
POSITIVE CONES OF DUAL CYCLE CLASSES

MIHAI FULGER AND BRIAN LEHMANN

Abstract. We study generalizations for higher codimension cycles of several well-known definitions
of the nef cone of divisors on a projective variety. These generalizations fix some of the pathologies
exhibited by the classical nef cone of higher codimension classes. As an application, we recover the
expected properties of the cones Effk(X) for all k.

1. Introduction

A fundamental invariant of projective algebraic geometry is the cone of nef divisors Nef(X). By
[Kle66], it admits several equivalent characterizations: it is the dual of the Mori cone of curves
NE(X), the closure of the cone of ample line bundle classes, and the closure of the cone generated
by classes of divisors in basepoint free linear series.

In higher codimension the picture is more subtle. Let X be a projective variety over an al-
gebraically closed field and let Nk(X) denote the numerical group of dimension k-cycles with R-
coefficients. The pseudoeffective cone Effk(X) is the closure in Nk(X) of the cone generated by

classes of k-dimensional subvarieties of X. Then Nefk(X) is defined for smooth X as the dual of
Effk(X) with respect to the intersection pairing. When X is singular, we work instead in the space
of dual cycle classes, the abstract dual Nk(X) of Nk(X).

Interestingly, nef classes do not generally share the other positivity properties exhibited by nef
divisors. Indeed [DELV11] constructs examples on abelian varieties of nef classes of codimension
two that are not even pseudoeffective. Guided by the alternative characterizations for the nefness of
divisors, in this paper we construct “positive cones” inside the spaces Nk(X). These are geometric
generalizations of nefness in higher codimension which are better suited for applications. These
cones are contained in Nefk(X) and satisfy the following properties (which we will see are also
satisfied by the nef cone):

(1) they are full-dimensional (i.e. span Nk(X)) and salient (i.e. do not contain lines);
(2) they contain the complete intersections of ample divisors in their strict interior;
(3) they are preserved by pullbacks.

Furthermore, these cones have the following advantages over the nef cone:

(4) they are contained in Eff
k
(X);

(5) they are preserved by the intersection product Nk(X)×N r(X)
∩−→ Nk+r(X).

1.1. The pliant cone. A globally generated divisor class is the pullback of an effective divisor
from a projective space. The analogous notion in higher codimension is to pullback effective cycle
classes from Grassmann varieties instead. We define the pliant cone PLk(X) to be the closure of
the cone generated by products of such classes with total codimension k.

Example 1.1. (cf. 3.13) If X is a Grassmann variety of dimension n, then PLn−k(X) = Effk(X).

Example 1.2. [DELV11] analyzes two types of abelian varieties in detail: a product E×n where
E is a complex elliptic curve with CM, and A × A for a very general complex abelian surface A.
In both cases the pliant cone coincides with the effective cone (in every codimension). It would be
interesting to describe the pliant cone for other abelian varieties.
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Theorem 1.3. (cf. 3.5, 3.6, 3.7, 3.14) Let X be a projective variety over an algebraically closed
field, and let k ≥ 0. Then PLk(X) satisfies properties (1)-(5) above.

The main difficulty is proving that complete intersections belong to the strict interior of PLk(X).
As an application, we verify that Effk(X) has the expected properties suggested by the case of the
Mori cone, i.e. k = 1.

Theorem 1.4. (cf. 2.11, 3.8, 3.16, 3.22) Let X be a projective variety over an algebraically closed
field, and let k ≥ 0. Then

(1) Effk(X) is a full-dimensional and salient subcone of Nk(X).
(2) Complete intersections of dimension k of ample classes are contained in the strict interior

of Effk(X).
(3) For any ample divisor class h, the function degh : Effk(X)→ R≥0 defined by α 7→ α · hk is

the restriction to Effk(X) of a norm on Nk(X).
(4) If π : X → Y is a surjective morphism of projective varieties then π∗ Effk(X) = Effk(Y ).

The subtlety of the theorem is the treatment of the pseudoeffective classes that are not effective,
but only limits of effective classes. While some cases of this theorem are certainly known (see for
example [DJV13, Lemma 2.2]), surprisingly a proof in this generality seems to have been missing
from the literature.

In Definition 3.2 we give an equivalent definition for pliancy in terms of characteristic classes of
globally generated vector bundles on X. From this perspective, the pliant cone appears implicitly
in the work of Fulton and Lazarsfeld [FL83] on the positivity of characteristic classes of nef vector
bundles.

1.2. The basepoint free cone. A basepoint free linear series of divisors gives a family of divisors
on X such that for a fixed subvariety Y ⊂ X, the general member of the family intersects Y
properly. Inspired by this we say that an effective class α ∈ Effn−k(X) is strongly basepoint free if
there exists a projective morphism p : U → W with equidimensional fibers of dimension (n − k)
onto a quasiprojective variety W and a flat map s : U → X such that (s|F )∗[F ] = α where F is
a general fiber of p. For X smooth, we define the basepoint free cone BPFk(X) in Nk(X) to be
the closure of the cone generated by strongly basepoint free classes. We emphasize that basepoint
freeness is naturally a “contravariant” property preserved by pull-back so that Nk(X) is the right
ambient space for the cone.

Example 1.5. (cf. 5.9) If X is a smooth projective homogeneous space under the transitive action

of a connected algebraic group G, then BPFk(X) = Eff
k
(X) for all k. �

Example 1.6. (cf. 5.11) Let X be a smooth Mori Dream Space of dimension n. Then BPFn−1(X) =
Nefn−1(X). (The existence of many small modifications is an important part of the proof; we do
not know how to characterize the basepoint free cone of curves for arbitrary smooth X.)

Basepoint freeness turns out to be surprisingly versatile. Its properties were instrumental in other
work by the authors in [FL13] and [FL14].

Theorem 1.7. (cf. 5.3, 5.4, 5.7, 5.8) Let X be a smooth projective variety over an algebraically
closed field, and let k ≥ 0. Then BPFk(X) satisfies properties (1)-(5) above, and in addition,

(6) PLk(X) ⊆ BPFk(X) ⊆ Nefk(X).
(7) If π : Y → X is a flat morphism of relative dimension d from a smooth projective variety

Y , and α ∈ BPFk+d(Y ), then π∗α ∈ BPFk(X).

We do not know if the flat pullback of cycles descends to numerical equivalence. If it does, then one
can naturally define the cone BPFk(X) ⊂ Nk(X) for any projective variety X and all the properties
above will still hold.
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1.3. The universally pseudoeffective cone. If ξ is a nef divisor class on X, and π : Y → X
is a morphism of projective varieties, then π∗ξ is a pseudoeffective divisor class on Y . In fact
this property determines the nefness of ξ. Inspired by this we say that α ∈ Nk(X) is universally
pseudoeffective if π∗α is pseudoeffective for any morphism of projective varieties π : Y → X with
Y smooth. (The definition also makes sense when Y is singular, but requires more care.) These

classes form a closed convex cone denoted Upsefk(X).
By letting π range through inclusions of k-dimensional subvarieties in X, we see that a uni-

versally pseudoeffective class is nef. Pulling back by the identity of X, it follows that universally
pseudoeffective classes are pseudoeffective, hence in view of the examples in [DELV11], the inclusion

Upsefk(X) ⊂ Nefk(X) may be strict.

Theorem 1.8. (cf. 4.4, 4.2, 4.8, 5.7) Let X be a projective variety of dimension n over an

algebraically closed field, and let k ≥ 0. Then Upsefk(X) satisfies properties (1)-(5) above, and in
addition,

(6) PLk(X) ⊆ Upsefk(X) ⊆ Nefk(X).

(7) When X is smooth, then PLk(X) ⊆ BPFk(X) ⊆ Upsefk(X) ⊆ (Nefk(X) ∩ Effn−k(X)).
(8) Suppose π : Y → X is a flat morphism from a projective variety Y of relative dimension d,

and that X is smooth. If α ∈ Upsefk+d(Y ) then π∗α ∈ Upsefk(X).
(9) Suppose π : Y → X is a dominant morphism from a projective variety Y and α ∈ Nk(X).

If π∗α is universally pseudoeffective, then α is as well.

While a priori weaker than pliancy or basepoint freeness, universal pseudoeffectivity is easier to
compute.

Example 1.9. (4.6) If X is a smooth projective variety of dimension n, then Upsefn−1(X) =
Nefn−1(X) = Mov1(X), where the latter is the movable cone of curves in the sense of
[BDPP13].

(4.5) If X is a smooth spherical (e.g. toric) variety of dimension n, then Upsefk(X) = Nefk(X) ⊆
Effn−k(X) for all k.

(4.14) The same conclusion holds if X is a projective bundle over a smooth projective curve.
(4.12) If S is a smooth projective surface, and F is a rank-two ample vector bundle on S, then the

zero section of the total space of F sitting as an open subset in X = P(O ⊕ F∨) is in the
strict interior of Upsef2(X).

