense – given a morphism of
sheaves F → G we should get a commuting square from the various Θ – and as usual we
will not check this property carefully. The separated condition is stronger than necessary
– quasicompact quasiseparated is enough. We include the separated assumption so that
we can understand sheaf cohomology via Theorem 13.2.5.

Proof. We first construct the morphism locally. Assume that Y = Spec(S) and Z =
Spec(R) are affine so that X×Y Z is the base change XR of X by R. In this case Proposition
13.3.6 shows that we can identify

ψ∗(Rif∗F) = ψ∗( ˜H i(X,F)) = ˜H i(X,F)⊗S R

Rig∗(φ
∗F) = ˜H i(XR, φ∗F)

Thus it suffices to construct a homomorphism of R-modules

H i(X,F)⊗S R→ H i(XR, φ
∗F)

We will compare these by translating into Čech cohomology. Since X is separated over
Spec(S), hence separated, we can compute the cohomology of X by choosing a finite cover
by open affines U = {Ui} and taking the cohomology of the Čech complex C̆•(U,F).
By taking products against Spec(R), we find a finite cover of XR by open affines UR =
{Ui×Spec(S) Spec(R)}. Since XR is also separated, we can again compute sheaf cohomology

using the Čech complex C̆•(UR, φ
∗F).

Since F is quasicoherent and X is separated, for any finite intersection V of elements
of the cover U we have

H0(V ×Spec(S) Spec(R), φ∗F) ∼= H0(V,F)⊗S R.

and thus an identification

C̆•(UR, φ
∗F) = C̆•(U,F)⊗S R.

Then the desired map on cohomology follows from a more general fact: given a complex of
S-modules C• and an S-algebraR there is a natural morphismH i(C•)⊗SR→ H i(C•⊗SR).

Finally, we claim that the local construction glues to give a global construction. Recall
that to construct a morphism ρ between two sheaves G,H on a scheme Z, we can choose
an open cover {Ui} of Z and construct morphisms ρi : G|Ui → H|Ui which agree on the
overlaps Ui ∩ Uj . Choose an open cover of Z consisting of open affines that are contained
in the preimage of open affines in Y . The local construction above gives a morphism of
sheaves on each open set in this open cover. The compatibility on overlaps boils down
to the compatibility of the Čech complex with localization as described in the proof of
Proposition 13.3.6.
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Remark 13.4.2. There is an alternative “general nonsense” approach to constructing the
morphism ψ∗(Rif∗F)→ Rig∗(φ

∗F).
Let’s first construct the map ψ∗f∗F → g∗φ

∗F . Using the pullback-pushforward ad-
junction, we obtain a unit map F → φ∗φ

∗F . We then apply f∗ to obtain a morphism

f∗F → f∗φ∗φ
∗F = ψ∗g∗φ

∗F

Finally, using the pullback-pushforward adjunction again, we obtain a morphism ψ∗f∗F →
g∗φ
∗F . The extension to the higher direct images can be accomplished using a δ-functor

argument.

Exercise 13.4.3. Show that the construction of Θ0 in Lemma 13.4.1 using the Čech
complex agrees with the construction of Θ0 in Remark 13.4.2 using adjunction.

13.4.2 Cohomology and flat base change

Lemma 13.4.1 show that for a pullback diagram the higher direct images are locally related
by a tensor product. Thus when we have a flat base change diagram we can expect the
higher direct images to be compatible.

Proposition 13.4.4 (Cohomology and Flat Base Change). Suppose given a pullback dia-
gram

X ×Y Z
φ //

g

��

X

f
��

Z
ψ

// Y

where f is quasicompact and separated and ψ is flat. Then for every i the map

Θi : ψ∗(Rif∗F)→ Rig∗(φ
∗F).

is an isomorphism.

As usual, it is enough for f to be only quasicompact quasiseparated.

Proof. Returning to the proof of Lemma 13.4.1, it suffices to note that when ψ is flat then
in the local situation Z = Spec(R) and Y = Spec(S) we have that R is a flat S-module.
Thus for any complex C• of S-modules the tensor products H i(C•) ⊗S R are isomorphic
to the cohomology groups H i(C• ⊗R).

Unfortunately Proposition 13.4.4 rarely applies to our motivating example when Z → Y
is the inclusion of a point. In fact, the map Θi will frequently fail to be an isomorphism in
this situation; we will see some examples in the next section.

Here are a couple easy examples of Cohomology and Flat Base Change in action.
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Example 13.4.5. For any inclusion of fields K → L the map Spec(L) → Spec(K) is flat.
Thus if X is a K-scheme and F is a quasicoherent sheaf on X we obtain an isomorphism

H i(X,F)⊗ L ∼= H i(XL,FL).

Example 13.4.6. Suppose that f : X → Y is a finite-type separated morphism to an
integral scheme Y . Let η = Spec(K(Y )) denote the generic point of Y . Note that the
inclusion of the generic point η → Y is a flat morphism. For any quasicoherent sheaf F on
X we obtain an isomorphism

Rif∗F(η) ∼= H i(Xη,F|Xη)

The leftmost term records the rank of Rif∗F at the generic point of Y , or equivalently,
the rank of Rif∗F along a general point of Y . The equation shows that we can determine
this rank by computing the cohomology group of the restriction of F to the generic fiber
Xη (which is a scheme over a field).

One can do a similar construction with the flat maps Spec(OY,y)→ Y , but it is a little
less useful since the fiber over Spec(OY,y) is no longer simply a scheme over a field.

13.4.3 Exercises

Exercise 13.4.7. Suppose we are given a commutative diagram of schemes

W
φ //

g

��

X

f
��

Z
ψ
// Y

which is not necessarily a pullback diagram. Show that for any quasicoherent sheaf F on
X we have a natural morphism

ψ∗(Rif∗F)→ Rig∗(φ
∗F).

(One option is to first apply Lemma 13.4.1 to reduce to the easier case when Y = Z.
Another option is to apply a general nonsense approach as in Remark 13.4.2.)
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13.5 Cohomology and base change II

We continue the discussion of cohomology and base change from the previous section. In
this chapter we will focus exclusively on the following situation. Suppose we have a diagram

Xy
φ //

g

��

X

f

��
y

ψ
// Y

where f is proper and ψ is the inclusion of a point y ∈ Y . Let F be a coherent sheaf on X
that is flat over Y . Then Lemma 13.4.1 gives us a morphism

Θi
y : Rif∗F(y)→ H i(Xy,F|Xy).

We would like to understand the properties of Θi
y. We are particularly interested in un-

derstanding when Θi
y will be an isomorphism.

13.5.1 Complexes of modules for Noetherian rings

Recall that the maps Θi come from a local construction of the form

H i(C•)⊗S M → H i(C• ⊗S M)

where C• denotes a suitably chosen Čech complex. In this section we discuss a few features
of these maps when S is a Noetherian ring. The key result is:

Lemma 13.5.1 ([Har77] Lemma III.12.3). Let S be a Noetherian ring. Suppose that C•

is a complex of S-modules such that every cohomology group H i(C) is a finitely generated
S-module and Cd = 0 for sufficiently large d. Then there is a complex K• of finite rank free
S-modules such that Kd = 0 for sufficiently large d and a map of complexes φ : K• → C•

that induces isomorphisms of all cohomology groups.

In other words, for a Noetherian ring S a complex with finitely generated homology
can be replaced by a “simpler” complex whose entries are finite rank free S-modules. Such
complexes are much easier to work with (and in particular, can be understood by apply-
ing linear algebra techniques to the differentials). Unfortunately the proof is somewhat
technical so we will not give it here. It pairs naturally with the following result:

Lemma 13.5.2 ([Har77] Proposition III.12.4, Proposition III.12.5). Let S be a Noetherian
ring. Fix a complex K• of finitely generated free S-modules. Fix an integer i and define
the functor T i : M 7→ H i(K• ⊗M). Then:

(1) T i is left exact if and only if the cokernel of the map Ki−1 → Ki is a projective
S-module.

