
AN INTRODUCTION TO VOLUME FUNCTIONS FOR

ALGEBRAIC CYCLES

Abstract. The volume of a divisor L is an important invariant cap-
turing the asymptotic behavior of sections of mL as m increases. We
survey recent progress in understanding analogous invariants for cycles
of higher codimension.

1. Introduction

One of the oldest problems in algebraic geometry is the Riemann-Roch
problem: given a divisor L on a smooth projective variety X, what is the
dimension of H0(X,L)? Even better, one would like to calculate the entire
section ring ⊕m∈ZH0(X,mL). It is often quite difficult to compute this ring
precisely; for example, section rings need not be finitely generated.

Even if we cannot completely understand the section ring, we can still
extract information by studying its asymptotics – how does H0(X,mL)
behave as m → ∞? This approach is surprisingly fruitful. On the one
hand, asymptotic invariants are easier to compute and have nice variational
properties. On the other, they retain a surprising amount of geometric
information. Such invariants have played a central role in the development
of birational geometry over the last forty years.

Perhaps the most important asymptotic invariant for a divisor L is the
volume, defined as

vol(L) = lim sup
m→∞

dimH0(X,mL)

mn/n!
.

In other words, the volume is the section ring analogue of the Hilbert-Samuel
multiplicity for graded rings. As we will see shortly, the volume lies at the
intersection of many fields of mathematics and has a variety of interesting
applications.

This expository paper outlines recent progress in the construction of
“volume-type” functions for cycles of higher codimension. The main theme
is the relationship between:

• the structure of pseudo-effective cones,
• an asymptotic approach to enumerative geometry, and
• the convex analysis of positivity functions.

We summarize the theory of volume for higher codimension cycles as devel-
oped in the recent papers [Leh15], [FL13], [Xia15], [LX15a], [LX15b].
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2 AN INTRODUCTION TO VOLUME FUNCTIONS FOR ALGEBRAIC CYCLES

1.1. History. The volume function for divisors has its roots in the work of
Demailly on Fujita’s Conjecture ([Dem93]). The first explicit references to
the volume in the algebraic setting occurred in [ELN96] (for applications to
Fujita’s conjecture) and in [Fuj94] (for applications to the Zariski decompo-
sition problem). The theory of the volume was developed systematically in
[DEL00] and [Laz04, Chapter 2.2].

Here are a few areas where the volume function has been of use:

(1) Birational geometry. The applications are too varied to summarize
here. The volume is particularly useful for analyzing the geome-
try of the canonical divisor, with applications to Fujita’s conjecture
([Dem93], [AS95]) and boundedness statements ([Tsu06], [HM06],
[Tak06], [HMX13]).

(2) Complex geometry. The volume has emerged as a powerful tool for
understanding the holomorphic morse inequalities and the positivity
of singular hermitian metrics. This viewpoint was initially developed
in [Bou02b], [Bou04], [BDPP13].

(3) Convex geometry. For toric varieties, the volume is an important link
between the geometry of divisors and the theory of convex bodies. In
particular, many geometric inequalities have analogues in algebraic
geometry which use the volume function ([Tei82], [Kho89]). More re-
cently, this dictionary has been extended to arbitrary varieties using
the Okounkov body construction ([LM09], [KK12]).

(4) Enumerative geometry. The volume can be interpreted via enumera-
tive geometry by counting point incidences on divisors (see [DEL00]
for a related statement). For higher codimension cycles this per-
spective raises many new and interesting questions in enumerative
geometry. From this viewpoint, the volume is also related by analogy
to many recent advances in enumerative problems over finite fields,
e.g. versions of the Kakeya conjecture.

(5) K-stability. [Fuj15a], [Fuj15b], [FO16] have shown how the volume
function can be used to analyze the existence of Kähler-Einstein
metrics on Fano varieties.

(6) Number theory. The arithmetic analogue of the volume function
is an important construction in Arakelov theory (see for example
[Yua08], [Yua09]). The volume also has appeared in connection with
Diophantine problems as in [MR15].

Two excellent introductions to the volume function are [Laz04, Chapter
2.2] and [ELM+05]; we will usually refer to the former.

2. Preliminaries

Throughout we will work over C (although many of the results hold for
arbitrary algebraically closed fields). A variety is always reduced and irre-
ducible.
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2.1. Numerical spaces. A k-cycle on X is a finite formal sum
∑
aiZi

where each ai ∈ Z and each Zi is a k-dimensional subvariety of X. When X
is smooth of dimension n, [Ful84] describes an intersection pairing between
k-cycles and (n− k)-cycles. Two k-cycles Z1, Z2 are numerically equivalent
if they have the same intersection number against every cycle of comple-
mentary dimension.

We let Nk(X)Z denote the free abelian group of k-cycles up to numerical
equivalence and denote its tensor product with Q by Nk(X)Q. We usually
work with the kth numerical group, which is the finite dimensional vector
space

Nk(X) := Nk(X)Z ⊗Z R.

Note that Nk(X)Z defines a lattice in Nk(X).