The following important example shows that we may have strict inequalities PLk(X) ( Upsefk(X)

and BPFk(X) ( Upsefk(X).

Example 1.10. [BH15] constructs a toric fourfold X and a nef surface class α on X which give
a counterexample to a question of Demailly concerning positive currents. Their arguments also
show that α is not basepoint free (and hence not pliant). Since every nef class on a toric variety is
universally pseudo-effective, we have BPF2(X) ( Upsef2(X). (See Example 5.12 for details.)

We also give a simpler criterion for testing universal pseudoeffectivity.

Proposition 1.11. (cf. 4.9) Let X be a projective variety over an algebraically closed field. A class
α ∈ Nk(X) is universally pseudoeffective if and only if π∗α is pseudoeffective for any projective
morphism π : Y → X that is generically finite onto its image.

The maps π need not be dominant. In characteristic zero we may replace “generically finite”
with “birational” in the above (cf. Remark 4.10).

The definition and study of pliancy and basepoint freeness are motivated by their applications,
while universal pseudoeffectivity is an important intersection theoretic positivity property that
they share. It is interesting to ask how these positivity notions interact with other versions in
the literature (for example, Hartshorne’s definition via the ampleness of the normal bundle of an
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l.c.i subscheme ([Har70]) and Ottem’s extension ([Ott12])). We discuss these connections more in
Section 6, together with some variations of pliancy and universal pseudoeffectivity.

Organization. In Section 2 we set up notation, recalling in particular the definition of the numer-
ical groups Nk(X). We establish basic properties of the dual spaces Nk(X), showing in particular
that they are generated by polynomials in Chern classes of vector bundles on X. We also give an
overview of the known properties of Effk(X) and Nefk(X). Section 3 is dedicated to the study of
the pliant cone. As an application we recover the expected properties of Effk(X) that seem to have
been missing from the literature. The properties and examples of the universally pseudoeffective
cone are illustrated in §4, while the properties of the basepoint free cone, essential to the work of the
authors in [FL13] and [FL14], are described in §5. We end with a list of open questions in Section
6.

Acknowledgments. We thank June Huh, Conner Jager, Alex Küronya, Robert Lazarsfeld, and
John Christian Ottem for useful conversations.

2. Background and preliminaries

Throughout we will work over an algebraically closed ground field K of arbitrary characteristic.
A variety is an irreducible reduced scheme of finite type over K.

2.1. Cycles and dual cycles. A cycle on a projective variety X is a finite formal linear combina-
tion Z =

∑
i aiVi of closed subvarieties of X. We use the denominations integral, rational, or real

when the coefficients are Z, Q, or R respectively. When all Vi have dimension k, we say that Z is a
k-cycle. When for all i we have ai ≥ 0, we say that the cycle is effective. To any closed subscheme
V ⊂ X we associate its fundamental integral cycle [V ] as in [Ful84, §1.5].

The group of integral k-cycles is denoted Zk(X). Its rank is usually infinite. In order to study
the geometry of cycles on X, several equivalence relations have been introduced on Zk(X). One
example is rational equivalence; the rational equivalence classes form the Chow group Ak(X), which
may still have infinite rank.

We will work with a coarser equivalence relation. For any vector bundle E on X and any integer
i, [Ful84, §3] constructs a Chern class ci(E) which maps a class τ ∈ Ak(X) to ci(E)∩ τ ∈ Ak−i(X).
Since this operation is commutative and associative (see [Ful84, §3.2]), there is a natural way
of defining P (EI) ∩ [Z] for any finite collection of vector bundles {Ei}i∈I on X and any weighted
homogeneous polynomial P (EI) on the Chern classes of these bundles. [Ful84, §19] defines a k-cycle
Z to be numerically trivial if

(1) deg(P (EI) ∩ Z) = 0

for any weight k homogeneous polynomial P (EI) in Chern classes of a finite set of vector bundles
on X. Here deg : A0(X) → Z is the group morphism that sends any point to 1. The quotient of
Zk(X) by the numerically trivial cycles is denoted Nk(X)Z; this is a free abelian group of finite
rank by [Ful84, Example 19.1.4]. It is a lattice inside Nk(X)Q := Nk(X)Z ⊗Z Q and inside

Nk(X) := Nk(X)Z ⊗Z R.

We call the latter the numerical group. It is a finite dimensional real vector space, and its dimension
is positive only when 0 ≤ k ≤ dimX. If Z is a real k-cycle, its class in Nk(X) is denoted [Z].

It is useful to consider the abstract dual notions Nk(X)Z, Nk(X)Q, and Nk(X) of Nk(X)Z,
Nk(X)Q, and Nk(X) with coefficients Z, Q, and R respectively. We call Nk(X) the numerical dual
group. Note that if P = P (EI) is a weight-k homogeneous polynomial in Chern classes of a finite
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set of vector bundles, then P induces an element [P ] of Nk(X) via the operational nature of Chern
classes. In fact, we have the formal identification

(2) Nk(X) =
Homogeneous Chern R-polynomials P of weight k

Chern polynomials P such that P ∩ α = 0 for all α ∈ Nk(X)
.

Remark 2.1. In work in progress, Conner Jager checks that if X is smooth and projective, then
Nk(X) (and in fact even Nk(X)Q) is generated linearly by the Chern classes ck(E) as E ranges
through the vector bundles on X. (The idea is to use a Riemann–Roch isomorphism to show that
Nk(X) is generated additively by the Chern character classes chk(E), then show that ck(E) is in
the linear span of chk(E

⊕s) as s ranges among the positive integers.)

Example 2.2. If X is a projective variety of dimension n, then Zn(X) = An(X) = Nn(X)Z =
Z · [X]. The morphism deg : Z0(X)→ Z that sends all points to 1 factors through an isomorphism
deg : N0(X)Z → Z.

Remark 2.3. The quotient map Zk(X) → Nk(X)Z factors through Ak(X). Using (1) we deduce
that many of the attributes of Chow groups descend to numerical groups with their natural grading:

• Proper pushforwards π∗. Dually, the groups Nk(X) have proper pullbacks π∗ := (π∗)
∨.

• Actions of polynomials in Chern classes for vector bundles: a weighted homogeneous poly-
nomial P = P (EI) of degree i maps Nk(X)→ Nk−i(X). We denote the image of α ∈ Nk(X)
by P ∩ α.
• The projection formula: If π : Y → X is a proper morphism, and P (EI) is a polynomial in

the Chern classes on X, then for any α ∈ Nk(X),

π∗(P (π∗EI) ∩ α) = P (EI) ∩ π∗α.
• Gysin homomorphisms: Suppose that π : Y → X is an l.c.i. morphism of codimension d.

Then [Ful84, Example 19.2.3] shows that the Gysin homomorphism π∗ : Ak(X)→ Ak−d(Y )
descends to numerical groups. Similarly, π∗ exists when π : Y → X is a morphism of
projective varieties with X smooth.

Remark 2.4. Multiplication of polynomials induces a graded ring structure on N∗(X). We call
this the numerical dual ring of X. If π : Y → X is a proper morphism, then π∗ := (π∗)

∨ is a ring
homomorphism by the projection formula.

Notation 2.5. Where there is little danger of confusion, we often use · instead of ∩ to denote the
intersection of cycles with Chern classes or dual classes.

Caution. We do not know if the flat Chow pullbacks ([Ful84, §1.7]) respect numerical equivalence.
However, flat numerical pullbacks exist when the base is smooth; see Remark 2.9.

The association [P ]→ P ∩ [X] induces a natural map

(3) ϕ : Nn−k(X)→ Nk(X),

which is not usually an isomorphism. Its dual is the corresponding natural map ϕ : Nk(X) →
Nn−k(X). We have similar statements for Q-coefficients.

Example 2.6. If X is projective of dimension n, then the map ϕ : N1(X) → Nn−1(X) is the
numerical version of the cycle map from Cartier divisors to Weil divisors. It is a consequence of
[Ful84, Example 19.3.3] that this map is injective and the dual ϕ : Nn−1(X)→ N1(X) is surjective.
(An element in the kernel is [c1(L)] for some line bundle L such that c1(L)∩[X] is numerically trivial
in the sense of (1). In particular, deg(c1(L)·cn−1

1 (OX(H))∩[X]) = deg(c2
1(L)·cn−2

1 (OX(H))∩[X]) =
0 for some ample bundle O(H) on X. The cited reference implies that c1(L)∩[C] = 0 for any 1-cycle
C. Therefore [c1(L)] = 0 in N1(X).)

