
NUMERICAL TRIVIALITY AND PULLBACKS

BRIAN LEHMANN

Abstract. Let f : X → Z be a surjective morphism of smooth complex
projective varieties with connected fibers. Suppose that L is a pseudo-
effective divisor that is f -numerically trivial. We show that there is a
divisor D on Z such that L ≡ f∗D.

1. Introduction

We consider the following question:

Question 1.1. Let f : X → Z be a surjective morphism of smooth complex
projective varieties with connected fibers. Suppose that L is a pseudo-
effective R-Cartier divisor that is numerically trivial on the fibers of f . Is L
numerically equivalent to the pull-back of a divisor on Z?

When L is not pseudo-effective the answer is an emphatic “no.” Thus
it is perhaps surprising that there is a positive answer for pseudo-effective
divisors. The most restrictive situation is to ask that L be numerically trivial
on every fiber of f . In this case L is actually numerically equivalent to the
pullback of a divisor on Z:

Theorem 1.2. Let f : X → Z be a surjective morphism with connected
fibers from an integral complex projective variety X to a Q-factorial normal
complex projective variety Z. Suppose that L is a pseudo-effective R-Cartier
divisor. Then L is f -numerically trivial if and only if there is an R-Cartier
divisor D on Z such that L ≡ f∗D.

Again, the pseudo-effectiveness of L is crucial: the dimension of the space
of divisors that are f -numerically trivial will generally be larger than the
dimension of N1(Z).

For applications it is more useful to require that L be numerically trivial
only on a general fiber of f . To handle this case we need a systematic way
of discounting the non-trivial behavior along special fibers. For surfaces the
behavior of special fibers is captured by the Zariski decomposition. The
analogous construction in higher dimensions is the divisorial Zarkiski de-
composition of [Nak04]. Given a pseudo-effective R-Cartier divisor L, the
divisorial Zariski decomposition

L = Pσ(L) +Nσ(L)
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expresses L as the sum of a “movable part” Pσ(L) and a “fixed part” Nσ(L)
(see Definition 2.7).

Theorem 1.3. Let f : X → Z be a surjective morphism of integral com-
plex projective varieties with connected fibers. Suppose that L is a pseudo-
effective R-Cartier divisor such that L|F ≡ 0 for a general fiber F of f .
Then there is a smooth birational model φ : Y → X, a map g : Y → Z ′

birationally equivalent to f , and an R-Cartier divisor D on Z ′ such that
Pσ(φ∗L) ≡ Pσ(g∗D).

The conclusion of Theorem 1.3 also holds if L only satisfies the weaker
requirement Pσ(L)|F ≡ 0 for a general fiber F .

The analogue of Question 1.1 for Q-linear equivalence is well understood,
with the most general statements due to Nakayama. Theorem 1.3 is the
numerical version of [Nak04] V.2.26 Corollary, and in particular [Nak04]
gives stronger results when either κ(L) ≥ 0 or when f∗OX(L) 6= 0.

To apply Theorems 1.2 and 1.3, one must find a morphism f : X → Z such
that L is numerically trivial along the fibers. [BCE+02], [Eck05], and [Leh14]
show that such maps can be constructed by taking the quotient of X by
subvarieties along which L is numerically trivial. In fact, there is a maximal
fibration such that L is numerically trivial (properly interpreted) along the
fibers. Thus Theorems 1.2 and 1.3 pair naturally with the reduction map
theory developed in these papers.

Remark 1.4. Suppose given a morphism π : Y → X of smooth projective
varieties. The recent paper [DJV13] analyzes the kernel of the pushforward
map π∗ on numerical classes of Weil divisors. In particular, they show that
any pseudo-effective divisor class in the kernel of π∗ is a limit of classes of
effective divisors contracted by π. Theorem 1.3 is a stronger statement, and
yields a short proof of [DJV13, Theorem 5.7]. The techniques can also be
used for cycles of higher codimension; this will be demonstrated in upcoming
work.

Remark 1.5. The proof of Theorems 1.2 and 1.3 is similar in spirit to the
work of [BCE+02]. In the course of the proof of [BCE+02, Theorem 2.1], the
authors show that if a nef divisor is numerically trivial on the fibers of a map
with connected fibers, and also numerically trivial along a multisection, then
the nef divisor is numerically trivial. This is a very special case of Theorem
1.2.