Remark 2.1. When X is singular, there is no longer a natural intersec-
tion pairing for cycles, and we define numerical equivalence by intersecting
against (homogeneous polynomials in) chern classes of vector bundles in-
stead.

The pseudo-effective cone Effk(X) is the closure of the cone in Nk(X)
generated by the classes of irreducible k-dimensional subvarieties. [FL15]
verifies that it is a pointed convex closed cone. Classes in the interior of
the pseudo-effective cone are known as big classes; we denote the set of such
classes by Bigk(X). Given classes α, β ∈ Effk(X), we use the notation α � β
to denote the condition β − α ∈ Effk(X).

The movable cone Movk(X) is the closure of the cone in Nk(X) generated
by the classes of irreducible k-dimensional subvarieties which deform to cover
X. This well-known construction for divisors and curves seems to play in
important role in intermediate codimension as well. Its basic properties are
studied in [FL13].

2.2. Divisors. We let N1(X) denote the Neron-Severi space of numerical

classes of Cartier divisors. We let Eff
1
(X), Big1(X), Nef1(X) and Amp1(X)

denote respectively the pseudo-effective cone, big cone, nef cone, and ample
cone of divisor classes.

The positive product of [Bou02a], [BDPP13] is a useful tool for analyzing
the positivity of divisors. We briefly recall the algebraic construction of
[BFJ09]. Suppose L is a big R-Cartier divisor class on X. For any birational
map φ : Y → X and any ample R-divisor class A on Y satisfying φ∗L �
A, consider the numerical k-cycle class φ∗A

n−k on X. [BFJ09, Section 2]
shows that as we vary over all (φ,A), the resulting classes admit a unique
supremum under the relation �. We denote this class by 〈Ln−k〉 ∈ Nk(X).

2.3. Convex analysis. The Legendre-Fenchel transform describes the strict
convexity of a function. It associates to a convex real-valued function f on
R a function f∗ on R∨; its key property is that the strict convexity of f is
related to the differentiability of f∗ and vice versa ([Roc70]).
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We will work with an analogous construction in a different setting. Sup-
pose that C is a cone in a finite dimensional vector space and that f : C → R
is a non-negative real function which is homogeneous of weight s > 1. The
function f is said to be s-concave on the interior of C if for every v, w ∈ C◦

f(v + w)1/s ≥ f(v)1/s + f(w)1/s.

This is of course equivalent to the condition that for every t ∈ [0, 1] we have

f(tv + (1− t)w)1/s ≥ tf(v)1/s + (1− t)f(w)1/s.
The analogue of the Legendre-Fenchel transform for concave homogeneous

functions on cones is known as the polar transform. To a positive s-concave
homogeneous function on C◦, it associates a non-negative s

s−1 -concave ho-

mogeneous function on the interior of the dual cone C∨.

Definition 2.2. The polar transform of f as above is the function Hf :
C∨◦ → R≥0 defined as

Hf(w∗) = inf
v∈C◦

(
w∗ · v
f(v)1/s

)s/s−1

.

The polar transform relates strict log-concavity with differentiability in
a similar way as the Legendre-Fenchel transform. However, there can be
“extra” failure of strict concavity arising from the duality of cones when f
is positive along the boundary of C.

Many of the classical results in convex analysis, such as the Young-Fenchel
inequality or the Brunn-Minkowski inequality, have avatars in this setting
([LX15a]). In particular, [LX15a] shows that the failure of concavity arising
from cone duality leads to a formal “Zariski decomposition structure” for
the function Hf .

3. Volume for divisors

Suppose that X is a smooth projective variety of dimension n and L is a
Cartier divisor on X. We would like to understand the asymptotic behavior
of the section ring ⊕mH0(X,mL). We first must establish the expected
rate of growth. By restricting to an ample divisor and using the LES of
cohomology, one easily shows by induction that

Lemma 3.1. There is a constant C = C(X,L) such that dimH0(X,mL) <
Cmn for every positive integer m.

Not only is the growth rate bounded above by a degree n polynomial, but
every variety carries divisors which achieve this “expected” growth rate. A
divisor L whose section ring grows like a polynomial of degree n is known as
a big divisor. (We will soon see a divisor is big if and only if its numerical
class is big in the sense of Section 2.1, resolving the potential conflict in
notation.)
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The focus of this section is the asymptotic invariant of L known as the
volume:

vol(L) = lim sup
m→∞

dimH0(X,mL)

mn/n!
.

It is true, but not obvious, that the limsup is in fact a limit ([Laz04, Example
11.4.7]). The rescaling factor n! ensures that the volume of the hyperplane
class on projective space is 1. Before discussing this function further, we
give several extensive examples.

Example 3.2 (Ample divisors). Suppose that A is an ample divisor. By
Serre vanishing and asymptotic Riemann-Roch, we find that for sufficiently
large m

dimH0(X,mA) = χ(X,OX(mA))

=
An

n!
mn +O(mn−1).