We have N1(X) = NS(X) ⊗ R, where NS(X) is the Néron–Severi group of X. In general, the
quotient map from NS(X) to N1(X)Z may have a finite kernel. �
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Example 2.7. When X is singular, quite often ϕ is not an isomorphism. For example, let Y ⊂ PN
be a projective variety of dimension n with dimNn−1(Y ) > 1. Denote by X := C(Y ) ⊂ PN+1 the
projective cone over Y of dimension n+1, and by π : Z → X the blow-up of the vertex, such that Z
has the structure of a projective bundle of relative dimension 1 over Y with bundle map f : Z → Y .
We claim that dimN1(X) = 1 and dimNn(X) = dimNn−1(Y ) > 1. Therefore ϕ : N1(X)→ Nn(X)
is not an isomorphism. (We verify that π∗f

∗ induces an isomorphism Nk−1(Y ) ' Nk(X) for all
k > 0. Here f∗ is a smooth pullback, so it respects numerical equivalence. The variety Z contains
two notable disjoint Cartier divisors: the zero section E of the geometric vector bundle associated
to OPN (1)|Y , and the compactifying hyperplane at infinity F . Note that E and F are both sections
of f , isomorphic to Y via f |E and f |F respectively, and π(E) is the vertex of X, while π|F is the
identity of Y . In particular X contains a copy of Y , the intersection C(Y ) ∩ PN ⊂ PN+1. We have
Nk(Z) = f∗Nk−1(Y )⊕ E · f∗Nk(Y ). Since E is contracted to a point, π∗(E · f∗Nk(Y )) = 0 for all
k > 0. On the other hand, for any α ∈ Nk−1(Y ), we have π∗f

∗α = 0 if and only if α = 0. Indeed
by [Ful84, Theorem 6.2.(a)] we have (π∗f

∗α)|Y = (π|F )∗(f
∗α|F ) = α.) �

Remark 2.8. When X is smooth and projective, the intersection theory of [Ful84, Chapter 8]
endows A∗(X) with a ring structure, graded by codimension. This descends to N∗(X)Z.

By [Ful84, Example 15.2.16.(b)], we have an isomorphism ch : K(X) ⊗ Q → A(X) ⊗ Q. A
consequence is that any Chow Q-class is of the form P (EI) ∩ [X] for some Chern polynomial
P (EI) with rational coefficients. Descending to numerical equivalence, the natural morphism ϕ :
Nn−k(X)Q → Nk(X)Q defined above is an isomorphism. The pairing between Nk(X)Q and Nk(X)Q
induced by the ring structure is the same as their pairing as dual spaces. The analogous identification
is also valid for R-coefficients. For any morphism π : Y → X of relative dimension d from a projective
scheme Y , we define the pullback π∗ : Nk(X) → Nk+d(Y ) as ϕ ◦ (π∗)

∨. Note that this pullback
agrees with the refined Gysin homomorphisms of [Ful84, Chapter 8].

In particular, we recover the classical definition for numerical triviality on smooth varieties:
Z ∈ Zk(X) is numerically trivial, if [Z] · β = 0 for any β ∈ Nn−k(X)Z.

Remark 2.9. Let π : Y → X be a flat morphism of projective varieties with X smooth. By [Ful84,
Proposition 8.1.2] for any cycle Z ∈ Ak(X) we have π∗[Z] = [π−1Z] (where π−1 denotes the flat
pull-back of cycles [Ful84, §1.7]).

2.2. The pseudoeffective cone. We say that a class α ∈ Nk(X) is effective if α = [Z] for some
effective cycle Z. This notion is closed under positive linear combinations, hence it is natural to
consider the following:

Definition 2.10. The closure of the convex cone generated by effective k-cycles on X in Nk(X) is
denoted Effk(X). It is called the pseudoeffective cone. A class α ∈ Nk(X) is called pseudoeffective
(resp. big) if it belongs to Effk(X) (resp. to its interior). For classes α, β ∈ Nk(X), we use the
notation α � β to denote that β − α is pseudoeffective.

We say that β ∈ Nk(X) is pseudoeffective if ϕ(β) ∈ Effn−k(X), where ϕ is the map of (3). The

pseudoeffective dual classes form a closed cone in Nk(X) that we denote Eff
k
(X).

The pseudoeffective cone is full-dimensional. In Corollary 3.8 we show that it is also salient.

Lemma 2.11. If h1, . . . , hk are ample classes in N1(X), then h1 · . . . · hk ∩ [X] is big.

Proof. It suffices to consider the case when each hi ∈ N1(X)Q. If Zj are distinct subvarieties whose
classes generate Nn−k(X), then α =

∑
j [Zj ] is big. There exists an integer m � 0 and ample

Cartier divisors D1, . . . , Dk of class mh1, . . . ,mhk respectively such that each Di contains ∪jZj in

its Weil support and the set ∩iDi is of dimension n− k. Then mkh1 · . . . ·hk ∩ [X] = α+β for some
effective class β. The sum between a big and a pseudoeffective class is big. �
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(Pseudo)effectivity is the natural covariant positivity notion for cycles; it is preserved under
proper pushforward and flat pullback from a smooth target. We can say more when dealing with a
dominant morphism.

Remark 2.12. Let π : Y → X be a dominant morphism of projective varieties. If Z ⊂ X is an
arbitrary closed subvariety of dimension k, then there exists an effective class α ∈ Nk(Y )Q such
that π∗α = [Z]. (Let h be an ample divisor class in N1(Y )Z and let T be an irreducible component
of π−1Z that dominates Z. Let d be the relative dimension of the induced morphism π : T → Z.
Then hd · [T ] is an effective Q-cycle and π∗(h

d · [T ]) = c[Z] for some c ∈ Q+. Put α = 1
ch

d · [T ].)

A consequence is that π∗ Effk(Y ) has dense image in Effk(X). Note that it is possible for the
image of a closed convex cone under a linear map of finite dimensional real vector spaces to no
longer be closed. We nonetheless prove that π∗ Effk(Y ) = Effk(X) in Corollary 3.22.

2.3. The nef cone. The cone dual to Effk(X) in Nk(X) is the nef cone Nefk(X). Any element

β ∈ Nefk(X) is called nef. Attesting to its contravariant nature, nefness is preserved under proper
pullbacks.

Remark 2.13. Since Effk(X) is full-dimensional, Nefk(X) is salient. In Lemma 3.7 we see that
this cone is also full-dimensional.

Remark 2.14. Let π : Y → X be a dominant morphism of projective varieties. If β ∈ Nk(X)

is such that π∗β ∈ Nefk(Y ), then β ∈ Nefk(X). (Nefness on X is verified by testing nonnegative
pairing against the closed subvarieties of dimension k. Then apply the projection formula and
Remark 2.12.)

Example 2.15. If h1, . . . , hk ∈ Nef1(X), then h1 · . . . ·hk ∈ Nefk(X). In Corollary 3.15 we see that

if hi are ample for all i, then their intersection is in the interior of Nefk(X). Note that complete
intersections do not always generate a full-dimensional cone. For example when X = G(2, 4), then
dimN1(X) = 1 while dimN2(X) = 2.

More generally, if E is a nef vector bundle (i.e. OP(E)(1) is a nef line bundle), then ck(E) ∈
Nefk(X) for all k. (This is an easy consequence of [Ful84, Example 12.1.7.(c)].) If E is ample, then

ck(E) belongs to the strict interior of Nefk(X) for all k. �

For k > 1, [DELV11] provides examples of nef classes that do not have nef intersection in N∗(X),
and of nef classes that are not pseudoeffective. There, X is a self-product of an abelian variety. In
the next section we present a more geometric positivity notion that avoids such pathologies.

3. The pliant cone

Just as nef divisors (considered as as limits of semiample divisors) are modeled after the hyper-
plane class on Pn, pliant classes are modeled after Schubert cycle classes on Grassmannians up to
taking products.

Definition 3.1. ([Ful84, §14.5]) Fix positive integers k and e. Let λ = (λ1, . . . , λk) be a decreasing
partition of k involving only non-negative integers that are no greater than e. The (weighted) Schur
polynomial sλ is defined to be the determinant in formal variables c1, . . . , ce

sλ :=

∣∣∣∣∣∣∣∣∣
cλ1 cλ1+1 . . . cλ1+k−1

cλ2−1 cλ2 . . . cλ2+k−2
...

...
. . .

...
cλk−k+1 cλk−k+2 . . . cλk

∣∣∣∣∣∣∣∣∣
where by convention c0 = 1 and ci = 0 if i 6∈ [0, e]. If we assign the weight i to the variable ci, then
sλ is a degree k weighted-homogeneous polynomial. Given a vector bundle E of rank e, then sλ(E)
denotes the corresponding Schur polynomial in the Chern classes of E. The Chern classes ck(E)
and the dual Segre classes sk(E

∨) are particular cases of this construction.
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Let Q denote the tautological quotient bundle over a Grassmannian G. Note that Q is globally
generated. The Schubert cycles on G have numerical class given by Schur polynomials in the Chern
classes of Q (see [Ful84, §14.6] or [Laz04, Remark 8.3.6]). When E is a globally generated vector
bundle on X, then the Schur polynomial classes of E are pullbacks of Schubert cycle classes via the
induced Gauss map. See also Example 3.13.

