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Abstract. Let π : X → Y be a morphism of projective varieties and suppose that α is a
pseudo-effective numerical cycle class satisfying π∗α = 0. A conjecture of Debarre, Jiang,
and Voisin predicts that α is a limit of classes of effective cycles contracted by π. We establish
new cases of the conjecture for higher codimension cycles. In particular we prove a strong
version when X is a fourfold and π has relative dimension one.

1. Introduction

Let π : X → Y be a morphism of projective varieties over an algebraically closed field.
The pushforward of cycles induces a map π∗ : Nk(X) → Nk(Y ) on numerical groups with
R-coeffficients, and one would like to understand how ker(π∗) reflects the geometry of the
map π. In the special case when α ∈ Nk(X) is the class of a closed subvariety Z, then α lies
in the kernel of π∗ precisely when dim π(Z) < dim(Z). A similar statement holds when α
is the class of an effective cycle. However, the geometry of arbitrary elements of ker(π∗) is
more subtle.

An important idea of [DJV13] is that this geometric interpretation of elements of ker(π∗)
should be extended beyond the effective classes. Recall that the pseudo-effective cone Effk(X)
is the closure of the cone in Nk(X) generated by the classes of effective k-cycles. The following
is the numerical analogue of the homological statement in [DJV13].

Conjecture 1.1. Let π : X → Y be a morphism of projective varieties over an algebraically
closed field. Suppose that α ∈ Effk(X) satisfies π∗α = 0. Then

Weak Conjecture: α is in the vector space generated by k-dimensional subvarieties
that are contracted by π.
Strong Conjecture: α is in the closure of the cone generated by k-dimensional
subvarieties that are contracted by π.

The improvement to pseudo-effective classes is crucial for understanding the geometry of π.
For example, the interplay between morphisms from X and faces of the Mori cone NE(X) =
Eff1(X) is an essential tool in birational geometry. The Strong Conjecture predicts that for
higher dimensional cycles there is still a distinguished way of constructing a face of Effk(X)
from a morphism π, allowing us to deduce geometric facts from intersection theory. The
first cases of the conjecture were settled by [DJV13, Theorem 1.4] which proves the Strong
Conjecture for divisor classes and curve classes over C.

Example 1.2. Let E be an elliptic curve without complex multiplication and define X =
E×E. Then the Neron-Severi space N1(X) is 3-dimensional with a basis given by the classes
F1, F2 of fibers of the two projections and by the diagonal class ∆. The pseudo-effective cone
Eff1(X) is a round cone.
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Consider the first projection π : X → E. The curves contracted by π are all numerically
equivalent with class F1. However, the kernel of π is two-dimensional: it is generated by F1

and by ∆− F2. In particular, the kernel is not spanned by the subvarieties contracted by π.
Nevertheless, the intersection ker(π∗) ∩ Eff1(X) consists of a unique ray R≥0F1, so that the
Strong Conjecture holds for this map π.

Consider the face ker π∗ ∩ Effk(X) of Effk(X). The Strong Conjecture for π : X → Y
predicts that effective classes are dense in this face. It is then not surprising that the Strong
Conjecture has close ties with other well-known problems predicting the existence of special
cycles, as in the following example.

Example 1.3. Let S be a smooth complex surface with q = pg = 0. Let ∆ denote the
diagonal on S × S and let F1 and F2 be the fibers of the projections π1 and π2. Bloch’s
conjecture predicts that the diagonal ∆ − F1 is Q-linearly equivalent to a sum of cycles
that are contracted by π2. In contrast, the Weak Conjecture (applied to the morphism π2)
predicts that ∆− F1 is numerically equivalent to a sum of cycles that are contracted by π2.
In this case the Weak Conjecture for π2 can be verified by Hodge Theory so that S admits
a “numerical” diagonal decomposition. (See Example 3.6 for details.)

More generally, suppose that X is a smooth complex variety satisfying H i,0(X) = 0 for
i > 0. Then the Strong Conjecture for currents has implications for the Generalized Hodge
Conjecture on X ×X when applied to the projection maps. This is discussed in more detail
in [DJV13, §6]. �

As our main result, we prove the Strong Conjecture for arbitrary classes when X is a
fourfold and π has relative dimension one. (This is a special case of the more general re-
sults described below.) The proof for surface classes involves new concepts and techniques
concerning the positivity of higher (co)dimension cycles. The basic principle underlying our
work is that it is best to consider the Strong and Weak conjectures separately for “movable”
classes and “rigid” classes. This is motivated by proof of the divisor case in [DJV13], which
relies on the σ-decomposition of [Nak04] in a fundamental way.

We first discuss the Strong Conjecture for movable classes. In [FL13] we introduced the
movable cone of k-cycles Movk(X) which is the closure in Nk(X) of the cone generated by
classes of effective cycles that deform in irreducible families which cover X. Since movable
cycles deform to cover all of X, morally they should not reflect the pathologies of special
fibers of π. Thus it should be easier to settle the Strong and Weak Conjectures for movable
classes, and in fact, the conjectures in §4.1 predict stronger statements. A result in this
direction is the following

Theorem 1.4 (cf. 6.11). Let π : X → Y be a morphism of projective varieties over C of
relative dimension e. Fix an ample divisor H on Y . Suppose that α ∈ Movk(X) for some
k ≥ e. If α satisfies

α · π∗Hk−e+1 = 0,

which in particular implies that π∗α = 0, then the Strong Conjecture holds for α. In particular
the Strong Conjecture holds for all movable classes when e = 1.

For perspective, note that when α is a movable class satisfying α ·π∗Hk−e = 0, then α = 0
by Theorem 1.6 below. Theorem 1.4 handles one additional step.

A crucial technical step is to improve our understanding of the “dual positive classes”
defined in [FL14]. With this improvement, the proof technique is similar to [Leh11], where
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the second author proves the analogous theorem for divisors. In fact, we prove a somewhat
stronger statement, allowing us to prove many cases of the Strong Conjecture for fourfolds
(see Corollary 6.15).

We next discuss the Strong and Weak Conjectures for “rigid” classes. To capture the
notion of rigidity, we use the Zariski decomposition for numerical cycle classes introduced by
the authors in [FL15]. A Zariski decomposition of a pseudo-effective class α is an expression

α = P (α) +N(α)

where P (α) is a movable class that retains all the “positivity” of α and N(α) is pseudo-
effective. (This decomposition is an analogue of the σ-decomposition of [Nak04].) [FL13,
Conjecture 5.19] predicts that any negative part N(α) is the pushforward of a pseudo-effective
class from a proper subscheme of X. We establish this conjecture in a special case:

Definition 1.5. Let π : X → Y be a dominant morphism of projective varieties of relative
dimension e. Suppose that α ∈ Effk(X). We say that α is π-exceptional if there is an ample
divisor H on Y such that α · π∗Hr = 0 for some r ≤ k − e.

When α is the class of a subvariety Z, this definition simply means that the codimension
of π(Z) is greater than the codimension of Z, thus extending the familiar notion for divisors.
In general, this definition identifies the classes that are forced to be “rigid” by the geometry
of the morphism π. A typical example is any pseudo-effective class in the kernel of π∗ for a
birational map π.

Theorem 1.6 (cf. 5.14). Let π : X → Y be a dominant morphism of projective varieties. If
α is a π-exceptional class, then:

(1) α = 0 +N(α) is the unique Zariski decomposition for α.
(2) α is the pushforward of a pseudo-effective class from a proper subscheme of X.

Condition (2) implies that the Strong or Weak Conjecture for a π-exceptional class can be
concluded from a statement in lower dimensions. For example, since the Strong Conjecture is
known for complex threefolds, we immediately obtain the Strong Conjecture for exceptional
classes on fourfolds over C. This inductive relationship goes both ways:

Proposition 1.7 (cf. 5.19 and 5.23). The Strong (resp. Weak) Conjecture holds for birational
maps π : X → Y of varieties of dimension n if and only if the Strong (resp. Weak) Conjecture
holds in dimension ≤ n− 1.

Example 1.8. To illustrate our techniques, in Example 5.18 we revisit the results of [CC14]
and [Sch15] which describe the geometry of higher codimension cycles on moduli spaces of
pointed curves. These papers identify classes that lie on extremal rays of the effective cone.
Using the results above, we show that their arguments actually establish extremality in the
pseudo-effective cone. (See also [CC14, Remark 2.7].)

1.1. Organization. Section 2 recalls the basic properties of numerical groups and positive
cones. We explain the basic features of the Strong and Weak Conjectures in Section 3. In
particular, applying ideas from [FL14], we recover many of the results of [DJV13], extending
some of them over an arbitrary algebraically closed field. We also give many examples. Sec-
tion 4 describes how the Zariski decomposition is related to the Strong and Weak Conjectures;
the negative and positive parts are analyzed in Sections 5 and 6 respectively.
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2. Background on numerical equivalence

By variety we mean a reduced, irreducible, separated scheme of finite type over an alge-
braically closed field of arbitrary characteristic. Unless otherwise stated, π : X → Y is a
morphism of projective varieties over the fixed ground field.

A k-cycle on a projective variety X is a formal sum Z =
∑r

i=1 aiVi where the Vi are k-
dimensional closed subvarieties of X and the ai are coefficients in Z, Q, or R (in which case
we say that Z is a Z, Q, or R-cycle respectively). The support of Z is |Z| = ∪iVi. When for
all i we have ai ≥ 0, we say that the cycle is effective.

We let Nk(X)Z denote the quotient of the group of Z-k-cycles by the relation of numerical
equivalence as in [Ful84, Chapter 19]. Nk(X)Z is a lattice inside the numerical group

Nk(X) := Nk(X)Z ⊗Z R.
If Z is a k-cycle with R-coefficients, its class in Nk(X) is denoted [Z].

The numerical dual group is the vector space Nk(X) dual to Nk(X). Any weighted degree
k homogeneous polynomial in Chern classes induces an element of Nk(X) by intersecting
against k-cycle Chow classes, and Nk(X) is spanned by such elements. The Chern class
action on Chow groups descends to intersection maps ∩ : N r(X)×Nk(X)→ Nk−r(X). We
also use “·” to denote these intersections.

Given a morphism π : X → Y , the pushforward of cycles descends to numerical groups.
Dually, we obtain pullbacks for numerical dual groups. When π is a flat equidimensional
map of relative dimension e and Y is smooth, the flat pullback of cycles descends to yield a
flat pullback map π∗ : Nk(Y ) → Nk+e(X). Unlike for Chow groups, we do not know if the
smoothness of Y can be removed.

Convention 2.1. For the rest of the paper, the term cycle will always refer to a cycle with
Z-coefficients, and a numerical class will always refer to a class with R-coefficients, unless
otherwise qualified.

2.1. Families of cycles.

Definition 2.2. Let X be a projective variety. A family of effective k-cycles (always with
Z-coefficients) on X consists of a variety W , a reduced closed subscheme U ⊂ W ×X, and
an integer ai ≥ 0 for each component Ui of U such that for each component Ui of U the
first projection map p : Ui → W is flat (projective) equidimensional dominant of relative
dimension k. We will only consider families of cycles where each ai > 0.

The fiber over a closed point of W defines a cycle
∑

i aiUi,w on X. As we vary w ∈ W , the
resulting cycles are algebraically equivalent. We denote the corresponding numerical class
by [p]. A family of cycles can always be extended to a projective base by using a flattening
argument (see [FL13, Remark 2.13]).

Construction 2.3 (Strict transform families). Let X be a projective variety and let p : U →
W be a family of effective k-cycles on X. Suppose that φ : X 99K Y is a birational map. We
define the strict transform family of effective k-cycles on Y as follows.

First, modify U by removing all irreducible components whose image in X is contained
in the locus where φ is not an isomorphism. Then define the reduced closed subset U ′ of
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W×Y by taking the strict transform of the remaining components of U . Over an open subset
W 0 ⊂ W , the projection map p′ : (U ′)0 → W 0 is flat equidimensional on each component of
(U ′)0. Each component of U ′ is the transform of a unique component of U , and we assign it
the same coefficient.