1.1. Outline. There are two important inputs for the Q-linear equivalence
case: Nakayama’s work on the divisorial Zariski decomposition and Grauert’s
theorem giving sufficient conditions for the pushfoward of a sheaf to be lo-
cally free. Nakayama’s ideas also play an important role in the proof of
Theorem 1.3. In Section 2, we review Nakayama’s theory with some slight
modifications for the numerical setting.
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However, there seems to be no way to adapt Grauert’s theorem to the
numerical situation. Note that Grauert’s theorem holds for non-pseudo-
effective divisors as well as pseudo-effective ones, whereas Theorem 1.2 does
not.

Our main contribution is to find another way to construct a “candidate”
divisor D on the base of the map. We achieve this by cutting down to the
case when f is generically finite. A key conceptual point is that a numerical
class is determined by intersections against curves not contained in a fixed
countable union of codimension 2 subvarieties.

Section 2 reviews the numerical versions of ideas of [Nak04]. Section 3
gathers some technical results on generically finite maps. Sections 4 and 5
prove Theorems 1.2 and 1.3 respectively.

I thank B. Bhatt, A.M. Fulger, and Y. Gongyo for some helpful conver-
sations.

2. Preliminaries

We work over the base field C. All varieties are irreducible and reduced.
A divisor will always mean an R-Cartier divisor unless otherwise qualified.

2.1. Notation. We will use the standard notations ∼,∼Q,∼R, and ≡ to
denote respectively linear equivalence, Q-linear equivalence, R-linear equiv-
alence, and numerical equivalence.

Definition 2.1. Suppose that f : X → Z is a morphism of normal projec-
tive varieties. We say that

• A curve C on X (or a curve class α ∈ N1(X)) is f -vertical if it has
vanishing intersection against f∗H for some ample Cartier divisor
H on Z .
• An R-Cartier divisor L on X is f -numerically trivial if it has van-

ishing intersection with every f -vertical curve class.

Suppose that f : X → Z is a surjective morphism of normal projective
varieties. By [Ray72] there is a birational model ψ : T → Z such that for
the main component W of X ×Z T the induced map g : W → T is flat. We
say that g : W → T is a flattening of f .

2.2. Surfaces. We begin by considering Question 1.1 for surfaces. For sur-
faces, the Zariski decomposition is the key tool.

Theorem 2.2 ([Zar64],[Fuj79]). Let S be a smooth projective surface and
let L be a pseudo-effective R-Cartier divisor on S. There is a unique de-
composition

L = P +N

where P is a nef divisor and N is an effective divisor satisfying

(1) P ·N = 0.
(2) If N 6= 0, the intersection matrix defined by the components of N is

negative definite.
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We will use this theorem to describe how a divisor L behaves along special
fibers of an L-trivial morphism. Although all the following lemmas are well-
known, it seems worthwhile to repeat the proofs here.

Lemma 2.3. Let f : S → C be a surjective morphism with connected fibers
from a smooth projective surface S to a smooth projective curve C. Let L be
a pseudo-effective R-Cartier divisor on S such that L · F = 0 for a general
fiber F of f .

(1) If L ·D = 0 for every f -vertical curve D, then L is nef.
(2) If L ·D 6= 0 for some f -vertical curve D contained in a fiber F0, then

there is an f -vertical curve G contained in F0 satisfying L ·G < 0.

Proof. Let L = P +N be the Zariski decomposition of L. Since P is nef and
P · F ≤ L · F = 0, P has vanishing intersection with every f -vertical curve.
Note that N is an (effective) f -vertical curve since N · F = L · F = 0.

We first show (2). By assumption N must have some components con-
tained in F0. Recall that the self-intersection matrix of the components
of N is negative-definite. In fact, since f -vertical curves in different fibers
do not intersect, the same is true just for the components contained in F0.
Thus, there is an effective curve G supported on Supp(N) ∩ Supp(F0) with
0 > N · G = L · G. The same argument shows that in (1) we must have
N = 0 so that L is nef. �

The following is a special case of a theorem of [Pet12].

Lemma 2.4 (cf. [Pet12],Theorem 6.8). Let f : S → C be a surjective
morphism with connected fibers from a smooth projective surface S to a
smooth projective curve C. Suppose that L is an f -numerically trivial nef
R-Cartier divisor. Then L ≡ αF for some α ≥ 0 where F denotes a general
fiber of f .