Thus the volume coincides with the top self-intersection An.
Note that the volume of an ample divisor only depends on its numerical

class, so that the function descends to ample numerical classes in N1(X).
From this perspective, it is natural to extend the volume to all of Amp1(X)
as the top self-intersection product. We can then consider the analytic
properties of this function: it is continuous, homogeneous of degree n, and
infinitely differentiable. A key property is the strict n-concavity on the
big and nef cone known as the Khovanskii-Teissier inequality (which is the
algebro-geometric incarnation of the Brunn-Minkowski inequality):

Lemma 3.3 ([BFJ09] Theorem D). Let X be a projective variety of dimen-
sion n. Given any two big and nef classes a, h ∈ N1(X), we have

vol(a+ h)1/n ≥ vol(a)1/n + vol(h)1/n

with equality if and only if a and h are proportional.

Example 3.4 (Toric varieties). Suppose that X is a smooth toric variety
of dimension n defined by a fan Σ in a finite rank free abelian group N . Let
ri denote the rays of the fan and let Di denote the torus-invariant divisor
corresponding to ri. We let NR = N⊗ZR and let MR denote the dual space.

To any divisor D on X we can associate a polytope whose normal facets
are a subset of the rays of Σ. Write D ∼

∑
i aiDi; then the associated

polytope is

PD := {v ∈MR | 〈v, ri〉+ ai ≥ 0}.
The volume of D is n! times the volume of the polytope PD.

This example indicates the tight relationship between volume functions,
geometric inequalities, and convex geometry, as pioneered by Teissier ([Tei79],
[Tei82]) and Khovanskii ([Kho89]). More recently, this relationship has been
extended to arbitrary varieties by the Okounkov body construction ([LM09],
[KK12]).
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Example 3.5 (Surfaces). Suppose S is a smooth projective surface S. An
influential idea of Zariski allows one to replace an effective divisor L by a
nef Q-divisor P with the same asymptotic behavior of sections. We describe
how this works for big curves:

Definition 3.6 ([Zar62], [Fuj79]). Let L be a big effective curve on S. There
exists a unique big and nef Q-divisor P and a unique effective Q-divisor N
satisfying:

L = P +N and P ·N = 0.

The decomposition L = P +N is known as the Zariski decomposition of
L; experts will readily verify that this definition agrees with the one given
by Zariski in terms of the self-intersection matrix of Supp(N). Note again
the numerical nature: the negative part only depends on the numerical class
of L.

[Zar62] shows that for any positive integer m, the natural inclusion

H0(S, bmP c)→ H0(S,mL)

is an isomorphism. As a consequence, one easily checks that

vol(L) = vol(P ) = P 2.

Zariski proved a more precise statement about the asymptotic behavior of
sections of P , but we do not need this stronger statement.

It will be useful to recast the Zariski decomposition in terms of the con-
vexity of the volume function. By combining the Zariski decomposition with
the strict 2-concavity of the volume on the big and nef cone, we see:

Theorem 3.7. Let L and D be two big divisors on S. Then

vol(L+D)1/2 ≥ vol(L)1/2 + vol(D)1/2

with equality if and only if the numerical classes of PL and PD are propor-
tional.

In other words, the Zariski decomposition exactly captures the failure of
the strict 2-concavity of the volume function.

3.1. Analytic properties of volume. We next discuss the basic proper-
ties of the volume function.

Proposition 3.8 ([Laz04] Propositions 2.2.35 and 2.2.41). Let X be a pro-
jective variety of dimension n. Then:

• The volume is homogeneous of weight n: for any Cartier divisor L
and positive integer c we have vol(cL) = cn vol(L).
• If L and D are numerically equivalent Cartier divisors, then vol(L) =

vol(D).

The second property shows that the volume can naturally be considered
as a function on N1(X)Z, and we make this identification henceforth. The
first property allows us to extend the volume to N1(X)Q in a natural way,
so that we can discuss its analytic properties:
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Theorem 3.9 ([Laz04] Theorem 2.2.44, [LM09] Corollary C, [BFJ09] The-
orem A). Let X be a projective variety of dimension n.

• The volume extends to a continuous function on all of N1(X).

• The volume is continuously differentiable on the interior of Eff
1
(X)

with
d

dt

∣∣∣∣
t=0

v̂ol(L+ tE) = n〈Ln−1〉 · E.

In fact, the definition of the volume (as an asymptotic limit of sections)
makes sense for arbitrary R-divisors, and the continuous extension as in
Theorem 3.9 agrees with this naive definition ([FLK15]). Theorem 3.9 is
optimal in that the volume fails to be C2 even in very simple examples, such
as the blow-up of P2 at a point. It is an open question whether the volume
is real analytic on a dense subset of the pseudo-effective cone.

Remark 3.10. We see that the volume function for big divisors shares many
of the desirable properties of the volume function for ample divisors. This
is no accident: for an arbitrary big divisor L, one can view the volume as
a “perturbation” of the self-intersection which removes extra contributions
arising from the base locus. This viewpoint is made precise by the Fujita
approximation theorem vol(L) = 〈Ln〉.

