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Abstract. We briefly review the main goals of the minimal model pro-
gram. We then discuss which results are known unconditionally, which
are known conditionally, and which are still open.

1. Introduction

This survey paper reviews the main goals and results of the Minimal
Model Program (henceforth MMP). The paper has three parts. In Section
2, we give a very gentle introduction to the main ideas and conjectures of
the MMP. We emphasize why the results are useful for many different areas
of algebraic geometry.

In Sections 3-6, we take a “snapshot” of the MMP: we describe which
results are currently known unconditionally, which are known conditionally,
and which are wide open. We aim to state these results precisely, but in a
manner which is as useful as possible to as wide a range of mathematicians
as possible. Accordingly, this paper becomes more and more technical as
we go. The hope is this paper will be helpful for mathematicians looking to
apply the results of the MMP in their research.

In Section 7, we briefly overview current directions of research which use
the MMP. Since the foundations of the MMP are discussed previously, this
section focuses on applications. The choice of topics is not comprehensive
and is idiosyncratically based on my own knowledge.

These notes are not intended to be a technical introduction to the MMP.
There are many good introductions to the techniques of the MMP already:
[KM98], [Mat02], [HK10], [Kol13b], and many others. These notes are also
not intended to be a historical introduction. We will focus solely on the
most recent results which are related to Principle 2.2: the existence of min-
imal models, termination of flips, and the abundance conjecture. Thus we
will not cover in any length the many spectacular technical developments
required as background. In particular, we will unfortunately omit most of
the foundational results from the 1980’s due to Kawamata, Kollár, Mori,
Reid, Shokurov, and many others. We will also not cover the analytic side
of the picture in any depth. To partially amend for this decision, we give a
fairly complete list of references at the end.

Throughout we will work over C unless otherwise specified. Varieties are
irreducible and reduced.
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2. Main idea of the MMP

Warning 2.1. This entire section is filled with inaccuracies, imprecisions,
over-simplicifications, and outright falsehoods. The few terms which may
be new to a general audience will be defined rigorously in the next section.

I will focus on the guiding principle:

Principle 2.2. Let X be a smooth projective variety over a field. The ge-
ometry and arithmetic of X are governed by the “positivity” of the canonical

bundle ωX :=
∧dimX Ω1

X .

We will participate in the traditional abuse of notation by letting KX

denote any Cartier divisor satisfying OX(KX) ' ωX . Such a divisor is
only unique up to linear equivalence, but since our statements are all linear-
equivalence invariant this abuse is harmless in practice.

We first work out the case of dimension 1. Let C be a smooth integral
projective curve with canonical bundle ωC = ΩC . The central feature of the
curve is its genus:

gC = dimH0(C,ΩC).

(Hodge theory shows that this coheres with the classical definition via Betti
numbers.) By Riemann-Roch and Serre duality this is equivalent to saying
that:

deg(ΩC) = 2gC − 2.

As is well-known, curves split into three categories based upon their genus
or curvature. In line with Principle 2.2, it is most natural to describe this
trichotomy in terms of the degree of the canonical bundle – only then do we
see why the trichotomy is the right one.

deg(KC) < 0 = 0 > 0
gC 0 1 ≥ 2

examples P1 elliptic curves
smooth plane

curves of
degree > 3

universal
cover/C P1 C H

automorphisms PGL2 ≈ itself finite
rational points

over # field
dense after
deg 2 ext

dense and thin
after ext

finite

It would be very nice to have a similar trichotomy in higher dimensions.
Of course this is too optimistic – a complex manifold of higher dimensions
can have different curvatures in different directions – but we will soon see
that there is some hope.
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For arbitrary varieties X, we first need to decide what properties of KX

best correspond to the conditions deg(KC) < 0, = 0, > 0 for curves. Ample
divisors are the most natural generalization of “positive degree” divisors for
curves (and dually for antiampleness and “negative degree”). In the setting
of the MMP, the best analogue of “degree 0” turns out to be the condition
that KX is torsion – some multiple of KX is linearly equivalent to the 0
divisor. When KX is ample, torsion, or antiample we say that our variety
has “pure type”.

With these changes, the trichotomy we found for curves seems to hold
up well in higher dimensions. However, many of statements are still only
conjectural – these will be designated with a question mark in the table
below.

KX antiample ∼Q 0 ample

examples
Pn

Fanos

abelian varieties
hyperkählers
Calabi-Yaus

high degree
hypersurfaces

in Pn
fundamental

group/C 1 almost abelian ??

rational curves
on X/C dense

contained in
countable union
of proper subsets

not dense?

rational points
over # field

potentially
dense?

?? not dense?

While this conceptual picture is very appealing, at first glance it seems to
only address a very limited collection of varieties. The main conjecture of
the MMP is that any variety admits a “decomposition” into these varieties
of pure types: at least after passing to a birational model, we can find a
fibration with pure type fibers.

Conjecture 2.3 (Guiding conjecture of the MMP). Any smooth projective
variety X admits either:

(i) a birational model ψ : X 99K X ′ and a morphism π : X ′ → Z with
connected fibers to a variety of smaller dimension such that the general
fiber F of π has KF antiample, or

(ii) a birational model ψ : X 99K X ′ and a morphism π : X ′ → Z with
connected fibers to a variety of smaller dimension such that the general
fiber F of π has KF torsion, or

(iii) a birational model ψ : X 99K X ′ and a birational morphism π : X ′ → Z
such that KZ is ample.

We will refer to the outcomes respectively as cases (i), (ii), (iii). It is clear
why Conjecture 2.3 is so powerful – it suggests that we can leverage results
for pure type varieties to study any variety via a suitable fibration.
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Historically, this conjecture has its roots in the Kodaira-Enriques classifi-
cation of surfaces, which categorizes birational equivalence classes of surfaces
exactly according to the ability to find a morphism with fibers of a given pure
type. (The fact that the birational map ψ may not be defined everywhere
is a new feature in higher dimensions.)

Remark 2.4. Even when X is a smooth surface, the varieties predicted by
Conjecture 2.3 may have certain “mild” singularities. In this section we will
ignore singularities completely, but the reader should remember they are
there.

Implicit in the statement of Conjecture 2.3 is that the three cases have
a hierarchy ordered by negativity: we look for an antiample fibration, then
(failing to find any) a torsion fibration, then (failing that too) we expect to be
in case (iii). The justification is that it is quite easy to construct subvarieties
with ample canonical divisor – for example, take complete intersections of
sufficiently positive very ample divisors. The “most special” subvarieties
are those with antiample canonical divisor, and we should look for these
subvarieties first. (As we will see soon, this hierarchy is more properly
motivated by the birational properties of KX .)

The apparent asymmetry of case (iii) is also justified by this logic. Every
variety admits many rational maps with fibers of general type, and the
existence of such maps tells us essentially nothing about the variety. In
contrast, Conjecture 2.3 has real geometric consequences.

Remark 2.5. Another common perspective on the MMP is that it identi-
fies a “distinguished set” of representatives of each fixed birational equiva-
lence class of varieties. In dimension 2, the Kodaira-Enriques classification
identifies a unique smooth birational model of any surface and we obtain
a birational classification of surfaces. In higher dimensions, the analogous
constructions are not unique, and so this perspective is slightly less useful.

Conjecture 2.3 suggests the following questions:

(a) How can we identify the target Z, or equivalently, the rational map
φ = π ◦ ψ : X 99K Z?

(b) How can we identify the rational map ψ and the birational model X ′?
What properties of X ′ distinguish it as the “right” birational model?

(c) How can we predict the case (i), (ii), (iii) of X based on the geometry
of KX?

We will answer these questions in the following subsections.