Proof. Suppose the theorem fails. There is a divisor D such that D · L < 0
and D ·F > 0. The latter condition implies that D is f -big so that D+f∗H
is pseudo-effective for some ample divisor H on C. But (D+mf∗H) ·L < 0,
a contradiction. �

Corollary 2.5. Let f : S → C be a surjective morphism from an irreducible
projective surface S to a smooth projective curve C with connected fibers.
Suppose that L is a pseudo-effective R-Cartier divisor on S such that L ·C =
0 for every f -vertical curve C. Then L ≡ f∗D for some R-Cartier divisor
D on T .

Proof. When S is smooth this follows from Lemmas 2.3 and 2.4. In general
we may assume that S is reduced and we pass to a resolution φ : S′ → S.
Applying the smooth case to φ∗L we find a divisor D such that φ∗L ≡
(f ◦ φ)∗D. Thus L ≡ f∗D. �



NUMERICAL TRIVIALITY AND PULLBACKS 5

2.3. Divisorial Zariski decompositions. We next recall the divisorial
Zariski decomposition. This notion was introduced by [Nak04] and [Bou04]
as a higher-dimensional analogue of the Zariski decomposition for surfaces.

Definition 2.6. Let X be a smooth projective variety and let L be a pseudo-
effective R-Cartier divisor on X. Fix an ample divisor A on X. Given a
prime divisor Γ on X, we define

σΓ(L) = lim
ε→0

min{multΓ(L′)|L′ ≥ 0 and L′ ∼Q L+ εA}.

This definition is independent of the choice of A.

[Nak04] shows that for any pseudo-effective divisor L there are only
finitely many prime divisors Γ with σΓ(L) > 0. Thus we can make the
following definition.

Definition 2.7. Let X be a smooth projective variety and let L be a pseudo-
effective R-Cartier divisor. We define:

Nσ(L) =
∑

σΓ(L)Γ Pσ(L) = L−Nσ(L)

The decomposition L = Pσ(L) + Nσ(L) is called the divisorial Zariski de-
composition of L.

We need the following properties of the divisorial Zariski decomposition.

Lemma 2.8 ([Nak04], III.1.4 Lemma, V.1.3 Theorem, and III.2.5 Lemma).
Let X be a smooth projective variety and let L be a pseudo-effective R-Cartier
divisor. Then

(1) Nσ(L) is effective.
(2) For any prime divisor Γ of X, the restriction Pσ(L)|Γ is pseudo-

effective.
(3) If φ : Y → X is a birational map from a smooth projective variety

Y , then Nσ(φ∗L) ≥ φ∗Nσ(L).

The following is a numerical analogue of [Nak04] III.5.2 Lemma.

Lemma 2.9 ([Leh14], Lemma 4.4). Let f : X → Z be a surjective mor-
phism from a smooth projective variety to a normal projective variety with
connected fibers. Suppose that L is a pseudo-effective R-Cartier divisor such
that L|F ≡ 0 on the general fiber F of f . If Θ is a prime divisor on Z such
that L|F 6≡ 0 for a general fiber F over Θ, then there is some prime divisor
Γ on X such that f(Γ) = Θ and L|Γ is not pseudo-effective.

Proof. The surface case is Lemma 2.3 (2). The general case is proved by
cutting down by general very ample divisors on X and Z to reduce to the
surface case. �

Corollary 2.10. Let f : X → Z be a surjective morphism from a smooth
projective variety to a normal projective variety with connected fibers. Sup-
pose that L is a pseudo-effective R-Cartier divisor such that L|F ≡ 0 on the
general fiber F of f . Then there is a subset V ⊂ Z that is a countable union
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of closed sets of codimension 2 such that Pσ(L)|F ≡ 0 for every fiber F not
lying above V .

Proof. Since L ≥ Pσ(L), we see that Pσ(L)|F ≡ 0 for a general fiber F of f .
The conclusion follows from Lemma 2.9 combined with Lemma 2.8 (2). �

2.4. Exceptional divisors.

Definition 2.11. Let f : X → Z be a surjective morphism of normal
projective varieties. An R-Cartier divisor E on X is

• f -vertical if no component of Supp(E) dominates Z.
• f -horizontal otherwise.

We next identify two different ways a divisor can be “exceptional” for a
morphism.