However, there are also fundamental differences between the volume on
the big cone and on the ample cone. [Cut86] constructs Cartier divisors
whose volume is irrational, [BKS04] constructs varieties whose volume func-
tions are not locally polynomial, and [KLM13] gives an example where the
volume function is transcendental on a region of the big cone.

3.2. Convexity.

Theorem 3.11 ([Laz04] Theorem 11.4.9). Let X be a projective variety of
dimension n. The volume function is n-concave on the big cone: for big
divisors L,D, we have

vol(L+D)1/n ≥ vol(L)1/n + vol(D)1/n.

For any concave function it is important to understand when strict con-
cavity fails. By analogy with the surface case, we might look for a “Zariski
decomposition” of divisors on varieties of arbitrary dimension. There are
many different such notions in the literature (see [Pro03] for a survey) –
however, most of these are equivalent for big divisors. The version we use
here is due to Nakayama.

Usually a “Zariski decomposition theory” for a divisor L has two parts.
We will only focus on the first: the removal of the divisorial stable base locus
of L. (The second part is to study the behavior of the divisorial stable base
locus upon blowing-up.)

Definition 3.12 ([Nak04]). Let X be a smooth projective variety. For a
big divisor L and a prime divisor Γ, we define

σΓ(L) = max{c ∈ R≥0|L′ ≥ cΓ for every effective R-divisor L′ ≡ L}.
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We then set Nσ(L) =
∑

Γ σΓ(L)Γ and Pσ(L) = L−Nσ(L).
We call the expression L = Pσ(L) + Nσ(L) the Nakayama-Zariski de-

composition of L; Pσ(L) is the “positive part” and Nσ(L) is the “negative
part”.

It turns out that the numerical class of Pσ(L) is the same as the positive
product 〈L〉. We can now quantify the failure of strict n-concavity of the
volume function.

Theorem 3.13 ([LX15b] Theorem 1.6). Let X be a smooth projective va-

riety of dimension n. For big divisors L,D, we have vol(L + D)1/n =

vol(L)1/n + vol(D)1/n if and only if the numerical classes of Pσ(L) and
Pσ(D) are proportional.

In fact, the volume function for divisors fits into the abstract convexity
framework formulated in [LX15a]. A posteriori, this motivates many of
the well-known results in divisor theory (such as the Khovanskii-Teissier
inequalities and the Morse criterion for bigness).

4. Volume for curves: convexity

[Xia15] shows that the polar transform can be used to define an interesting
positivity function for curves. To obtain a function on Eff1(X), we need to
take the polar transform of a function on the dual cone Nef1(X).

Definition 4.1 ([Xia15]). Let X be a projective variety of dimension n and
let α be a pseudo-effective curve class on X. We define the volume of α to
be

v̂ol(α) = inf
A ample

(
A · α

vol(A)1/n

) n
n−1

.

We define the volume of α to be 0 outside of the pseudo-effective cone.

Note that α is an n
n−1 -homogeneous function. In this section we study

the properties of v̂ol.

Example 4.2. We start with a representative example. Let X be the pro-
jective bundle over P1 defined by O ⊕ O ⊕ O(−1). There are two natural
divisor classes on X: the class f of the fibers of the projective bundle and
the class ξ of the sheaf OX/P1(1). The divisor classes f and ξ generate the

numerical cohomology ring with the relations f2 = 0, ξ2f = −ξ3 = 1. Using
for example [Ful11, Theorem 1.1], we have

Nef1(X) = 〈f, ξ + f〉

and

Eff1(X) = 〈ξf, ξ2〉.
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We can now compute the volume function for curves: if x, y are non-negative
then

v̂ol(xξf + yξ2) = inf
a,b≥0

ay + bx

(3ab2 + 2b3)1/3

This is essentially a one-variable minimization problem due to the homogene-
ity in a, b. It is straightforward to compute directly that for non-negative
values of x, y:

v̂ol(xξf + yξ2) =

(
3

2
x− y

)
y1/2 if x ≥ 2y;

=
x3/2

21/2
if x < 2y.

Note the dichotomy in behavior: for any class with x ≤ 2y, the nef divisor
ξ + f always achieves the minimum in the expression for the volume. For
such classes the volume can be computed by “projecting” the class onto the
ray x = 2y along the y-direction, since (ξ + f) · ξ2 = 0.

We should ask whether the ray x = 2y has any special geometric mean-
ing. It is perhaps surprising that this ray does not lie on the boundary of
Mov1(X). Rather, the ray lies on the boundary of the cone {A2|A ample}.

4.1. Zariski decompositions. Although the volume function is differen-
tiable on the interior of the nef cone, it does not vanish along the boundary.

Thus the polar transform v̂ol will fail to be strictly convex. Just as with di-
visors, we can capture the failure of concavity by a “Zariski decomposition”
structure.

Definition 4.3 ([LX15a]). Let X be a projective variety of dimension n
and let α be a big curve class on X. Then a Zariski decomposition for α is
an expression

α = Bn−1 + γ

where B is a big and nef R-Cartier divisor class, γ is pseudo-effective, and
B · γ = 0. We call Bn−1 the “positive part” and γ the “negative part” of
the decomposition.