2.1. Canonical models. We first turn to Question (a): how to identify
the variety Z? In other words, how can we naturally choose a rational map
φ : X 99K Z which captures the essential geometric features of X? For now
we will focus on cases (ii) and (iii); case (i) is somewhat different.

Rational maps are constructed from sections of line bundles on X. For ar-
bitrary varieties we only really have access to one line bundle: the canonical
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bundle. Furthermore, the canonical bundle encodes fundamental informa-
tion about the curvature of our variety X. Thus it is no surprise that our
“canonical map” φ should be constructed from the canonical divisor KX .

A fundamental principle of birational geometry is that the geometry of
a divisor L is best reflected not by sections of L but by working with all
multiples of L simultaneously. We obtain access to this richer structure by
the following seminal theorem of [BCHM10].

Theorem 2.6 ([BCHM10] Corollary 1.1.2). Let X be a smooth projective
variety. Then the pluricanonical ring of sections

R(X,KX) :=
⊕
m≥0

H0(X,mKX)

is finitely generated.

Suppose that some multiple of KX has sections (which should happen –
and can only happen – in cases (ii) and (iii)). Since the pluricanonical ring
is finitely generated, we can take its Proj.

Definition 2.7. Suppose that some multiple of KX has sections. The
canonical model of X is defined to be ProjR(X,KX).

As suggested by the notation, we obtain a rational map φ : X 99K
ProjR(X,KX) which is canonically determined by X. It is expected, but
not yet proved, that this rational map exactly coincides with the map
φ : X 99K Z predicted by Conjecture 2.3 in cases (ii) and (iii).

Remark 2.8. It is worth mentioning briefly how case (i) fits into the picture.
In this case, no multiple of KX has sections and ProjR(X,KX) is empty.
Our solution is simply to add on a sufficiently large ample divisor A to
ensure that multiples of KX + A have sections, and then to work with
ProjR(X,KX +A). Of course, there are now many choices of rational map
corresponding to the possible choices of ample divisor A. This is reflected
in the richer birational MMP structure for varieties falling into case (i).

There are two reasons why Theorem 2.6 does not solve Conjecture 2.3.
First, it is unclear whether any multiples of KX have sections; if not, we
can not hope to obtain any geometry from the canonical map. Second,
it is a priori unclear whether φ has the special structure predicted by the
conjecture: does it factor as a birational map ψ : X 99K X ′ followed by a
fibration with pure type fibers?

2.1.1. Obstructions from negativity. It is worth exploring this second point
in more detail. Let us identify the obstruction to the existence of a factor-
ization of rational maps φ = π ◦ ψ, where ψ is birational and π has pure
type fibers.

Suppose first for simplicity that the rational map φ : X 99K ProjR(X,KX)
is defined everywhere. Due to the properties of the Proj construction, there
is an ample divisor A on ProjR(X,KX) and a positive integer m such that
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mKX = φ∗A+E, where E is an effective divisor contained in the base locus
of mKX . We consider two cases:

• dim ProjR(X,KX) < dimX. By adjunction, for a general fiber F
we have mKF ∼ E|F . Thus E represents the obstruction to the
torsionness of KF .
• dim ProjR(X,KX) = dimX. If the singularities of the canonical

model are sufficiently mild, its canonical divisor is well defined. Then
the canonical divisor of the canonical model necessarily coincides
with the ample divisor A. The mildness of the singularities of the
canonical model are controlled by E.

In either case we see that the divisor E represents an “obstruction” to the
conclusion of Conjecture 2.3.

In the general case (when φ is only rational), a similar argument shows
that the base locus of multiples of KX prevents the fibers from having pure
type. We are naturally led to try to “remove” the base locus of multiples
of KX via a birational transformation. (In fact, essentially the only way of
proving that a divisor has finitely generated section ring is to find a birational
model of X on which the strict transform of the divisor has no base locus.)

The problem of “removing” the base locus of multiples of KX is tradi-
tionally divided into two steps. First, we find a birational model X ′ such
that KX′ has non-negative intersection against every curve. This condition
on KX′ is necessary, but not sufficient, for ensuring an empty base locus.
We then hope to use this condition to prove that multiples of KX′ have no
base locus.

2.2. Running the MMP. We next turn to Question (b): how to find the
birational model ψ : X 99K X ′ predicted by Conjecture 2.3? As discussed
above, we would like to remove the base locus of KX . This is accomplished
by an inductive procedure known as “running the minimal model program.”
In brief, we would like to repeatedly contract curves which have negative
intersection against the canonical divisor.

First, we need to know that if X carries KX -negative curves – that is,
curves with negative intersection against KX – then there is a morphism f :
X → Y with connected fibers to a normal projective Y which contracts some
of these curves. This foundational result is known as the Cone Theorem,
and can be applied whenever the singularities of X are sufficiently mild (the
version we will use in this section is due to [Kaw84a]).

The MMP procedure starts when f is a birational map. There are two
possibilities to consider:

• (Divisorial contraction) The morphism f could contract an irre-
ducible divisor. In this case the variety Y only has mild singularities,
and we can continue the MMP by applying the Cone Theorem to Y .
• (Flipping contraction) The morphism f could contract a locus of

codimension ≥ 2. In this case the variety Y has harsh singularities:
we cannot apply the Cone Theorem to Y . The key insight is that we
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should not work with Y , but with a related variety X+: by [HM10a],
[BCHM10] there is a diagram

X

f ��

// X+

f+}}

Y

where X+ has mild singularities, X and X+ are isomorphic in codi-
mension 1, and the contracted curves for f are KX -negative but the
contracted curves for f+ are KX+-positive. Thus in passing from
X to X+ we have eliminated some “negativity” of the canonical di-
visor. Since X+ again only has mild singularities, we can continue
by applying the MMP by applying the Cone Theorem to X+. This
diagram is known as a flip diagram, and the rational map X 99K X+

is known as a flip.

The main conjecture of the MMP is that we can do only a finite sequence of
such birational transformations. It is not hard to see that there can be only
finitely many steps in the MMP which contract a divisor: each such step
drops the Picard rank, while flips preserve the Picard rank. However, it is
much more subtle to determine whether there can be an infinite sequence of
flips:

Conjecture 2.9 (Termination of flips). There is no infinite sequence of
flips.

2.2.1. End result of the MMP. Assuming that we can only do a finite se-
quence of birational steps as above, the process will end with a birational
model ψ : X 99K X ′. This X ′ must satisfy one of the following two condi-
tions.

The first possibility is that X ′ contains KX′-negative curves, but the cor-
responding contraction f : X ′ → Z maps to a variety of smaller dimension.
This f achieves the desired conclusion for case (i): the fibers of f have anti-
ample canonical divisor, and the birational map ψ is the map we are looking
for.

The second possibility is that KX′ is not negative against any curve in
X ′. Conjecturally ψ : X 99K X ′ is exactly the birational map predicted by
cases (ii) and (iii) (see the next section for more details). At the very least,
we have successfully eliminated the “intersection-theoretic” contributions to
the base locus of KX . This condition on X ′ is useful enough to merit its
own terminology:

Definition 2.10. A variety X ′ is called a minimal model if KX′ has non-
negative intersection against every curve. We say X ′ is a minimal model for
X if it is a minimal model achieved by running the MMP for X (but a more
precise definition will be given in Definition 4.2).
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Note that this usage is slightly different than the classical usage for sur-
faces involving (−1)-curves. For smooth surfaces, the non-existence of (−1)-
curves is necessary but not sufficient to be a minimal model in our sense. An
important feature which only appears in dimension > 2 is that X might ad-
mit many different minimal models if we make different choices of morphism
while applying the Cone Theorem.

The termination of flips conjecture would imply:

Conjecture 2.11 (Existence of minimal models). Suppose that X is not
uniruled. Then X admits a minimal model.