Definition 2.12. Let f : X → Z be a surjective morphism of normal
projective varieties. An f -vertical R-Cartier divisor E on X is

• f -exceptional if every component Ei of Supp(E) satisfies

codimf(Ei) ≥ 2.

• f -degenerate if for every prime divisor Θ ⊂ Z there is a prime divisor
Γ ⊂ X with f(Γ) = Θ and Γ 6⊂ Supp(E).

Although [Nak04] uses a different notion, the arguments of [Nak04] III.5.8
can be applied verbatim to our situation to prove the following lemma.

Lemma 2.13 ([Nak04] III.5.8 Lemma). Let f : X → Z be a surjective
morphism of smooth projective varieties with connected fibers. Suppose that
L is an effective f -vertical R-Cartier divisor. There is an effective R-Cartier
divisor D on Z and an effective f -exceptional divisor E on X such that

L+ E = f∗D + F

where F is an effective f -degenerate divisor.

As demonstrated by Nakayama, the divisorial Zariski decomposition gives
a useful language for understanding f -degenerate divisors.

Lemma 2.14 ([GL13], Lemma 2.16). Let f : X → Z be a surjective mor-
phism from a smooth projective variety to a normal projective variety and let
D be an effective f -degenerate R-Cartier divisor. For any pseudo-effective
R-Cartier divisor L on Z we have D ≤ Nσ(f∗L+D).

3. Generically Finite Maps

In this section we study the behavior of divisors over generically finite
morphisms. Such morphisms are a composition of a birational map and a
finite map and can be understood by addressing each separately. The fol-
lowing lemma is a well-known consequence of the Negativity of Contraction
lemma.
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Lemma 3.1. Let f : X → Z be a birational morphism from an integral
projective variety X to a Q-factorial normal projective variety Z. Suppose
that L is an R-Cartier divisor on X such that L is f -numerically trivial.
Then L ≡ f∗D for some R-Cartier divisor D on Z.

Proof. We may first precompose f by a resolution to assume that X is
smooth. The negativity of contraction lemma then guarantees that D = f∗L
will work. �

Lemma 3.2. Let f : X → Z be a surjective finite morphism of normal
projective varieties and let L be a pseudo-effective R-Cartier divisor on X.
Let {Ti}ki=1 be a collection of irreducible curves on X. Suppose that there
are constants αi such that

L · C = (deg f |C)αi

for every curve C on X with f(C) = f(Ti). Then there is an R-Cartier
divisor D on Z such that L · Ti = f∗D · Ti for every i. In particular, if the
numerical classes of the Ti span N1(X) then L ≡ f∗D.

Proof. Let h : W → Z denote the Galois closure of f with Galois group G.
We let p : W → X denote the map to X. We first show that the R-Cartier
divisor

LG :=
1

|G|
∑
g∈G

g(p∗L)

is numerically equivalent to h∗D for some R-Cartier divisor D on Z. For a
positive integer m, let Lm =

∑
g∈G g(bmp∗Lc). Using [KKV89, 4.2 Proposi-

tion], one sees that the natural map Pic(Z)→ PicG(W ) has torsion cokernel.
Thus since Lm is G-invariant, we can find a Cartier divisor Dm on Z such
that h∗Dm ≡ Lm. Note that the numerical classes of 1

m|G|Dm converge;

choose D to be an R-Cartier divisor representing this class. Then

h∗D ≡ lim
m→∞

1

m|G|
Dm = LG.

Note that if C is a curve on W such that p(C) = Ti then LG · C = p∗L · C
by the assumption on the intersection numbers of L. Thus L · Ti = f∗D · Ti
for each i. �

Lemma 3.3. Let f : X → Z be a surjective generically finite map from a
smooth projective variety X to a Q-factorial normal projective variety Z. Let
L be an R-Cartier divisor on X and let {Ti}ki=1 be a collection of irreducible
curves on X. Suppose that there are constants αi with

L · C = (deg f |C)αi

for every curve C on X with f(C) = f(Ti).

(1) Suppose that for each i the image f(Ti) is a curve lying in the open
locus on Z over which f is flat. Then there is an R-Cartier divisor
D on Z such that L · Ti = f∗D · Ti for every i.
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(2) Suppose that the numerical classes of the Ti span N1(X) and that
L · C = 0 for every f -vertical curve C. Then L ≡ f∗D for some
R-Cartier divisor D on Z.