Definition 3.2. The pliant cone PLk(X) is the closed convex cone in Nk(X) generated by mono-
mials

∏
i sλi(Ei) in Schur polynomial classes of globally generated vector bundles on X.

The construction is also motivated by the work of Fulton–Lazarsfeld [FL83] on positive polyno-
mials of ample vector bundles. We will see that the pliant cone satisfies the desirable intersection-
theoretic properties described in the introduction.

Example 3.3. For any globally generated vector bundle E we have that c1(E) is the class of the
nef line bundle detE. Thus PL1(X) = Nef1(X).

Remark 3.4. Note that the definition of the pliant cone is stable under products. In particular, the
class of a complete intersection is pliant. We do not know if the pliant cone coincides with the cone
generated by Schur polynomial classes of globally generated bundles (without taking products).

Lemma 3.5. The pliant cone PLk(X) generates Nk(X) as a vector space, i.e. it is full-dimensional.

Proof. Since the pliant cone is closed under products, it suffices to show that for any vector bundle
E on X the Chern class ci(E) can be expressed as a sum of products of Chern classes of globally
generated vector bundles. (Note that the Chern class ck is the Schur polynomial corresponding to
the partition (k, 0, . . . , 0).)

The proof is by induction on i. Let H be a fixed very ample divisor on X. There exists a positive
integer m such that E(mH) is globally generated. The tensor product formula expresses ci(E(mH))
as a sum of ci(E) with other terms involving c1(H) and cj(E) for j < i. By induction on i, we
conclude that ci(E) can be written as a linear combination of products of Chern classes of globally
generated vector bundles. �

Remark 3.6. Since global generation is preserved by the pullback of vector bundles, if π : Y → X
is a morphism of projective varieties, then π∗ PLk(X) ⊂ PLk(Y ).

Lemma 3.7. If Z ⊂ X is a subvariety of dimension d, then for any [P ] ∈ PLk(X), we have

P ∩ [Z] ∈ Effd−k(X). In particular, we have an inclusion PLk(X) ⊂ Eff
k
(X) ∩ Nefk(X) so that

PLk(X) is a salient cone and Nefk(X) is full-dimensional.

Proof. This follows from [Ful84, Example 12.1.7.(a)]. �

Corollary 3.8. The cone Effk(X) is salient.

Proof. The dual of a full-dimensional cone is salient. �

Remark 3.9. The previous result seems to have been missing from the literature. Over C, it is
implied by [DJV13, Lemma 2.2]. Similar statements are proved in [BFJ09, Proposition 1.3] and
[CHMS13, Lemma 2.3] for Cartier divisors.

Example 3.10. If H is a projective nonsingular homogeneous space, then PLk(H) ⊆ Eff
k
(H) ⊆

Nefk(H) for all k. (Lemma 3.7 gives the first inclusion. For the second inclusion, note that using the
group action and Kleiman’s Lemma ([Kle74, 2. Theorem.(i)]) we can deform any two subvarieties V
and W of H until they meet properly, hence V ·W is algebraically equivalent to an effective cycle.)
When H is one of the examples of abelian varieties in [DELV11], the last inclusion is strict. �
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Example 3.11. On P1 consider the vector bundle E = O ⊕ O ⊕ O(−1). Set X = P(E) and let
π : X → P1 denote the projection. Let ξ denote the class of OP(E)(1), and let f denote the class

of a fiber of π. The Grothendieck relation is ξ3 = −ξ2f = −1. Using for example [Ful11, Theorem
1.1] and [FL13, Proposition 7.1], we find that

Eff
1
(X) = Mov

1
(X) = 〈f, ξ〉 Nef1(X) = 〈f, ξ + f〉

and

Eff
2
(X) = 〈ξf, ξ2〉 Nef2(X) = 〈ξf, ξ2 + ξf〉.

We prove that PL2(X) = Nef2(X). Since ξf = (ξ+ f)f is a product of nef divisors, it is enough to
show that ξ2 + ξf is pliant. Consider the bundle Q given by the short exact sequence

0→ OP(E)(−1)→ π∗E∨ → Q→ 0.

Then Q is globally generated and c2(Q) = ξ2 + ξf . �

Remark 3.12. To compute the pliant cone we often guess that it coincides with one of the other
positive cones and then construct globally generated vector bundles with specified Schur (often
Chern) classes. For the other positive cones we usually have better techniques. A telling example
is that of projective bundles over curves of arbitrary genus (see [Ful11, Theorem 1.1] for Effk(X),

[FL13, Proposition 7.1] for Movk(X), and Example 4.14 for Upsefk(X)). In Example 5.10 we
compute all the BPFk(X) cones when X is a projective bundle over P1.

Example 3.13. If X is a product of Grassmann varieties, then

PLk(X) = Eff
k
(X) = Nefk(X).

These cones are rational polyhedral, generated by classes of products of Schubert cycles from each
Grassmann factor. In particular Definition 3.2 agrees with the definition given in the introduction
in terms of products of pullbacks of effective classes on Grassmann varieties. (Consider first the case
where X = G is a single Grassmann variety. Then Nk(G) and Nk(G) admit dual bases of effective
classes determined by the Schubert cycles (see [Ful84, §14.6] or [Laz04, Remark 8.3.6]). These are
Schur classes of the universal quotient bundle on G, which is a globally generated vector bundle.
When X is a product, then the classes of the product of Schubert cycles in each Grassmann factor
give bases of Nk(X) for all k by [Ful84, Proposition 14.6.5]. It is straightforward to check that the
bases are dual to each other, and that they are pliant.) �

We show that complete intersections are in the interior of the pliant cone and describe several
important applications of this result.

Lemma 3.14. If h1, . . . , hk are ample classes in N1(X), then h1 · . . . · hk is in the interior of
PLk(X).

Proof. Let h be any ample class in N1(X). There exists m� 0 such that mhi − h is ample for all
i. Then mkh1 · . . . · hk = hk + P , where [P ] ∈ PLk(X). Therefore it is enough to show that hk is in
the interior of PLk(X) for some ample class h.

Lemma 3.5 and its proof allow us to choose finitely many monomials in Chern classes of finitely
many ample globally generated vector bundles on X such that these monomials span Nk(X) as
a vector space. The sum of all these monomials is a polynomial with positive coefficients P (EI)
whose class necessarily lies in the interior of PLk(X).

If E := ⊕i∈IEI , then c(E) =
∏
i c(Ei), where c(E) = 1 + c1(E) + c2(E) + . . . is the total Chern

class of E. In particular, for all j and for all i ∈ I, we have

(4) cj(E) = cj(Ei) + Pij(EI)
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for some [Pij(EI)] ∈ PLj(X). Note that E is again globally generated and ample. It is important
to work with Chern classes here, instead of arbitrary Schur classes, because this ensures that the
Pij ’s have no negative coefficients.

Let R(E) be the polynomial obtained from P (EI) by replacing every occurrence of cj(Ei) by

cj(E). By (4), we can write R(E) = P (EI) + P ′(EI) where [P ′(EI)] ∈ PLk(X), hence [R(E)] is

also in the interior of PLk(X).
Let γ : X → G be the Gauss map induced by E. Then [R(E)] = γ∗[R(Q)], where Q is the

universal quotient bundle on G. Let C = γ∗ PLk(G) ⊂ PLk(X). Since C contains [R(E)], any
element in the interior of C is also interior to PLk(X).

Since E is ample, γ is finite. (If γ contracts a curve C, then E|C is trivial. This contradicts
ampleness. See [Laz04, Proposition 6.1.7].) If a is a generator for the ample cone of G, then h = γ∗a
is ample on X. Lemma 2.11 and Example 3.13 show that ak is in the interior of PLk(G). Then hk

is in the interior of C, therefore also in the interior of PLk(X). �

Corollary 3.15. If h1, . . . , hk are ample divisors classes, then h1 · . . . · hk is in the interior of
Nefk(X).

3.1. Geometric applications.

Corollary 3.16 (Geometric norms). If h is an ample divisor class on X, then for all k there exists
a norm ‖ · ‖ on Nk(X) such that ‖α‖ = hk ∩ α for any α ∈ Effk(X).

Proof. By Lemma 3.5 and Corollary 3.15, we can choose β1, . . . , βm nef dual classes that span
Nk(X) and such that [hk] =

∑
i βi. Then ‖ · ‖ =

∑
i |βi ∩ ·| is a norm on Nk(X) with the required

property. �

Corollary 3.17. Let X be a projective variety. If α ∈ Effk(X) has degree zero with respect to some
polarization H on X, i.e. deg(ck1(OX(H)) ∩ α) = 0, then α = 0.

Corollary 3.18 (Finiteness of integral classes of bounded degree). Let X be a projective variety,
and let H be a very ample divisor on X. Then for all M > 0,

#{α ∈ Nk(X)Z ∩ Effk(X) | deg(ck1(OX(H)) ∩ α) < M} <∞.