2.2. Cones of cycles.

Definition 2.4. Let X be a projective variety, and let k ≥ 0. The pseudo-effective cone
Effk(X) in Nk(X) is the closure of the cone generated by classes of irreducible subvarieties
of X. A class is big when it lies in the interior of Effk(X). We use the notation α � β if
β − α ∈ Effk(X). The nef cone Nefk(X) is the dual cone in Nk(X).

Note that pseudo-effectiveness is preserved by pushforward, and dually nefness is preserved
by pullback. In [FL14] the authors prove the following:

Theorem 2.5. Let X be a projective variety of dimension n. For any k, the cone Effk(X)

a) generates Nk(X) as a vector space,
b) contains no lines (i.e. is salient, or pointed, or strict), and
c) contains the complete intersection (h1 · . . . ·hn−k)∩ [X] in its strict interior for any ample

classes hi ∈ N1(X).

Moreover:

d) If α ∈ Effk(X) satisfies degh(α) := hk ∩ α = 0 for some ample h ∈ N1(X), then α = 0.
e) For any ample h ∈ N1(X) there exists a norm | · | on Nk(X) such that |α| = degh(α) for

any α ∈ Effk(X).
f) If π : X → Y is a surjective morphism of projective varieties, then π∗ Effk(X) = Effk(Y ).

It is also useful to identify the cones of “moving cycles”. These cones are well-studied for
divisors and curves; the set-up for arbitrary cycles was considered in [FL13].

Definition 2.6. Let X be a projective variety. A family of effective k-cycles p : U → W is
strictly movable if every component of U dominates X. The cycles defined by this family are
called movable cycles. When U is an irreducible variety we say that p is strongly movable.

The closure of the cone generated by classes of cycle theoretic general fibers of strongly
movable families is the movable cone Movk(X). Its elements are called movable classes.

[FL13] proves the basic properties of movable classes:

Theorem 2.7. Let X be a projective variety. For every statement of Theorem 2.5, the
analogue for the movable cones Movk(X) is also valid. Furthermore, if α ∈ Movk(X) then:

g) For any pseudo-effective Cartier divisor E on X we have α · E ∈ Effk−1(X).
h) For any nef Cartier divisor N on X we have α · N ∈ Movk−1(X). If N is big and nef,

then α ·N = 0 if and only if α = 0.
i) If π : X → Y is a generically finite map and π∗α = 0, then α = 0.

2.3. Basepoint free cone. While nef divisors satisfy many desirable geometric properties,
nef classes of higher codimension may fail to behave as well. The basepoint free cone is
introduced in [FL14] as a better analogue of the nef cone of divisors.

Definition 2.8. A basepoint free family of effective k-cycles on a projective varietyX consists
of

• an equidimensional quasi-projective scheme U ,
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• a (necessarily equidimensional) flat morphism s : U → X,
• and a proper morphism p : U → W of relative dimension k to a quasi-projective

variety W such that each component of U surjects onto W .

Note that the term “family” here differs from that in Definition 2.2, since U is not necessarily
a subset of W ×X, so that the fibers Uw are not necessarily cycles on X.

The basepoint free cone BPFk(X) ⊂ Nk(X) is the closure of the cone generated by the
classes Fp := (s|Uw)∗[Uw], where Uw is the fiber of a basepoint free family p as above over a
general w ∈ W . If X is smooth, we define the basepoint free cone BPFk(X) ⊂ Nk(X) using
the isomorphism ∩[X].

Remark 2.9. The terminology indicates that the classes are “basepoint free” in the following
sense: suppose that α is the class of a basepoint free family. Then for every subvariety V ⊂ X
there is an effective cycle of class α ∩ [X] that intersects V in the expected dimension. (To
see this, let d denote the codimension of V . Then s−1V has codimension at least d in U by
flatness, and s−1(V )∩Uw has codimension at least d in Uw. Then V ∩|Fp| has codimension at
least d in |Fp| by upper-semicontinuity of fiber dimensions. See [Kle74] for more arguments
of this kind, particularly 1 Lemma.)

Despite the “homological” feel of the definition, BPFk(X) is not preserved by pushforward,
but it is preserved by pullbacks between smooth varieties.

Theorem 2.10 ([FL14], Lemma 5.4, Lemma 5.6, Corollary 5.7). Let π : Y → X be a
morphism of projective varieties and let p : U → W be a basepoint free family of cycles on
X.

(1) The base change pY : U ×X Y → W is also a basepoint free family. If X is smooth,
we have the relation [FpY ] = π∗[Fp].

(2) Suppose X is smooth. For any top-dimensional (effective) cycle T supported on a
general fiber Uw of p, there is a canonical (effective) cycle with support equal to Y ×X
|T | whose pushforward to Y represents π∗(s|T )∗[T ] ∩ Y .

In particular, if both X and Y are smooth, π∗ BPFk(X) ⊂ BPFk(Y ). Furthermore, if Y is
smooth then the intersection of basepoint free classes on Y is basepoint free.

We will often use a special case of this construction. Suppose π : Y → X is birational and
p : U → W is a family of k-cycles admitting a flat map to X. In this case we can consider
p both as a family of cycles and as a basepoint free family. In this situation, the base
change family on Y coincides with the strict transform family as defined earlier. (Since every
component of U maps dominantly onto X, so also every component of U ×X Y dominates
Y . Thus both families are defined via base change.) In particular, for a general member of
p the numerical class of the strict transform cycle is the pullback of the class of the cycle.

Theorem 2.11 ([FL14], Theorem 1.3, Theorem 1.6). Let X be a smooth projective variety.
Then

(1) BPFk(X) generates Nk(X) as a vector space and BPFk(X) ⊂ Nefk(X).
(2) If h1, . . . , hk ∈ N1(X) are ample divisor classes, then h1 · . . . · hk belongs to the strict

interior of BPFk(X).
(3) If E is a globally generated vector bundle, then the Chern and dual Segree classes

ck(E) and sk(E
∨) (see [Ful84, §3.1]) are basepoint free.
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3. Reductions and particular cases

We now study the basic features of the Strong and Weak Conjectures in the numerical
setting.

Definition 3.1. Let π : X → Y be a morphism of projective varieties. Let

• Effk(π) denote the closed convex cone in Nk(X) generated by effective k-classes of X
contracted by π,
• Nk(π) denote the subspace of Nk(X) generated by effective k-classes of X contracted

by π,

Remark 3.2. We can rephrase our conjectures and properties of interest as follows:

i) Weak Conjecture: ker π∗ ∩ Effk(X) ⊆ Nk(π).
ii) Strong Conjecture: kerπ∗ ∩ Effk(X) = Effk(π).

Collectively we call the Strong and Weak Conjectures the Pushforward Conjectures and
denote them by PC. (More precisely, to say a property holds for the PC means that it holds
for both the Strong Conjecture and the Weak Conjecture.) The following proposition is the
basic tool used in this section.

Proposition 3.3. Let π : X → Y be a morphism of projective varieties. If α ∈ Effk(X) and
h is an ample class on Y , then π∗α = 0 if and only if α·π∗hk = 0.

Proof. This is a consequence of Theorem 2.5.d and of the projection formula. �

3.1. Examples.

Example 3.4. One way to establish the Weak Conjecture for a morphism π is to show that
all of the kernel of π∗ is spanned by the classes of contracted cycles. This property is studied
in [FL15] which calls it the GK property for π. For example, this property is well-known for
projective bundle maps.

[FL15] shows that if the fibers of a morphism have trivial Chow groups then π satisfies the
GK property (and thus satisfies the Weak Conjecture):

Theorem 3.5. Let π : X → Y be a dominant morphism of projective varieties over an un-
countable algebraically closed field, with Y smooth. Suppose that every fiber F (over a closed
point) of π satisfies dimQ(A0(F )Q) = 1. Then the GK property and the Weak Conjecture
hold for π.

An important special case is when π : X → Y is a birational morphism over C with Y
smooth.

Example 3.6. Let S be a smooth surface such that A0(S) = Z. By the work of [Mum68]
and [Rŏı72], this implies that pg = 0 and Alb(S) is trivial. Examples include any rational
surface S and conjecturally any surface with q = pg = 0.

Suppose that Y is another smooth surface. There is an isomorphism

N2(S × Y ) ∼= R⊕ (N1(S)⊗N1(Y ))⊕ R.

For surfaces over C, this follows easily from Hodge theory and the Kunneth formula. (In
fact, this argument also works for any surface S satisfying q = pg = 0.) Over an arbitrary
algebraically closed field, this follows from [FL15, Theorem 1.3].
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Note that the Weak Conjecture holds for the second projection map and for the first
projection map as well. If S = Y , we can also see right away that S admits a numerical
decomposition of the diagonal, in the sense that ∆ is numerically equivalent to a sum of cycles
whose supports are contracted by a projection map. These two properties are closely related
via an argument of [DJV13]: note that if α ∈ N2(S × Y ) satisfies π1∗α = 0 and α · F2 > 0,
then there are ample divisors A on S and A′ on Y such that α+ [π∗1A · π∗2A′] ∈ Eff2(S × Y ).
Thus in the special case where S = Y , the Weak Conjecture applied to ∆− F1 + π∗1A · π∗2A′
implies that ∆ has a numerical decomposition of the diagonal.

We now discuss the Strong Conjecture for the map π = π2 : S × Y → Y . We first need to
understand the geometry of π-vertical surfaces. Suppose that Z is an irreducible π-vertical
surface so π(Z) is a curve C on Y . Let C ′ be a normalization of C and Z ′ denote the strict
transform of Z on S × C ′. If Z ′ does not dominate S, then it is the pullback of a divisor on
S. If it does dominate S, then it induces a morphism S → Jac(C ′). But by assumption on
the Albanese map this morphism is trivial. So after twisting by the pullback of a line bundle
from S, the divisor Z ′ is the pullback of a divisor on C ′.

To prove the Strong Conjecture, it suffices to consider the case when α ∈ Eff2(X)∩ kerπ∗
is extremal.

Claim 3.7. The Strong Conjecture holds for an extremal class α if and only if the projection
α(1) of α onto the N1(S)⊗N1(Y ) component of N2(S × Y ) has shape a⊗ b with a ∈ N1(S)
and b ∈ N1(Y ). (If the SC is true, then by Lemma 5.1 we can write α as a limit of cycles Zi,
each with irreducible support that does not dominate Y . The above argument shows that
Zi = ai⊗ bi or Zi ∈ R+F2, and by passing to limits α = α(1) = a⊗ b, or α is a multiple of F2

and α(1) = 0. Conversely, if α = a⊗ b+ cF2, then c ≥ 0 because it identifies with π∗α. Let η
be an arbitrary nef class in N1(S). Then (a · η)b = π2∗(α · π∗1η) ∈ Eff1(Y ) and up to signs we
can assume that a and b are both psef. Consequently α = α(1) + cF2 is a sum of psef cycles,
both contracted by π and SC is straightforward.)

By the claim, the SC holds if and only if Eff2(S×Y )∩(N1(S)⊗N1(Y )⊕R[F2]) is generated
by F2 and by classes a⊗ b, where a ∈ Eff1(S) and b ∈ Eff1(Y ). This holds for example when
either Eff1(S) or Eff1(Y ) is simplicial, e.g. when the Picard number of S or Y is at most two.
(Say Eff1(S) is simplicial, generated by a basis a1, . . . , aρ of N1(S). Then the dual basis a∗i
generates Nef1(S). Writing α in the unique way as α =

∑
i ai ⊗ bi + cF2 ∈ Eff2(S × Y ), we

see c ≥ 0 and π2∗(α · π∗1(a∗i )) = bi ∈ Eff1(Y ).) �

Example 3.8 (Surface classes on the self products of a very general abelian surface). Let
(S, θ) be a very general principally polarized complex abelian surface. Put X = S × S.
A result of Tankeev and Ribet ([DELV11, Proposition 3.1]) and [DELV11, Proposition 3.2]
imply that N1(X) has a basis given by {θ1, θ2, λ}, where θ1 and θ2 are the pullbacks of θ via
the two projections, and λ = c1(P), where P is the Poincaré line bundle on X. Furthermore,
the product map Sym2N1(X) → N2(X) is an isomorphism. The positive cones of divisors
on X are computed by [DELV11, Proposition 3.9]:

Eff
1
(X) = Nef1(X) =

{
a1θ1 + a2θ2 + a3λ | a1 ≥ 0, a2 ≥ 0, a1a2 ≥ a23

}
.