Note that Definition 4.3 exactly generalizes Zariski’s original construction
as phrased in Definition 3.6. It turns out that Zariski decompositions always
exist and that they exactly capture the failure of strict log concavity:

Theorem 4.4 ([LX15a] Theorem 1.2). Every big curve class admits a unique
Zariski decomposition.

Theorem 4.5 ([LX15a] Theorem 1.5). Let X be a projective variety of
dimension n and let α and β be big curve classes on X. Then

v̂ol(α+ β)n−1/n ≥ v̂ol(α)n−1/n + v̂ol(β)n−1/n

with equality if and only if the positive parts Bn−1
α and Bn−1

β are proportional.
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We define the complete intersection cone CI1(X) to be the closure of the
set of classes of the form Hn−1 for an ample divisor H. Thus the positive
part of the Zariski decomposition takes values in CI1(X). It is important
to emphasize that, in contrast to most cones in birational geometry, CI1(X)
need not be convex. However, it still has an easily-understood structure
along the boundary ([LX15a]).

4.2. Basic properties. The basic properties of v̂ol follow from formal prop-
erties of polar transforms.

Theorem 4.6 ([LX15a] Theorems 5.2 and 5.11). Let X be a projective
variety of dimension n.

• The volume is a continuous function on all of N1(X).
• The volume is continuously differentiable on Big1(X), with

d

dt

∣∣∣∣
t=0

v̂ol(α+ tβ) =
n

n− 1
Bα · β.

Note that Bα plays the role of the positive product in the derivative
formula for divisors. A key advantage of this “positive product” for curves
is that we do not need to pass to a birational model to define Bα – indeed,
this feature is exactly what makes the divisor theory on surfaces so well
behaved.

4.3. Examples.

Example 4.7 (Toric varieties). Let X be a simplicial projective toric variety
of dimension n defined by a fan Σ. Suppose that the curve class α lies in
the interior of the movable cone of curves, or equivalently, α is defined
by a positive Minkowski weight on the rays of Σ. A classical theorem of
Minkowski attaches to such a weight a polytope Pα whose facet normals are
the rays of Σ and whose facet volumes are determined by the weights.

In this setting, the volume is calculated by a mixed volume problem: fixing
Pα, amongst all polytopes whose normal fan refines Σ there is a unique Q
(up to homothety) minimizing the mixed volume calculation(

V (Pn−1
α , Q)

vol(Q)1/n

)n/n−1

.

Then the volume is n! times this minimal mixed volume, and the positive
part of α is proportional to the (n − 1)-product of the big and nef divisor
defined by Q.

Note that if we let Q vary over all polytopes then the Brunn-Minkowski
inequality shows that the minimum is given by Q = cPα, but the normal
fan condition on Q yields a new version of this classical problem. This is the
rare isoperimetric problem which can actually be solved explicitly, via the
Zariski decomposition. (It is unclear whether this problem admits a more
natural polytope interpretation that has yet to be discovered.)
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Example 4.8 (Hyperkähler manifolds). Let X denote a hyperkähler mani-
fold of dimension n and let q denote the (normalized) Beauville-Bogomolov
form on N1(X), or via duality, on N1(X). The results of [Bou04, Section 4]
and [Huy99] show that the volume and Nakayama-Zariski decomposition of
divisors satisfy a natural compatibility with the Beauville-Bogomolov form:

(1) The cone of movable divisors is q-dual to the cone of pseudo-effective
divisors.

(2) If P is a movable divisor then vol(P ) = q(P, P )n/2.
(3) Suppose that B is a big divisor and write B = P + E for its

Nakayama-Zariski decomposition. Then q(P,E) = 0 and if E is
non-zero then q(E,E) < 0.

Exactly the analogous statements are true for curves by [LX15a]. We give
the projective statements, but everything is true in the Kähler setting as
well.

(1) The cone of complete intersection curves is q-dual to the cone of
pseudo-effective curves.

(2) If α is a complete intersection curve class then v̂ol(α) = q(α, α)n/2(n−1).
(3) Suppose α is a big curve class and write α = Bn−1 + γ for its

Zariski decomposition. Then q(Bn−1, γ) = 0 and if γ is non-zero
then q(γ, γ) < 0.

5. Volume for cycles: enumerative geometry

We now return to the problem of defining a volume function for cycles
of arbitrary codimension. The main obstacle is that there is no obvious
analogue of a “section ring”. In particular, there does not seem to be a
natural way to associate a vector bundle to a k-cycle.

We will need a change in perspective. Suppose we are given a linear
series PH0(X,L) on a projective variety X. For a general point x ∈ X,
the divisors containing x are parametrized by a codimension 1 hyperplane
in PH0(X,L). Furthermore, if we fix several points in general position the
corresponding hyperplanes intersect transversally. Thus, an element of the
linear series can go through any dimH0(X,L)− 1 general points of X, but
no more.

In this way we can interpret the volume as an asymptotic count of general
points in divisors. A conjecture of [DELV11] suggests that this approach
generalizes naturally to cycles of arbitrary codimension. This suggestion
works surprisingly well, even beyond the material we discuss here.