Remark 3.19. The last three corollaries were known for curve classes; see [Laz04, Theorem 1.4.29
and Example 1.4.31]. When working over C, the result of Corollary 3.17 can be improved to
homological equivalence. See [DJV13, Proposition 2.1 and Lemma 2.2]. Then Corollary 3.15 is also
valid for homological equivalence on complex projective varieties.

Many cohomology theories have the Strong Lefschetz property. A long standing open question
concerning numerical groups is if they verify it as well.

Conjecture 3.20 (Strong Letschetz). Let X be a smooth projective variety of dimension n. Let h
be an ample divisor class. Then ∩hn−2k : Nk(X)→ Nn−k(X) is an isomorphism for all k ≤ bn/2c.

Corollary 3.17 shows that we can exclude the pseudoeffective case from the conjecture. Note that
the smoothness condition is necessary: IfX is singular, then usually dimNn−1(X) = dimNn−1(X) >
dimN1(X) (see Example 2.7).

That the degree of a cycle with respect to an arbitrary ample polarization restricts to a norm on
the pseudoeffective cone also allows us to construct “bounded” lifts for effective cycles by dominant
morphisms.

Proposition 3.21. Let π : Y → X be a surjective morphism of projective varieties. Let ‖ · ‖ and
| · | be arbitrary norms on Nk(Y ) and Nk(X) respectively. There is some constant C depending only
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on π and on the choice of norms on Nk(Y ) and Nk(X) such that for any effective R-k-cycle Z on
X, there is an effective R-k-cycle Z ′ on Y with π∗Z

′ = Z satisfying

‖[Z ′]‖ ≤ C|[Z]|.

When Z has integer coefficients, we can choose Z ′ having rational coefficients with denominators
bounded independently of Z.

Proof. By repeating the argument for each component, we can assume that Z is a closed subvariety
of X. Let A be a very ample divisor on Y and let H be a very ample divisor on X. By Corollary 3.16,
we can assume that the restriction of the norms ‖ ·‖ and | · | to Effk(Y ) and Effk(X) respectively are
the degree functions with respect to the polarizations A and H respectively. Let T be a component of
a (dimX)-dimensional complete intersection of elements of |A| that dominates X. Then π∗T = cX
where c is a positive integer depending only on π and on A.

We do induction on dimX ≥ k. When dimX = k, then Z = aX for some a ≥ 0 and we can put

Z ′ = a
cT . Put C = ‖[T ]‖

|[X]| . Now suppose dimX > k. Let ı : T ↪→ Y be the inclusion. We can assume

that T = Y . Indeed ı∗ is continuous and preserves pseudoeffectivity, and the norm induced by the
degree with respect to A restricts to the norm induced by A|T . Therefore we can assume that π is
generically finite and surjective.

There exists an effective Cartier divisor E on Y such that −E is π-ample. Replacing H by a fixed
multiple depending only on π and E, we can assume that π∗H −E is ample on Y . Using Corollary
3.16, the ample divisors π∗H − E and A determine equivalent norms on Nk(Y ), so without loss of
generality we can assume that A = π∗H − E. By abuse we also use E as notation for the support
of E.

Let π′ : Y ′ → X ′ denote a flattening of π. Let S ⊂ X denote the union of π(E) and the exceptional
locus for the birational morphism X ′ → X. Note that π|E : E → S and the restrictions A|E and
H|S only depend on π and on A and H. Also note that dimSi < dimX for every component Si of
S.

By applying induction to the components Si of S and the maps π|Si , we see that the conclusion
holds if Z ⊂ S. If Z is not contained in S, let Z̄ be a k-dimensional component of π−1{Z} that
dominates Z. Then π∗Z̄ = c′Z where c′ > 0 and Z̄ is irreducible, not contained in E. Furthermore,
by taking strict transforms of Z and Z̄ on X ′ and Y ′ respectively, [Ful84, Example 1.7.4] shows
that c′ ≤ deg(π′) for the flat map π′. The function

t→ (π∗H − tE)k ∩ [Z̄]

is decreasing on [0, 1]. This and the projection formula imply

Ak ∩ [Z̄] = (π∗H − tE)k ∩ [Z̄] ≤ π∗Hk ∩ [Z̄] = Hk ∩ c′[Z].

One can choose the constant C by taking the maximum over deg(π′), all constants showing up in the
finitely many induction steps, and all finitely many constants appearing as proportionality bounds
between equivalent norms. Similarly, one obtains the last statement of the proposition by taking a
maximum over deg(π′) and all constants showing up in the finitely many induction steps. �

Corollary 3.22. If π : Y → X is a dominant morphism of projective varieties, then π∗ : Effk(Y )→
Effk(X) is surjective for all k.

Proof. Let α be a pseudoeffective class on X. Write α as a limit of effective classes αi. For each
i, Proposition 3.21 constructs an effective class βi on Y such that π∗βi = αi whose degree with
respect to some polarization on Y is bounded independently of i. Since the degree restricts to a
norm on the pseudoeffective cone, we can find a limit point β for the sequence βi. Note that β is
pseudoeffective. Since π∗ is continuous, π∗β = α. �
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We also use Lemma 3.14 to construct bases for Nk(X) with good positivity properties, at least
when X is smooth. The second part of the following lemma is an important technical instrument
in the proof of [FL14, Theorem 8.9].

Lemma 3.23. Let X be a smooth projective variety of dimension n ≥ 2. Then

i) Nk(X) is generated by pliant classes with irreducible representatives {Tr}.
ii) If π : X → Y is a surjective morphism to a projective variety with dimY ≥ n− k, then we can

arrange such that Tr is not contracted by π for any r.

Proof. Let {Ei} be a set of very ample vector bundles such that Nk(X) is generated by weight k
monomials in dual Segre classes sj(E

∨
i ). These monomials belong to PLk(X).

Let P denote the fiber product ×XP(Ei), let ξi denote the pullback to P of the Serre bundle
OP(Ei)(1), and let p : P→ X be the (smooth) projection map of relative dimension d.

The proof of [Ful84, Proposition 3.1.(b)] shows that the weight k dual Segre monomials in the Ei
are given by p∗(

∏d+k
j=1 ξij ). The number of repetition of each index i in the list of the ij determines

which dual Segre class of Ei appears in the monomial. Since we want to allow several Segre classes
of the same bundle to appear in a monomial, we repeat each Ei in the initial list k times so that
each class can be obtained from a different factor in P.

Since dimX ≥ 2 and the Ei are very ample vector bundles, the linear systems |ξi| are not
composites with a pencil for any i. Then Bertini’s theorem implies that the support of a general

complete intersection
∏d+k
j=1 ξij is irreducible, and then the same is true of its image Tr through π.

For part ii), let h be a very ample divisor class on Y . Since Tr is effective, it is contracted by
π if and only if [Tr] · π∗hn−k = 0. The class π∗hn−k is effective and nonzero under the assumption
dimY ≥ n − k. It is enough to prove that [Tr] belongs to the interior of PLk(X). Knowing
that pliancy is closed under products, and that complete intersections are interior (cf. Lemma
3.14), it is enough to check that we can choose Ei such that every nonzero sj(E

∨
i ) belongs to

the interior of PLj(X). For this, replace each Ei by Ei ⊗ detEi in the initial list. Note that
c1(detEi) = c1(Ei) = s1(E∨i ). Then the formula in [Ful84, Example 3.1.1] shows that the linear
span of the dual Segre monomials is unchanged. Furthermore sj((Ei⊗ detEi)

∨) is a positive linear
combination of dual Segre monomials of Ei, one of which is a positive scalar multiple of the interior

complete intersection class cj1(detEi). �

4. Universally pseudoeffective classes

Universally pseudoeffectivity is the positivity notion that directly generalizes the intersection
theoretic properties of nef divisors.

Definition 4.1. We say that α ∈ Nk(X) is universally pseudoeffective if π∗α ∈ Eff
k
(Y ) for any

proper morphism π : Y → X from a projective variety Y . The cone of all such is denoted by
Upsefk(X).

Remark 4.2. Universally pseudoeffective classes are nef.

Example 4.3. For any projective variety X we have

Upsef1(X) = Nef1(X).

(Nefness for divisors is preserved by pullback and nef divisors are pseudoeffective, which implies
Nef1(X) ⊆ Upsef1(X). If α is an universally pseudoeffective class of a Cartier divisor, then α∩ [C]
is a pseudoeffective 0-cycle for any irreducible curve C in X, hence α is a nef divisor class.) �

Remark 4.4. Lemma 3.7 shows that PLk(X) ⊆ Upsefk(X) for all k. Together with Remark 4.2

this implies that Upsefk(X) is full-dimensional, salient, and contains complete intersections in its
strict interior.