Proof. Choose a birational model φ : X̃ → X and a normal birational model

µ : Z ′ → Z so that we have a morphism f̃ : X̃ → Z ′ flattening f . We may
assume that φ and µ are isomorphisms on the locus over which f is flat.
Let ψ : X ′ → X denote a precomposition of φ with a normalization and let
f ′ : X ′ → Z ′ denote the natural map. For each i choose an irreducible curve
T ′i on X ′ lying above Ti.

We first prove (1). Suppose that C is a curve on X ′ such that f ′(C) =
f ′(T ′i ). Since f(ψ(T ′i )) is a curve,

ψ∗L · C = (degψ|C)(deg f |ψ(C))αi

= (deg f ′|C)(degµ|f ′(C))αi

= (deg f ′|C)(degµ|f ′(T ′i ))αi.

Set α′i = (degµ|f ′(T ′i ))αi. The set of curves {T ′i} and the divisor φ∗L satisfy

the hypotheses of Lemma 3.2 for the finite map f ′ and the constants α′i.
Lemma 3.2 yields a divisor DZ′ on Z ′ such that ψ∗L · T ′i = f ′∗DZ′ · T ′i for
every i. Since the Ti lie over the locus on which f is flat, f ′(T ′i ) avoids the
µ-exceptional locus. Thus, setting D = µ∗DZ′ , we obtain L · Ti = f∗D · Ti
for every i.

We next prove (2), using the same construction as in (1). Applying
Lemma 3.1 to φ, we can find finitely many irreducible φ-vertical curves
{S′j}rj=1so that the span of the numerical classes of the T ′i and S′j is all of

N1(X ′).
Suppose that C is a curve on X ′ such that f ′(C) = f ′(T ′i ). If f(ψ(T ′i ))

is a curve, then as before set α′j = (deg µ|f ′(T ′j))αj . If f(ψ(T ′i )) is a point,

then C is also (µ ◦ f ′)-vertical. Since ψ∗L has vanishing intersection with
every µ ◦ f ′-vertical curve, ψ∗L · C = 0 = ψ∗L · T ′i . Set α′i = 0. Similarly,
set β′j = 0 for every S′j .

The set of curves {T ′i} ∪ {S′j} and the divisor φ∗L satisfy the hypotheses

of Lemma 3.2 for the finite map f ′ and the constants α′i, β
′
j . The result of

the lemma indicates that there is a divisor DZ′ on Z ′ so that f ′∗DZ′ ≡ ψ∗L.
Since DZ′ is µ-numerically trivial, Lemma 3.1 yields a divisor D on Z such
that µ∗D ≡ DZ′ . Thus f∗D ≡ L. �

4. Numerical Triviality on Every Fiber

In this section we give the proof of Theorem 1.2. We start by recalling
an example demonstrating that the pseudo-effectiveness of L is necessary in
order to have any hope of relating L to divisors on the base.

Example 4.1. Let E be an elliptic curve without complex multiplication
and consider the surface S = E ×E with first projection π : S → E. Recall
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that N1(S) is generated by the fibers F1, F2 of the two projections and the
diagonal ∆. In particular, the subspace of π-trivial divisors is generated by
F1 and ∆ − F2. Since this space has larger dimension than N1(E), most
π-trivial divisors will not be numerically equivalent to pull-backs from E.

The first step in the proof is to show that numerical equivalence of divisors
can be detected against curves which are intersections of very ample divisors.

Proposition 4.2. Suppose that X is an integral projective variety of di-
mension n. Fix a set of ample Cartier divisors H = {H1, . . . ,Hr} whose
numerical classes span N1(X). Then the intersection products Hn−1 span
N1(X).

Proof. Using results of Matsusaka, [Ful84, Example 19.3.3] shows that a
Cartier divisor D is numerically trivial if and only if for a fixed ample divisor
H we have that D · Hn−1 = D2 · Hn−2 = 0. Writing D and H as linear
combinations of elements of H, we obtain the statement. �

We now turn to the proof of Theorem 1.2.

Proof of 1.2: The reverse implication is obvious, so we focus on the forward
implication.

Suppose that φ : X ′ → X is a resolution of X. Note that φ∗L is (f ◦ φ)-
numerically trivial. If we can find a D so that φ∗L ≡ (f ◦ φ)∗D then also
L ≡ f∗D. Thus we may assume that X is smooth.