Let us briefly contrast the notion of minimal and canonical models:

(1) Minimal models are expected to exist whenever X is not uniruled,
and canonical models exist when some multiple of KX has sections.
These two conditions on X are expected to be equivalent by the
Abundance Conjecture below, and should correspond to cases (ii)
and (iii).

(2) A minimal model for X is always birational to X, but a canonical
model for X may have smaller dimension (in case (ii)).

(3) There can be many minimal models for X, but there is only one
canonical model for X.

(4) There should be a morphism (defined everywhere) from any mini-
mal model for X to the canonical model for X, as predicted by the
Abundance Conjecture below.

(5) If X ′ is a minimal model for X then KX′ may have vanishing in-
tersection against some curves, but (conjecturally) all such curves
should be contracted by the morphism to the canonical model.

2.3. Abundance Conjecture. Finally, suppose that by running the MMP
we have found a minimal model X ′ whose canonical divisor KX′ has non-
negative degree against every curve. We hope that KX′ has no base locus.
This is the content of the following conjecture:

Conjecture 2.12 (Abundance Conjecture). Suppose that KX′ has non-
negative degree against every curve. Then there is a morphism π : X ′ → Z
and an ample divisor A on Z such that some multiple of KX′ is linearly
equivalent to π∗A.

Note that if the Abundance Conjecture is true, then Z will be the canon-
ical model:

Z = Proj

∞⊕
m=0

H0(X ′,mKX′)

= Proj
∞⊕
m=0

H0(X,mKX)

due to the birational invariance of plurigenera.
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As suggested by the notation, the morphism π : X ′ → Z in the Abun-
dance Conjecture should be the same as the morphism π in Conjecture 2.3.
Let us analyze the connection more carefully. Assuming the Abundance
Conjecture:

• In case (ii), we will necessarily have dim(Z) < dim(X). Using ad-
junction, we see that some multiple satisfiesmKX |F ∼ 0 for a general
fiber F . So F has torsion pure type as desired.
• In case (iii), Z will be necessarily be birational to X. Since canonical

divisors relate well over birational maps, the identification KX ∼Q
π∗A actually allows us (after a more careful setup and argument) to
identify A = KZ . So X will be birational to a variety Z with ample
canonical divisor.

According to the Abundance Conjecture, a numerical property for KX

– having non-negative intersection against every curve – implies a section
property – some multiple has no base locus. Such implications are quite
rare: usually one can not deduce holomorphic information from intersection
theory. In fact, this is an important theme in the study of the canonical
bundle which applies in much more generality:

Principle 2.13. The behavior of sections of multiples of KX is governed
by intersection theoretic properties of ωX .

We finally answer Question (c): how can we determine which case (i),
(ii), (iii) X falls into? The case depends on the birational positivity of KX .
According to Principle 2.13, we can use either numerical or sectional forms
of positivity. Although we have not yet seen the relevant definitions, the
conjectural picture is summarized below:

Case (i) Case (ii) Case (iii)
Sectional
property

κ(X) = −∞ 0 ≤ κ(X) < dimX,
κ(X) = dimZ

κ(X) = dimX

Numerical
properties

KX 6∈ Eff
1
(X),

equivalently
ν(KX) = −∞

KX on the

boundary of Eff
1
(X),

ν(KX) = dimZ

KX ∈ Eff
1
(X)◦,

equivalently
ν(KX) = dimX

Curve
properties

uniruled,
equivalently

dominated by
KX -negative

curves

dominated by
KX -trivial curves

(but not negative ones)

neither of
the previous
conditions

3. Background

A pair (X,∆) is a normal variety X and an effective R-Weil divisor ∆ on
X such that KX + ∆ is R-Cartier.



10 BRIAN LEHMANN

We refer to any standard reference for a summary of the various singu-
larity types: terminal, canonical, Kawamata log terminal (henceforth klt),
log canonical (henceforth lc), etc.

3.1. Birational geometry of divisors. The Neron-Severi space N1(X) is
the vector space of R-Cartier divisors up to numerical equivalence. The dual
space is N1(X). We define the pseudo-effective and nef cones:

• the pseudo-effective cone of divisors Eff
1
(X) is the closure of the

cone in N1(X) generated by the classes of effective Cartier divisors;
• the pseudo-effective cone of curves Eff1(X) is the closure of the cone

in N1(X) generated by the classes of effective curves
• the nef cone of divisors Nef1(X) is the dual of Eff1(X);

• the nef cone of curves Nef1(X) is the dual of Eff
1
(X).

The nef cone of divisors can also be interpreted as the closure of the cone
generated by all ample Cartier divisors (see [Kle66]). The nef cone of curves
can also be interpreted as the closure of the cone generated by all irreducible
curves which deform to cover X (see [BDPP13]).

We say that an R-Cartier divisor D is

• pseudo-effective, if its numerical class is contained in Eff
1
(X).

• big, if its numerical class is contained in Eff
1
(X)◦.

• nef, if its numerical class is contained in Nef1(X).
• ample, if its numerical class is contained in Nef1(X)◦.

The movable cone of divisors Mov1(X) is the closure of the cone generated
by all divisors whose base locus has codimension ≥ 2. Equivalently, it is the
closure of the cone generated by all divisors such that every irreducible
component deforms to cover X.

Suppose X has dimension n. Given an R-Cartier divisor D, its Iitaka
dimension is

κ(D) = max

{
k ∈ Z≥0

∣∣∣∣lim sup
m→∞

dimH0(X,OX(bmDc))
mk

> 0

}
.

unless every H0(X, bmDc) = 0, in which case we formally set κ(D) = −∞.
It is well-known that

• D is big if and only if κ(D) = n.
• if D is not pseudo-effective then κ(D) = −∞;

however, the converse of the latter statement is false. By combining the
seminal results of [MM86] and [BDPP13], a smooth variety X is uniruled if
and only if KX is not pseudo-effective.

We define the numerical dimension of an R-Cartier divisor in a similar
way. Choose any sufficiently ample Cartier divisor A. Then

ν(D) = max

{
k ∈ Z≥0

∣∣∣∣lim sup
m→∞

dimH0(X,OX(bmDc) +A)

mk
> 0

}
.
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unless D is not pseudo-effective, in which case we formally set ν(D) = −∞.
It is well-known that D is big if and only if ν(D) = n. On the other
extreme, divisors satisfying ν(D) = 0 are very “rigid”: they are numerically
equivalent to a unique effective divisor E, and even after perturbing by a
small ample divisor, we can not deform E away from its support. The
prototypical example of a divisor D satisfying ν(D) = 0 is an exceptional
divisor of a blow-up.

There is always an inequality κ(D) ≤ ν(D). A divisor D is said to be
abundant if κ(D) = ν(D). When D is pseudo-effective, this condition turns
out to be equivalent to a very natural geometric statement: after a birational
modification, the positive part in the Nakayama-Zariski decomposition of D
is the pullback of a big divisor on a variety of dimension κ(D) = ν(D).

We refer to [Nak04], [Leh12], and [Eck15] for more details on these invari-
ants.

3.2. Birational contractions. A birational contraction is a birational map
φ : X 99K Y which does not extract any divisor (or equivalently, the inverse
map φ−1 does not contract any divisor to a smaller dimensional locus). This
implies that the divisor theory on Y is “controlled” by the divisor theory on
X.

One reason why birational contractions are useful is that any birational
map ψ : X 99K X ′ constructed via a sequence of flips and divisorial con-
tractions is a birational contraction. In fact, there is an additional property
which (more-or-less) identifies the outcomes of the MMP amongst all bira-
tional contractions.