The pseudoeffective cone Eff2(X) of surface classes on X is computed by [DELV11, Theorem
4.1]: A class

α = a1θ
2
1 + a2θ1θ2 + a3θ

2
2 + a4θ1λ+ a5θ2λ+ a6λ

2
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is pseudoeffective if and only if

a1, a2, a3 ≥ 0, a2 ≥ 2|a6|,
a1(a2 + 2a6) ≥ a24, a3(a2 + 2a6) ≥ a25,

a1a3 ≥ a26, (a1a3 − a26)(a2 + 2a6) + 2a4a5a6 ≥ a3a
2
4 + a1a

2
5.

Let π : X → S be the first projection and suppose that α ∈ Eff2(X) satisfies π∗α = 0.
By Proposition 3.3, this is equivalent to requiring that α · θ21 = 0. It is easy to see that
θ31 = θ21λ = 0 (see [DELV11, §4] for a complete list of relations in N∗(X)). Writing α with
coefficients as above, we see α · θ21 = 0 is equivalent to a3 = 0. The inqualities describing
Eff2(X) then imply that a5 = a6 = 0 as well. Consequently α = a1θ

2
1 + a2θ1θ2 + a4θ1λ =

θ1(a1θ1 + a2θ2 + a4λ). The relations between the coefficients are

a1, a2 ≥ 0 and a1a2 ≥ a24.

This precisely means that a1θ1 + a2θ2 + a4λ is a pseudoeffective divisor. Thus any pseudo-
effective surface class with π∗α = 0 is a product of nef divisors, and the Strong Conjecture
for surface classes for π : X → S is an easy consequence. �

Example 3.9 (Trivial Grassmann bundles). Let G be a product of finitely many Grassmann
varieties, and let Y be a projective variety. Then the strong conjecture is true for the first
projection π : Y ×G→ Y . (Put n = dimY and g = dimG. If G is a Grassmann variety, then

Eff
k
(G) = Nefk(G) is a simplicial cone generated by the nonzero classes of Schubert cycles

sλ corresponding to partitions λ of k. A similar result holds true when G is replaced by a
product of Grassmann varieties, but Schubert cycles are replaced by products sλ of Schubert
cycles from each factor, and λ ` k is replaced by tuples λ of partitions λ(i) ` ki, where
k =

∑
i ki. We use the notation λ ` k and k = |λ|. Since G is a homogeneous space, the

intersection of pseudoeffective classes is pseudoeffective. Furthermore Effk(G) and Eff
k
(G)

are generated by dual bases of Nk(G) and Nk(G) respectively.
Let α ∈ Nk(Y ×G). Then by [Ful84, §15.6]

α =
∑
λ

π∗βλ · ρ∗sλ,

where ρ is the second projection, and βλ ∈ Nk+|λ|−g(Y ). If α is pseudoeffective, then by
again using the homogeneity of G, we have that α · ρ∗sµ is pseudoeffective for all tuples of

partitions µ. Then the same is true of π∗(α · ρ∗sµ). For duality and dimension reasons,
using the projection formula, one sees that as µ varies, the previous formula recovers the

pseudoeffectivity of βλ for all λ. Consequently Effk(Y ×G) is generated by π∗ Effk+r−g(Y ) ·
ρ∗ Eff

r
(G) for all r.

Note that π∗α = 0 if and only if βλ = 0 when |λ| = g (there exists only one such λ, since
dimN g(G) = 1).

Assume now that α ∈ Effk(Y × G) ∩ kerπ∗. For all λ with |λ| < g, we have that βλ is a
limit of effective classes, and then the same is true of π∗βλ · ρ∗sλ, but furthermore all these
effective classes are π-contracted (the nonempty fibers have dimension g − |λ| > 0).) �

3.2. Reduction steps. [DJV13] shows that the (homological) SC/WC follow from certain
special cases. Using Proposition 3.3, we can recover all the reduction steps of [DJV13] in the
setting of numerical equivalence using essentially the same proofs.
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Remark 3.10. If dimY < k, then Nk(π) = Nk(X) and PC holds trivially.

The following are corollaries of Proposition 3.3.

Corollary 3.11 (The finite case). Let π : X → Y be a finite morphism of projective varieties.
Let α ∈ Effk(X). Then π∗α = 0 if and only if α = 0.

Proof. As in [DJV13, Proposition 2.1], let h be an ample class on Y . Then π∗h is ample on X
by the finiteness of π. The result follows from Theorem 2.5.d and from Proposition 3.3. �

Corollary 3.12 (Reduction to X nonsingular). The PC for π : X → Y follow from the PC
for π precomposed with any surjective morphism f : X ′ → X with X ′ a projective variety.
In particular, the PC follow from the case when X is nonsingular.

Proof. By Theorem 2.5.f, there exists α′ ∈ Effk(X
′) such that f∗α

′ = α. Moreover, f∗ Effk(π◦
f) = Effk(π) and f∗Nk(π ◦ f) = Nk(π). We obtain the last statement by letting f : X ′ → X
be a nonsingular alteration. �

Corollary 3.13. Assume dimY = k, and let α ∈ Effk(X) with π∗α = 0. Let π′ : X ′ → Y ′

be the main component of the base change of π over a generically finite cover of Y , and let
α′ be a pseudo-effective lift of α. If the PC hold for π′ and α′, then they also hold for π and
α.

Proof. Denote by f the generically finite morphism Y ′ → Y . Then f∗ : Nk(Y
′) → Nk(Y ) is

the multiplication by deg f via the isomorphisms Nk(Y ) ' R · [Y ] and Nk(Y
′) ' R · [Y ′]. �

Corollary 3.14 (Reduction to π surjective). Let π : X → Y be a morphism of projective
varieties. Let Z = π(X) with closed embedding ı : Z ↪→ Y . Denote by π′ : X → Z the
induced surjective morphism. If the PC hold for π′, then they hold for π as well.

Proof. Corollary 3.11 implies that π∗α = 0 if and only if π′∗α = 0. Clearly Effk(π) = Effk(π
′)

and Nk(π) = Nk(π
′). �

Corollary 3.15 (Reduction to Y a projective space). If the PC are true when π is surjective
and Y = Pm, then they are always true.

Proof. As in [DJV13, Proposition 3.1], let Z = Im(π), and let Z → Pm be a finite morphism.
Apply the Corollary 3.11 for Z → Y and Z → Pm, and Corollary 3.14 for X → Z. �

Corollary 3.16 (Reduction to connected fibers). If the PC hold for dominant morphisms
with connected fibers, then they are always true.

Proof. As in [DJV13, Corollary 2.4], apply the Corollaries 3.11 and 3.14 to a Stein factoriza-
tion of X → Im(π). �

3.3. Counterexamples to potential generalizations of the pushforward conjectures.
We show that the weak conjecture may fail if we try to weaken or alter the data of the problem.

Example 3.17 (Positivity is necessary). Let X = E × E, with E an elliptic curve, and
denote by π : X → E the first projection. Let δ be the class of the diagonal in X, and
let f1 and f2 be the classes of the fibers of the projections. These three classes are linearly
independent in N1(X). Observe that π∗(δ − f2) = 0, but δ − f2 is not in N1(π) = R · f1. �

The next example shows that one can not replace pseudoeffectivity by a possibly weaker
positivity condition.
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Example 3.18 (Pseudoeffectivity is necessary). We use the example of [DELV11] discussed
in Example 3.8, keeping the notation there, to find a counterexample to the “Weak Nef
Conjecture”. That is, we find a nef class α with π∗α = 0 which fails to be contained in the
subspace generated by nef classes with π-vertical support, or even in Nk(π). By [DELV11,
Example 4.3], the class α = 8θ1θ2 + 3λ2 is nef. Note that α · θ21 = 0, and by checking

the equations defining Eff
2
(X) in Example 3.8 we see that α is not pseudoeffective. We

have that π∗α = 0 (this follows from the fact that N2(S) is one-dimensional). However, the
computation in Example 3.8 shows that α is not in the linear span of even the pseudoeffective
classes in ker π∗. �

Example 3.19 (Semiample intersections are necessary). For a morphism π : X → Y , we
have by Proposition 3.3 that α ∈ Effk(X)∩kerπ∗ if and only if α·π∗hk, where h is an arbitrary
ample class in N1(Y ). Denoting η = π∗h, we can rephrase the pushforward conjectures as
follows:

Question: Let X be a projective variety, and let η ∈ Nef1(X) be a semiample class. Let
α ∈ Effk(X) with α · ηk = 0. Is α a linear combination (or limit) of effective classes αi with
αi · ηk = 0?

None of the pushforward conjectures are true if one only asks that η is nef, instead of
semiample. Mumford verifies the full strength of the hypotheses of Kleiman’s ampleness
criterion by constructing an example (cf. [Laz04, Example 1.5.2]) of a surface X with a nef
Cartier divisor class η such that η2 = 0 (so η is not ample), and η dots positively against any
effective curve class. In particular there are no nonzero effective curve classes that have zero
intersection with η, although α = η is psef and α · η1 = 0. �

3.4. Curves and divisors. [DJV13] proves the Strong Conjecture over C for curve classes
and divisor classes. (Although [DJV13] works with the cohomological versions of the conjec-
tures, they are equivalent to our versions by the Hodge Conjecture for divisors and curves.)
Our techniques allow for the removal of the smoothness assumptions.

3.4.1. The Strong Conjecture for curves. The proof of the Strong Conjecture for curves in
[DJV13] works in arbitrary characteristic. Since the argument is short, we reproduce it here.

Theorem 3.20 ([DJV13] Theorem 4.1). Let π : X → Y be a morphism of projective varieties.
Consider a class α ∈ Eff1(X) with π∗α = 0. Then α is in the closed convex cone generated
by the irreducible curves contracted by π.

Proof. Assume that α 6∈ Eff1(π). Then there exists a Cartier divisor class D such that
D · α < 0 and D · (Eff1(π) \ {0}) > 0. In particular, D is π-ample. Let then h be a large
ample class on Y such that D′ := D + π∗h is ample. Then D′·α = D·α by the projection
formula. The latter is negative, which contradicts the ampleness of D′. �

3.4.2. The Strong Conjecture for divisors. The key tool for the proof of the Strong Conjecture
for divisors in [DJV13] is the σ-decomposition of [Nak04]. We give a shorter argument that
relies on the results of [Leh11]; this argument will come in useful again in Section 4.3.

Theorem 3.21. Let π : X → Y be a morphism of projective varieties over C. Let n denote
the dimension of X. Assume that α ∈ Effn−1(X) satisfies π∗α = 0. Then α is in the closed
convex cone generated by irreducible subvarieties contracted by π.
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As in [DJV13], using Remark 3.10, we reduce to the case when c := reldim(π) ∈ {0, 1}.
The case c = 0 follows from much more general results concerning generically finite maps in
Section 5.

Proposition 3.22. Let π : X → Y be a (dominant) generically finite morphism of projective
varieties of dimension n over an algebraically closed field. Assume that α ∈ Effn−1(X)
satisfies π∗α = 0. Then α is the class of an effective Weil divisor contracted by π.

Proof. We can assume that α is nonzero and spans an extremal ray of Effk(X). The proof
of Proposition 5.19 shows that α = ı∗α

′ for some α′ ∈ Effn−1(E1), where E1 is an irreducible
divisor on X. But Effn−1(E1) = R≥0[E1], therefore α is effective. �

The case c = 1 requires more work. For a pseudo-effective divisor L on a smooth projective
variety X over C, we let L = Pσ(L) + Nσ(L) denote the σ-decomposition of [Nak04]. This
decomposition is a numerical invariant, so for a pseudo-effective divisor class α we can write
α = Pσ(α) +Nσ(α).

Proposition 3.23. Let π : X → Y be a surjective projective morphism of relative dimension
c = 1 over C. Let α ∈ Effn−1(X) satisfy π∗α = 0. Then α is in Effn−1(π).