POSITIVE CONES OF DUAL CYCLE CLASSES 13

Example 4.5. If X is a nonsingular projective spherical (e.g. toric) variety, then Upsefk(X) =

Nefk(X) for all k. (The proof is analogous to [Li13, Theorem 3.4]. Let π : Y → X be a projective

morphism, and let η ∈ Nefk(X). Let Γ : Y → X × Y be the graph morphism associated to π. We
use the same notation for its image. By [Li13, Corollary 3.3], drawing on [FMSS95, Lemma 3], Γ is
rationally equivalent to an effective cycle

∑
i ciAi ×Bi, where Ai are irreducible subvarieties of X,

and Bi are irreducible subvarieties of Y . Note that π∗η = p2∗([Γ] · p∗1η). Then

π∗η =
∑
i

cip2∗(p
∗
1([Ai] · η) · p∗2[Bi]) =

∑
i,dimAi=k

(ci[Ai] · η) [Bi]

which is in fact effective.) �

Example 4.6. If X is a nonsingular projective variety of dimension n, and Mov1(X) denotes the
movable cone of curves, then

Upsefn−1(X) = Mov1(X).

(If α ∈ Upsefn−1(X), then α ∩ [D] ∈ Eff
n−1

(D) for any effective divisor D. By [BDPP13] and its
extension to arbitrary characteristic in [FL13, §2.2.3], it follows that α ∈ Mov1(X).

Let now α ∈ Mov1(X) and let π : Y → X be a morphism from a projective variety Y and let
Z = π(Y ) with its closed embedding ı : Z ↪→ X. Write p for the induced morphism Y → Z.

If dimZ < n − 1, then π∗α = 0. If dimZ = n − 1, then ı∗α ∈ Eff
n−1

(Z) = Upsefn−1(Z)
since we can write α as a limit of effective curve cycles without components in Z. Therefore

π∗α ∈ p∗Upsefn−1(Z) ⊂ Eff
n−1

(Y ).
Finally, suppose π is dominant. Let π′ : Y ′ → X ′ be a flat birational model of π; up to base

change over an alteration ([dJ96]), we can assume that X ′ is smooth. Note that the pullback α′

of α to X ′ is a movable curve by the projection formula and the main result of [BDPP13]. Then
(π′)∗(α′ ∩ [X ′]) = ϕ ◦ (π′∗)

∨(α′) is pseudoeffective, because flat pullbacks preserve effectivity for
cycles. Thus the pushforward π∗α ∩ [Y ] is also pseudoeffective. ) �

Example 4.7. If X satisfies Eff
k
(X) = Sk Nef1(X), where Sk Nef1(X) is the cone in Nk(X)

generated by complete intersections, then

Sk Nef1(X) = PLk(X) = Upsefk(X) = Eff
k
(X).

This is the case for example when X = A×A, and A is a very general complex abelian surface, or
when X = En, where E is a complex elliptic curve with complex multiplication (cf. [DELV11]).

Proposition 4.8. Let π : Y → X be a dominant morphism of projective varieties. If π∗α ∈
Upsefk(Y ) for some α ∈ Nk(X), then α ∈ Upsefk(X).

Proof. Let Z → X be a morphism and let T be a subvariety of Z ×X Y that dominates Z and
has dimT = dimZ. Such a subvariety exists because π is dominant. The result follows from the
projection formula, using the functoriality of pullbacks and the assumption on π∗α. �

Definition 4.1 does not seem practical for checking upsefness. It would be useful to give simpler
criteria and a step in this direction is the following:

Proposition 4.9. Let α ∈ Nk(X). Then α ∈ Upsefk(X) if and only if π∗α ∈ Eff
k
(Y ) for any

π : Y → X that is generically finite onto its image (which can be a proper subset of X).

Proof. By definition any upsef class satisfies the property in the proposition. Conversely, let α be a
class which verifies said property. We use flattenings to check that it is universally pseudoeffective.

Taking π = idX , we see α ∈ Eff
k
(X).

Let π : Y → X be an arbitrary morphism of projective varieties. Let Z be the image of π
inside X, and denote by f : Y → Z the induced dominant map and by ı : Z → X the closed
embedding. Let f̄ : Ȳ → Z̄ be a flattening of f with generically finite morphism τ : Z̄ → Z
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and Z̄ nonsingular. By assumption, (ıτ)∗α ∈ Eff
k
(Z̄). Using the projection formula, it suffices to

show that f̄∗(ıτ)∗α ∈ Eff
k
(Ȳ ). Hence without loss of generality we can assume that π is flat and

dominant and that X is nonsingular. We want to show that π∗α ∈ Eff
k
(Y ). Since X is nonsingular

and π is flat, π∗ is defined on numerical groups and preserves pseudoeffectivity. Furthermore

π∗(α ∩ [X]) = (π∗α) ∩ [Y ] by [Ful84, Theorem 3.2.(d)]. Consequently π∗α ∈ Eff
k
(Y ). �

Remark 4.10. If resolutions of singularities exist, e.g. in characteristic zero, we can replace
“generically finite” by “birational” in the Proposition.

Example 4.11. Suppose that X is a smooth projective fourfold. Let α ∈ Nef1(X) and β ∈ Eff
1
(X).

Let δ ∈ N2(X) be a class such that π∗δ ∈ Eff
2
(Y ) for any π : Y → X generically finite and dominant

(or just birational in characteristic 0). For example δ ∈ Upsef2(X). If γ := α · β + δ ∈ N2(X) is
nef, then γ is universally pseudoeffective.

To see this, we apply Proposition 4.9. It suffices to consider morphisms π : Y → X that are
generically finite onto their image. By precomposing, we may furthermore assume that Y is smooth.
Since codimension-two nef classes on smooth projective varieties of dimension at most three are
pseudoeffective, we may assume dimY = 4. Then π∗γ = π∗α · π∗β + π∗δ is again pseudoeffective

by assumption since π∗β ∈ Eff
1
(Y ) for dominant π. �

An interesting particular case of the above concerns an example of Fulton–Lazarsfeld [FL82],
further investigated in [Pet09]:

Example 4.12. Let F be an an ample rank-two vector bundle on P2 sitting in an exact sequence
0 → O(−n)2 → O(−1)4 → F → 0 for sufficiently large n. The existence of such F is explained in
[Gie71], or [Laz04, Example 6.3.67]. Let

X = P(O ⊕ F∨),

and let

S = P(O) ⊂ X.
Fulton–Lazarsfeld ([FL82, p.100]) verify that S, which can also be seen as the zero section of the
total space X0 = X \ P(F∨) of F , has ample normal bundle (in fact NSX

0 = NSX = F ), but no
multiple of [S] moves in a nontrivial algebraic family inside X0. Peternell ([Pet09]) observes that
the multiples of S also do not move in X, and that [S] is in the strict interior of Eff2(X). Since S
has ample normal bundle, [S] ∈ Nef2(X) (see [Laz04, Corollary 8.4.3]).

We show that in fact [S] belongs to the strict interior of Upsef2(X). Writing [P(O)] · [P(F∨)] = 0
in X, from the Groethendieck relation one can compute that

[S] = (ξ + π∗c1(F )) · ξ + π∗c2(F ),

where π : X → P2 is the bundle map, and where ξ is the class in N1(X) of the relative O(1) Serre
bundle. Observe that ξ+π∗c1(F ) is ample. It is the relativeO(1) for (O⊕F∨)⊗det(F ) = det(F )⊕F ,
which is ample. Also note that ξ is effective, since O ⊕ F∨ has a section, and that π∗c2(F ) is

universally pseudoeffective, being the pullback of a positive multiple of the generator of Eff
2
(P2).

Then the previous example applies to the nef class [S]. Perturbing by a small multiple of the
complete intersection (ξ + (1− ε)π∗c1(F ))2 for sufficiently small ε, one sees that [S] also belongs to
the strict interior of Upsef2(X).

The proof actually shows that if S is a smooth projective surface, and F is an ample vector
bundle on S of rank two, then the zero section of the total space of F sitting as an open subset in
X = P(O ⊕ F∨) is in the strict interior of Upsef2(X). �

Proposition 4.13. Let π : X → Y be an equidimensional morphism of projective varieties with
relative dimension d, and with Y smooth. Then π∗Upsefk(X) ⊂ Upsefk−d(Y ).
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Proof. Let α ∈ Upsef(X). Suppose that f : Z → Y is a morphism from a projective variety Z that
is generically finite onto its image. Precompose to make Z smooth if necessary. Consider the fiber
product (where Z ′ may be reducible)

Z ′ −−−−→
f ′

X

π′
y yπ
Z −−−−→

f
Y

Note that π′ is still equidimensional of relative dimension d, and by the dual of [Ful84, Proposition
6.2.(a)] (i.e. π∗f∗β = f ′∗π

′∗β for all β ∈ Nk−d(Z)) we have f∗π∗α = π′∗f
′∗α in Nk−d(Z). Then as

can be verified by pairing against any P ∈ NdimZ−(k−d)(Z) we obtain

(π′∗f
′∗α) ∩ [Z] = π′∗(f

′∗α ∩ [Z ′]),

which is pseudoeffective by the universal pseudoeffectivity of α. �

We end this subsection with a nontrivial computation of the universally pseudoeffective cones.