Definition 3.1. Let (X,∆) be a pair. A birational contraction φ : X 99K Y
is called a (KX +∆)-negative birational contraction if (Y, φ∗∆) is a pair and
for some (equivalently any) resolution

W
gX

~~

gY

  

X
φ

// Y

we have that g∗X(KX + ∆) = g∗Y (KY + φ∗∆) +
∑
aiEi where each ai is

positive and Ei varies over all the gY -exceptional divisors.
If we allow some ai = 0, the contraction is called (KX + ∆)-non-positive.

4. Main conjectures

We now state precisely the main conjectures of the MMP. We focus al-
most exclusively on establishing when the loosely phrased Principle 2.2 and
Conjecture 2.3 hold for a variety X and on related issues.

Remark 4.1. I will precisely state the theorems proved in the literature,
with the somewhat annoying consequence of frequently switching back and
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forth between singularity types. I will also indicate when log canonical pairs
are known to be irredeemably worse behaved.

While the extensions to worse singularities (semi log canonical pairs) are
very important, they introduce an additional layer of technicality not in
keeping with the spirit of this paper and will not be discussed. We will also
not work in the relative setting, for the same reason, despite the important
additional theoretical flexibility it provides. Essentially all of the results
stated below go through unchanged.

We split the main conjectures into three parts: existence of a (good)
minimal model, termination of flips, and various flavors of the abundance
conjecture. Note the existence of a minimal model usually comes down
to the termination of a “special” sequence of flips, which distinguishes the
problem from the termination of arbitrary sequences of flips.

4.0.1. Existence of a good minimal model. The definition of a minimal model
is supposed to encode the end result of the MMP, without keeping track of
the steps taken. (Recall that running the MMP is more-or-less the same
as identifying a (KX + ∆)-negative contraction). The definition of a good
minimal model furthermore encodes the expected existence of the “pure
type map” given by the canonical model. These are exactly the structures
predicted by Conjecture 2.3 in cases (ii) and (iii).

Definition 4.2. Let (X,∆) be a lc pair. A minimal model of (X,∆) is a
(KX + ∆)-negative birational contraction ψ : X 99K X ′ such that (X ′, ψ∗∆)
is a lc pair and KX′ + ψ∗∆ is nef.

A good minimal model of (X,∆) is a minimal model ψ : X 99K X ′ such
that KX′ +ψ∗∆ is semiample – that is, R-linearly equivalent to the pullback
of an ample divisor under some morphism π : X ′ → Z.

In dimension ≥ 3, the following conjectures have their roots in [Mor82].

Conjecture 4.3. (Existence of minimal models) Let (X,∆) be a lc pair. If
KX + ∆ is pseudo-effective, then (X,∆) admits a minimal model.

Conjecture 4.4. (Existence of good minimal models) Let (X,∆) be a lc
pair. If KX + ∆ is pseudo-effective, then (X,∆) admits a good minimal
model.

A minimal model can only exist if KX + ∆ is pseudo-effective. To under-
stand the non-pseudo-effective case, by analogy with the notion of a minimal
model, we must identify the expected result in case (i) of Conjecture 2.3:

Definition 4.5. Let (X,∆) be a lc pair. A birational Mori fiber space
structure for (X,∆) is a (KX +∆)-negative birational contraction ψ : X 99K
X ′ and a morphism π : X ′ → Z with connected fibers such that dim(Z) <
dim(X) and (KX′ + ψ∗∆)|F is antiample for a general fiber F of π. (It is
also common to insist that π have relative Picard rank 1, in which case we
may insist that KX′ + ψ∗∆ is antiample along every fiber. We will however
use the more general version.)
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There is no need for a “existence of Mori fiber spaces conjecture” in the
klt case since (as discussed below) the existence has already been proved by
[BCHM10].

4.0.2. Termination of flips.

Definition 4.6. A flip consists of a lc pair (X,∆) and a diagram of bira-
tional maps

X

f ��

φ
// X+

f+}}

Y

such that f and f+ have exceptional locus of codimension at least 2, (X+, φ∗∆)
is a lc pair, KX + ∆ is f -antiample, and KX+ + φ∗∆ is f+-ample.

Flips are known to exist in the lc case by [Bir12a, Corollary 1.2], [HX12,
Corollary 1.8]. The termination of flips conjecture predicts that there is no
infinite sequence of flips.

Warning 4.7. A flop is the similar diagram where both maps are crepant.
While klt flops exist, lc flops need not exist (see [Kol08, Exercise96]). Fur-
thermore, even for klt flops there can be a non-terminating sequence by
[Rei83] or [Ogu14].

4.0.3. Abundance conjecture. The abundance conjecture predicts that the
asymptotic sectional properties of the canonical divisor are controlled by
its numerical properties. Results of this type were first proved for varieties
of general type by [Ben83] and [Kaw84c] in dimension 3 and by [Sho85] in
general. They were also first proved for varieties of intermediate Kodaira
dimensions by [Kaw85b]. Two common versions of the abundance conjecture
are:

Conjecture 4.8 (Semi-ample abundance conjecture). If (X,∆) is a lc pair
such that KX + ∆ is nef, then KX + ∆ is R-semi-ample.

Conjecture 4.9 (Non-vanishing conjecture). If (X,∆) is a lc pair such that
KX + ∆ is pseudo-effective, then κ(KX + ∆) ≥ 0.

These phrasings are useful but slightly unsatisfactory, since they implic-
itly rely on the existence of a minimal model for use in applications. My
preference is for the following version, which again predicts that the sec-
tional properties are controlled by numerical properties but in a cleaner
“birational” sense.

Conjecture 4.10 (Abundance conjecture). Let (X,∆) be a lc pair. Then
KX + ∆ is abundant: κ(KX + ∆) = ν(KX + ∆).

It is common to write Cn as a shorthand to denote “the statement of
Conjecture C for varieties of dimension at most n.” The easy relationships
between the conjectures are:
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• Termination of flipsn =⇒ Existence of minimal modelsn.
• Existence of minimal modelsn + Semi-ample abundancen ⇐⇒ Exis-

tence of good minimal modelsn.
• Existence of good minimal modelsn =⇒ Non-vanishingn + Semi-

ample abundancen.

As we will see below, there are other (quite difficult) implications between
the various statements in the literature.

5. Unconditional results

We now discuss what is known about the main conjectures (and also
mention a few useful technical corollaries). We divide these results into
“unconditional” and “conditional” results. In this section we discuss “un-
conditional” results, meaning theorems that can directly be verified on a
single variety. In the following section we discuss “conditional” results,
which usually means results which “follow from induction on dimension,
given some assumptions.”

5.1. Existence of good minimal models. The most important uncondi-
tional advances in the MMP are due to [BCHM10]. One of the key technical
advances in [BCHM10] is a special case of the termination of flips. Recall
that while running the MMP, we allowed ourselves to choose any (KX +∆)-
negative face of Eff1(X) at each step. [BCHM10] shows that if we instead
limit our choice by “scaling an ample divisor”, then under some conditions
the sequence of flips must terminate.

The first result establishes Conjecture 2.3 in the case when KX + ∆ is
not pseudo-effective (thus establishing that “case (i)” holds whenever it is
possible).

Theorem 5.1 ([BCHM10], Corollary 1.3.2). Let (X,∆) be a dlt pair. Sup-
pose that KX + ∆ is not pseudo-effective. Then (X,∆) admits a birational
Mori fiber space structure.

The next result establishes Conjecture 2.3 in the case when KX + ∆ is
big (thus establishing that “case (iii)” holds whenever it possible).

Theorem 5.2 ([BCHM10], Theorem 1.2). Let (X,∆) be a klt pair. Suppose
that KX + ∆ is big. Then (X,∆) admits a good minimal model.

In fact, something more is true: the techniques of [BCHM10] can be
applied so long as ∆ itself is big. Thus there is one additional case: when
KX itself is not big, but upon adding a big ∆ it lands on the boundary
of the pseudo-effective cone. This additional case is applicable to uniruled
varieties.