(2) T i is right exact if and only if the map H i(K•)⊗M → H i(K•⊗M) is an isomorphism
for every S-module M .
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13.5.2 Semicontinuity

The semicontinuity theorem analyzes the behavior of the cohomology groups of fibers as
we vary the point y. The theorem relies on a reduction step that we will use several times:

Lemma 13.5.3. Let f : X → Y be a proper morphism of Noetherian schemes such that
Y = Spec(S) is affine and let F be a coherent sheaf on X that is flat over Y . Choose a
finite open affine cover U of X. There is a complex K• of finite rank free S-modules and a
map of complexes φ : K• → C•(U,F) such that for every S-module M the map φ induces
an isomorphism

H i(K• ⊗M)→ H i(C•(U,F)⊗M).

Proof. By Theorem 13.3.7 the cohomology groups of C• are finitely generated S-modules.
We can thus apply Lemma 13.5.1 to get a complex K• of finite rank free S-modules with
a map K• → C•.

Since F is flat over Y , every module Cd(U,F) is a flat S-module. (Argue this carefully!)
Also, by Lemma 13.5.1 the Kd are flat S-modules. This guarantees that for any S-module
M the induced map

H i(K• ⊗M)→ H i(C• ⊗M)

is an isomorphism. Since both groups are 0 for i sufficiently large, we can argue by de-
creasing induction on i. It suffices to prove that this map is an isomorphism when M is
finitely generated, in which case we have an exact sequence 0 → R → A⊕d → M → 0
for some positive integer d. Since K• is flat, we get a LES of cohomology of the form
H i(L•⊗R)→ H i(L•⊗A⊕d)→ H i(L•⊗M). We get a similar sequence for C•, and also a
morphism of LES from the sequence for K• to the sequence for C•. Since the cohomology
groups of A⊕d vanish, we can conclude the desired isomorphism of H i for M by induction
from the corresponding isomorphism of H i+1 for R.

We are now prepared to prove the Semicontinuity Theorem.

Theorem 13.5.4 (Semicontinuity). Let f : X → Y be a proper morphism of Noetherian
schemes and let F be a coherent sheaf on X that is flat over Y . Fix an index i ≥ 0 and
consider the function y 7→ dimκ(y)H

i(f−1y,F|f−1y). This function is upper semicontinuous
on Y .

This result pairs naturally with the constancy of the Euler characteristic
∑

(−1)i dimH i

in flat families; if some H i “jumps up” on a closed subset, some other cohomology group
must also “jump up” to ensure that the Euler characteristic does not change.

Proof. Since the statement is local on the base Y , we may assume that Y = Spec(S) for
a Noetherian ring S. Apply Lemma 13.5.3 to obtain a complex K•. For any point y ∈ Y ,
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let R denote the residue field of y considered as an S-algebra. Then we see that

dimκ(y)H
i(f−1y,F|f−1y) = dimR(H i(Ki ⊗S R))

= dimR(Ki ⊗S R)− dimR(im diR)− dimR(im di−1
R )

The dimension of the image of diR is lower semicontinuous in y since there is a closed
sublocus of Y parametrizing points where the rank of the matrix di drops. The analogous
statement for di−1 is also true. This proves the desired statement.

Remark 13.5.5. Suppose that f : X → Y is a proper morphism of Noetherian schemes
and that F is a coherent sheaf on X (that is not necessarily flat over Y ). Using generic
flatness we can stratify Y into locally closed subsets Wi such that the restriction of F
is flat over each Wi. In this way one can show that the map y 7→ dimH i(Xy,F|Xy) is
constructible, i.e. for any integer r the set of points with value r is a constructible subset
of Y .

Example 13.5.6. Example 13.5.11 gives an example of a flat morphism p : E × E → E
and an invertible sheaf L on E × E such that the cohomology of L on the general fiber is
zero, but both H0 and H1 jump up to 1 on a special fiber. Note that both groups must
“jump up” simultaneously so that the Euler characteristic is preserved.

Example 13.5.7. Suppose that f : X → Y is a smooth morphism of projective varieties
over C. Since f is flat, Theorem 13.5.4 guarantees that the dimensions of the cohomol-
ogy groups of the structure sheaf along the fibers are semicontinuous functions. Using
Hodge theory one can show a stronger result: the cohomology groups H i(f−1y,Of−1y)
have constant dimension.

13.5.3 Cohomology of fibers

We are now return our attention to the morphisms Θi
y : (Rif∗F)y → H i(f−1y,F|f−1y). We

are interested in finding conditions guaranteeing that this map is a bijection, or conversely,
when properties of Θi

y tell us something about Rif∗(F).

Theorem 13.5.8 (Grauert’s Theorem). Let f : X → Y be a proper morphism to a reduced
locally Noetherian scheme and let F be a coherent sheaf on X that is flat over Y . Suppose
that dimκ(y)H

i(f−1y,F|f−1y) is a constant function as we vary y ∈ Y . Then Rif∗(F) is
locally free and Θi

y is an isomorphism for every y ∈ Y .

Proof. We can reduce to the case when Y = Spec(S) is affine. Let K• be the complex of
finite rank free S-modules constructed by Lemma 13.5.3. We define W p to be the cokernel
of the (p−1)-differential. Since tensoring by R is right exact, we see that for any R-module
M the cokernel of Kp−1⊗M → Kp⊗M is isomorphic to W p⊗M . Thus we have an exact
sequence

0→ Hp(K• ⊗M)→W p ⊗M → Kp+1 ⊗M.
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Arguing as in the proof of Theorem 13.5.4, we see that

dimκ(y)H
i(f−1y,F|f−1y) = dimR(Ki ⊗S R)− dimR(im diR)− dimR(im di−1

R )

where R is the residue field at y considered as an S-algebra. By assumption this number
is constant as we vary y. Since the image of dpR is the same thing as the kernel of the map

W i⊗R→ Ki+1⊗R, we conclude that the sheaves W̃ i and W̃ i+1 on Y have constant rank.
Since by assumption Y is reduced these sheaves must be locally free.

Let T i be the functor M 7→ H i(K•⊗M). Applying Lemma 13.5.2 to W i,W i+1 we see
that T i, T i+1 are left exact. Since the Ki are flat S-modules, a SES of modules leads to
a LES involving the T i. We conclude that T i is also right exact, hence exact. Applying
Lemma 13.5.2 again, we see that the maps H i(K•⊗M)→ H i(K•⊗M) are isomorphisms
for every module M . Applying this statement when M is the residue field at y we deduce
that Θi

y is an isomorphism. We also see that H i(K•) is a flat S-module. Since it is also
finitely generated, it is a projective S-module, showing that Rif∗F is locally free.

Our final result goes in the “opposite direction” of Grauert’s Theorem.

Theorem 13.5.9 (Cohomology and Base Change Theorem, [Har77] Theorem III.12.11).
Let f : X → Y be a proper morphism to a locally Noetherian scheme and let F be a
coherent sheaf on X that is flat over Y . Suppose that y ∈ Y is a point such that Θi

y is a
surjection. Then

(1) There is an open neighborhood U of y such that Θi
y′ is an isomorphism for every

y′ ∈ U .

(2) Rif∗(F) is locally free at y if and only if Θi−1
y is a surjection. When these equivalent

conditions hold, dimH i(f−1z,F|f−1z) is constant for z in an open neighborhood of
y.

Just as before, the proof relies on Lemma 13.5.1 to reduce the statements to facts about
complexes of finitely generated free modules. However the underlying algebraic statement
is a bit more complicated and we will not discuss it here.

Let’s close with a couple examples.

Example 13.5.10. Let Y be a scheme and let X = P(E) be the projective bundle f :
X → Y defined by a locally free sheaf F of finite rank. Consider the sheaf OX/Y (1) on X.
We can then compute Rif∗OX/Y (1) directly: over each open affine V ⊂ Y Theorem 12.3.1
shows that

H̆ i(f−1V,OX/Y (1)|f−1V ) = H̆ i(f−1V,Of−1V/V (1)) = 0

for every i > 0. We conclude that the higher direct images are all 0. In this case for every
point y ∈ Y the map Θi

y is the isomorphism 0→ 0.
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Example 13.5.11. Let E be an elliptic curve and consider the product E × E. We will
be interested in two Cartier divisors on E ×E. First, let F2 denote the fiber of the second
projection map over a point x ∈ E. Second, let ∆ denote the diagonal (considered as a
closed subscheme of E×E). Define the line bundle L = OE×E(∆−F2). We want to study
the higher direct images of L under the first projection map p : E × E → E.