We next show that for a curve R running through a very general point of
Z there is some constant αR such that

(†) L · C = (deg f |C)αR

for every curve C on X with f(C) = R. Let R′ denote the normalization of
R and consider the normalization Y of X×ZR′. Since R goes through a very
general point of Z we may assume that the pullback of L to every component
of Y is pseudo-effective and that only one component of Y dominates R′.
Consider two curves C and C ′ on Y with f(C) = f(C ′) = R′. By cutting
down Y by very ample divisors, we can find a chain of normal surfaces Si
connecting C to C ′, all of which map surjectively to R′ under f . We may
ensure that L|Si is pseudo-effective for every i.

Applying Corollary 2.5 to the surface Si, we see that there is some divisor
Di on R′ such that L|Si ≡ f∗Di. For i ≥ 1 let C ′i denote the curve Si∩Si+1.
Since C ′i dominates R′, we have

deg(Di) deg(f |C′i) = L · C ′i = deg(Di+1) deg(f |C′i).

Thus there is one fixed D1 so that L|Si ≡ f∗D1 for every i. Fixing C and
letting C ′ vary, we see that the constant αR = deg(D1) satisfies the desired
condition for every curve above R.

Let W ⊂ X denote a smooth very general intersection of very ample
divisors such that the map f : W → Z is generically finite and L|W is pseudo-
effective. Certainly L|W has vanishing intersection with any f -vertical curve
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on W . Furthermore, Proposition 4.2 shows that we can choose a finite
collection of curves Ti through very general points whose numerical classes
span N1(W ). In particular (†) holds over the Ti. Lemma 3.3 (2) yields a
divisor D on Z such that L|W ≡ f∗D.

Apply Proposition 4.2 to X to find a collection of irreducible curves Ci
on X that are not f -vertical and whose numerical classes span N1(X). For
each i choose an irreducible curve CWi on W such that f(Ci) = f(CWi ).
Since

L · Ci = (deg f |Ci)αf(Ci)

= (deg f |Ci)
L · CWi

deg f |CW
i

= (f∗D · CWi )
deg f |Ci

deg f |CW
i

= f∗D · Ci
we see that L ≡ f∗D. �

Remark 4.3. There is also a version of Theorem 1.2 for normal varieties.
Following [Nak04], we say that an R-Weil divisor D on a normal variety Z is
numerically Q-Cartier if there is a smooth birational model f : X → Z and
an R-Cartier divisor L such that L is f -numerically trivial and f∗L = D.

Suppose that f : X → Z is a surjective morphism of normal varieties with
connected fibers. Then an R-Cartier divisor L on X is f -numerically trivial
if and only if there is an R-Weil divisor D on Z such that D is numerically
Q-Cartier and f~D ≡ L where f~ is the numerical pullback of [Nak04].

The proof runs as follows. By [Nak04] III.5, an analogue of Lemma 3.1
holds for normal varieties if one only requires D to be a numerically Q-
Cartier divisor and replaces f∗ by f~. The rest of the proof is exactly the
same.

5. Numerical Triviality on a General Fiber

In this section we prove Theorem 1.3 in a more general context. The
following examples show that Theorem 1.3 is optimal in some sense.

Example 5.1. Let f : S → C be a morphism from a smooth surface to a
smooth curve. Suppose that L is an effective f -degenerate divisor. Then L
is not numerically equivalent to the pull-back of a divisor on the base. This
is still true on higher birational models of f . One must pass to the positive
part Pσ(L) = 0.

Example 5.2. Let D be a big divisor on a smooth variety X and let φ : Y →
X be a blow-up along a smooth center along whichD has positive asymptotic
valuation. Then Pσ(φ∗D) < φ∗Pσ(D) is not numerically equivalent to a
pull-back of a divisor on X. One must pass to the flattening id : Y → Y .

The following is a stronger version of Theorem 1.3.
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Theorem 5.3. Let f : X → Z be a surjective morphism of normal projec-
tive varieties with connected fibers. Suppose that L is a pseudo-effective R-
Cartier divisor such that Pσ(L)F ≡ 0 for a general fiber F of f . Then there is
a smooth birational model φ : Y → X, a map g : Y → Z ′ birationally equiv-
alent to f , and an R-Cartier divisor D on Z ′ such that Pσ(φ∗L) ≡ Pσ(g∗D).