Proof. Arguing just as in Corollaries 3.12, 3.13, and 3.16, we may assume that X and Y are
nonsingular and that π has connected fibers. If b is the class of a fiber of π, then by Corollary
3.3 we have α · b = 0, so the restriction of α to the general fiber of π is numerically trivial.
By [Leh11, Theorem 1.3], there exists a commutative diagram

X ′
f //

π′

��

X

π
��

Y ′ g
// Y

with X ′ and Y ′ nonsingular, with f and g birational, and a pseudo-effective divisor class β
on Y ′ such that Pσ(f ∗α) = Pσ(π′∗β). It is enough to prove the proposition for π′ and f ∗α.
Thus we may assume π = π′ and

Pσ(α) = Pσ(π∗β)

for some pseudo-effective divisor class β on Y .
Write α = Pσ(α) + Nσ(α). Since Nσ(α) is automatically an effective class, it suffices to

show that Pσ(α) = Pσ(π∗β) lies in Effn−1(π). Write β as a limit of big classes βi := β + 1
i
δ,

where δ is a big divisor class on Y . Then π∗βi is an effective class, therefore we have a
σ-decomposition

π∗βi = Pσ(π∗βi) +Nσ(π∗βi),

where the positive and negative parts are both effective classes. The class π∗βi is in kerπ∗ by
the projection formula. It follows that Pσ(π∗βi) and Nσ(π∗βi) both belong to Effn−1(π). By
[Nak04, III.1.7.(2) Lemma], Pσ(π∗β) is the limit of the sequence Pσ(π∗βi), so that Pσ(π∗β)
also belongs to the closed cone Effn−1(π). �

Proof of Theorem 3.21. It follows immediately from the two propositions. �
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4. The Movable Strong/Weak Conjectures and Zariski decompositions

As explained in the introduction, we can study the Strong/Weak Conjectures for pseudo-
effective cycles by using the Zariski decomposition of [FL13] to decompose a pseudo-effective
class into a “movable” part and a “rigid” part and studying the conjecture for each part
separately. Just as for divisors, this approach makes the problem more tractable and allows
us to prove a number of special cases. While the Zariski decomposition is not used in an
essential way for the rest of the paper, it places our results in a more general conceptual
framework.

4.1. Movable Strong/Weak Conjectures. It seems likely that whenever the Strong/Weak
Conjectures hold, a stronger version will hold for movable classes.

Definition 4.1. Let π : X → Y be a morphism of projective varieties. Let

• Movk(π) denote the closed convex cone in Nk(X) generated by movable effective
k-classes of X contracted by π,
• Mk(π) denote the subspace of Nk(X) generated by movable effective k-classes of X

contracted by π.

The analogues of the Strong and Weak Conjectures for movable classes are:

Movable Strong Conjecture (MSC). Let π : X → Y be a morphism of projective vari-
eties. Let α ∈ Movk(X) satisfy π∗α = 0. Then α belongs to Movk(π).

Movable Weak Conjecture (MWC). Let π : X → Y be a morphism of projective vari-
eties. Let α ∈ Movk(X) satisfy π∗α = 0. Then α belongs to Mk(π).

There are no immediate implications between these conjectures and the Strong/Weak
Conjectures.

These conjectures seems substantially easier than their non-movable counterparts. The
key insight is that movable cycles should not reflect the properties of special fibers of a
map, inviting arguments that only rely on general fibers. For example, Theorem 2.7i implies
that the Movable Strong Conjecture is true for generically finite maps π (compare with
Corollary 3.11). This should be contrasted with Proposition 5.23, which shows the the
Strong Conjecture in dimension n for birational maps is equivalent to the Strong Conjecture
in all lower dimensions (and for maps of arbitrary relative dimension).

We denote the Movable Strong Conjecture and Movable Weak Conjecture collectively as
the Movable Pushforward Conjectures (MPC). We next carry out the reduction steps of
Section 3 for the MPC.

Proposition 4.2. If the MPC hold for maps π : X → Y where

• X is smooth,
• π is surjective,
• π has connected fibers

then the MPC are always true.

Proof. The proof is identical to the PC case. �

Remark 4.3. Over C, we can also assume that Y is smooth. (Let π : X → Y be a
surjective projective morphism with connected fibers with X smooth, and let π′ : X ′ → Y ′

be a birational model of π with X ′ and Y ′ both smooth, and with birational morphisms
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fX : X ′ → X and fY : Y ′ → Y . We can assume that π and π′ coincide over an open subset
of Y . Consequently π′ also has connected fibers. If α′ is a movable fX-lift of α (cf. Theorem
2.7.f), then (fY )∗(π

′
∗α
′) = 0 implies π′∗α

′ = 0 by Theorem 2.7.i. If the MPC are true for π′

and α′, then they are also true for π and α.)

Example 4.4. Example 3.19 also shows that generalization of the MPC from semiample to
nef divisors can not hold.

4.2. The Movable Strong Conjecture for curves. The following result is due to [Pet12].

Theorem 4.5 ([Pet12], 6.8 Theorem). Let π : X → Y be a surjective morphism with con-
nected fibers from a smooth variety X to a normal variety Y over C. Let F be a general fiber
of π. Then:

i) The inclusion map i∗ : N1(F )→ N1(X) maps Mov1(F ) into Mov1(X).
ii) Mov1(X) ∩ ker(π∗) is the closure of the cone generated by movable curves C satisfying

π∗C = 0.
iii) i∗ : Mov1(F )→ Mov1(X) ∩ ker(π∗) is surjective.

Note that the MSC for curves is an immediate consequence whenever the hypotheses of the
theorem hold. We use this theorem to derive the curve case of the MSC for arbitrary maps
over C.

Theorem 4.6. Let π : X → Y be a morphism of projective varieties over C. Then the MPC
hold for curve classes on X.

Proof. Note that the MWC and MSC can be detected after precomposing by any surjective
map. So we may suppose X is smooth. Then apply Theorem 2.7 to the normalization of the
Stein factorization of π to reduce to the case when Y is normal and π has connected fibers.
This case is then settled by Theorem 4.5. �

Corollary 4.7. Let π : X → Y be a surjective morphism of projective varieties over C of
relative dimension 1. Let α be a movable curve class with π∗α = 0. Then α is proportional
to the class of a general fiber.

Proof. By the projection formula, we may precompose by a generically finite map to assume
that X is smooth. We may also replace Y by the normalization of the Stein factorization,
since the general fiber of the Stein factorization is proportional to the general fiber of the
original map. Thus we may assume Y is normal and π has connected fibers. Then the general
fiber of π is a smooth curve F and Mov1(F ) is clearly spanned by [F ]. Conclude by Theorem
4.5. �

4.3. The Movable Strong Conjecture for divisors. We verify the MSC for divisors using
the same strategy as the verification of the SC for divisors.

Theorem 4.8. Let π : X → Y be a morphism of projective varieties over C. Then the MPC
hold for divisor classes on X.

Proof. Let α be a movable divisor class on X satisfying π∗α = 0. By Remark 3.10 we reduce
to the case when c := reldim(π) ∈ {0, 1}.

When π is birational, Theorem 2.7 shows that α = 0. So the MSC holds in this case.
When π has relative dimension 1, we reduce just as in Proposition 3.23 to the case when X

and Y are smooth and α = Pσ(π∗β) for some psef class β on Y . The argument in the proof
of Proposition 3.23 shows that α is the limit of the movable effective classes Pσ(π∗βi) where
the βi are big effective classes approximating β. So the MSC holds in this case as well. �
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4.4. Zariski decompositions for cycle classes. [FL13] constructs a Zariski decomposition
for cycle classes of arbitrary codimension. The starting point is the mobility function, a
measure of the “positivity” of a cycle class.

Definition 4.9 ([Leh13]). Let X be a projective variety of dimension n and let α ∈ Nk(X)Z.
The mobility of α is

mob(α) := lim sup
m→∞

max

{
b ∈ Z≥0

∣∣∣∣ For any b general points on X there is an
effective Z-cycle of class mα containing them

}
m

n
n−k /n!

Building on [DELV11, Conjecture 6.5], in [Leh13], the second author shows that the mobility
extends to a homogeneous continuous function on all of Nk(X). In particular, the mobility
is positive precisely for big classes α.

Definition 4.10 ([FL13]). Let X be a projective variety. A Zariski decomposition for a big
class α is a sum α = P (α) + N(α) where P (α) is movable, N(α) is pseudo-effective, and
mob(P (α)) = mob(α).

Let P ⊂ Nk(X)×Nk(X) denote the set of all pairs (β, P (β)) for big classes β and positive
parts P (β) of β. For α pseudo-effective, a decomposition α = P (α) + N(α) is a Zariski
decomposition whenever (α, P (α)) lies in the closure of P . [FL13] verifies that for big cycles
this definition coheres with the previous one.

[FL13] establishes the existence of Zariski decompositions.

Theorem 4.11 ([FL13], Theorem 1.6). Let X be a projective variety and let α ∈ Nk(X) be
a pseudo-effective class. Then α admits a Zariski decomposition α = P (α) +N(α).

The following conjecture of [FL13] describes the fundamental geometry underlying negative
parts of Zariski decompositions.

Conjecture 4.12. Let X be an integral variety and let α ∈ Effk(X). For some/any Zariski
decomposition α = P (α) + N(α), the negative part N(α) is the pushforward of a pseudo-
effective cycle on a proper subscheme.

Then we have:

Theorem 4.13. Assume Conjecture 4.12. Then:

(1) The MWC in dimension ≤ n implies the WC in dimension ≤ n.
(2) The MSC in dimension ≤ n implies the SC in dimension ≤ n.

Proof. (1) We prove this by induction on dimension. Assume the MWC in dimension ≤ n.
Suppose π : X → Y is a morphism where X has dimension n and α ∈ Effk(X) satisfies
π∗α = 0. Write α = P + N for the Zariski decomposition of α and note that both P and
N push forward to 0. The MWC implies that P ∈ Effk(π). Conjecture 4.12 implies that
there is a subscheme i : W ↪→ X of dimension ≤ n − 1 such that α = i∗β for some pseudo-
effective β. We may replace W by the disjoint union of its reduced components without
changing this property. Then by the induction assumption, the fact that π∗β = 0 implies
that β ∈ Effk(π|W ). Hence the pushforward is in Effk(π).

(2) is the same argument. �
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5. Exceptional classes

The prototypical example of a negative class for the σ-decomposition is an exceptional
divisor. In this section we define and study an analogous notion for arbitrary cycle classes.

5.1. Cone lemmas. We start by recalling a useful lemma concerning cones.

Lemma 5.1. Let C be a closed full-dimensional salient convex cone generated by a set {ci}
inside a finite dimensional vector space. Let α ∈ C span an extremal ray. Then there exists
a subsequence {cj} of {ci} and positive real numbers rj such that α = limj→∞ rjcj.

Proof. Let V be the finite dimensional vector space spanned by C. Denote m := dimV , and
let w1, . . . , wm be a basis for V ∨ consisting of elements of C∨. Such a basis exists, because
C∨ is full-dimensional inside V ∨ by the assumptions on C ⊂ V .

The function |·| : V → R≥0 defined by |v| =
∑m

k=1 |〈v, wk〉| is a norm on V , and its
restriction to C is given by |v| = 〈v, w〉, where w =

∑m
k=1wk. Note that w ∈ (C∨)int.

By rescaling, we can assume that α and the ci are all of length 1 with respect to the norm
defined above. Working inside

P := C ∩ {v | 〈v, w〉 = 1},
we reduce to the following:

Lemma 5.2. Let P be the closed convex hull of a bounded set of points {ci} inside a finite
dimensional affine space. If α ∈ P is not a strict convex combination of (at least two) points
in P , then α is in the closure of the set {ci}.
Proof. Let V be the affine span of P , and denote m := dimV + 1. There exists a sequence
vk converging to α, with each vk a convex combination of a finite number of the ci. We can
arrange that each such combination involves at most m of the ci. Write

vk = rk1ck1 + . . .+ rkmckm

with 1 ≥ rk1 ≥ . . . ≥ rkm ≥ 0 and rk1 + . . .+ rkm = 1 for all k. In particular, rk1 ∈ [ 1
m
, 1] for

all k. By considering subsequences, we can assume that rkj and ckj are convergent for every
j ∈ {1, . . . ,m}. Denote the limits by rj ≥ 0 and c̄j ∈ P . Then α is a convex combination of
c̄j, which implies that α = c̄1. �

To conclude the proof of Lemma 5.1, note that P is contained in the unit ball for the norm
|·| constructed above. �

Proposition 5.3. Let X be a projective variety and let α ∈ Effk(X) be an extremal ray.
Suppose that there is an effective Cartier divisor E such that α · E is not pseudo-effective.
Then there is some component E1 of E and a pseudo-effective class β ∈ Nk(E1) such that α
is the pushforward of β under the inclusion map.