Example 4.14. Let X = PC(E), where E is a vector bundle on a smooth curve C. Then

Upsefk(X) = Nefk(X) for all k.

Proof. Since the inclusion Upsefk(X) ⊆ Nefk(X) holds true in general, it is enough to show that
every nef class is universally pseudoeffective. Consider the Harder–Narasimhan decomposition E =
E0 ⊃ E1 ⊃ . . . ⊃ El = 0 with semistable successive quotients Qi = Ei−1/Ei of slopes µi := degQi

rank(Qi)

forming an increasing sequence µ1 < µ2 < . . . < µl−1.
By [FL13, §7.1],

Nefk(X) = 〈ξk + ν(k)ξk−1f, ξk−1f〉,
where ξ is the class of the relative Serre line bundle OE(1) of the projective bundle map π : X → C,

where f is the class of a fiber of π, and the ν(k)’s are computed in terms of the ranks and degrees
of the Qi. Moreover ξk−1f = (ξ + af)k−1f for any a ∈ R. In particular it is an intersection of
nef divisor classes, therefore universally pseudoeffective as well. It is then enough to show that
ξk + ν(k)ξk−1f is upsef.

Let r = rank(Q1). By [FL13, §7.1], we have ν(k) = −kµ1 for k ≤ r. Therefore ξk + ν(k)ξk−1f =
(ξ−µ1f)k is the self-intersection of the nef class ξ−µ1f , which is upsef. In particular the statement
of the example is true when E is semistable. Assume henceforth that k > r.

Let h : Z → C be any morphism from a projective variety Z, and let F : Z → X be a morphism
such that h = π◦F . Such F corresponds to a surjection h∗E → L onto a line bundle on Z, and then
L = F ∗OE(1). By abuse we keep the notation ξ = c1(L) for its class in N1(Z) and the notation f

for the pullback of the fiber of π to Z. We want to show that ξk + ν(k)ξk−1f is psef.
If h∗E1 maps to 0 inside L, then F (Z) ⊂ P(Q1) ⊂ P(E) and, since k > r = dimP(Q1), we

have ξk + ν(k)ξk−1f = 0. If not, then h∗E1 maps onto L⊗ I for some nonzero ideal sheaf I on Z.
One can show that I = JOZ , where J ⊂ OX is the ideal sheaf of P(Q1) (see for example [Ful11,

Proposition 2.4]). The blow-up Z̃ := BlIZ is the component of the fiber product Z×X BlP(Q1)P(E)

that dominates Z. By [Ful11, Proposition 2.4], we have an induced morphism Z̃ → P(E1). Denote
by ξ1 the class of the Serre bundle for the map P(E1) → C and by e the class of the exceptional

divisor on BlP(Q1)P(E). By abuse we keep the notation ξ, ξ1, e, and f for their pullbacks to Z̃.

We want to show that ξk + ν(k)ξk−1f is psef on Z. By the projection formula it is enough to

verify this after pulling back to Z̃. By [Ful11, Proposition 2.4], we have

(5) e(ξ − µ1f)r = 0 and e = ξ − ξ1.
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Rewrite
ξk + ν(k)ξk−1f = (ξ − µ1f)r(ξk−r + (ν(k) + rµ1)ξk−r−1f).

By (5), given that ξ − µ1f is a nef divisor class, it is enough to show that

ξk−r1 + (ν(k) + rµ1)ξk−r−1
1 f

is psef on Z̃. This holds by induction because ν(k) + rµ1 = ν
(k−r)
1 , where ν

(i)
1 give the nontrivial

boundaries ξi1 + ν
(i)
1 ξi−1

1 f of Nefi(P(E1)) as follows from [FL13, §7.1]. �

5. Basepoint free classes

One common way of constructing “positive” classes on X is to take the class of a fiber of a
morphism from X. These classes are always nef and effective. In fact, for any subvariety V of X
we can find a fiber that has expected dimension of intersection with V . In this section, we define
the notion of a basepoint free class which satisfies similar properties.

Definition 5.1. Let X be a projective variety of dimension n. We say that α ∈ Nn−k(X) is a
strongly basepoint free class if there is:

• an equidimensional quasi-projective scheme U of finite type over K,
• a flat morphism s : U → X,
• and a proper morphism p : U →W of relative dimension n− k to a quasi-projective variety
W such that each component of U surjects onto W

such that
α = (s|Fp)∗[Fp]

where Fp is a general fiber of p. Note that the resulting class is independent of the choice of fiber.
We say that p represents α.

When X is smooth, the basepoint free cone BPFk(X) is defined to be the closure of the cone
generated by such classes.

Remark 5.2. The terminology indicates that the class α is “basepoint free” in the following sense:
for every subvariety V ⊂ X there is an effective cycle of class α that intersects V in the expected
dimension. (To see this, let d denote the codimension of V . Then s−1V has codimension at least d
in U by flatness, and s−1(V )∩Fp has codimension at least d in Fp. Then V ∩s(Fp) has codimension
at least d in s(Fp) by upper-semicontinuity of fiber dimensions.)

Even though we define basepoint freeness using families of cycles, which gives it a “covariant” feel,
we will show that BPFk(X) is preserved by pullback between smooth varieties, but BPFk(X)∩ [X]
is not preserved by (arbitrary) pushforward. Thus for smooth varieties the basepoint free cone is
really a “contravariant” cone.

It is clear that BPFk(X) ⊂ Nefk(X) and BPFk(X) ∩ [X] ⊂ Effk(X). Basepoint free classes also
have an important property that we do not know for the pliant cone.

Lemma 5.3. Let π : X → Y be a flat morphism of smooth projective varieties. Then π∗BPFk(X) ⊂
BPFk(Y ).

Proof. Immediate. �

We next verify that, as suggested by Remark 5.2, for strongly basepoint free cycles we can exhibit
explicit effective cycles that represent numerical intersections or pullbacks. We will use these to
verify that BPFk satisfies the main properties desired for positive cones.

Lemma 5.4. Let f : X → Y be a projective morphism to a smooth projective variety Y . Let
p : U → W be a strongly bpf family on Y with flat map s : U → Y . For every top dimensional
(effective) cycle T on a general fiber Uw of p there exists a canonically defined (effective) cycle
X ∩f T with support equal to X ×Y |T |, and whose pushforwards represent:



POSITIVE CONES OF DUAL CYCLE CLASSES 17

i) f∗(s|T )∗[T ] ∩ [X] ∈ N∗(X) on X.
ii) (s|T )∗f∗[X] ∩ [T ] ∈ N∗(|T |) on |T |.

iii) (s|T )∗[T ] · f∗[X] ∈ N∗(Y ) on Y .

In case i), if T = Uw, then X ∩f Uw = U ′w, where U ′ = U ×Y X. In particular, if X is also smooth,

then f∗BPFk(Y ) ⊂ BPFk(X).

Proof. Let Γf : X → X × Y be the graph of f . Since Y is smooth, Γf is a regular embedding.
Consider the flat base change map X × U → X × Y . For general w ∈ W , the arguments of
Remark 5.2 and the regularity of the embedding Γf show that X ×Y Uw = X ×X×Y (X × Uw) is
equidimensional of the expected dimension or empty. The same is true for any top dimensional
cycle T on Uw.

We are in a setting of proper intersection (cf. [Ful84, §7.1]). Then by counting every component
of X×Y |T | with its (positive) multiplicity of intersection (again in the sense of [Ful84, §7.1]) we get
a canonically defined effective cycle X ∩f T supported on it and representing X ·Γf

(X × T ) in the

sense of [Ful84, §6.2]. But this is [X] ·f [T ] = f ![T ] as in [Ful84, Definition 8.1.2]. Its pushforward

to X is f !(s|T )∗[T ] = [X] ·f (s|T )∗[T ] by the projection formula [Ful84, Proposition 8.1.1.(c)].
Since Y is nonsingular, by [Ful84, Example 15.2.16.(b)], there exists a Chern polynomial with

Q-coefficients such that P ∩ [Y ] = (s|T )∗[T ]. Then by [Ful84, Example 8.1.6 and Corollary 8.1.3],

[X] ·f (P ∩ [Y ]) = (f∗P ∩ [X]) ·f [Y ] = f∗P ∩ [X] ∈ A∗(X).

But the numerical class of f∗P ∩ [X] is by definition f∗(s|T )∗[T ] ∩ [X] ∈ N∗(X). The pushforward
to |T | is analogous, and the pushforward to Y is computed by the projection formula.