We first compute the cohomology groups of the restriction of L to the fibers of the
map. For any closed point y ∈ E, the restriction of L to the fiber f−1y ∼= E is the line
bundle OE(y − x). This is a degree 0 line bundle on E. As we saw in Proposition 12.5.8,
for i = 0, 1 we have

dimH i(E,OE(y − x)) =

{
1 if y = x
0 if y 6= x

Next we show that p∗L = 0. It suffices to check that H0(f−1V,L|p−1V ) = 0 for every
open subset V ⊂ E. If to the contrary there was an effective Cartier divisor D representing
this invertible sheaf on f−1V then the restriction of D to a general fiber of p would still be
effective. However, the computation above shows that this restriction represents the line
bundle OE(y − x) which has no global sections at all.

Next we show that R1p∗L = K(x) is the skyscraper sheaf at the point x. Associated to
the SES of sheaves

0→ OE×E(∆− F2)→ OE×E(∆)→ OF2(x)→ 0.

we have the LES of higher direct images

0→ p∗OE×E(∆− F2)→ p∗OE×E(∆)→ p∗OF2(x)→
→ R1p∗OE×E(∆− F2)→ R1p∗OE×E(∆)→ . . .

We have already shown that the leftmost term is zero. Grauert’s Theorem shows that
p∗OE×E(∆) is an invertible sheaf which we call T and that R1p∗OE×E(∆) = 0. Further-
more p is an isomorphism between F2 and E. Thus the exact sequence above simplifies
to

0→ T → OE(x)→ R1p∗OE×E(∆− F2)→ 0.

Our desired statement will be proved if we can show that T ∼= OE . Using the fact that the
conormal bundle of ∆ is the cotangent bundle of E, we see that OE×E(∆)|∆ = OE . Thus
we have a SES

0→ OE×E → OE×E(∆)→ O∆ → 0

yielding a LES of higher direct images

0→ OE → T → OE →
→ OE → 0→ . . .

Since the connecting homomorphism is surjective it must be an isomorphism, and this
shows the claim.

Altogether we see that
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• Θ0
y is the map 0→ K when y = x and 0→ 0 when y 6= x.

• Θ1
y is the map K→ K when y = x and 0→ 0 when y 6= x.

Thus:

• We can apply Grauert’s Theorem to the open set E\{x} to compute that over this set
p∗L = 0 and R1p∗L = 0. However Grauert’s Theorem does not apply at x. Indeed,
even though p∗L = 0 is locally free the map Θ0

x is not an isomorphism.

• We can apply Cohomology and Base Change to Θ1
y at every point in E. It shows

that Θ1
y is always an isomorphism. However, Θ0

x is not an isomorphism and corre-
spondingly R1p∗L is not locally free at x.

We can find many more examples where the cohomology of fibers “jumps up” in closed
subsets by considering a family of line bundles of constant degree on a curve C just as in
Example 13.5.11.

13.5.4 Exercises

Exercise 13.5.12. Let K be an algebraically closed field. Suppose that f : X → Y is a
flat projective morphism of integral K-schemes whose fibers are all integral. Suppose that
L,M are invertible sheaves such that for every fiber f−1y we have L|f−1y

∼=M|f−1y. Prove
that there is an invertible sheaf N on Y such that L ∼=M⊗ f∗N .

Exercise 13.5.13. Let X be an integral Noetherian scheme and suppose that P is a
projective bundle (of finite rank) over X. Prove that Pic(P ) ∼= Pic(X)× Z.

Exercise 13.5.14. The following special case of Grauert’s Theorem and Cohomology and
Base Change is often used.

Let π : X → Y be a proper morphism to a locally Noetherian scheme and let F be
a coherent sheaf on X that is flat over Y . Suppose that H i(f−1y,F|f−1y) = 0 for every
y ∈ Y . Show that Rif∗(F) = 0 and that Θi−1

y is an isomorphism for every y ∈ Y .

Exercise 13.5.15. For each a ∈ C, let Ca denote the curve in P4 which is the image of the
map P1 → P4 defined by (s4 : s3t : as2t2 : st3 : t4). These curves together yield a closed
subscheme C ⊂ P4 × A1 such that the fiber over a ∈ A1 is Ca.

Let I denote the ideal sheaf of C. Show that I is flat over A1. Prove that if we consider
the restriction of I to the fibers of the projection map P4 × A1 → A1, the cohomology
groups H0, H1 are 0 on the fibers over a 6= 0 but jump up to 1 over the fiber a = 0.
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13.6 Theorem on formal functions

In the past couple sections we have been studying higher direct images and how they
interact with the cohomology of fibers. In this section, we begin by discussing a new
addition to this correspondence. We will then apply our results to an important case: the
pushforward of the structure sheaf OX .

13.6.1 Theorem on formal functions

Suppose that f : X → Y is a quasicompact and separated morphism of schemes and F is a
quasicoherent sheaf on X. As we have seen, in general there is no relationship between the
fibers of f∗F and the cohomology of F along the fibers. The problem is that by passing to
the fiber we are losing too much information about the local behavior of F near y.

Suppose we take the “nth infinitesimal neighborhood” of a closed point y: if y is
defined by the ideal sheaf I, then consider the closed subscheme defined by In. While
the underlying set is still just the closed point y, the nilpotent structure now records the
“nth order jets” of functions near y. We might hope that this enrichment improves the
relationship between the fibers of the cohomology and the cohomology of the fibers.

The following statement shows that if we pass to completions then we get a precise
comparison.

Theorem 13.6.1 (Theorem on Formal Functions). Let f : X → Y be a proper morphism
of Noetherian schemes. Suppose that F is a coherent sheaf on X. Fix a quasicoherent
ideal sheaf I on Y defining a closed subscheme Z and let Zn denote the closed subscheme
defined by In. Then the natural map

lim
←−

(
Rif∗F ⊗OY /In+1

)
→ lim
←−

Rif∗
(
F|XZn

)
is an isomorphism.

Here the “natural map” is induced by applying Lemma 13.4.1 to each nth infinitesimal
neighborhood and then appealing to the universal property of the inverse limit.

Suppose for simplicity that Z = y is a closed point. At its heart the Theorem on
Formal Functions contrasts two ways of computing the fiber of Rif∗F on an infinitesimal
neighborhood of y. On the right, the higher direct images coincide with the cohomology
groups H i(Xyn ,F|Xyn ). On the left, suppose for simplicity that Y = Spec(S) is affine and
that y is defined by the maximal ideal m. If M is the S-module defining the quasicoherent
sheaf Rif∗F then the left-hand side of the equation is M ⊗S Ŝ where the completion is
taken with respect to m.

Remark 13.6.2. As mentioned earlier, tensoring by lim←OY /In+1 is known as “passing
to a formal local neighborhood of Z”. Even though formal local neighborhoods are not
schemes, the Theorem on Formal Functions can be interpreted as an equality of sheaves
on the formal local neighborhood of Z.
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One often sees the following variant which replaces the closed set Z with a (not neces-
sarily closed) point y.

Theorem 13.6.3. Let f : X → Y be a proper morphism of Noetherian schemes. Suppose
that F is a coherent sheaf on X. Fix a point y ∈ Y . Let Xn denote the base-change of
f over the natural inclusion Spec(OY,y/mn

y ) → Y and let Fn denote the pullback of F to

Xn. Let (Rif∗F )̂s denote the completion of the OY,y-module (Rif∗F)s with respect to the
maximal ideal my. Then the map

(Rif∗F )̂s → lim
←−

H i(Xn,Fn)

is an isomorphism.

Proof. Since the map Spec(OY,y)→ Y is flat, the theorem on Cohomology and Flat Base
Change shows that if we form the product diagram the higher direct images commute with
pullback. We then apply Theorem 13.6.1 to the map X ×Y Spec(OY,y)→ Spec(OY,y) and
the quasicoherent ideal sheaf my.

As a consequence, we obtain:

Corollary 13.6.4. Let f : X → Y be a proper morphism of Noetherian schemes and let
r = supy∈Y dim(f−1y). Suppose that F is a coherent sheaf on X. Then Rif∗F = 0 for all
i > r.