Proof. We use Lemma 5.1 to write α = limj→∞ αj where αj = rj[Sj] for some positive real
number rj and some irreducible k-dimensional subvariety Sj.

Let {Ei}ri=1 denote the components of E. Note that there is some index i such that an
infinite subsequence of the Sj is contained in Ei. If this were not the case, then the classes
E · Sj would be pseudo-effective for sufficiently large j, hence E · α would also be pseudo-
effective. Therefore up to passing to a subsequence and renumbering the i’s, we can assume
that Sj ⊂ E1 for all j. Define the pseudo-effective classes

α′j = rj[Sj] in Nk(E1).
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Then letting ı : E1 → X denote the closed embedding, we have αj = ı∗α
′
j. Fix an ample

class h on X. By the projection formula,

(h|E1)
k·α′j = hk·αj.

Theorem 2.5.e implies that α′j is a bounded sequence in Nk(E1) so that we can extract a
convergent subsequence. If α′ denotes the limit, then by continuity, ı∗α

′ = α. �

5.2. Exceptional classes.

Definition 5.4. Let π : X → Y be a morphism of projective varieties of relative dimension
e and fix k ≥ e. We say that α ∈ Effk(X) is an exceptional (pseudo-effective) class of π if it
satisfies the following equivalent conditions:

• there is some (equivalently any) ample divisor H on Y such that α · π∗Hk−e = 0, or
equivalently
• there is some (equivalently any) ample divisor A on X such that π∗(α · Ae) = 0.

Example 5.5. For effective classes, being π-exceptional is a geometric condition. Sup-
pose that Z is a subvariety of X. Then [Z] is π-exceptional if and only if reldim(X/Y ) <
reldim(Z/π(Z)). (Indeed, keeping the notation from Definition 5.4, note that the condition
[Z] · π∗Hk−e = 0 implies π|∗ZHk−e = 0. The injectivity of π|∗Z for dominant maps then says
k − e > dim π(Z).)

Example 5.6. Suppose E is an effective divisor. Then [E] is exceptional for a morphism π
precisely when codim(π(E)) ≥ 2, that is, when E is exceptional by the usual definition.

In fact, it follows from Theorem 5.14 below that any pseudo-effective π-exceptional divisor
class α is represented by an effective divisor that is exceptional in the traditional sense.

Example 5.7. Let π : X → Y be birational, or only generically finite and dominant. Then
a pseudo-effective class is π-contracted if and only if it is π-exceptional.

Example 5.8. A pseudo-effective curve class can only be exceptional for generically finite
dominant maps.

Lemma 5.9. Suppose π : X → Y is an equidimensional morphism of projective varieties.
Then there are no π-exceptional classes on X besides the 0 class.

Proof. Let Z be a complete intersection on X of codimension e = reldim(π) with embedding
morphism i : Z → X. Let f = π|Z . By Lemma 5.10, if we choose Z general we may
ensure that f is finite. If α is π-exceptional, then f∗(i

∗α) = 0. By Lemma 5.11 below, i∗α
is pseudoeffective. By Corollary 3.11 and the projection formula, α · [Z] = 0 on X, which
implies α = 0 since [Z] is in the interior of Nefe(X). �

Lemma 5.10. Let π : X → Y be a map of projective varieties, with equidimensional fibers of
relative dimension ≥ 1. Fix a very ample divisor H on X. For some sufficiently large integer
m, the general member A of |mH| has that the fibers of π : A→ Y are equidimensional.

Proof. For degree reasons there is an upper bound on the number of components of a fiber of
π. We first show that the supports of the irreducible components of a general fiber of π are
parameterized by a quasi-projective variety Z dominating Y generically finitely. In particular
dimZ = dimY . For the claim, let k denote the base field, and note that there exists a finite
extension K(Y ) ⊂ K such that every irreducible component of XK as a scheme over SpecK
is geometrically irreducible. Let T be the support of a component of XK that dominates the



18 MIHAI FULGER AND BRIAN LEHMANN

generic fiber of π. Then there exists a projective morphism ρ : T → Z over k with Z affine,
K(Z) = K, with T the generical fiber of ρ, and Z finite dominant over an affine open subset
of Y . Furthermore ρ has irreducible and reduced fibers, each a component of a general fiber
of π.

Returning to the lemma, it suffices to show that there are elements of |mH| which do not
contain a component of a fiber of π over any general closed point of Y . Fix a general fiber
F of π and let F1, . . . , Fs be its components. Consider the exact sequence:

H0(X, IFi
⊗OX(mH)) ↪→ H0(X,OX(mH))→ H0(Fi,OFi

(mH))→ H1(X, IFi
⊗OX(mH))

For m sufficiently large, the last term vanishes for every i and the dimension of the next to
last term is larger than dim Z = dim Y for every i. Furthermore, since F is general the same
statements will hold for any general fiber of π. Thus, dim |mH| is strictly greater than the
dimension of the space of divisors containing a component of F plus dim Y . Constructing
the incidence correspondence, one sees that the general element of |mH| does not contain a
component of any general fiber. After removing the proper closed subset of |mH| parametriz-
ing divisors which contain a component of the special fibers, we obtain the conclusion of the
theorem. �

Lemma 5.11. Let X be a projective variety, and D a complete intersection (irreducible)
subvariety of codimension d with embedding morphism ı : D ↪→ X. If α ∈ Effk(X), then
α|D := ı∗α ∈ Effk−d(D).

Proof. By induction we can assume that D is a divisor. By continuity and additivity of
intersections, we can assume that α = [Z] for some irreducible subvariety Z of X. If D and
Z meet properly, then [Z]|D is the class of an effective cycle supported on D∩|Z|. Otherwise
Z ⊂ D and then [Z]|D is the pushforward of c1(OZ(D)) ∩ [Z] from Z to D. But OZ(D) is
ample and the conclusion follows. �

The key lemma controlling the behavior of exceptional classes is the following.

Lemma 5.12. Let π : X → Y be a dominant morphism of projective varieties. There is a
birational model fX : X ′ → X and an effective Cartier divisor E on X ′ satisfying the following
condition: for any k and for any 0 6= α′ ∈ Effk(X

′) such that fX∗α
′ is a π-exceptional class,

E · α′ is not pseudo-effective. Furthermore the support of E does not dominate Y .
In the special case when π is generically finite, we may take X ′ = X.

Proof. Let π′ : X ′ → Y ′ be a flattening of π and let fX , fY denote the corresponding birational
maps. Set e = reldim(π) and α = fX∗α

′. As in Definition 5.4 the condition that α is π-
exceptional is equivalent to

fY ∗π
′
∗(α
′ · f ∗XAe) = 0

for any ample class A on X. Let F be an effective fY -anti-ample Cartier divisor on Y ′. Then
E = π′∗F is an effective fX-anti-ample Cartier divisor on X ′ (since fX is the composition of
a finite inclusion map with a base change of fY ).

Suppose that E · α′ is pseudo-effective. By Lemma 5.13, there is an ample divisor A′ on
X ′ satisfying α′ · f ∗XAe � α′ ·A′e. Thus fY ∗π

′
∗(α
′ · (A′)e) = 0 so that α′ is fY ◦ π′-exceptional.

Furthermore, since
F · π′∗(α′ · (A′)e) = π∗(E · α′ · (A′)e)

is pseudo-effective and fY is generically finite, Lemma 5.13 implies π′∗(α
′ · (A′)e) = 0, i.e. α′

is π′-exceptional. But this is impossible by Lemma 5.9.
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To see the final statement, note that by considering the Stein factorization of π one im-
mediately reduces to the birational case; but then the flattening of π is the identity map of
X. �

Lemma 5.13. Let π : X → Y be a generically finite dominant morphism of projective
varieties, and let E be an effective π-antiample Cartier divisor on X. Let α ∈ Effk(X) and
let H be an ample divisor on Y such that π∗H − E is ample. If α · [E] ∈ Effk−1(X), then
α · π∗He � α · (π∗H − E)e for any 1 ≤ e ≤ k.

Proof. Observe that

π∗He − (π∗H − E)e = E ·

(
e∑
i=1

π∗H i−1(π∗H − E)e−i

)
,

and
∑e

i=1 π
∗H i−1(π∗H − E)e−i is a positive combination of complete intersections of nef

divisors. �

Theorem 5.14. Let π : X → Y be a morphism of projective varieties of relative dimension
l and let α be a π-exceptional class.

(1) α admits a unique Zariski decomposition α = N(α) and P (α) = 0.
(2) α is the pushforward of a pseudo-effective class on a proper subvariety of X. (In other

words, Conjecture 4.12 holds for α.)

In fact, there is a proper closed subset W ⊂ X such that every π-exceptional class is the
pushforward of a pseudo-effective class on W .

Proof. (1) Write α = P (α)+N(α) for a Zariski decomposition of α. Since α is π-exceptional,
so are P (α) and N(α). Choose a flattening π′ : X ′ → Y ′ of π and let α′ ∈ Movk(X

′) be a
preimage of P (α). Lemma 5.12 implies that there is an effective Cartier divisor E on X ′ such
that α′ · E is not pseudo-effective if α′ 6= 0. This is impossible by Theorem 2.7.i, showing
that P (α) = 0 as well.

(2) It suffices to consider the case when α lies on an extremal ray. Choose a flattening
π′ : X ′ → Y ′ of π. Then there is some α′ lying on an extremal ray of Effk(X

′) that is
a preimage of α and an effective Cartier divisor E satisfying E · α′ is not pseudo-effective.
Proposition 5.3 shows that α′ is the pushforward of a pseudo-effective class from a subvariety
E1 of X ′. Then α is the pushforward of a pseudo-effective class from the image of E1 in X.

To see the final statement, note that by Lemma 5.12 we can choose E1 independently of
α in (2); set W = fX(|E1|). �

5.3. Contractibility index. It turns out to be useful to quantify “how close” a π-contracted
class is to being π-exceptional.

Definition 5.15. Let π : X → Y be a dominant morphism of projective varieties. Suppose
H is an ample divisor on Y . For a class α ∈ Effk(X), the contractibility index of α is
the largest non-negative integer c ≤ k + 1 such that α · π∗Hk+1−c = 0. The definition is
independent of the choice of H. We denote the π-contractibility index of α by contrπ(α).

If V ⊂ X is a subvariety, we define the contractibility index of V to be the contractibility
index of [V ].

Note that when c = 0 we have α · π∗Hk+1 = 0 for dimension reasons, so that the π-
contractibility index is well-defined. The following properties are immediate:
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• A pseudo-effective class contrπ(α) > 0 precisely when π∗α = 0.
• The contractibility index is (by definition) at most k+ 1, and 0 ∈ Effk(X) is the only

pseudo-effective class achieving this maximal value.
• The contractibility index of α ∈ Effk(X) is at least k − dimY .
• The contractibility index of [X] ∈ NdimX(X) is the relative dimension of π. More

generally, if α is the class of an irreducible cycle Z, then contrπ(α) = reldim(π|Z).
• A pseudo-effective class α is π-exceptional precisely when its contractibility index is

greater than reldim(π).

The following theorem was inspired by a question of Dawei Chen.

Theorem 5.16. Let π : X → Y be a dominant morphism of projective varieties. Fix a
positive integer m. Let k = k(m) be the largest integer such that there is a subvariety of
dimension k of contractibility index ≥ m. Then

(1) There are only finitely many subvarieties V1, . . . , Vs of dimension k and contractibility
index ≥ m.