Theorem 5.3 ([BCHM10], Theorem 1.2). Let (X,∆) be a dlt pair. Suppose
that KX+∆ is pseudo-effective and ∆ is big R-Cartier. Then (X,∆) admits
a good minimal model.
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Since we will refer to these results later, we state:

Condition 5.4. (X,∆) is a pair such that either ∆ is big R-Cartier or
KX + ∆ is big.

Note that the only unsettled cases of the existence of good minimal models
for klt pairs are all “case (ii)”: situations where KX+∆ lies on the boundary
of the pseudo-effective cone. These are the situations where 0 ≤ κ(KX +
∆) ≤ ν(KX + ∆) < n.

Perhaps the next most natural case to consider is when KX + ∆ ≡ 0; is
it then true that KX + ∆ ∼Q 0 as predicted by the Abundance Conjecture?
The answer is yes for any log canonical (or even semi-log canonical) pair
as proved by [Gon13]. Other results in this direction have been proved in
[Kaw85a], [Nak04], [Gon11], [CKP12], [Kaw13b]. In fact, a stronger result
for dlt pairs was proved by [Nak04], [Dru11], [Gon11].

Theorem 5.5 ([Nak04] V.4.8 Theorem, [Dru11] Corollaire 3.4, [Gon11]
Theorem 1.2). Let (X,∆) be a dlt pair. Suppose that ν(KX + ∆) = 0. Then
(X,∆) admits a good minimal model.

In other words, if KX+∆ is numerically rigid, then it is actually R-linearly
equivalent to an exceptional divisor for a birational map. It is interesting
that there are complete results on both extremes – both for the most positive
divisors (ν = dimX) and the most rigid divisors (ν = 0).

Note that the condition ν = 0 implies the condition κ = 0, but not con-
versely; indeed, if one could establish the κ = 0 case then the existence of
good minimal models would follow for varieties of positive Kodaira dimen-
sion.

It turns out that the numerical dimension is a very useful tool for working
with minimal models. The most general statement, which subsumes most of
the statements we have made already, is due to [Lai10]. (The statement cited
is for terminal varieties but the argument works as well for klt varieties.)

Theorem 5.6 ([Lai10] Theorem 4.4). Let (X,∆) be a klt pair. Suppose that
KX + ∆ is pseudo-effective and abundant: κ(KX + ∆) = ν(KX + ∆). Then
(X,∆) admits a good minimal model.

Note that no induction assumption is necessary in the statement. This
theorem is most useful in situations where abundance is known automati-
cally: if KX +∆ is big, if ν(KX +∆) = 0, or if κ(KX +∆) = n−1. Recently
an additional step has been taken:

Theorem 5.7 ([LP16] Theorem B). Let X be a terminal normal variety
with KX nef. If ν(KX) = 1 and χ(X,OX) 6= 0 then κ(KX) ≥ 0.

Also, after much hard work the main conjectures of the MMP are known
for all varieties of small dimension:

Theorem 5.8. • Termination of flips is known in dimension ≤ 3.
See [Mor88], [Kol89], [Sho93], [Kaw92c].



16 BRIAN LEHMANN

• All forms of the Abundance Conjecture (and hence existence of good
minimal models) are known in dimension ≤ 3. See [Kaw92a], [Miy88b],
[Miy88a], [KMM94].
• The existence of minimal models (via a special case of termination of

flips) is known in dimension ≤ 4. See [AHK07], [Sho09], [Bir09b].
• The existence of minimal models is known for klt pairs (X,∆) with
κ(KX + ∆) ≥ 0 in dimension ≤ 5. See [Bir10a].

5.2. Structure of minimal models. Once we have established the exis-
tence of a good minimal model for (X,∆), it is natural to ask if the set
of all good minimal models has any kind of structure. It is important to
distinguish between two options:

• We can consider all minimal models of (X,∆) as abstract varieties,
up to isomorphism.
• We can consider possible ways to construct a minimal model for

(X,∆) by running the MMP ψ : X 99K X ′. We identify ψ : X 99K
X ′ and φ : X 99K X ′′ only if the rational map ψ−1 ◦ φ extends
to an isomorphism. This is the same as counting the number of

distinct subcones ψ−1Amp1(X ′) ⊂ Eff
1
(X) defined by outcomes of

the MMP.

For surfaces, we only have a finite number of minimal models using either
of the counting methods. (Note that this is not true for the “classical”
definition of minimal model, where we only insist that there are no (-1)-
curves. The blow-up of P2 in 9 points gives a counter-example.) But in
higher dimensions the situation is more subtle.

5.2.1. Structure of minimal models. We first simply consider minimal mod-
els as abstract varieties. The strongest known results are for varieties of
general type by [BCHM10] (which proves something stronger as we will
soon see).

Theorem 5.9 ([BCHM10], Corollary 1.1.5). Let (X,∆) be a klt pair with
KX + ∆ big. Then there are only finitely many minimal models for (X,∆)
as abstract varieties, up to isomorphism.

For intermediate Kodaira dimensions, the situation is much more subtle.
In particular, the following question of Kawamta is open:

Question 5.10. Does every variety X only admit finitely many minimal
models as abstract varieties, up to isomorphism?

Certain cases of this question are known.

Theorem 5.11 ([Kaw97b] Theorem 4.5). Let X be a smooth projective
variety of dimension 3 with κ(X) > 0. Then X only has finitely many
minimal models as abstract varieties, up to isomorphism.

Remark 5.12. One can also phrase a stronger question: are there only
finitely many minimal models in a fixed birational equivalence class? (That
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is, are there only finitely many terminal Q-factorial normal varieties X ′ with
KX′ nef?) Both Kawamata’s original question and the results of [Kaw97b]
are phrased in this generality.

5.2.2. Set of MMP outcomes. In this section we discuss possible outcomes of
the MMP φ : X 99K X ′, and not just the abstract varieties X ′. As discussed
already, the “first step” of the MMP is to choose a KX -negative extremal
ray or face of Eff1(X). A key insight of Mori is to interpret a step of the
MMP via the curve classes it contracts in Eff1(X). The precise statement
is known as the Cone Theorem. Building on [Kaw84c, Theorem 4.5] and
[Kol84, Theorem 1], we have:

Theorem 5.13 ([Fuj11] Theorem 1.4). Let (X,∆) be a lc pair. There are
countably many (KX+∆)-negative rational curves Ci such that 0 < −(KX+
∆) · Ci < 2 dimX and

Eff1(X) = Eff1(X)KX+∆≥0 +
∑

R≥0[Ci].

The rays R≥0[Ci] only accumulate along the hyperplane (KX + ∆)⊥.

The KX + ∆-negative faces of Eff1(X) are in bijection with KX + ∆-
negative contractions.

Note that if (X,∆) is klt and KX + ∆ is big, then a perturbation argu-
ment shows that there are only finitely many KX+∆-negative minimal rays.

As mentioned before, analyzing outcomes of the MMP (up to isomor-
phism) is essentially the same as counting regions in the pseudo-effective
cone corresponding to the pullback of the nef cone on the various results of
the program. Thus it will still be useful to phrase results in terms of the
structure of cones.

We now discuss the final outcomes of the MMP in the three cases (i),
(ii), (iii). Often one can interpret the set of outcomes via a “cone theorem”
describing the structure of the cone of curves. When KX + ∆ is big, the
finiteness noted above persists through the entire MMP process:

Theorem 5.14 ([BCHM10], Corollary 1.1.5). Let (X,∆) be a klt pair with

KX + ∆ big. Let T be a subcone of Eff
1
(X) over a compact set. Suppose

that every ray in T is generated by a pair (X,∆) satisfying Condition 5.4.
Then there are only finitely many birational contractions defined by running
the MMP for the corresponding divisors.