Proof. As in Theorem 13.6.3 let Xn denote the base change of f to Spec(OY,y/mn
y ). For

any y ∈ Y , the topological space underlying Xn is homeomorphic to the topological space
underlying Xy. Thus H i(Xn,Fn) = 0 for i > r by Theorem 13.2.8. By Theorem 13.6.3 we
see that

(Rif∗F )̂s = lim
←−

(
Rif∗F ⊗OY,y/mn

y

)
is also zero. Recall that for a Noetherian ring the completion operation is exact on the
category of finitely generated modules. Since f is proper, Rif∗F is a coherent sheaf. Since
for i > r every stalk of Rif∗F vanishes when taking completions, we conclude that every
stalk is zero and hence Rif∗F = 0.

13.6.2 Connected fibers

Suppose that f : X → Y is a proper morphism of Noetherian schemes so that f∗OX is a
coherent OY -module. It is then natural to wonder whether the properties of this module
– e.g. being locally free – have geometric consequences. The main question of interest for
us is:

Question 13.6.5. When is the map f ] : OY → f∗OX an isomorphism?
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Let’s start by considering the “absolute situation” where X is a projective K-scheme
and we take the structure map f : X → Spec(K). In this case we are asking: when is
H0(X,OX) ∼= K? We have:

• Necessary condition: X is connected. Indeed, if X is disconnected then the ring
H0(X,OX) splits up as a product of the sections on each connected component of
X.

• Sufficient condition: X is geometrically irreducible and geometrically reduced. In
this case we have H0(X,OX) ⊗ K ∼= H0(XK,OXK

) and Exercise 2.11.12 shows that

a variety over an algebraically closed field has global sections equal to K.

We now transition to considering the relative situation.

Proposition 13.6.6. Let f : X → Y be a proper flat morphism of Noetherian schemes
such that dimH0(Xy,OXy) = 1 for all y ∈ Y . Then f ] : OY → f∗OX is an isomorphism.

In particular, the hypotheses hold whenever the fibers of f are geometrically reduced
and geometrically connected.

Proof. Consider the map f ] : OY → f∗OX . Since f is proper and flat it is surjective, and
thus the induced map of fibers OY (y) → f∗OX(y) does not vanish at any point y ∈ Y .
We can then compose this map with the map f∗OX(y) → H0(Xy,OXy) ∼= κ(y) coming
from Lemma 13.4.1. Since this composition is surjective, we can apply the Cohomology
and Base Change Theorem to f∗OX . We deduce that f∗OX is locally free of rank 1. Since
f ] induces an isomorphism of fibers over every point y ∈ Y , Nakayama’s Lemma implies
that f ] induces isomorphisms of stalks at every point, and thus is an isomorphism.

The following key result reverses the implication of Proposition 13.6.6.

Theorem 13.6.7. Suppose that f : X → Y is a proper morphism of Noetherian schemes
such that f ] : OY → f∗OX is an isomorphism. Then for every y ∈ Y the fiber f−1y is
connected.

Proof. Suppose for a contradiction that f−1y is not connected, say f−1y = Z ′ tZ ′′. Then
for every positive integer n we have

H0(Xn,OXn) ∼= H0(Z ′n,OZ′n)⊕H0(Z ′′n,OZ′′n )

where Z ′n and Z ′′n denote the nth infinitesimal neighborhoods of Z ′ and Z ′′ respectively.
By taking a limit and applying Theorem 13.6.1, we see that

(f∗OX )̂s = lim
←−

(
f∗OX ⊗OY,y/mn

y

)
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is also a direct sum of two non-trivial rings. But since by assumption f∗OX = OY the
right hand side is the same as the completion of OY,y along its maximal ideal. Note that
the completion of a local ring along its maximal ideal is a local ring. Furthermore, a local
ring cannot be a direct sum of two non-trivial rings: if e1, e2 are idempotents in a local
ring (A,m) satisfying e1e2 = 0 then we must have e1, e2 ∈ m so that it is impossible for
e1 + e2 = 1. This gives us the desired contradiction.

Normal varieties interact particularly well with finite maps. The following statement is
one of many different versions of Zariski’s Main Theorem.

Corollary 13.6.8. Suppose that f : X → Y is a birational proper morphism of integral
Noetherian schemes such that Y is normal. Then f has connected fibers.

When Y is not normal, the normalization map frequently provides a counterexample
to this statement.

Proof. By Theorem 13.6.7 it suffices to prove that f∗OX is isomorphic to OY . It suffices
to prove this when Y = Spec(S) is affine. Since f is proper f∗OX is coherent, and so
H0(Y, f∗OX) is a finitely generated S-module. Furthermore, since f is birational

13.6.3 Stein factorizations

We next discuss a key application of Theorem 13.6.7. Suppose that f : X → Y is a proper
morphism of Noetherian schemes. Then f∗OX is a finite OY -algebra. In particular, we can
define the scheme Z = Spec

Y
(f∗OX). Note that Z comes equipped with a finite morphism

g : Z → Y .

Furthermore, we claim that the map f : X → Y factors through g : Z → Y . Indeed,
for every open affine V ⊂ Y and every open affine U ⊂ f−1V we have a factoring

U
f //

h &&

V

Spec(f∗OX(V ))

g

88

induced by the ring maps

OX(U) OY (V )oo

f](V )

xx
OX(f−1V )

ρf−1V,U

ff
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It is clear that as we vary U, V the resulting maps glue to give a diagram

X
f //

h   

Y

Z

g
??

Definition 13.6.9. The diagram above is known as the Stein factorization for the proper
morphism f : X → Y of Noetherian schemes.

The key property of the Stein factorization is that the morphism g : Z → Y is finite
and the morphism h : X → Z has connected fibers since by construction OZ ∼= h∗OX .
(In fact, we only used Theorem 13.6.7 to guarantee that the fibers of h are connected.) In
some sense this shows that finite morphisms are “orthogonal” to morphisms with connected
fibers.

Exercise 13.6.10. Let f : X → Y be a proper morphism of Noetherian schemes. Suppose
that f factors through a finite morphism g′ : Z ′ → Y . Prove that the Stein factorization
g : Z → Y factors through g′ as well.
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13.7 Ext functors

In this section we discuss two derived functors – the global Ext (derived from the global
Hom functor) and the sheafy Ext (derived from the sheafy Hom functor).

13.7.1 Properties of Ext

Definition 13.7.1. Let X be a scheme and let F be an OX -module. We define Exti(F ,−)
as the right derived functors of Hom(F ,−) : OX−Mod→ OX(X)−Mod.

We define Exti(F ,−) as the right derived functors of Hom(F ,−) : OX−Mod →
OX−Mod.

Exercise 13.7.2. LetX be a scheme and let G be anOX -module. Show that Exti(OX ,G) ∼=
H i(X,G).

Show that Exti(OX ,G) is G when i = 0 and is 0 when i > 0.

As in any abelian category the group Exti(F ,G) classifies “ith Yoneda extensions” of
F by G. By far the most commonly used case is Ext1:

Theorem 13.7.3. Let X be a scheme and let F ,G be OX-modules. Then there is a
bijection between elements of Ext1(G,F) and exact sequences

0→ F → K → G → 0

where we consider two sequences with central terms K and K′ equivalent if there is a
isomorphism φ : K → K′ which forms a commutative diagram of SES when combined with
the identity maps for F ,G.

This bijection assigns to any extension the image of the identity map under the con-
necting morphism Hom(G,G) → Ext1(G,F) coming from the LES for Hom(G,−). In
particular, the 0 element in Ext1(G,F) corresponds to the non-split extension F ⊕ G.

It is not true that Exti(F ,G) = Exti(F ,G)(X) (see Exercise 13.7.2). Instead, the two
constructions are related by local-to-global spectral sequence for Ext:

Theorem 13.7.4. Let X be a scheme and let F ,G be OX-modules. Then there is a spectral
sequence with E2-page Hj(X, Exti(F ,G)) which converges to Exti+j(F ,G).

Proof. We want to apply Theorem 13.0.11 to compose the two functors Hom(F ,−) and
Γ(X,−). We only need to verify that when I is an injectiveOX -module the sheafHom(F , I)
is acyclic for Γ(X,−).

In fact, we claim that Hom(F , I) is flasque. Indeed, let U be an open subset of X and
let φ ∈ Hom(F ,G)(U), that is, φ : F|U → I|U . If j : U → X is the inclusion, we obtain
j!φ : j!F|U → j!I|U . Furthermore, we have injections g1 : j!F|U → F and g2 : j!I|U → I.
By composing j!φ with g2 and applying the universal property of injective sheaves to the
injection g1, we obtain a map F → I whose restriction to U is φ. Thus Hom(F , I) is
flasque, and hence acyclic for Γ(X,−) by Lemma 13.1.9.