(2) Any α ∈ Effk(X) of contractibility index ≥ m is a non-negative linear combination of
the [Vi].

Proof. Set n = dimX. The proof is by induction on the codimension n − k. The base case
n− k = 0 is obvious.

Now suppose n − k > 0. In particular m is greater than the contractibility index of X,
so that any class with contractibility index ≥ m is π-exceptional. Theorem 5.14 guarantees
that there is a proper subscheme i : W ↪→ X such that every π-exceptional class is pushed
forward from W . Let {Wi} be the irreducible components of W . Note that for any pseudo-
effective class β on a component Wi, the contractibility index for π|Wi

is the same as the
contractibility index of the pushforward of β to X.

In particular, for each Wi any subvariety with contractibility index ≥ m has dimension
no more than k. Applying the induction assumption to each Wi in turn, we immediately
obtain (1) for X. Suppose now that α ∈ Effk(X) has contractibility index ≥ m. Since
α is π-exceptional, it is pushed forward from W , and hence is a sum of pushforwards of
pseudo-effective classes of contractibility index ≥ m from the Wi. Applying (2) to each Wi,
we obtain (2) for X by pushing forward. �

If π : X → Y is birational and Z ⊂ X is the exceptional locus of π, then there are
no nonzero effective π-exceptional (equivalently π-contracted by Example 5.7) classes of di-
mension bigger than dimZ. As a consequence of the theorem above, the same is true for
pseudo-effective classes. In particular the SC holds in this case.

Corollary 5.17. Let π : X → Y be a birational morphism and let Z = Exc(π) ⊂ X.
If d = dimZ, then Effk(π) = 0 for all k > d and Effd(π) is polyhedral, generated by the
components of Z that are contracted by π.

Example 5.18. [CC14] and [Sch15] identify cycle classes which lie on extremal rays of the
effective cone of various moduli spaces of curves. We will focus on the first paper. The key
tools for establishing extremality are [CC14, Proposition 2.1, Proposition 2.2, Proposition
2.5]. We explain how these are extended to the pseudo-effective setting.

Let π : X → Y be a morphism of projective varieties.

[CC14, Proposition 2.1] shows that if α � β are effective classes on X, then contrπ(α) ≥
contrπ(β). The analogous fact for pseudo-effective classes is immediate.
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[CC14, Proposition 2.2] shows that if only finitely many k-dimensional subvarieties of X
have contractibility index ≥ m then the classes of these subvarieties generate an extremal
face of the effective cone. The analogous statement for pseudo-effectivity can be proven using
Theorem 5.16, as was observed in [CC14, Remark 2.7]. (To see this, it suffices to show that if
there is a subvariety V ⊂ X of dimension d > k and contractibility index ≥ m then there are
infinitely many k-dimensional subvarieties of contractibility index ≥ m. If dim(π(V )) ≥ d−k,
then the preimage of any sufficiently general codimension d− k subvariety of π(v) will have
contractibility index ≥ m. If dim(π(V )) < d − k, then every k-dimensional subvariety will
have contractibility index ≥ m.)

[CC14, Proposition 2.5] considers the case when π is generically finite, Z ⊂ X is a sub-
variety which contains the π-exceptional locus, and the pushforward Nk(Z) → Nk(X) is
injective. Then (under some additional hypotheses) any effective class α ∈ Nk(X) which is
π-exceptional, and the pushforward of a class lying on an extremal ray of Effk(Z) is also ex-
tremal in Effk(X). The analogous statement for pseudo-effectivity is also true, even without
the additional hypotheses, by essentially the same argument. (Suppose that βi are pseudo-
effective classes on X satisfying

∑
βi = α. Then each βi is also π-exceptional; arguing as in

Lemma 5.12, we see that any such βi is the pushforward of a pseudo-effective class on Nk(Z).
Using the injectivity of the pushforward, we deduce that

∑
βi = α as classes on Nk(Z) – by

extremality, each βi must be proportional to α in Nk(Z), hence also in Nk(X).)

Using these strengthened versions, one can extend many of the results of [CC14] to the
pseudo-effective cone. We explain the argument in a couple cases to illustrate the method;
we refer to [CC14] for the relevant notation and preliminaries.

• [CC14, Theorem 6.1] shows that the boundary codimension 2 strata DS1,S2,S3 on M0,n

have classes which are extremal in the effective cone. They are also extremal in the
pseudo-effective cone. In the case when s1, s3 > 2, [CC14] constructs birational mor-
phisms fA, fB with exceptional loci the irreducible divisors ∆S1,Sc

1
, ∆S3,Sc

3
respectively,

and the intersection of these two divisors is exactly DS1,S2,S3 . By applying the pseudo-
effective analogue of [CC14, Proposition 2.5] to M0,n and ∆S1,Sc

1
, we see that it suffices

to show that DS1,S2,S3 is extremal in ∆S1,Sc
1
. We show this by applying Theorem 5.16

to the restriction of fB to ∆S1,Sc
1
. The other cases are proved similarly.

• [CC14, Theorem 7.2] shows that the effective cone of codimension 2 cycles on M1,n

is not finite polyhedral. The analogous statement for Effn−1(M1,n) is also true. In-
deed, one just needs to replace [CC14, Proposition 2.5] by the corresponding pseudo-
effective extension above. The same argument in the context of [CC14, Theorem 8.2]
shows that the pseudo-effective cone of codimension 2 cycles on M2,n is not finite
polyhedral.
• The Keel-Vermeire lifts in [Sch15, Section 4] are extremal in Eff2(M0,7). Their ex-

tremality in the effective cone is proved by [Sch15, §3 Lifting Lemma]. This is es-
sentially equivalent to [CC14, Proposition 2.5], and the strengthened version above
applies.

5.4. Further reduction steps. Theorem 5.14 allows us to make some further reductions
to the pushforward conjectures.

Proposition 5.19 (Reducing dimension in the relative dimension zero case). Let π : X → Y
be a generically finite dominant morphism of projective varieties of dimension n. Let Ei be
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the components of an effective π-antiample Cartier divisor E of class e on X. If the PC are
true for π|Ei

, then they are also true for π.

Proof. Let α ∈ Effk(X) with π∗α = 0. By Example 5.7, α is π-exceptional. We may assume
that α is also extremal. The last statement in Lemma 5.12 shows that α is the pushforward
of a pseudo-effective class from a component of E, whence the result. �

In particular, to deduce the SC/WC by an inductive argument, we may always precompose
by generically finite maps.

Proposition 5.20 (Reduction to the flat case). The general case of the PC is implied by the
flat case.

Proof. Let π : X → Y be a morphism of projective varieties, and let α ∈ Effk(X) ∩ kerπ∗
which we can assume to be extremal. Let π′ : X ′ → Y ′ be a flattening of π with birational
morphisms fX : X ′ → X and fY : Y ′ → Y . Let α′ be an extremal pseudo-effective preimage
of α on X ′. It is enough to show that the PC hold for the pair (π ◦ fX , α′). Let F be an
effective fY -anti-ample Cartier divisor on Y ′, and let H be an ample class on Y such that
f ∗YH − F is ample on Y ′. Put E = π′∗F .

If α′ · E ∈ Effk−1(X
′), then by the projection formula, π′∗α

′ · F ∈ Effk−1(Y
′). Proposition

3.3 and Lemma 5.13 then show that π′∗α
′ = 0. If the PC hold for the pair (π′, α′), then they

also hold for (π, α).
If α′ ·E is not pseudo-effective, then Proposition 5.3 shows that α′ is pushed forward from

one of the irreducible components of the support of E. Conclude by induction on dimX. �

Finally we show that the Strong or Weak Conjecture follows from the birational case. The
argument which works by increasing dimension is based on a relative version of a classical
cone construction.

Lemma 5.21. Let π : X → Y be a projective morphism. Let H be a sufficiently π-ample
divisor on X, and let

(1) R(H) := OY ⊕
⊕
m≥1

π∗OX(mH).

Put T = SpecOY
R(H) with induced affine morphism ρ : T → Y . The natural map

R(H)� OY
induces a section i : Y ↪→ T of ρ. Then Z := Bli(Y )T admits a morphism f : Z → X that is
isomorphic to the bundle map for the geometric line bundle Z ′ := SpecOX

⊕
m≥0OX(mH).

Moreover if E denotes the exceptional divisor of the blow-up, then f |E : E → X is an
isomorphism whose inverse is the zero section of f , and the induced map E → Y is naturally
isomorphic to π.

Proof. If H is sufficiently π-ample, then we have a surjective morphism

π∗R(H)�
⊕
m≥0

OX(mH).

This shows that Z ′ is a subvariety of T ×Y X. Similarly there is a surjective morphism

ρ∗R(H)� OT ⊕
⊕
m≥1

Im,
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where I is the ideal sheaf of i(Y ) in T (because I is generated by ρ∗π∗OX(H) as an ideal
in OT ). Then Z is also a subvariety of T ×Y X. Both Z and Z ′ are irreducible. To check
that Z = Z ′, it is then enough to verify this over general points of Y . But over a general
point on Y , we simply have the classical cone construction. The assertions on E are verified
similarly. �

Remark 5.22. If one replaces OY with π∗OX in degree 0 in the formula for R(H) in (1),
then T = SpecOY

R(H) is the cone over the Stein factorization of π.

Proposition 5.23. If SC (or WC) holds for birational maps, then it holds in general. More
precisely, if the conjecture is valid for birational maps in dimension n+ 1, then it is valid for
all morphisms π : X → Y of projective varieties with dimX = n.

Proof. Let π : X → Y be a morphism of projective varieties, with dimX = n. Consider
η : W → X a projective bundle of rank 1 over X that compactifies the geometric line bundle
from Lemma 5.21. Let E ⊂ W be the zero section of η. By Lemma 5.21, the divisor E ⊂ W
can be blown-down as σ : W → S, with σ(E) = Y , and σ|YE is naturally isomorphic to π.
The proposition is a consequence of the following identifications:

Nk(X) = E · η∗Nk(X) ⊂ Nk(W ),

Nk(π) = Nk(σ),

which are compatible with the respective pseudo-effective cones. �

6. Movable classes

We next study the Strong and Weak Conjectures for movable classes. The main result of
the section is Theorem 6.10 which proves the Strong Conjecture for movable classes that are
“almost exceptional”, in the sense that their contractibility index (5.3) is one away from the
condition for being exceptional (the exceptional case is covered by the proof of Theorem 5.14
which shows that exceptional nonzero classes are never movable). Throughout this section
we will often work over the complex numbers; this allows us to understand the behavior of
birational maps via the following proposition.

Proposition 6.1 ([FL15] Proposition 3.8). Suppose that π : X → Y is a birational morphism
of varieties over C with Y smooth. Then the kernel of π∗ : Nk(X) → Nk(Y ) is spanned by
classes of effective k-cycles contracted by π.

6.1. Movability and restrictions. We first identify criteria guaranteeing that the restric-
tion of a movable class to a subvariety is still movable. Throught this section, when π is
a birational map we will use interchangably the terms “π-exceptional” and “π-contracted”.
(Note that these two terms mean the same thing for birational maps by Example 5.7.)

Lemma 6.2. Let π : Y → X be a morphism of smooth varieties that is a composition of
blow-ups along smooth centers. Then Nk(Y ) is spanned by π∗Nk(X) and by a finite set of
π-exceptional effective k-cycles, each of which is the pushforward of a basepoint free class on
a π-exceptional divisor.

Proof. Using Theorem 2.10 inductively, it suffices to consider the case when π is the blow-up
along a single smooth center T . Since T is smooth, each Nj(T ) is spanned by basepoint
free classes. Using [Ful84, Theorem 3.3.(b)] and Proposition 6.1, we see the kernel of the
pushforward map is spanned by the intersection of divisors of a fixed ample divisor class
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with the pullbacks of these classes. These intersections represent effective, basepoint free,
π-exceptional cycles by Theorem 2.10. �

Proposition 6.3. Let X be a smooth projective variety over C and let α be the class of
a strongly movable family of k-cycles t : R → S. Suppose U is a scheme admitting a flat
dominant map s : U → X and a proper map q : U → W to an integral variety W . Then for
every component F ′ of a general fiber F of q we have that α|s(F ′) is movable.