In other words, the region in Eff
1
(X) consisting of divisors which are

proportional to a pair as in Condition 5.4 looks “Mori Dream Space-like”,
in the sense that it admits a chamber decomposition satisfying the same
properties as a Mori Dream Space. (See [HK00] or [CL13] for a discussion
of this viewpoint.) This is particularly useful for log Fano varieties, since it
shows that they are Mori Dream Spaces.
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If we pass to the situation when KX + ∆ lies on the pseudo-effective
boundary the picture becomes much more complicated. [Les15] gives an ex-
ample of a non-uniruled terminal threefold with infinitely many KX -negative
extremal rays; any resolution of this variety will admit an infinite set of min-
imal model outcomes. Nevertheless the set of MMP outcomes conjecturally
has a rich structure. Given an effective divisor ∆ on X, we denote by

• Aut(X,∆) the automorphisms of X which preserve ∆,
• PsAut(X,∆) the birational maps ψ : X 99K X which are an isomor-

phism in codimension 1 and which preserve ∆.

We will only phrase the conjecture in the case when KX + ∆ is numerically
trivial; for the essentially identical relative statement which addresses all
case (ii) morphisms, see [Tot08].

Conjecture 5.15 (Kawamata-Morrison Cone Conjectures). Let (X,∆) be
a klt pair such that KX + ∆ is numerically trivial.

(1) There is a finite rational polyhedral cone Π which is a fundamental
domain for the action of Aut(X,∆) on the effective nef cone (that is,
the intersection of Nef1(X) with the cone generated by all effective
divisors).

(2) There is a finite rational polyhedral cone Π′ which is a fundamental
domain for the action of PsAut(X,∆) on the effective movable cone
(that is, the intersection of Mov1(X) with the cone generated by all
effective divisors).

These conjectures also predict that there are only finitely many equiva-
lence classes under the group action of faces of the cones corresponding to
actual morphisms or marked small Q-factorial modifications.

Warning 5.16. These conjectures are false for log canonical pairs. [Tot08]
gives the example where X is P2 blown up at 9 very general points and ∆ is
the strict transform of the elliptic curve through the points. In this case the
cone is not rational polyhedral but the automorphism group of X is trivial.

The Kawamata-Morrison Cone Conjectures are known for abelian va-
rieties ([PS12b]) and (essentially) for hyperkähler manifolds ([AV14] and
[MY14] for 1, [Mar11] for 2). They are also known completely in dimen-
sion ≤ 2 ([Ste85], [Nam85], [Tot10]) and the relative versions are known
in dimension 3 over a positive dimensional base ([Kaw97b]). Many addi-
tional special cases have been proved in [PS12a], [CPS14], [Ogu01], [Ogu14],
[CO11], [LP13], [Bor91], [Wil94], [Ueh04], [Sze99], [Zha14], etc.

Finally, in the case when KX+∆ is not pseudo-effective, we should instead
look for all possible birational Mori fiber space structures. Again, this can
be interpreted as a structure theorem for a suitable cone of curves. Building
on [Bat92], [Ara10] we have:
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Theorem 5.17 ([Leh12]). Let (X,∆) be a dlt pair. There are countably
many (KX + ∆)-negative movable curves Ci such that

Eff1(X)KX+∆≥0 + Nef1(X) = Eff1(X)KX+∆≥0 +
∑

R≥0[Ci].

The rays R≥0[Ci] only accumulate along hyperplanes that support both Nef1(X)

and Eff1(X)KX+∆≥0.
The birational equivalence classes of birational Mori fiber space structures

are in bijection with the faces of this cone which admit a supporting hyper-
plane not intersecting Eff1(X)KX+∆≥0.

The presence of the term Eff1(X)KX+∆≥0 on both sides has the effect
of “rounding out the cone” and can not be removed. However, Batyrev
conjectures a stronger statement: the accumulation of rays only occurs along
the hyperplane (KX + ∆)⊥.

Remark 5.18. Again, one can pose a harder question: if we fix a smooth
projective variety X, what is the set of all minimal models X ′ birationally
equivalent to X equipped with a birational contraction X 99K X ′? We
identify ψ : X 99K X ′ and φ : X 99K X ′′ only if the rational map ψ−1 ◦ φ
extends to an isomorphism. This is the same as counting the number of dis-

tinct subcones ψ−1Amp1(X ′) ⊂ Eff
1
(X) defined by birational contractions

to minimal models.
This set will usually be larger than the set of runs of the MMP, since we

now allow flops as well as KX -negative contractions. An important example
of [Rei83] shows that the number of minimal models marked with a rational
map can be infinite (and a minimal model can admit an infinite sequence of
flops). Note however that the Kawamata-Morrison Cone Conjectures also
predict a nice structure for this set.

5.2.3. Structure of MMP outcomes. Given two outcomes of the (KX + ∆)-
MMP

φ1 : X 99K Y1 and φ2 : X 99K Y2,

it is natural to ask for a relationship between Y1 and Y2. Since both are
constructed from X by a sequence of simple steps, it is natural to wonder
whether the induced rational map Y1 99K Y2 can also be factored as a se-
quence of simple steps. As always we will need to discuss the various cases
separately.

First suppose we are in case (ii) or (iii), so the final outcome of the
MMP is a minimal model. Given two minimal models φ1 : X 99K Y1 and
φ2 : X 99K Y2, we would like to factor the induced map ψ : Y1 99K Y2 into a
series of simple steps.

Theorem 5.19 ([Kaw08] Theorem 1). Let (X,∆) and (X ′,∆′) be two ter-
minal Q-factorial pairs where ∆,∆′ are Q-divisors such that there is a bi-
rational map φ : X 99K X ′ sending φ∗∆ = ∆′. Suppose that KX + ∆ and
KX′ + ∆′ are nef. Then φ decomposes into a sequence of flops.
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Now suppose that KX + ∆ is not pseudo-effective and that we are given
two Mori fiber space outcomes of the (KX + ∆)-MMP:

φ1 : X 99K Y1 with contraction π1 : Y1 → Z1

φ2 : X 99K Y2 with contraction π2 : Y2 → Z2

As discussed above, one would like to factor the rational map ψ : Y1 99K Y2

into a number of “basic steps.” We should of course also keep track of
the Mori fibrations π1, π2. This picture is modeled on dimension 2, where
any two minimal ruled surfaces over a curve are connected by a series of
elementary transformations. In this case, the study of these “basic steps”
is known as the Sarkisov program. The main goal of the program was
accomplished in [HM13], which decomposes any two outcomes of the MMP
as above into a finite sequence of Sarkisov links. These links come in four
types, where each step is characterized by outcomes of the two-ray game. We
refer to [HM13] for the precise statement. See also [Kal13] for a discussion
of the relations in the Sariskov program.

5.3. Relating the geometry of (X,∆) to the canonical model. Given
a canonical model Z of (X,∆), it is natural to ask how the geometry of
(X,∆) is related to the geometry of Z. Even when ∆ = 0 and X and Z
are smooth, it is too much to hope for the positivity of KX and KZ to be
directly related due to the presence of singularities of the canonical map.
Instead, one must account for the discriminant locus of Z by including a
boundary divisor ∆Z .

For simplicity, we will assume right away that π : X → Z is a morphism
with connected fibers such that KX + ∆ is trivial along the fibers (so the
canonical model map is a special example). To obtain a clean statement one
first must pass to a birational model of π to ensure that all the singularities
of π are detected in codimension 1 on the base.

The following statement builds on Kodaira’s canonical bundle formula
for elliptic fibrations and is due to [Kaw97b], [Kaw98], [FM00], [Amb04],
[Amb05], [FG14b], [Fuj15]. See [Fuj15, Section 3] for an extensive discussion
of this result and the inputs of various authors. The log canonical version
is due to [FG14b] and generalizes results of Ambro in the klt case.