Below we give two different constructions of “volume-type” functions aris-
ing from this viewpoint. The first is easier to define; the second is easier to
compute. Currently it is not clear which of the two is the better choice (or
even whether the two functions are different).
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5.1. Mobility.

Definition 5.1 ([Leh15]). Let X be a projective variety of dimension n and
let α ∈ Nk(X)Z for 0 ≤ k < n. The mobility count of α is

mc(α) = max

{
b ∈ Z≥0

∣∣∣∣ any b general points of X are contained
in an effective cycle of class α

}
.

We point out two important features. First, we define the mobility count
for a numerical class, and not a cycle. This is to ensure we obtain a numer-
ical invariant at the end – one could equally well use rational or algebraic
equivalence, but it is not clear whether the resulting definition would be the
same. Second, we can define the mobility count for varieties with arbitrary
singularities. This is a new feature which is useful even for divisors.

Example 5.2. The first interesting case of the mobility count is for m times
the class of a line ` on P3. What is the maximum number of general points
contained in a degree m curve? It turns out that the answer to this question
is not known, even in an asymptotic sense.

As a first guess, we might expect the “optimal” degree m curves to be
parametrized by the component of the Chow variety with the largest dimen-
sion. This expectation fails miserably: [EH92] shows that such curves are
planar, and thus can go through no more than 3 general points of P3. The
same issue appears for all of the largest components of the Chow variety:
they parametrize curves on low degree surfaces.

A remarkable conjecture of [Per87] is that the “optimal” curves are com-
plete intersection curves (in certain degrees). This is supported by the
Gruson-Peskine bounds, which show that the curves that do not lie on low
degree hypersurfaces of the highest genus (and thus conjecturally the largest
Hilbert schemes) are complete intersections. Assuming the conjecture, it is
easy to verify that mob(`) = 1. The best known bound (at least focusing
on smooth curves) is that 1 ≤ mob(`) ≤ 3.

The most surprising, and appealing, feature of Perrin’s conjecture is that
the complete intersection curves are “picked out” from the viewpoint of
enumerative geometry. Among the entire zoo of space curves, the simplest
ones seem to be the ones we are looking for.

5.2. Asymptotic analysis. Just as for divisors, we would like to calculate
the asymptotic behavior of mc(mα) as m goes to infinity. To predict the
growth rate, we use a heuristic argument on Pn. Recall that a degree d
divisor on projective space can contain approximately dn/n! general points.
If we intersect n−k such divisors, we obtain a degree dn−k cycle of dimension
k on projective space containing approximately dn/n! general points. This
heuristic argument suggests:

Lemma 5.3 ([Leh15] Proposition 5.1). There is a constant C = C(X,α)

such that mc(mα) < Cmn/n−k for every positive integer m.
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This “expected” growth rate is achieved by any complete intersection of
ample divisors. The mobility function captures the leading exponent:

Definition 5.4 ([Leh15]). Let X be a projective variety of dimension n and
suppose α ∈ Nk(X)Z for 0 ≤ k < n. The mobility of α is

mob(α) = lim sup
m→∞

mc(mα)

m
n

n−k /n!

For a Cartier divisor on a smooth variety, this definition coheres with the
notion of volume defined above. On a singular variety X, [FL13, Theorem
1.16] shows that the mobility of a Weil divisor class α is the same as the
maximum of the volumes of all preimages of α on resolutions of X.

Unfortunately the mobility is difficult to compute, as demonstrated by
Example 5.2. Nevertheless, there has been some progress in understanding
its properties.

Theorem 5.5 ([Leh15] Theorem 1.2). Let X be a projective variety of di-
mension n. Then mob extends to a continuous n

n−k -homogeneous function

on all of Nk(X).

In particular, the mobility is positive precisely for big classes. This gives
a geometric interpretation of boundary classes of Effk(X); the boundary
consists of those classes for which the asymptotic point counts do not grow
too quickly.

Sketch of proof: Fix a very ample divisor H and a class α ∈ Nk(X)Z. For
convenience set b = mc(α). We prove the following version of our statement:
choose an integer s so that sHn ≥ α ·Hn−k. If α is not big, then there is a
constant ε = ε(n, k) > 0 such that

b ≤ C(n, k)Hns
n

n−k
−ε

Let A be a general element of |ds1/n−keH|. Consider specializing b general
points in X to b general points on A. For each configuration of points there
will be a cycle of class mα containing the points, and we can consider the
limit cycle Z containing b general points of A. We separate Z into two pieces:
the components ZA contained in A and the components ZB not contained
in A.