13.7. EXT FUNCTORS 519

13.7.2 Left-derived-type properties

Note that in contrast to the Hom functor for modules, we can not give the Ext functor the
structure of a derived functor in the leftmost entry (since we do not have enough projectives
in our category). However, we are able to recover some of this structure using different
arguments.

Proposition 13.7.5. Let X be a scheme and let 0 → F → G → H → 0 be an exact
sequence of OX-modules. Then for any OX-module L we have a long exact sequence

0→ Hom(H,L)→ Hom(G,L)→ Hom(F ,L)→
→ Ext1(H,L)→ Ext1(G,L)→ Ext1(F ,L)→
→ Ext2(H,L)→ . . .

We have a similar result for Ext sheaves.

Proof. Choose an injective resolution 0 → L → I•. Since Hom(−, I) is an exact con-
travariant functor for any injective sheaf I, we have an exact sequence of complexes

0→ Hom(H, I•)→ Hom(G, I•)→ Hom(F , I•)→ 0.

The associated long exact sequence of homology groups gives the long exact sequence of
Ext sheaves. The proof for Ext sheaves is exactly the same.

The following result is very important for computing Ext sheaves.

Proposition 13.7.6. Let X be a scheme. Suppose we have an exact sequence of OX-
modules

. . .→ L1 → L0 → G → 0

where the Li are locally free coherent sheaves of finite rank. Then for any OX-module F
we have

Exti(G,F) ∼= H i(Hom(L•,F)).

Proof. Setting K−1 = G, the complex L• → G → 0 yields a collection of short exact
sequences

0→ Kj → Lj → Kj−1 → 0.

For each such short exact sequence Proposition 13.7.5 gives a LES of Ext sheaves, and in
particular by Exercise 13.7.12 we have Exti(Kj+1,F) = Exti+1(Kj ,F) for every i > 0 and
every j ≥ −1. By truncating the complex L• at an earlier place and using induction, we
see that it suffices to prove the desired statement for i = 0, 1. The i = 0 case follows easily
from the left-exactness of Hom.
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Finally, we need to prove an isomorphism for i = 1. The various LES of cohomology
constructed above yield an exact sequence

. . .→ Hom(L0,F)→ Hom(K0,F)→ Ext1(G,F)→ 0.

and an exact sequence

0→ Hom(K0,F)→ Hom(L1,F)→ Hom(K1,F)→ . . .

The second exact sequence shows that Hom(K0,F) is the kernel of the first chain map in
the complex Hom(L•,F) and the first shows that Ext1(G,F) is the quotient of this group
by the image of the previous chain map.

In order to apply Proposition 13.7.6, we need to be able to find a suitable sequence of
locally free sheaves of finite rank. (Such a sequence is known as a locally free resolution.)
This result is most useful when the scheme X is Noetherian:

• Proposition 13.7.8 shows that Exti can be computed locally, so we may shrink X so
that it is a Noetherian affine scheme. For a Noetherian ring R, any finitely generated
R-module admits a resolution by finite rank free modules. Constructing such a
resolution for G(X) and then taking ˜-images, we find a locally free resolution suitable
for Proposition 13.7.6.

• When X is a projective scheme over a Noetherian ring and G is a coherent sheaf on
X, Corollary 10.6.13 shows that there is a surjection from a locally free sheaf of finite
rank to G. In this case we have a “global” locally free resolution and can use this to
compute without passing to an open cover.

Remark 13.7.7. The question of whether every coherent sheaf on a scheme X admits a
surjection from a locally free sheaf of finite rank is a delicate one. This question is still
open even for normal proper varieties over an algebraically closed field.

It is known that this property holds for quasiprojective varieties over a noetherian ring,
or for regular Noetherian integral separated schemes. In these cases one can again use
“global” locally free resolutions to compute Ext.

13.7.3 Quasicoherence

Even if F and G are quasicoherent, the sheaves Exti(F ,G) need not be quasicoherent.
Indeed, this fails even when i = 0 unless we impose some finiteness hypothesis on F . In
this section we discuss the quasicoherence of these sheaves.

The first step is to show that the Ext sheaves interact well with passing to open sets.
(This should not be surprising since the Hom sheaves are defined using a local construc-
tion.)
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Proposition 13.7.8. Let X be a scheme and let U be an open subset. For any OX-modules
F ,G we have

Exti(F ,G)|U ∼= Exti(F|U ,G|U ).

Proof. Choose an injective resolution 0 → G → I•. Then Exti(F ,G) is the cohomology
of the sequence Hom(F , I•). Since restriction to U is an exact functor and since the
restriction of an injective sheaf on X is injective on U by Exercise 13.1.14, we see that
both sides are computed by the cohomology of the sequence

Hom(F , I•)|U = Hom(F|U , I|•U ).

We can now specialize to the quasicoherent situation.

Proposition 13.7.9. Let X be a Noetherian scheme, F a coherent sheaf on X, and G
a quasicoherent sheaf on X. Then Exti(F ,G) is a quasicoherent sheaf on X and for any
open affine U we have

Exti(F ,G)|U ∼= ˜Exti(F(U),G(U)).

Proof. By Proposition 13.7.8 it suffices to prove the desired statement when X = Spec(R)

is affine. Suppose that F ∼= M̃ and G ∼= Ñ . Since M is finitely generated, it admits a
resolution by finitely generated free R-modules Fi. Set Li = F̃i. Since each Li is coherent

we have Hom(Li,G) ∼= ˜Hom(Fi, N) and we conclude the desired statement by Proposition
13.7.6.

Corollary 13.7.10. Let X be a Noetherian scheme, F and G coherent sheaves on X.
Then Exti(F ,G) is a coherent sheaf on X.

Corollary 13.7.11. Let X be a Noetherian scheme, F a coherent sheaf on X, and G a
quasicoherent sheaf on X. Then for any point x ∈ X we have

Exti(F ,G)x ∼= ExtiOX,x(Fx,Gx).

Proof. Since F(U) is finitely presented for any open affine U , on each open affine localiza-
tion commutes with taking Homs and the desired statement follows.

13.7.4 Exercises

Exercise 13.7.12. Let X be a scheme and let E be a locally free sheaf on X of finite rank.
Prove that Exti(E ,G) = 0 for any OX -module G for i > 0.

Exercise 13.7.13. Let X be a scheme, let F and G be OX -modules and let E be a locally
free sheaf of finite rank.
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(1) Show that if I is an injective OX -module then I ⊗ E is also injective.

(2) Show that we have isomorphisms

Exti(F ⊗ E∨,G) ∼= Exti(F , E ⊗ G)

and
Exti(F ⊗ E∨,G) ∼= Exti(F , E ⊗ G) ∼= Exti(F ,G)⊗ E .
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13.8 Vector bundles on curves

In this section we analyze locally free sheaves on smooth projective curves over an alge-
braically closed field K. There are two basic invariants of such a locally free sheaf E : the
rank and the degree. We have seen the rank before, but the degree is a new notion for us.

Definition 13.8.1. Let C be a smooth projective geometrically integral curve and let E
be a locally free sheaf on C. We define the degree of E to be the degree of the invertible
sheaf obtained by taking the top exterior power of E :

deg(E) := deg

rk(E)∧
E


If we are working with curves defined over C this definition coincides with the first

chern class of E .

Exercise 13.8.2. Suppose that E = L1 ⊕ . . . ⊕ Lr is a direct sum of line bundles. Show
that

∧r E = L1 ⊗ . . .⊗ Lr. In particular the degree of E is deg(L1) + . . .+ deg(Lr).

Exercise 13.8.3. Let C be a smooth projective curve over a field. Suppose that 0→ F →
G → H → 0 is a SES of locally free sheaves on C. Show that

deg(F) + deg(H) = deg(G).

We will focus on the following feature of locally free sheaves:

Definition 13.8.4. Let C be a smooth projective geometrically integral curve. A locally
free sheaf E on C is said to be decomposable if there are non-trivial subsheaves F ,G such
that E ∼= F ⊕ G. If no such decomposition exists, we say that E is indecomposable.

13.8.1 Vector bundles on P1

We start by proving a fundamental result about P1 known as the Grothendieck-Birkhoff
Theorem.