Theorem 5.20 ([FG14b]). Suppose that (X,∆) is an lc pair and that π :
X → Z is a morphism with connected fibers such that (KX + ∆)|F ∼Q 0 for
a general fiber F of π. Then there exists:

• a log smooth model (X ′,∆′) of (X,∆), where we have µ : X ′ → X
birational and KX′ + ∆′ = µ∗(KX + ∆) + E for an effective µ-
exceptional divisor E,
• a smooth variety Z ′ and an effective divisor ∆Z′

• a morphism π′ : X ′ → Z ′ birationally equivalent to π,
• a Q-Cartier divisor B on X ′ which we express as the difference B =
B+ −B− of effective divisors with no common components
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such that

(1) KX′ + ∆′ = π′∗(KZ′ + ∆Z′) +B,
(2) there is a positive integer b (clearing denominators) such that

H0(X ′,mb(KX′ + ∆′)) = H0(Z ′,mb(KZ′ + ∆Z′))

for any positive integer m,
(3) B− is f ′-exceptional and µ-exceptional,
(4) π′∗OX′(blB+c) = OZ′ for every positive integer l.

Furthermore, the divisor ∆Z′ admits a decomposition ∆Z′ ∼Q D+M , where

• D is the “discriminant part”: it is effective and is explicitly deter-
mined as in [FM00] via the log canonical thresholds of KX′ +∆′ over
prime divisors in Z ′. The pair (Z ′, D) is lc, and is klt if (X,∆) is
klt.
• M is the “moduli part”: it is nef.

If for a general fiber F of π the pair (F,∆|F ) has a good minimal model, then
by choosing Z ′ appropriately we may ensure that M is nef and abundant. In
this case, if (X,∆) is klt then we may ensure (Z ′,∆Z′) is klt (by choosing
∆Z′ appropriately in its Q-linear equivalence class).

Some remarks are in order. There are two ways in which a divisor can be
“trivial” with respect to a map: it can be contracted to a locus of codimen-
sion ≥ 2, or the pushforward of the corresponding sheaf can be trivial. In
our situation the negative B− satisfies the stronger first property and can
thus essentially be ignored when comparing sections of divisors on X ′ and
Z ′. The positive part B+ satisfies the weaker second property and thus does
not affect the comparison of sections. So the conclusion (1) expresses a very
tight relationship between the pair upstairs and the pair downstairs.

The main point of the theorem is to understand the positivity of M .
In Kodaira’s original formula, the moduli part of the elliptic fibration was
pulled back from the moduli space of pointed elliptic curves. Morally speak-
ing, in general the moduli part M on the base Z ′ should be the pullback
of an ample divisor over a rational morphism g : Z ′ 99K H to a “universal
parameter space” H for the fibers of the map. So in fact, one expects the
moduli part to be birationally semiample instead of just nef (or nef and
abundant). It is an important problem to clarify this potential link to the
geometry of the map.

A closely related approach is given by Campana’s theory of orbifolds; see
[Cam11] and the references therein.

6. Conditional results

6.1. Termination of flips. [HMX14] establishes an inductive procedure
for establishing termination of flips (and hence the existence of minimal
models). Building on [Bir07], [dFEM10] [dFEM11], the paper proves:
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Theorem 6.1 ([HMX14] Corollary 1.2). Assume termination of flips in
dimension ≤ n− 1. Then termination of flips holds for any klt pair (X,∆)
of dimension n such that KX + ∆ is numerically equivalent to an effective
divisor.

Many similar but weaker statements have been proven by [Bir10a], [Bir11],
[Bir12b]; for example, [Bir11, Corollary 1.7] proves the analogous statement
with “termination of flips” replaced by “existence of minimal models”.

Note that the condition on KX + ∆ in Theorem 6.1 would follow from
various flavors of the Abundance Conjecture. (In particular Klt Termination
of flipsn−1 + Klt Non-vanishingn =⇒ Klt Termination of flipsn.) Thus
Abundance is in some sense the only missing piece of the minimal model
program, and we focus on this conjecture henceforth.

6.2. Abundance conjecture. One way to try to prove the main conjec-
tures of the MMP by induction is to choose a divisor on X and to try to
“lift sections” from this divisor to all of X using vanishing theorems. This
approach has been very successful under certain conditions. Since the big
case is reasonably well-understood, we only mention statements which are
potentially applicable to the remaining case (ii). These results are far too
varied to summarize here, so we only give a couple easily-stated results
which illustrate recent developments. The first is the key to Siu’s proof of
invariance of plurigenera.

Theorem 6.2 ([Pău07] Theorem 1). Let f : X → Y be a smooth morphism
with connected fibers. Let L be a divisor on X and let hL be a singular
hermitian metric on OX(L) with positive curvature. Suppose that the re-
striction of hL to a fiber X0 is well-defined. Then for any positive integer
m, the restriction map

H0(X,OX(mKX + L))→ H0(X0,OX0(mKX + L))

surjects onto sections of OX0(mKX + L)⊗ I(hL|X0).

Theorem 6.3 ([DHP13] Corollary 1.8). Let (X,S + B) be a plt pair such
that KX + S + B is nef and is Q-linearly equivalent to an effective divisor
D satisfying S ⊂ Supp(D) ⊂ Supp(S +B). Then the restriction map

H0(X,OX(m(KX + S +B)))→ H0(S,OS(m(KX + S +B)))

is surjective for all sufficiently divisible integers m.

Another way to prove the main conjectures by induction is to try to “lift
positivity” from the base of a morphism. There are several such theorems
in the literature. Usually, one requires that the fibers of the morphism be
trivial in some way.

The first such statement concerns the Iitaka fibration of KX +∆. For this
map the restriction of KX + ∆ to the fibers is “sectionally trivial.” While
the following theorem of [Lai10] is only stated in the terminal case, it is also
true for klt pairs.
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Theorem 6.4 ([Lai10] Theorem 4.4). Let (X,∆) be a klt pair. Suppose
that κ(X,∆) ≥ 0 and (for simplicity) the Iitaka fibration for KX + ∆ is a
morphism f : X → Y . If (F,∆|F ) has a good minimal model for the general
fiber of f , then (X,∆) has a good minimal model.

Another version assumes that the restriction of KX + ∆ to the fibers of
the morphism are “numerically trivial.” Statements of this kind appear in
[Amb04], [Amb05]. Building on these, we have:

Theorem 6.5 ([GL13] Theorem 1.3). Let (X,∆) be a klt pair. Suppose
that f : X → Y is a surjective morphism with connected fibers such that
ν((KX + ∆)|F ) = 0 for a general fiber F . Then there is a birational model
Y ′ of Y and a klt pair (Y ′,∆Y ′) such that (X,∆) has a good minimal model
if and only if (Y ′,∆Y ′) has a good minimal model.

An important advantage is that there is no assumption on the existence
of log pluricanonical sections or on termination of flips.

7. Additional results

In this subsection we briefly outline results which do not “fit into the
narrative” but are absolutely essential for understanding the modern MMP.
I will focus on directions of current research.

7.1. Boundedness results. There are many kinds of boundedness state-
ments arising from the minimal model program. Such statements are closely
related to the boundedness of the moduli functor for stable pairs. We re-
fer to [HM10b] for an informative discussion of such results and the recent
results of Hacon, McKernan, and Xu for the precise statements.

7.2. Moduli of stable pairs. The modern approach to constructing mod-
uli of stable pairs relies heavily on the minimal model program. We refer to
the excellent survey paper [Kov09] and to the upcoming book of Kollár for
more technical details.

7.3. Foliations. Surprisingly, foliations seem to exhibit a beautiful struc-
ture analogous to the structure for varieties provided by MMP. There are
two kinds of results in this direction.