We now bound the number of points contained in each piece by induction.
The intersection of ZB with A is a (k − 1)-cycle on A of class α · A; by
induction, it can go through at most

C(n− 1, k − 1)H|n−1
A · s

n−1
n−k = C(n− 1, k − 1)Hns

n
n−k

general points of A. ZA is a k-cycle on A whose pushforward to X is less
pseudo-effective than α. An easy lemma shows that ZA can not be big on
A. Note also that we can decrease s in this situation, since

ZA ·H|n−kA ≤ α ·Hn−k ≤ s
n−k−1
n−k H|n−1

A .
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Thus (after rounding to ensure our new s-value is an integer) ZA can contain
at most

C(n− 1, k)H|n−1
A (s

n−k−1
n−k )

n−1
n−k−1

−ε(n−1,k) = C(n− 1, k)Hns
n

n−k
−ε(n,k)

We can bound b by adding these two expressions.
Note that we have not quite proved the statement, since the first con-

tribution grows too quickly. We can compensate by slightly decreasing the
degree of A. The exponent of s in the first equation will decrease slightly
and the exponent of s in the second equation will increase slightly, yielding
a bound as claimed. �

It is not yet known whether the mobility is differentiable or log-concave.
In fact, it is not even clear whether one should expect log concavity to
hold: for divisors concavity is deduced from the Hodge Index Theorem, but
the signature of the intersection form in intermediate dimensions can be
different.

Despite the difficulty of calculating mobility counts, Perrin’s conjecture
(see Example 5.2) hints at a broader picture that has not yet been uncovered.
We expect that the complete intersection classes should be “distinguished”
from the viewpoint of enumerative geometry in full generality.

Conjecture 5.6 ([Leh15] Question 6.1). Let X be a projective variety of
dimension n and let H be an ample divisor on X. Then for 0 < k < n we
have mob(Hn−k) = vol(H).

5.2.1. Zariski decompositions. [FL13] shows that the mobility admits a weak
type of “Zariski decomposition structure”.

Definition 5.7 ([FL13]). Let X be a projective variety and let α ∈ Nk(X)
be a big class. A weak Zariski decomposition for α is an expression α = β+γ
where β ∈ Movk(X), γ ∈ Effk(X), and mob(α) = mob(β).

Theorem 5.8 ([FL13] Theorem 1.6). Every big cycle class admits a weak
Zariski decomposition.

The construction is weaker than the version for curves described above
since it provides less information about the positive part (often we have
CI1(X) ( Mov1(X)). However, it is just the right tool for understanding
the behavior of mobility under birational maps.

Theorem 5.9 ([FL13] Proposition 6.11). Let π : Y → X be a birational
morphism of projective varieties. Let α ∈ Nk(X). Then

mob(α) = sup
β∈Nk(Y ),π∗β=α

mob(β)

and the supremum on the right hand side is achieved by a class β.
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5.3. Weighted mobility. We now define the second volume-type function
arising from enumerative geometry. Following a suggestion of R. Lazarsfeld,
we define the weighted mobility count of a class α ∈ Nk(X)Z as:

wmc(α) = max

b ∈ Z≥0

∣∣∣∣∣∣
there is a µ ∈ Z>0 and an effective cycle of

class µα through any b points of X with
multiplicity at least µ at each point

 .

This definition has the effect of counting singular points with a higher
“weight”. This convention better reflects the intersection theory on the
blow-up of the points, as the strict transform of a cycle which is singular at
a point will be have larger intersection against the exceptional divisor than
the strict transform of a smooth cycle. In particular, the weighted mobility
is closely related to the computation of Seshadri constants.

The expected growth rate of the mobility count on a variety of dimension
n is still wmc(mα) ∼ Cmn/n−k, suggesting:

Definition 5.10 ([Leh15]). Let X be an integral projective variety of di-
mension n and suppose α ∈ Nk(X)Z for 0 ≤ k < n. The weighted mobility
of α is

wmob(α) = lim sup
m→∞

wmc(mα)

m
n

n−k

The rescaling factor n! is now omitted to ensure that the hyperplane class
on Pn has weighted mobility 1.

Theorem 5.11 ([Leh15] Theorem 1.12). Let X be an integral projective
variety. Then wmob extends to a continuous n

n−k -homogeneous function on

Nk(X). In particular, α ∈ Nk(X) is big if and only if wmob(α) > 0.

The advantage of the weighted mobility is that it can be calculated using
Seshadri constants.

Example 5.12 ([Leh15] Example 8.19). Let X be a projective variety of
dimension n and let H be an ample divisor on X. Then for 0 < k < n
we have wmob(Hn−k) = vol(H). The “hard” inequality ≤ is proved by an
intersection-theoretic calculation on blow-ups of X.

6. Comparison of volumes for curves

We have defined several different volume-type functions for curves, and
it is interesting to ask how they compare. Surprisingly, the construction
arising from abstract convex duality matches up with the asymptotic point
counts.

Theorem 6.1 ([LX15b] Theorem 1.3). Let X be a smooth projective variety
of dimension n and let α ∈ Eff1(X) be a pseudo-effective curve class. Then:

(1) v̂ol(α) = wmob(α).

(2) v̂ol(α) ≤ mob(α) ≤ n!v̂ol(α).

(3) Assume Conjecture 5.6 for curve classes. Then mob(α) = v̂ol(α).
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Sketch of proof: The proof relies on the following ingredients:

• The Zariski decompositions for mob and v̂ol.
• An analysis of the birational behavior of volume functions.
• Classical techniques for constructing divisors with imposed singular-

ities at given points.