Theorem 13.8.5. A locally free sheaf E on P1 of rank r is isomorphic to a direct sum of
line bundles:

E ∼= ⊕ri=1O(ai).

If we insist that ai ≥ ai+1 then the ai are uniquely determined.

Proof. The proof is by induction on the rank r. The base case r = 1 was settled in Example
10.1.4.

First, we claim that there is some integer k such thatH0(P1, E(k)) 6= 0 butH0(P1, E(j)) =
0 for every j < k. Since O(1) is ample, we know that some sufficiently positive twist of
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E is globally generated and in particular has sections. On the other hand, a section of
E(m) yields a non-zero map φ : O → E(m). Such a map is necessarily injective: since
E(m) is torsion-free φ is injective at the generic point, showing that the kernel is a torsion
sheaf. But then ker(φ) = 0 since O is torsion-free. After twisting, φ leads to an injection
O(−m)→ E . Since H0(P1, E) is fixed and H0(P1,O(−m)) goes to ∞ as m becomes more
and more negative, the set of m for which we have an inclusion of this type is bounded
below. In conclusion, H0(P1, E(m)) is non-zero for sufficiently positive m and is zero for
sufficiently negative m, showing the claim.

Let K denote the cokernel of O → E(k). We claim that K is locally free. By Exercise
9.4.26, it suffices to show that K is torsion free. Consider the exact sequence

0→ O(−1)→ E(k − 1)→ K(−1)→ 0.

If K were not torsion free, then the torsion part would make a non-zero contribution to
H0(P1,K(−1)). Since H1(P1,O(−1)) = 0, we would conclude that E(k − 1) has a section,
a contradiction.

By induction we can write K ∼= ⊕r−1
i=1O(ai). Repeating the exact sequence argument

from the previous paragraph, we see that ai ≤ 0 for every i. We conclude that Ext1(K,O) =
0, or in other words, E(k) ∼= O⊕K. Thus E(k), and hence also E , is isomorphic to a direct
sum of line bundles.

Exercise 13.8.6. Prove the second claim of Theorem 13.8.5: if E1 and E2 are direct sums
of line bundles on P1 then they are isomorphic if and only if the corresponding ai are the
same (up to reordering).

Warning 13.8.7. Theorem 13.8.5 does not mean that every short exact sequence of locally
free sheaves on P1 splits. For example, since H1(P1,O(−2)) 6= 0 there is a non-split
extension of O by O(−2):

0→ O(−2)→ E → O → 0.

Since this is a nonsplit extension we do not have E ∼= O(−2)⊕O; for example, the LES of
cohomology shows that H0(P1, E) = 0. In fact it is not hard to see that the only option is
E ∼= O(−1)⊕O(−1).

13.8.2 Vector bundles on elliptic curves

The analogue of Theorem 13.8.5 fails for elliptic curves: not every locally free sheaf is a
direct sum of line bundles. To show this we will need a basic observation:

Exercise 13.8.8. Let C be a smooth projective geometrically integral curve and let L,K
be invertible sheaves on C. Suppose that deg(L) > deg(K). Then there is no non-zero
morphism φ : L → K.
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We will say that a locally free sheaf is indecomposable if it cannot be written as a
direct sum of locally free sheaves of smaller rank. In the following example we construct
an indecomposable rank 2 locally free sheaf on an elliptic curve.

Example 13.8.9. Let C be an elliptic curve. Since dimH1(C,OC) = 1, there is a coherent
sheaf E that fits into a non-split exact sequence

0→ OC
φ−→ E ψ−→ OC → 0. (13.8.1)

(In fact there is a unique such E up to isomorphism since any two non-zero elements of
H1(C,OC) only differ by rescaling.) Since E has constant rank 2 and C is reduced we
see that E is locally free. Furthermore, using the LES of sheaf cohomology associated to
Equation 13.8.1 we see that H0(C, E) is 1-dimensional.

Suppose that L is a line bundle on C which admits an injection L ↪→ E . By composing
with ψ we get a morphism L → OC . If this morphism is zero, then L is the kernel of ψ
and hence isomorphic to OC . If not, then we must have deg(L) ≤ deg(O) = 0 by Exercise
13.8.8.

We claim that E cannot be written as a direct sum of line bundles. Suppose for a
contradiction that E ∼= L⊕K for some invertible sheaves L,K. The argument above shows
that both L and K have non-positive degree. Note that

L ⊗K ∼=
2∧
E = OC

where the last identification comes from Equation (13.8.1). Thus L ∼= K∨ and so we see
that both L and K must have degree 0.

First suppose that L 6= OC . Then H0(C,L) = H0(C,K) = 0 by Proposition 12.5.8.
But this contradicts the fact that dimH0(X, E) = 1.

Next suppose that L ∼= OC . Then dimH0(C,L) = dimH0(C,K) = 1. But this again
contradicts the fact that dimH0(X, E) = 1.

A similar argument shows that if p ∈ C is a closed point then there is a unique non-split
extension

0→ OC → G → OC(p)→ 0

and this rank two vector bundle is not isomorphic to a direct sum of two line bundles.
It turns out that every indecomposable rank 2 vector bundle on an elliptic curve is

isomorphic to one of these two types described above after twisting by a suitably chosen
invertible sheaf (see [Har77, Theorem V.2.15]). In fact, the set of indecomposable locally
free sheaves on an elliptic curve was classified by [Ati57, Theorem 7].

Theorem 13.8.10 ([Ati57] Theorem 7). Let C be an elliptic curve over an algebraically
closed field. Let I(r, d) denote the set of isomorphism classes of indecomposable locally free
sheaves of rank r and degree d. Then there is a bijection between I(r, d) and the closed
points of C.
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We have seen this result in several contexts already. If r = 1, we know that the degree
d line bundles can be identified with the closed points on the Jacobian Jac(C) ∼= C. If
r = 2 and d = 0, then I(2, 0) is the set of twists of the indecomposable bundle in Example
13.8.9 by degree 0 line bundles. If r = 2 and d = 1, then each element parametrized by
I(2, 1) is an extension of a degree 1 line bundle OC(p) by OC .

13.8.3 Rank 2 vector bundles

We now turn our attention to rank 2 locally free sheaves on a curve C of arbitrary genus.
The following result shows that the indecomposable rank 2 locally free sheaves on C are
“bounded” in some sense.

Theorem 13.8.11. Let C be a smooth projective curve over an algebraically closed field.
Suppose that E is an indecomposable locally free sheaf on C of rank 2. Then there is an
exact sequence

0→ L1 → E → L2 → 0

where L1 and L2 are invertible sheaves satisfying |deg(L2)− deg(L1)| ≤ 2g(C)− 2.

There are stronger bounds one can put on the degrees of L1 and L2; see for example
[Har77, Theorem V.2.12] and [Har77, Exercise V.2.5].

Proof. Exercise 13.8.15 guarantees that there is an invertible sheaf L1 ⊂ E which has the
maximal degree amongst all invertible subsheaves of E . The exercise also shows that the
cokernel L2 is locally free. We verify that this choice of exact sequence has the desired
property. (In fact, the argument shows that any exact sequence whose kernel and cokernel
are invertible sheaves will satisfy the desired degree bound.)

Since E is indecomposable, we know that Ext1(L2,L1) 6= 0. By Exercise 13.7.13 this is
the same as saying that H1(C,L1 ⊗ L∨2 ) 6= 0. By Proposition 12.5.7 we deduce that

deg(L1)− deg(L2) = deg(L1 ⊗ L∨2 ) ≤ 2g − 2.

The reverse inequality follows from applying the same argument to the dual sequence.

When we study higher rank vector bundles on curves, usually the focus changes from
indecomposable bundles to “stable” bundles (see Exercise 13.8.16). The key advantage of
this new perspective is that stable bundles admit a well-behaved moduli space. The study
of stable sheaves and their moduli spaces is still an active topic of research today.

Remark 13.8.12. For higher dimensional varieties the set of coherent sheaves can be
incredibly complicated. For example, consider the set of coherent sheaves on P2. Any
coherent sheaf on P2 will have three invariants: the rank, the first chern class, and the
second chern class. It is then natural to ask: what are the possible invariants of a stable
sheaf on P2? [DLP85] shows that the invariants of stable sheaves are controlled by a “fractal
curve” in the space of invariants.
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13.8.4 Exercises

Exercise 13.8.13. Fix an integer n. Classify all the isomorphism types of possible exten-
sions of O(n) by O over P1, or equivalently, all possible middle terms that fit in an exact
sequence

0→ O → E → O(n)→ 0.