First, Brunella, McQuillan, and Mendes have proved some MMP-type
structure results for foliations on surfaces. The next cases are under active
investigation and there are many interesting open questions. We refer to
[Bru15] for an overview of this area.

Second, one can deduce the existence of rational curves from the pres-
ence of “negative” foliations. We refer to [BM01] and [KSCT07] and the
subsequent literature for this important circle of ideas.
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7.4. Characteristic p. It is interesting to develop the MMP over arbitrary
fields. Recent work has focused on algebraically closed fields of positive
characteristic.

The first step is to understand how to generalize the technical results un-
derlying the MMP – namely, vanishing theorems. As is well-known, even the
Kodaira vanishing theorem can fail in characteristic p. Nevertheless, there
is a large body of work which successfully establishes some good analogues
in positive characteristic. This area is too broad to summarize here; we
instead refer to the recent survey paper [ST12] and the references therein.

The second step is to apply these results to obtain a MMP theory. We
refer to recent work of Birkar, Hacon, Tanaka, Xu, and their collaborators
for such applications.

7.5. Existence of rational curves. Mori’s celebrated bend-and-break the-
orem relates the negativity of KX against curves with the existence of ra-
tional curves.

Theorem 7.1 ([MM86] Theorem 5). Let X be a smooth variety and let A
be an ample Cartier divisor on X. Suppose that C is an irreducible curve on
X such that KX · C < 0. Then through every point of C there is a rational
curve T on X satisfying A · T ≤ 2 dim(X) A·C

−KX ·C .

It is important to understand the behavior of rational curves on singular
varieties as well. In this direction, we have:

Theorem 7.2. [Kaw91, Theorem 1] Let (X,∆) be a klt pair. Every KX+∆-
negative extremal ray of Eff1(X) is spanned by the class of a rational curve
C satisfying 0 < −(KX + ∆) · C ≤ 2 dimX.

Since many birational maps can be interpreted using the minimal model
program, this shows the existence of rational curves in a wide variety of
situations. There are related results due to [HM07], [Tak08], [BBP13].

An important open problem is:

Question 7.3. Suppose that (X,∆) is a klt pair such that KX + ∆ is not
pseudo-effective. Is there a rational curve C through a very general point of
X such that (KX + ∆) · C < 0?

By running the MMP to obtain a variety X ′ with a Mori fiber space
structure, it is clear that X ′ is covered by rational curves C satisfying (KX′+
∆′) · C < 0. However, it is not at all clear whether the preimage of these
curves on X satisfy the desired condition. Even the surface case, which was
settled by [KM99], is quite difficult and requires many new techniques.

7.6. MMP for quasi-projective varieties. Suppose that U is a quasi-
projective variety. By Hironaka’s resolution of singularities, U admits a
projective completion X such that the complement of U is a simple normal
crossing divisor. An important idea of Iitaka (“Iitaka’s philosophy”) is that
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we can understand the geometry of U by studying the log pair (X,∆). Of-
ten (but not always!) a theorem for projective varieties has an analogue for
quasi-projective varieties: we replace projective invariants – plurigenera, ra-
tional curves, the cotangent bundle – by their log versions – log plurigenera,
log rational curves, the log cotangent bundle.

Recently, there has been new progress towards establishing Iitaka’s philos-
ophy. We will mention only the most recent developments. For understand-
ing log rational curves, log degenerations have been a key tool: see [KM99],
[CZ14], [CZ15]. Another approach is to study the log cotangent bundle: see
Campana’s theory of orbifolds (for example [Cam11]) and [Zhu15]. Finally,
[GKKP11] and [GKP14] discuss when forms extend from an open subset to
the compactification in the klt setting.

7.7. Running the MMP for moduli spaces. Suppose that X is a moduli
space (for example, the moduli space of stable curves or a Hilbert scheme of
points on a surface). By running the MMP, we obtain a special sequence of
birational models of X connected by divisorial contractions and flips. If we
construct X using GIT, one can obtain a sequence of birational models by
varying the linearization. Surprisingly, these birational models often seem to
admit interpretations as moduli spaces as well. An interesting and exciting
field, initiated by Hasset and Keel for Mg,n, is to explicitly construct the
moduli problems for the birational models constructed abstractly by the
MMP. Another important setting is moduli spaces of sheaves arising from
stability conditions in the derived category.

The literature is far too vast to survey here; we direct readers to the
survey paper [FS13] for moduli spaces of curves and [ABCH13] and [BM14]
for the use of stability conditions in studying Hilbert schemes of points on
a surface.

7.8. MMP and derived categories. An interesting idea originating from
the work of Bondal and Orlov ([BO]) is that the birational structure of the
MMP should be reflected on the level of derived categories. More precisely,
the contractions constructed by the cone theorem should naturally yield
semi-orthogonal decompositions of the derived category, and flops should
yield a derived equivalence of some kind. Furthermore, the different models
should correspond to the variation of a stability condition. [Kaw09] gives a
good introduction to the questions and technical difficulties of the area.

In addition to a number of special examples, progress has been made
for surfaces (see for example [Tod13], [Tod14]), threefolds (see [Bri02] and
the many subsequent generalizations, and [Tod13]) and for toric varieties
(see [Kaw06], [Kaw13a]). There are also interesting connections to non-
commutative algebras; see for example [IW14].

7.9. Singularities, the dual complex, and Berkovich spaces. Sup-
pose that 0 ∈ X is a singularity and that φ : Y → X is a birational map
such that the preimage of 0 is a simple normal crossing divisor E. One can
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associate to E its dual complex D(E) encoding how the components of E in-
tersect. While the dual complex depends on the choice of resolution, certain
topological features of the dual complex (such as the homotopy type) turn
out to be independent of the resolution chosen (see [Pay13]). Interestingly,
certain algebraic features of the singularity are captured by the topological
properties of D(E). This relationship has been studied for a long time for
the dual graphs of resolutions of surface singularities.

New advances in the MMP have opened up the study of higher dimension
varieties. By using the MMP to systematically contract components of E,
[dFKX12] (following up on [Kol13a], [Kol14], [KK14]) identifies an “optimal”
dual complex which is well-defined up to piecewise linear homomorphism.
Building on this viewpoint, [NX13] uses the MMP to study Berkovich spaces
(which exhibit structure similar to a limit of dual complexes). This circle of
ideas has found further applications in [NX14] and [KX15].

7.10. Rational points over number fields. Suppose that X is a smooth
projective variety over a number field. As discussed in Section 2, conjec-
turally the behavior of rational points on X is constrained by the Kodaira
dimension of X. Thus the minimal model program should be an essential
tool for analyzing rational points. However, there are currently not many
number-theoretic results using the full strength of the MMP, mainly due to
the difficulty of the area. Even for surfaces (for which the MMP is com-
paratively easy), the behavior of rational points is still quite far from being
understood.

Recently the MMP has found interesting applications to Manin’s Con-
jecture. Suppose that X is a Fano variety and that OX(L) is an adelically
metrized ample line bundle inducing a height function H on the points of
X. Manin’s Conjecture predicts that (after a finite base change) the number
of rational points on X of bounded H-height is controlled by certain geo-
metric invariants associated to X and L. Building on [BT98] and [HTT15],
[LTT15] uses the MMP to systematically analyze these geometric invariants.
The results indicate that often one will need to remove a thin set of points,
rather than the points in a closed subset, for Manin’s Conjecture to hold.
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Norm. Sup. (4) 25 (1992), no. 5, 539–545.

[Cam11] Frédéric Campana, Special orbifolds and birational classification: a survey,
Classification of algebraic varieties, EMS Ser. Congr. Rep., Eur. Math. Soc.,
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smooth threefold, Journal de Mathématiques Pures et Appliquées 102 (2014),
no. 3, 597–616.
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