Remark 5.4. In particular this theorem may be applied whenever ν(L|F ) =
0 for a general fiber F , where ν denotes the numerical dimension of [Nak04]
and [BDPP13]. In this situation we have

Pσ(L)|F ≤ Pσ(L|F ) ≡ 0

and since Pσ(L)|F is pseudo-effective for a general fiber F by [Pet12, 6.8
Theorem] we have Pσ(L)|F ≡ 0.

Proof. By passing to a resolution we may assume that X is smooth.
There is an integral birational model µ : X ′ → X, a smooth birational

model Z ′ of Z, and a morphism f ′ : X ′ → Z ′ flattening f . Let ψ : Y → X ′

denote a smooth model. We let g denote the composition f ′ ◦ ψ and let φ
denote the composition µ ◦ ψ. Note that every g-exceptional divisor is also
φ-exceptional. We still have that Pσ(φ∗L)|F ≡ 0 for a general fiber F of g.

By Corollary 2.10, there is a subset V ⊂ Z ′ that is a countable union of
codimension 2 subsets such that Pσ(φ∗L) is numerically trivial along every
fiber of g not over V . In particular, suppose that the curve R ⊂ Z ′ avoids
V and Pσ(φ∗L) is pseudo-effective when restricted to the fiber over R. By
the same argument as in the proof of Theorem 1.2, there is some constant
αR such that

(*) Pσ(φ∗L) · C = deg(g|C) · αR
for every curve C with g(C) = R.

We next apply the generically finite case to construct a divisorD1. Choose
a smooth very general intersection W of very ample divisors on the smooth
variety Y so that the map g|W : W → Z is generically finite. By choosing W
very general we may assume that the divisor Pσ(φ∗L)|W is pseudo-effective.

Consider the subspace of N1(W ) generated by irreducible curves C that
avoid g−1(V ) and run through a very general point of W . We may choose
a finite collection of irreducible curves {Ti} satisyfing these two properties
whose numerical classes span this subspace. By (*) there are constants αi
so that

Pσ(φ∗L)|W · C = deg(g|C) · αi
for every curve C with g(C) = g(Ti). Applying Lemma 3.3 (1), we find a
divisor D1 on Z ′ with Pσ(φ∗L) · Ti = g∗D1 · Ti for every i. Furthermore
Pσ(φ∗L) · C = g∗D1 · C for any curve C through a very general point of W
such that g(C) avoids V , since C is numerically equivalent to a sum of the
Ti.

We next relate Pσ(φ∗L) and g∗D1. Recall that since µ is flat, µ(f ′−1V )
is a countable union of codimension 2 subvarieties in X. By Proposition 4.2
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we may choose curves SXi avoiding this locus and running through a very
general point of X whose numerical classes form a basis for N1(X). Let
{Si} consist of the strict transforms of these curves on Y . Since the Si are
generic, for each we may choose a curve SWi ⊂ W going through a very
general point and such that g(SWi ) = g(Si) avoids V . This guarantees that
L · SWi = g∗D1 · SWi . By construction Pσ(φ∗L) · SWi and Pσ(φ∗L) · Si can
be compared using (*). Arguing as in the proof of Theorem 1.2, we see that
Pσ(φ∗L) · Si = g∗D1 · Si for every i. This proves that

φ∗Pσ(φ∗L) ≡ φ∗g∗D1.

Choose effective φ-exceptional divisors E and F with no common compo-
nents such that

Pσ(φ∗L) + E ≡ g∗D1 + F.

Note that since f : X → Z is generically flat, no φ-exceptional divisor
dominates Z ′. In particular F is g-vertical, so we may apply Lemma 2.13
to F to find

F = g∗D2 + Fdeg − Fexc
where Fdeg is g-degenerate and Fexc is g-exceptional. Set D = D1 + D2.
Then

(**) Pσ(φ∗L) + E + Fexc ≡ g∗D + Fdeg.

Since Fdeg is g-degenerate, Lemma 2.14 shows Pσ(g∗D + Fdeg) = Pσ(g∗D).
Similarly, since (E + Fexc) is φ-exceptional,

Pσ(φ∗L) ≤ Pσ(Pσ(φ∗L) + E + Fexc)

≤ Pσ(φ∗L+ E + Fexc)

= Pσ(φ∗L) by Lemma 2.14.

Taking the positive part of both sides of (**) yields Pσ(φ∗L) ≡ Pσ(g∗D). �
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