Explain how Theorem 13.7.3 relates these extensions to elements of Ext1(O,O(n)) ∼=
H1(P1,O(n)).

Exercise 13.8.14. Show thatH1(P2,ΩP2/K) 6= 0. Deduce that ΩP2/K is an indecomposable
rank 2 vector bundle on P2.

Exercise 13.8.15. Let C be smooth projective curve over an algebraically closed field.
Let E be a locally free sheaf on C. Prove that there is an upper bound on the degree of
all line bundles L which admit an injection into E . Show that if L achieves this maximum
value then the cokernel of L → E is torsion free and hence locally free. In particular we
get a SES of locally free sheaves

0→ L → E → K → 0.

Exercise 13.8.16. For higher genus curves C, one usually shifts attention from the notion
of indecomposable vector bundles to the better-behaved notion of stable vector bundles.
In this extended exercise we practice working with this notion.

For any locally free sheaf E on C, we define the slope of E to be

µ(E) =
deg(E)

rk(E)
.

A locally free sheaf is said to be stable if for every subbundle F ⊂ E we have µ(F) < µ(E).

(1) Suppose we have a SES of locally free sheaves

0→ F → G → H → 0.

Prove that µ(F) < µ(G) if and only if µ(G) < µ(H) and the same holds true if < is
replaced by = or >.

(2) Show that a stable locally free sheaf is indecomposable. Give an example of an
indecomposable locally free sheaf that is not stable.

(3) Let φ : E → F be a morphism of stable locally free sheaves. Prove that if µ(E) > µ(F)
then φ = 0. Prove that if µ(E) = µ(F) and φ is non-zero then φ is an isomorphism.
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13.9 Serre duality

One of the most important operations in differential geometry is integration. Recall that for
a compact complex manifold X the space Hp,q(X) (defined using Dolbeault cohomology)
can be identified with the space of harmonic differential forms of type (p, q). Under this
identification we have a perfect pairing

Hp,q(X)×Hn−p,n−q(X)→ Hn,n(X)
∼=−→ C

where the map on the right is obtained by integration. (Recall that a perfect pairing of
two vector spaces V,W is a bilinear map V ×W → K which is non-degenerate. In other
words, the pairing realizes V ∼= W∨.)

Using the identification Hp,q(X) ∼= Hq(X,Ωp
X), we can rewrite the pairing above as

Hq(X,Ωp
X)×Hn−q(X,Ωn−p

X )→ Hn(X,ωX)
∼=−→ C

where as usual ωX denotes the canonical bundle ∧dimXΩX . In fact, we can even enrich
this pairing to include the data of a vector bundle E by allowing our differential forms to
take values in E.

Serre duality translates this fundamental structure into the setting of algebraic geom-
etry. There are two versions: a general version which holds for arbitrary proper schemes
over a field, and a stronger version which holds with some restrictions on the singularities.
Throughout we will work over a fixed field K.

13.9.1 Serre duality for projective space

Recall that the canonical bundle on Pn is isomorphic to O(−n − 1). We computed
Hn(Pn,O(−n − 1)) ∼= K explicitly in Theorem 12.3.1. Returning to the argument there,
we see that the elements σi define a Čech cocycle in Cn(U, ωPn) which we associate with
1 ∈ K under this isomorphism.

Theorem 13.9.1 (Serre duality for Pn). Let F be a coherent sheaf on Pn. For every i ≥ 0
we have an isomorphism

Exti(F , ωPn) ∼= Hn−i(Pn,F)∨.

Furthermore, when i = 0 this isomorphism is induced by the perfect pairing

Hom(F , ωPn)×Hn(Pn,F)→ Hn(Pn, ωPn) ∼= K.

of Remark 12.3.2.

Due to its prominent role in this theorem, ωPn is sometimes called the “dualizing sheaf”
of Pn. When F is locally free, by Exercise 13.7.13 this reduces to the more commonly used
form H i(Pn,F∨ ⊗ ωPn) ∼= Hn−i(Pn,F).
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Proof. Our plan is to use Theorem 13.0.8 to show that the functor Hn−i(Pn,−)∨ coincides
with the functor Exti(−, ωPn) as functors from Coh(Pn)op → K−Mod. In particular, we
must show that both form effaceable δ-functors and that their 0th degree functors coincide.

We first show that these two functors coincide when i = 0, i.e. that Hom(−, ωPn) is
isomorphic toHn(Pn,−)∨. This is done by a direct calculation. First consider the invertible
sheaves O(d). By the functoriality of cohomology we obtain a pairing

Hom(O(d), ωPn)×Hn(Pn,O(d))→ Hn(Pn, ωPn)

and the proof of Theorem 12.3.1 shows that this pairing is perfect (see Remark 12.3.2).
We immediately deduce the desired statement when F is a direct sum of line bundles. For
a general coherent sheaf F , we have an exact sequence

E1 → E0 → F → 0

where both E1 and E0 are direct sums of line bundles. Since both Hom(−, ωPn) and
Hn(Pn,−)∨ are contravariant left exact, the desired statement for F follows from the
established cases E1, E0 and the 5-lemma.

The Hn−i(Pn,−)∨ have the structure of a δ-functor, since the dual “reverses” the LES
for sheaf cohomology. Similarly, the Exti(−, ωPn) form a δ-functor by Proposition 13.7.5.

Finally, we must show that these functors are effaceable. Due to the contravariance
of the construction, we must show that any coherent sheaf F admits a surjection from a
coherent sheaf E for which the higher functors vanish. For any coherent sheaf F there is a
direct sum of line bundles O(d)⊕r which surjects onto F by Corollary 10.6.13. Furthermore,
for any m there is a surjection O(m− 1)⊕2 → O(m) given by multiplying by x on the first
factor and y on the second. Using this modification repeatedly, we obtain a surjection
O(e)⊕q → F where e < −n− 1. Then all the higher functors vanish on O(e)⊕q.

13.9.2 Serre duality for regular varieties

When X is a regular projective K-variety, Serre duality has essentially the same form:

Theorem 13.9.2 (Serre duality for regular varieties). Let X be a regular projective K-
variety of dimension n and let F be a coherent sheaf on X. For every i ≥ 0 we have an
isomorphism

Exti(F , ωX) ∼= Hn−i(X,F)∨.

Furthermore, when i = 0 this isomorphism is induced by a perfect pairing

Hom(F , ωX)×Hn(X,F)→ Hn(X,ωX) ∼= K.

Remark 13.9.3. Note that Ωp
X
∼= (Ωn−p

X )∨ ⊗ ωX so that our current formulation really
does extend the pairing of Dolbeault cohomology groups described earlier in the section.
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Remark 13.9.4. When F is locally free a stronger statement is true. In this case Exercise
13.7.13 identifies Exti(F , ωX) ∼= H i(X,F∨ ⊗ ωX). Then the isomorphism of Theorem
13.9.2 can be rephrased as the existence of a perfect pairing

H i(X,F∨ ⊗ ωX)×Hn−i(X,F)→ Hn(X,ωX) ∼= K

where the pairing is the composition of the cup product in Exercise 12.2.10 and the map
Hn(X, (F ⊗ F∨)⊗ ωX)→ Hn(X,ωX) induced by the canonical map F ⊗ F∨ → OX .

The isomorphism Hn(X,ωX) ∼= K in Theorem 13.9.2 called the trace map. Although
we have not defined it explicitly, one should view it as an analogue of map obtained by
combining the Dolbeault isomorphism with the integration of a volume form. In some cases
we can be more explicit about this map:

Example 13.9.5. Let C be a regular projective curve and let ΩC denote its cotangent
bundle. We will explain how the trace map H1(C,ΩC) → K is related to the classical
theory of residues of differential forms.

Let η ∈ C be the generic point of C. We will identify the stalk ΩC,η as the set of
meromorphic differential forms on C. For a closed point p, the stalk ΩC,p ⊂ ΩC,η is the set
of meromorphic forms which are regular at p. One can show that for every closed point
p ∈ C there is a K-linear map resp : ΩC,η → K satisfying the following properties:

(1) If τ ∈ ΩC,p then resp(τ) = 0.