In particular, for any (reduced) component Z of a general member of a basepoint free family
on X, α|Z is movable on Z.

Proof. Let π : Y → X be a birational map from a smooth model Y that flattens the map
t : R→ X. After possibly passing to a higher model, we may assume that π is a compositiion
of smooth blow-ups. Let α′ be the class of the strict transform family of t on Y ; note that
α′ is a basepoint free class. By Lemma 6.2, we can write α′ = α + [V ] where V is a (not
necessarily effective) linear combination of π-exceptional cycles that are general members of
basepoint free families on exceptional divisors.

Set U ′ := U ×X Y . Since the natural morphism sY : U ′ → Y is flat, every component of U ′

dominates Y . Thus, the sY -image of the general fiber of pY : U ′ → W is the strict transform
of the s-image of a general fiber of p.

Suppose that Z is a d-dimensional component of a general fiber of p and Z ′ is its strict
transform on Y . We next verify that:

(1) There is a cycle of class [V · Z ′] supported on V ∩ Z ′.
(2) V ∩ Z ′ is a π-exceptional cycle.

The two properties together show that π∗[V · Z ′] = 0.
Arguing by induction on the number of blow-ups, it suffices to consider the case when π

is a blow-up of a smooth center W , E is the exceptional divisor, and V is a π-exceptional
cycle that is basepoint free in E. To verify (1), note that since E is a Cartier divisor whose
support does not contain Z ′, [Z ′]|E is represented by a cycle T supported on Z ′∩E. We then
apply Theorem 2.10 to T and to components of V as basepoint free cycles on E. To verify
(2), note that since s and sY are flat, codimension is preserved upon taking preimages. In
particular, the codimension of W ∩ Z in Z is the same as the codimension of W in X, and
E ∩ Z ′ has codimension 1 in Z ′. Since the fibers of the blow-up of W in X are irreducible,
the only way this can happen is if Z ′ contains every fiber of π that it intersects. Then since
V is contracted by π, V ∩ Z ′ is also contracted by π.

Thus

α|Z = (π|Z′)∗(π∗α|Z′)
= (π|Z′)∗(α′|Z′ + [V ]|Z′)
= (π|Z′)∗(α′|Z′).

Since α′ is basepoint free, the restriction to Z ′ is also basepoint free, and hence its pushforward
is movable. �

Immediately from Proposition 6.3 we obtain:

Corollary 6.4. Let X be a smooth projective variety over C and let α ∈ Movk(X). Suppose
U is a scheme admitting a flat dominant map s : U → X and a proper map q : U → W to
an integral variety W . Then for every component F ′ of a very general fiber F of q we have
that α|s(F ′) is movable.
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In particular, for any (reduced) component Z of a very general member of a basepoint free
family on X, α|Z is movable on Z.

6.2. Almost exceptional classes: special case. We show in Corollary 6.7 that the class
of a general fiber of a dominant morphism of projective varieties π : X → Y of relative
dimension k over C is the only class in Movk(X) satisfying α ·π∗h = 0 for some (equivalently
any) ample divisor class h on Y . This will play an important role in the proof of Theorem
6.10 in the next subsection.

Lemma 6.5. Let X be a smooth projective variety of dimension n over C, and let α ∈
Movk(X). Then there exists Z smooth projective of dimension n − k + 1 with a morphism
f : Z → X such that f∗ : Nn−k(Z)→ Nn−k(X) is surjective, and f ∗α ∈ Mov1(X).

Proof. Choose a finite set of r very ample vector bundles Ei on X such that N∗(X) is
generated as a ring by the Segre classes sj(E

∨
i ), and in particular Nk(X) = Nn−k(X) is

generated as a vector space by monomials of weight k in these Segre classes. In this list
repeat each bundle k times (this will make it possible to write any monomial in dual Segre
classes of bundles in this set as a monomial in dual Segree classes of different (occurrences) of
these bundles in the set). Put P =

∏
X P(Ei), and let π : P → X denote the projection map

of relative dimension denoted by p. Let ξi be the pullbacks to P of ci(OP(Ei)(1)). Using the

proof of [Ful84, Proposition 3.1.(b)], we see that Nn−k(X) is generated by π∗(
∏p+k

j=1 ξij), where

ij are arbitrary indices in the set {1, . . . , r} (they may repeat, and the number of occurrences
the index i determines which Segre class of E∨i appears in the resulting monomial in dual
Segre classes of the Ei’s).

By Bertini, we can choose smooth representatives Qi, one for each
∏p+k

j=1 ξij . We can also

ensure that they are disjoint as long as 2(p+ k) > n+ p, which can be achieved for example
by adding O(A)⊕n+1 to the list, for some very ample A on X. Put Ti := π∗Qi. These are
cycles on X whose classes generate Nn−k(X) by the previous paragraph.

Let P̃ be the blow-up of P along all Qi. Let Z be a general complete intersection of

dimension n − k + 1 on P̃ . This is smooth, and for each i it contains an (n − k)-dimension

cycle Q̃i that dominates Qi (because the exceptional divisors are projective bundles over Qi

of relative dimension p + k − 1, which is the codimension of Z). If f : Z → X denotes the
induced map, then f∗ : Nn−k(Z) → Nn−k(X) is surjective. It remains to show that f ∗α is
movable.

Let σ : P̃ → P be the blow-up map. Since the intersection of an ample class with a movable
class is movable (see [FL13, Lemma 3.12]), and a smooth pullback of a movable class from
a smooth variety is movable (see [FL13, Lemma 3.6.(2)]), it is enough to check that σ∗π∗α
is movable. Let qj be a sequence of strictly movable families such that α = limj→∞[qj]. For
very general choices of Qi, the general member of π∗qj meets Qi properly for all i and for all

j. Then σ∗π∗[qj] represents the strict transform in P̃ of the strictly movable family π∗qj by
[Ful84, Corollary 6.7.2]. Consequently σ∗π∗α is still movable. �

Remark 6.6. By the first two paragraphs of the argument, any smooth projective variety
X over C admits a basis of Nk(X) consisting of classes of basepoint free families whose total
space U and general fiber are irreducible. (Indeed, we can take the Qi to be irreducible by the
Bertini theorems, so that the Ti are also irreducible. Complete intersections Qi of globally
generated line bundles are cycles in basepoint free families on P , and then so are their flat
pushforwards Ti on X.)
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Moreover, if f : X → Y is a dominant morphism to another projective variety Y , with
dimY ≥ n − k, we can also arrange that dim f(Ti) = n − k for every i. (Indeed we claim

that we can choose Ti such that [Ti] belongs to the interior of BPFk(X), hence (cf. Theorem

2.11) in particular to the interior of Nefk(X). Assuming this, if dim f(Ti) < n − k, then
[Ti] · f ∗hn−k = 0 for any ample h ∈ N1(Y ), which implies f ∗hn−k = 0, leading to the
contradiction dimY < n − k. For the claim, replace first each Ei by Ei ⊗ detEi, and add
the ample line bundles detEi to the initial list. These have the same linear span of dual
Segre monomials. Since complete intersections belong to the interior of BPFr(X) for all r,
and dual Segre monomials of globally generated bundles are basepoint free (cf. Theorem
2.11), by Theorem 2.10 it is enough to check that sj((Ei⊗detEi)

∨) belongs to the interior of
BPFj(X). By [Ful84, Example 3.1.1], the class sj((Ei ⊗ detEi)

∨) is a positive combination

of classes in BPFj(X), one of which is a positive multiple of the interior class cj1(Ei).) �

Corollary 6.7. Let π : X → Y be a surjective morphism of projective varieties over C with
relative dimension k. Let α ∈ Movk(X) be such that α · π∗H = 0 for an ample divisor H on
Y . Then α is proportional to the class of a fiber.

Proof. First suppose X is smooth. Choose Z as in Lemma 6.5 with morphism f : Z → X.
Note that π ◦ f : Z → Y has relative dimension 1. Then f ∗α is a movable curve class that
pushes forward to 0 on Y . Thus it is proportional to the class of a fiber by Corollary 4.7. So
for any divisor D on Z we have

D · α = c deg(π ◦ f |D).

But since f∗ : Nn−k(Z)→ Nn−k(X) is surjective, the same proportionality relationship holds
for (n− k)-cycles on X. So α is proportional to the class of a general fiber of the map π.

When X is singular, let φ : X ′ → X be a smooth birational model and let α′ be a movable
preimage of α. By Theorem 2.7.i, α′ · φ∗π∗H = 0. Applying the smooth case to α′, we see
that α′ is proportional to the class of a general fiber of π ◦ φ. Pushing forward, we see that
α is also proportional to the class of a general fiber of π. �

6.3. Almost exceptional classes: general case. In Theorem 6.10 and its corollary we
prove the “almost exceptional” case of the Movable Strong Conjecture over C, and discuss
how this settles most of the cases of the Strong Conjecture for morphisms from complex
fourfolds.

Lemma 6.8. Let g : X → Y be a finite dominant map of projective varieties with Y smooth.
Let α ∈ Nn−k(X). Suppose that there is a finite collection of (n−k)-dimensional subvarieties
{Wi} of Y containing general points of Y , such that if Z1 and Z2 are (n − k)-dimensional
integral subvarieties of X both mapping to the same Wi, then

α·Z1

deg(Z1/Wi)
=

α·Z2

deg(Z2/Wi)
.

Then there is some β ∈ Nn−k(Y ) so that for any Z above one of the Wi we have α·Z = g∗β ·Z.
If α ∩ [X] is movable, we may ensure that β ∩ [Y ] is also movable.
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Proof. Let d = deg(X/Y ). Set β = 1
d
·g∗(α ∩ [X]); since Y is smooth we can think of

β ∈ Nn−k(Y ). If E is an irreducible subvariety with g(E) = Wi, we have

g∗β · E = β · g∗E =
1

d
· g∗(α ∩ [X]) · deg(E/Wi)Wi

=
deg(E/Wi)

d
α · (g∗[Wi] ∩ [X]).

We check that g∗[Wi] ∩ [X] = [g−1Wi]. It is enough to check the equality in Chow groups.
Note that g−1Wi has the expected dimension because Y is smooth and g is finite. Using the
restriction sequence for Chow groups, the finiteness of g, and the generality assumption on
Wi, it is enough to check the equality of Chow classes over the flat locus of g. Over the flat
locus the equality is the definition of the flat pullback of Wi via the compatibility between
flat and smooth pullback (see [Ful84, Proposition 8.1.2.(a)]).

Using this equality, we find

g∗β · E =
deg(E/Wi)

d
α ·

∑
g(Ej)=Wi

ramdeg(Ej/Wi)Ej

=
deg(E/Wi)

d
·
∑

g(Ej)=Wi

ramdeg(Ej/Wi) ·
deg(Ej/Wi)

deg(E/Wi)
·α · E.

Since the Wi contain general points, the smooth locus of any component of the preimage
intersects the smooth locus of X, so that by [Ful84, Example 4.3.7]

d =
∑

g(Ej)=Wi

ramdeg(Ej/Wi) · deg(Ej/Wi).

This implies that g∗β · E = α · E. The final statement follows since β is proportional to the
pushforward of α and movability is preserved by pushforward. �

Lemma 6.9. Let π : X → Y be a generically finite dominant map of smooth projective
varieties over C. Let α ∈ Nk(X). Let T1, . . . , Tr be (n−k)-cycles on Y which are components
of general members of bpf families. Suppose that for each Ti there is a constant si so that

α · Z = si deg(Z/Ti)

for any subvariety Z lying above Ti. Then there is a class β ∈ Nn−k(Y ) such that α · Z =
π∗β · Z for any Z lying above some Ti.

If α is movable, then so is β ∩ [Y ].