We sketch the proof of Theorem 6.1.(3), which is the most difficult part.
[FL13, Corollary 6.16] shows that for any big curve class α, there is a big
and nef curve class β satisfying α � β and:

• mob(α) = mob(β).
• mob(φ∗β) = mob(β) for any birational map φ.

The next (and most subtle) part of the proof is to show that there is a
sequence of birational maps φ such that φ∗β becomes “closer and closer”
to a complete intersection class. Then since we are assuming Conjecture
5.6, we see that we can approximate mob(φ∗β) = mob(β) using intersection
theory.

Using the birational invariance of mob and the inequality v̂ol ≤ mob, we

are able to deduce that v̂ol(φ∗β) = v̂ol(β) for any birational map. However,
an additional lemma shows that this property can only hold when β is a

complete intersection class. Thus the Zariski decompositions for v̂ol and
mob coincide, and the desired conclusion follows easily. �

7. An alternative dual function

We close with a different application of the polar transform. Recall that
the polar transform relates positive functions on dual cones. Instead of
using the duality Eff1(X)↔ Nef1(X), we could use the duality Mov1(X)↔
Eff

1
(X) (as established by [BDPP13]).

Definition 7.1 ([Xia15]). Let X be a projective variety of dimension n.
For any curve class α ∈ Mov1(X) define

M(α) = inf
L big divisor class

(
L · α

vol(L)1/n

)n/n−1

.

The main structure theorem for M relies on a refined version of a theorem
of [BDPP13] describing the movable cone of curves. In [BDPP13], it is
proved that the movable cone Mov1(X) is the closure of the cone generated
by (n− 1)-self positive products of big divisors. We show that Mov1(X) is
the closure of the set of (n− 1)-self positive products of big divisors.

Theorem 7.2 ([LX15b] Theorem 1.8). Let X be a smooth projective variety
of dimension n and let α be an interior point of Mov1(X). Then there is
a unique big movable divisor class Lα lying in the interior of Mov1(X) and
depending continuously on α such that 〈Ln−1

α 〉 = α.
We have M(α) = vol(Lα).
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Thus, M can be used to identify the “(n − 1)st-root” of a class in the
interior of Mov1(X). It turns out that this description extends naturally to
the boundary of Mov1(X) as well; see [LX15b, Theorem 1.9] for details. As
an interesting corollary of Theorem 7.2, we obtain:

Corollary 7.3 ([LX15b] Corollary 1.10). Let X be a projective variety of
dimension n. Then the rays over classes of irreducible curves which deform
to dominate X are dense in Mov1(X).

We expect that every Q-ray in the interior of Mov1(X) should be gener-
ated by an irreducible moving curve.

Just as for the volume function, M admits an enumerative interpretation.
We can define mobmov and wmobmov for curve classes analogously to mob
and wmob, except that we only count points on families of curves whose
general member is a sum of irreducible movable curves. Note that this
function can only be positive on the movable cone of curves.

Theorem 7.4 ([LX15b] Theorem 7.3). Let X be a smooth projective variety
of dimension n and let α ∈ Mov1(X)◦. Then:

(1) M(α) = wmobmov(α).
(2) Assume Conjecture 5.6 for curve classes. Then M(α) = mobmov(α).

Example 7.5 (Toric varieties). Suppose that X is a smooth toric variety
of dimension n defined by a fan Σ in a finite rank free abelian group N . Let
ri denote the rays of the fan.

A class α in the interior of the movable cone corresponds to a Minkowski
weight which is positive on the rays ri. A classical theorem of Minkowski
associates to α a polytope Pα whose facet normals are rays of Σ and whose
facet volumes are determined by the weights. Then Pα corresponds to the
big movable divisor L satisfying 〈Ln−1〉 = α, and M(α) = n! vol(Pα). In
this dictionary, sums of movable curves correspond to Blaschke addition of
polytopes, and the concavity properties of M correspond to the Kneser-Süss
inequality.

Example 7.6 (Mori dream spaces). The cone of movable divisors of a Mori
dream space X admits a chamber decomposition reflecting the structure of
all small Q-factorial modifications of X ([HK00]). It is interesting to ask
for an analogous structure for curves. Note that if we simply take the duals
of the chamber decomposition of divisors we do not remain in the pseudo-
effective cone. Instead, [LX15b] recommends passing the chamber structure
to Mov1(X) by applying the homeomorphism 〈−n−1〉.

Defining the chamber structure on the movable cone of curves in this way,
[LX15b] verifies that the chambers correspond to the birational transforms
of the complete intersection cones on SQMs. The main difference from the
divisor version is that the chambers are non-convex cones; otherwise the
analogous properties hold.

The two functions v̂ol and M give a good way of working with this cham-

ber structure. On the movable cone of curves we have an inequality v̂ol ≥M,
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and equality is achieved precisely on the complete intersection cone of X.

As we pass to different models M is preserved while v̂ol changes in corre-
spondence with the ample cone.
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