(2) If we choose a uniformizer t of the local ring OC,p, then any element τ ∈ ΩC,η can
be written as g dt for some g ∈ K(C). Then resp(g) is the coefficient of t−1 in the
expansion of g as a rational function of t.

The Residue Theorem states that for any τ ∈ ΩC,η we have
∑

p∈C resp(τ) = 0.
Consider the exact sequence

0→ OC → KC → KC/OC → 0

where KC is the locally constant sheaf with value K(C). The two sheaves on the right are
flasque, hence acyclic for the global sections functor. Furthermore, the rightmost term can
be identified more explicitly as a direct sum of skyscraper sheaves

KC/OC ∼= ⊕p∈C(K(C)/OC,p)(p).

If we tensor our exact sequence by ΩC , the LES of cohomology yields

H0(C,ΩC ⊗KC) //
OO
∼=
��

H0(C,ΩC ⊗KC/OC) //
OO
∼=
��

H1(C,ΩC) // 0

ΩC,η ⊕p∈CΩC,η/Ωp
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We can define a map ⊕p∈CΩC,η/ΩC,p → K by taking the sums of the residue maps resp :
ΩC,η/ΩC,p → K. By the Residue Theorem this map vanishes on the image of ΩC,η, and thus
the residue map descends to define H1(X,ΩC)→ K. This turns out to be the isomorphism
we are looking for.

13.9.3 Dualizing sheaves

Definition 13.9.6. Let X be a proper K-scheme of pure dimension n. A coherent sheaf
ζX is said to be a dualizing sheaf if there is a trace morphism t : Hn(X, ζX)→ K such that
for any coherent sheaf F on X the composition of the pairing with the trace map

Hom(F , ζX)×Hn(X,F)→ Hn(X, ζX)
t−→ K

is a perfect pairing of K-vector spaces.

Exercise 13.9.7. Suppose that ζX and ζ ′X are dualizing sheaves for X. Prove that there
is a unique isomorphism φ : ζX → ζ ′X such that t′ = t ◦Hn(φ).

Theorem 13.9.8. Any proper K-scheme of pure dimension n admits a dualizing sheaf.

When X is a projective K-scheme, one can derive this statement in a very formal way
from Serre duality for Pn. First, by embedding X into some projective space and taking
generic projections, one obtains a finite morphism f : X → Pn for some n. Second, given
an affine morphism f : X → Y one constructs a functor f ! which is right adjoint to the
pushforward f∗. (This is surprising: usually we think of f∗ as a right adjoint, and in general
there is no reason to expect it to be a left adjoint.) Finally, using the formal properties of
adjoint functors one shows that the dualizing sheaf ζX can be obtained by applying f ! to
the dualizing sheaf ωPn .

Note that in general we only obtain a pairing of Hom and Hn, not of the higher Ext
functors and the Hn−i. It turns out that this stronger version holds when X is Cohen-
Macaulay. The key is the Miracle Flatness theorem, showing that when X is Cohen-
Macaulay the finite morphism f : X → Pn constructed above is flat.

13.9.4 Exercises

Exercise 13.9.9. Let X = Pn. Show that for 0 ≤ p, q ≤ n we have

Hq(X,Ωp
X) =

{
0 when p 6= q
K when p = q

(Compare this result against the singular cohomology groups or Hodge diamond of Pn.)
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What’s next

The material we have covered is roughly equivalent to the other “standard” introductory
texts in algebraic geometry, such as Hartshorne’s book or Ravi Vakil’s notes. However,
there is no standard next step in learning algebraic geometry. I wanted to briefly discuss
some good options of a subject and text for a second course. (Of course my recommenda-
tions will be based on my own knowledge and thus will leave out some excellent books I
am not familiar with.)

First, over the summer you should learn:

• Basic theory of curves and surfaces

For a quick introduction, I don’t know of a better resource than chapters IV and V
of Hartshorne’s textbook. These are not as comprehensive as other books devoted to
the subject but will give you a basic set of examples you will need to know for future
work.

Next, if you are planning to work with one of the “classical” algebraic geometers in our
department, then there are a couple topics you should learn no matter who you decide to
work with. These include:

• Positivity in algebraic geometry

Lazarsfeld’s book “Positivity in Algebraic Geometry I & II” is widely viewed as
one of the best “second” texts in algebraic geometry (and is my favorite choice).
We have seen that ample invertible sheaves satisfy a number of special properties.
Lazarsfeld’s book discusses how these ideas can be generalized and extended to other
types of divisors and locally free sheaves.

• Intersection theory

There are two standard texts: Fulton’s “Intersection Theory” (which is excellent for
understanding the theory but doesn’t focus on examples) and Harris and Eisenbud’s
“3264 and all that” (which is great for examples but doesn’t explain the theory). I
think it would be best to work through both books together; if you just use one you
miss out on a valuable part of this vast subject.

There are a number of additional topics worth learning depending on your eventual
interests:

• Riemann surfaces

Since Riemann surfaces are foundational in most areas of theoretical mathematics,
it is worth seeing them from a non-algebraic perspective. Many algebraic geometers
prefer Miranda’s “Algebraic Curves and Riemann Surfaces” since it retains much
of the flavor of the algebraic theory. A more advanced book on algebraic curves is
“Geometry of Algebraic Curves” by Arabello, Cornalba, Griffiths, and Harris.
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• Algebraic surfaces

There are two main goals of the theory of algebraic surfaces. First, one would like to
study the classification of surfaces – can we describe all surfaces of a certain type?
What are the topological constraints on surfaces? Second, one would like to get a
deeper understanding of special types of surfaces (K3 surfaces, general type surfaces
with g = q = 0, etc.). Beauville’s book “Complex Algebraic Surfaces” gives a concise
introduction to the subject. Other options include “Algebraic Surfaces” by Badescu
or “Compact Complex Surfaces” by Barth, Hulek, Peters, van de Ven.

• Topology of algebraic varieties

Here the goal would be to learn some of the foundations of the topology of complex
algebraic varieties – Hodge theory, the Lefschetz theorems, etc. In my view the best
option is Voisin’s books “Hodge Theory and Complex Algebraic Geometry I & II”.
Some more introductory options include “Complex Geometry” by Huybrechts and
“Principles of Algebraic Geometry” by Griffiths and Harris.

• Toric geometry

Toric varieties are built up out of simple affine pieces that are glued together in a
combinatorial way. (The prototype is projective space where we encode the combina-
torics of the gluing data using graded algebra.) Thus toric varieties are one of the few
classes of algebraic varieties for which we can easily compute things. The traditional
references are “Introduction to Toric Varieties” by Fulton and “Toric Varieties” by
Cox, Little, Schenck.

• Minimal model program

The Minimal Model Program studies how the geometry of algebraic varieties is con-
trolled by the curvature of their canonical bundle. The classical reference is “Bira-
tional Geometry of Algebraic Varieties” by Kollár and Mori. The book “Introduction
to the Mori Program” by Matsuki is another option which keeps the discussion more
elementary. Finally, the book “Higher-Dimensional Algebraic Geometry” by Debarre
is a very clear introduction to issues related to the MMP (and also discusses the MMP
briefly). See [Alv] for more resources.

• Moduli spaces of curves

The moduli space of curves is a basic object in algebraic geometry and complex
geometry. There is a standard set of tools used to construct and study its properties.
One good introduction is “Moduli of curves” by Harris and Morrison, but this book
has the unfortunate disadvantage of not explaining the underlying theory in a rigorous
way. The book “Rational curves on algebraic varieties” by Kollár carefully discusses
some foundational issues about various moduli spaces of curves (including the Chow
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and Hilbert schemes). The book “Geometric Invariant Theory” by Mumford, Fogarty,
Kirwan gives a construction of the moduli space.

• Abelian varieties

Abelian varieties will be particularly important for the number theorists in our de-
partment, but every algebraic geometer would benefit from an understanding of their
basic properties. [Moo] is an excellent set of online notes, but doesn’t appear to be
completed. When I was a graduate student the book “Abelian Varieties” by Mumford
was the most popular choice.

• Derived categories of sheaves

Recently there has been a lot of interest in understanding how derived categories of
sheaves reflect the geometry of the ambient variety. I think the best introduction
is “Fourier-Mukai Transforms in Algebraic Geometry” by Huybrechts. You can find
some more resources at [Ver].
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