Proof. Let π′ : X ′ → Y ′ be a flattening via a birational map fY : Y ′ → Y with Y ′ smooth. Let
fX : X ′ → X denote the corresponding birational map. For each Ti denote its strict transform
on Y ′ by T ′i . Since Ti is a component of a general member of a bpf family, [T ′i ] = f ∗Y [Ti] by
Theorem 2.10. Note that any (n − k)-dimensional subvariety Z on X dominating some Ti
is again a component of a basepoint free family, since it is a component of the base-change
of p (see [FL14, Lemma 5.6]). Thus, the pullback f ∗X [Z] coincides with the class of its strict
transform, so that

π′∗f
∗
X [Z] = deg(Z/Ti)[T

′
i ] = f ∗Y π∗[Z].

Consider the pullback f ∗Xα. It still satisfies the intersection compatibility with degree for
cycles lying over the T ′i . So Lemma 6.8 shows that β′ := 1

deg π
π′∗(f

∗
Xα) has the property that

π′∗β′ · [Z ′] = f ∗Xα · [Z ′]
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for any cycle Z ′ lying above one of the T ′i . Define β = fY ∗β
′. Then for any Z lying above

one of the Ti

π∗β · [Z] = fY ∗β
′ · π∗[Z]

= β′ · deg(Z/Ti)[T
′
i ]

= β′ · π′∗f ∗X [Z]

= α · [Z].

As for the final statement, we see that β ∩ [Y ] is movable since it is constructed to be
proportional to the pushforward of α. �

Finally we prove the main theorem of this section.

Theorem 6.10. Let π : X → Y be a surjective morphism with connected fibers of smooth
projective varieties over C of relative dimension e. Suppose α ∈ Movk(X) for some k ≥ e
and that α · π∗Hk−e+1 = 0 for some ample divisor H on Y . Then there is a diagram

X ′

π′

��

fX // X

π
��

Y ′
fY // Y

with fX and fY birational, Y ′ smooth, and π′ flat and a class β ∈ Movk−e(Y
′) such that

fX∗π
′∗β = α.

Note that the classes satisfying the condition α·π∗Hk−e+1 = 0 are “almost exceptional”: the
contractibility index (cf. §5.3) is (at most) one away from the condition for being exceptional.

Proof. Let n be the dimension of X and d the dimension of Y so that e = n− d. Consider a
flattening π′ : X ′ → Y ′ of π with Y ′ smooth:

X ′

π′

��

fX // X

π
��

Y ′
fY // Y

Let ψ : X̃ → X ′ be a resolution and let ρ : X̃ → Y ′ denote the composition of ψ and π′. Let

α̃ be a movable preimage of α on X̃. From Theorem 2.7.i we see that

α̃ · (ρ∗f ∗YH)k−e+1 = 0.

Writing f ∗YH = A + E for an effective Cartier divisor E and an ample divisor A, and using
the movability of α̃ and Lemma 5.13, we also obtain

α̃ · ρ∗Ak−e+1 = 0.

Thus α̃ is “almost exceptional” for the map ρ. By pushing forward, we observe (ψ∗α̃) ·
π′∗Ak−e+1 = 0, so that ψ∗α̃ is “almost exceptional” for the map π′.

Let {pi : Ui → Wi} be a finite collection of basepoint free families whose classes span
Nk(X). We can choose them such that the Ui’s and the general fiber of each pi are irreducible
and their images on X are not contracted by π (see Remark 6.6). We will do a series of
constructions to pi; at each step, we will replace Wi by an open subset which for simplicity
we also denote by Wi. The strict transform families p′i : U ′i → Wi on X ′ are still basepoint free
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by Theorem 2.10 and the images on X ′ of general fibers are not contracted by π′. Consider
the diagram

U ′i ×Y ′ X ′

qi

��

π′i
��

ti // X ′

π′

��
U ′i

p′i
��

π′◦s′i // Y ′

Wi

Note that the map ti is flat and the map qi is proper, making U ′i×Y ′X ′ a basepoint free family

on X ′. We then take the pushout diagram to X̃ to obtain a basepoint free family ri : Ũi → Wi

with a flat map s̃i : Ũi → X̃. For each i, let Fi be a very general fiber of ri. Since π′ is flat
equidimensional with irreducible general fiber, Theorem 2.10 implies that Fi is irreducible.
Since the general cycles in pi do not contract in Y , it follows that dim s̃i(Fi) = n− k+ e and
dim ρ(s̃i(Fi)) = n− k.

We claim that there is some β ∈ Movk−e(Y
′) such that α̃·Z = ρ∗β ·Z for every (n−k)-cycle

Z contained in some s̃i(Fi). This will conclude the proof of the theorem: since each s̃i(Fi)
contains the strict transform of the corresponding cycle of pi and since the classes of these
strict transforms are the pullbacks of a basis of Nk(X), we see that fX∗π

′∗β = fX∗ψ∗α̃ = α.
With V = s̃i(Fi), we have dimV = (n− k + e), and dim ρ(V ) = n− k. By Corollary 6.4,

we see that α̃|V is a movable class in Ne(V ). Setting r = k− e+ 1, with ı : V ↪→ X̃ denoting
the natural map, for C � 0, we have

ı∗ı
∗(α̃ · ρ∗A) = α̃ · [V ] · ρ∗Ar−(k−e)

� α̃ · Cρ∗Ar = 0,

so that α̃|V satisfies the conditions for Corollary 6.7. The conclusion is that α̃|V is propor-
tional to the class of a fiber of ρ|V . Thus α̃ · [V ] ∈ Ne(X) is proportional to the class of a
fiber of ρ via some constant b.

As we vary i, the argument above yields constants bi which are a priori unrelated. Let
{Ti} be the (n − k)-dimensional subvarieties of Y ′ that are the images of the Vi. Note that
each Ti is the image of a general member of a basepoint free family on Y ′ (constructed as
the flat image of the p′i).

Let M be a very general complete intersection of ample divisors on X̃ of dimension d. By
very generality, α̃|M is movable. The previous paragraph shows that for each Ti, intersections
of α̃|M against cycles with support contained in each ρ|−1M (Ti) are proportional via some
constant bi. Lemma 6.9 shows that there is a movable class β on Y ′ such that ρ∗β|M · Z =
α̃|M · Z for any cycle Z lying above one of the Ti. But since intersections are compatible
against degree for any subvariety of the Vi, we see that α̃ · Z = ρ∗β · Z for any cycle Z with
support contained in s̃i(Fi) which has dimension (n+ e− k). �

Corollary 6.11. Let π : X → Y be a surjective morphism of projective varieties over C of
relative dimension e. Suppose α ∈ Movk(X) for some k ≥ e and that α · π∗Hk−e+1 = 0 for
some ample divisor H on Y . Then the MSC holds for α. In particular the MSC is true when
e = 1.

The proof is the same as in Proposition 3.23 which handles the divisor case.
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Proof. Since we know the MSC for generically finite maps, arguing as in Remark 4.3 we may
assume that X and Y are smooth and π has connected fibers. Applying Theorem 6.10 we
obtain a smooth birational model Y ′ and a class β ∈ Movk−e(Y

′). Let {Zi}∞i=1 be a sequence
of strictly movable cycles whose classes limit to β. Since π′ is flat, each π′∗[Zi] = [π′−1Zi] is
the class of an effective π′-contracted cycle which is strictly movable by [FL13, Lemma 3.6].
The image of each π′∗Zi under (fX)∗ is a movable π-contracted cycle, and the corresponding
classes limit to α. �

In fact, we can weaken the hypotheses of Theorem 6.10 without changing the proof. We
now explain this stronger version.

Remark 6.12. We have not used the full strength of the movability condition on α in this
section. In Lemmas 6.8 and 6.9, one can replace movability with any notion invariant under
pushforward by surjective morphisms. Theorem 6.10 uses three properties of movability:

i) Movable classes admit movable preimages by surjective maps.
ii) Corollary 6.4.

iii) Movable curves are movable in the sense of [BDPP13].

Consider the following partial substitute:

Definition 6.13. Say that a class α ∈ Effk(X) is weakly movable if there exists a sequence
{Vi}∞i=1 of effective k-cycles on X such that α = limi[Vi], and for each (reducible) divisor E
on X, infinitely many of the Vi’s meet |E| properly.

The following remark explains how the analogue of Theorem 6.10 for weakly movable
classes is proved.

Remark 6.14. Weakly movable classes are invariant under pushforward by surjective mor-
phisms and have the following additional characteristics:

i) Extremal classes in Effk(X) that are not the pushforward of any pseudoeffective class
on a (reducible) divisor on X are weakly movable and admit weakly movable preimages
by surjective generically finite maps.

ii) The analogue of Corollary 6.4 holds for weakly movable classes when the basepoint free
family has irreducible general fiber that is not contracted by the map to X, i.e. it
produces a nonzero class.

iii) Weakly movable curves are movable in the sense of [BDPP13].

(If π : X → Y is surjective, α ∈ Effk(X) is weakly movable, and {Vi} is a sequence of
cycles that verifies its movability, then {π∗Vi} is a sequence of cycles that verifies the weak
movability of π∗α.

If α ∈ Effk(Y ) is extremal and not pushed from a divisor on Y , then there exists a
sequence of cycles Vi on Y having irreducible support, and such that every subsequence is
dense in Y . The sequence {Vi} verifies the weak movability of α. Furthermore, any extremal
pseudoeffective preimage β ∈ Effk(X) with π∗β = α is likewise not pushed from a divisor on
X. Therefore β is also weakly movable and this proves i).

The justification of ii) is a standard relative Hilbert scheme argument. Let α be weakly
movable and let Vi be k-cycles that verify its weak movability. Let p : U → W be a
projective morphism with irreducible general fiber to W integral and let s : U → X be an
equidimensional flat morphism. For very general w ∈ W , the fiber Uw sits in general position
relative to all Vi’s. Consider the relative Hilbert scheme Hj parameterizing pairs (w,Dw),
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where Dw is a divisor on Uw that contains a component of s−1Vi ∩ Uw for all i ≥ j. If the
weak movability of restrictions (computed as proper intersections in the sense of [Ful84, §7])
fails, then by the uncountability of the base field, some component of some Hj dominates
W . One then uses the universal family over an appropriate subvariety of this component to
construct a divisor whose image in X is a divisor that meets all but finitely many of the Vi’s
improperly.

It is an immediate consequence of the definition that a weakly movable curve class has
nonnegative intersection with any effective Cartier divisor. Then iii) follows by [BDPP13].)

Corollary 6.15. The Strong Conjecture holds for surjective morphisms from fourfolds to
threefolds over C. More generally, it holds for almost exceptional classes on fourfolds regard-
less of the target.

Proof. Let π : X → Y be a morphism from a fourfold, and let α ∈ Effk(X) satisfy π∗α = 0.
It is enough to treat the case of surface classes (k = 2), since curves and divisors are covered
by [DJV13, Theorem 1.4]. By Remark 3.10 and Corollary 3.14 we may assume that π is
surjective and furthermore that its relative dimension is e ∈ {0, 1, 2}. If e = 0, i.e. π is
generically finite, then α is exceptional, and hence pushed forward from a subscheme of X
by Theorem 5.14. We obtain the Strong Conjecture for α from the Strong Conjecture for
threefolds using the arguments in Theorem 4.13.

When e = 1, the condition π∗α = 0 is equivalent to α · π∗hk−e+1 = α · π∗h2 = 0 for some h
ample on Y . In particular α is almost exceptional. We may assume that α is extremal and is
not pushed from any divisor on X, otherwise we reduce to the case when α is a divisor class
on a threefold. Then α is weakly movable and Remarks 6.12 and 6.14 show that the proof
of Theorem 6.10 carries through.

The same argument works when e = 2 if α is almost exceptional. �

Remark 6.16. The only unsettled case of the Strong Conjecture in dimension 4 over C is
that of a surjective morphism π : X → Y to a surface and of classes α ∈ Eff2(X) with
α · π∗h2 = 0, but α · π∗h 6= 0, where h is an ample divisor class on Y .

Question 6.17. Are weakly movable classes movable?

As mentioned above, this is true for curves by [BDPP13] (which holds in arbitrary character-
istic; see [FL13, Section 2.2]). It is also true for divisors: using Remark 6.14.(ii) one reduces
to the case of smooth varieties. But on smooth varieties the weakly movable condition for
L implies that Nσ(L) = 0 so that L is movable (see [Nak04] and [Mus13]). In general this
question is closely related to Conjecture 4.12.
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