When X is also smooth and T = Uw, then it is enough to observe that X ·Γf
(X × Uw) = [U ′w]

which is true because Γf is a regular embedding. (See also the proof of [Ful84, Corollary 8.1.3]). �

Corollary 5.5. Let π : X → Y be a morphism of projective varieties with Y smooth. Let p : U →W
be a strongly bpf family on Y of class α, with flat map s : U → Y . Suppose that V is a cycle on
X whose support is contracted by π. Then the class [V ] · π∗α is represented by a cycle on X whose
support is contracted by π.

Proof. For w general, we may suppose that for any component Vi of V the set-theoretic intersection
of π(Vi) with Supp(Uw) has the expected dimension. Consider the intersection cycle Vi ∩f Uw as
defined in Lemma 5.4. Since each component of this cycle has the expected codimension, the map
from any component of this set to f(Vi) ∩ Supp(Uw) has positive dimensional fibers. �

Corollary 5.6. If X is a smooth projective variety, then the intersection of basepoint free classes
on X is basepoint free.

Proof. Suppose that p : U → W and p′ : U ′ → W ′ are strongly bpf families on X. Consider the
diagram

U ×X U ′ −−−−→ Uy ys
U ′ −−−−→

s′
X

The composed map U ×X U ′ → X is flat and the family p× p′ : U ′×X U →W ×W ′ represents the
intersection class by Lemma 5.4. �

Lemma 5.7. Let X be a smooth projective variety. Then PLk(X) ⊆ BPFk(X) ⊆ Upsefk(X).

Proof. To see the first inclusion, by Lemma 5.4 it suffices to show that Eff
k
(G) = BPFk(G) for a

Grassmannian G. But we can construct flat families representing elements Eff
k
(G) using the group

action. More precisely, suppose Z is a Schubert variety on G(V ). Set W = PGL(V ), and consider
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the family U ⊂W ×G(V ) whose fiber over g ∈W is gZ. Then the projection s : U → G(V ) is flat
since it is PGL(V )-equivariant, showing that [Z] ∈ BPF(G(V )).

By Lemma 4.8, we may check containment in Upsef after pulling back via a dominant map. In
particular, by passing to an alteration to verify the Upsef property it suffices to consider pullbacks
to smooth varieties. The second inclusion then follows from Lemma 5.4. �

Corollary 5.8. Let X be a smooth projective variety. Then BPFk(X) is a full-dimensional salient
cone.

Example 5.9. The proof of Lemma 5.7 shows that BPFk(H) = Upsefk(H) = Eff
k
(H) ⊂ Nefk(X)

for any smooth projective homogeneous space H. When H is one of the examples of abelian varieties
of [DELV11], the last inclusion may be strict.

Example 5.10. Let E be a vector bundle over P1, and let X = P(E). Then BPFk(X) = Nefk(X)
for all k.

We follow the notation of Example 4.14 and do induction on the number of semistable factors of
E. When E is semistable, then X is isomorphic to a product. The generators (ξ−µ1f)k and ξk−1f

of Nefk(X) are both pliant and we conclude by Lemma 5.7.
For general E, the same argument as in the semistable case works as long as k ≤ r = rankQ1. It

is enough to check that ξk+ν(k)ξk−1f is strongly basepoint free for all k > r. Let Z := BlP(Q1)P(E)
with blow-down map σ : Z → X and bundle map η : Z → P(E1). On Z we have

σ∗(ξk + ν(k)ξk−1f) = σ∗(ξ − µ1f)r · η∗(ξk−r1 + ν
(k−r)
1 ξk−r−1

1 f1).

Since we work over P1, the varieties X and Z are toric. Since the class ξ − µ1f is nef, it is also

semiample and in particular strongly basepoint free. The class ξk−r1 + ν
(k−r)
1 ξk−r−1

1 f1 is strongly
basepoint free by induction. From (the proofs of) Lemma 5.4 and Corollary 5.6, it follows that

σ∗(ξk + ν(k)ξk−1f) is strongly basepoint free.
Again because we work over P1, the bundle E is split. Then we also have an inclusion P(E1) ⊂

P(E) = X such that P(E1) ∩ P(Q1) = ∅ in X and [P(E1)] = (ξ − µ1f)r. Thus Z = BlP(Q1)P(E)

contains the copy σ−1P(E1) of P(E1) that does not meet the exceptional locus of σ, and with
numerical class σ∗(ξ − µ1f)r.

Furthermore, σ−1P(E1) is a complete intersection of r sections of ξ − µ1f corresponding to a
basis of the trivial component of E ⊗ OP1(−µ1). Let p denote the corresponding basepoint free
family. It follows that the general element of the basepoint free family constructed by intersecting
the pullback of p and the pullback basepoint free family from P(E1) does not meet the exceptional
locus of σ. Up to shrinking the base, we see this as a family of cycles on X representing the class
ξk + ν(k)ξk−1f , which is then also strongly basepoint free. �

The following example shows that the basepoint free cone of curves coincides with the nef cone
for any smooth Mori Dream Space X. The curves we construct come from small Q-factorializations
of X which extract the Zariski decomposition of divisors on X.

Example 5.11. Let X be a smooth Mori Dream Space of dimension n (for example, a toric variety).
We prove that BPFn−1(X) = Nefn−1(X).

Recall that by [BDPP13] the cone Nefn−1(X) is generated by the positive products 〈Dn−1〉 as D
varies over all movable divisors (where 〈−〉 denotes the positive product). We can turn this into a
geometric construction as follows. Fix an ample divisor A on X. Let α be a class on an extremal
ray of Nefn−1(X) and let D be a divisor on the boundary of the movable cone of divisors such that
the rays spanned by 〈(D + εA)n−1〉 approach the ray spanned by α. Then the same is true if we
replace A by any big divisor B using the continuity of the positive product.

There is a small birational contraction φD : X 99K X ′ so that D′ := φD∗D is a semiample divisor;
for simplicity, we rescale D so that we may suppose D′ is basepoint free. Let W be a common
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smooth resolution of X and X ′ with birational maps ψ : W → X and ψ′ : W → X ′. Fix an ample
divisor A′ on X ′ and let B be the strict transform class on X. Note that for sufficiently small
δ > 0, X ′ is the minimal model for D+ δB and D′ + δA′ is the pushforward of this class. Then for
sufficiently small δ, we have

〈(D + δB)n−1〉 = ψ∗〈ψ∗(D + δB)n−1〉
= ψ∗〈ψ′∗(D′ + δA′)n−1〉
= φ−1

D∗〈(D
′ + δA′)n−1〉.

Define a flat family of curves pδ : C →W on X ′ by taking complete intersections of n− 1 general
elements of a very ample linear series which is a multiple of D′+ δA′ (for sufficiently small rational
δ). Let U ⊂ X ′ be the open subset on which φD is an isomorphism. Note that the complement of
U has codimension-two. Since C defines a flat family of curves, the preimage of U has complement
of codimension-two in C. Since pδ has fiber dimension one, this set does not dominate the base W .
Thus by removing a proper closed subset from W we obtain a family of curves p0

δ : C0 →W 0 whose
map to X ′ is flat and factors through U .

The strict transform of a general member of this family to X defines a basepoint free curve class.
Since this strict transform avoids the exceptional locus of the map φD, we see that the limit of the
rays spanned by the fibers of p0

δ as δ goes to 0 is the same as α, finishing the proof. �

Finally, we recall the example of [BH15] which proves that universally pseudo-effective classes
need not be basepoint free.

Example 5.12. Let X be a smooth projective variety and suppose that some multiple of a class
α ∈ N2(X) is represented by an irreducible surface S. Then the Hodge index theorem shows that
the pairing

N1(X)×N1(X)→ R; (D1, D2) 7→ D1 ·D2 · α
must have at most one positive eigenvalue.

Using a combinatorial argument [BH15, Section 5] constructs a smooth toric fourfold X and a
nef surface class α satisfying the following properties:

(1) α generates an extremal ray of Nef2(X).
(2) The signature of the pairing on N1(X) ×N1(X) given by intersection against α has more

than one positive eigenvalue.

By (2) and a perturbation argument, we see that α is not a limit of classes of irreducible R-cycles.
Combining with (1), we see that α is not a limit of a sum of classes which are nef and represent
irreducible R-cycles. Thus α 6∈ BPF2(X). However, by Example 4.5 we have α ∈ Upsef2(X).

6. Questions

6.1. The pliant cone. We have defined the pliant cone in terms of monomials in Schur classes of
globally generated bundles on X. The motivation for using Schur classes is that with this definition

it is easy to see that Eff
k
(G) = PLk(G) for any Grassmann variety G. This is used in the proof of

Lemma 3.14, where we say that since complete intersections are big, they are also in the interior of
the pliant cone on G.

Question 6.1. What happens if we change the definition of the pliant cone to include only mono-
mials in Chern classes, or only monomials in dual Segre classes of vector bundles?

Example 6.2. Let X = G(2, 4) and let Q be the universal quotient bundle of rank 2 on X. Then

Eff
2
(X) is generated by the Schur classes s(1,1)(Q) = c2

1(Q)− c2(Q) and s(2)(Q) = c2(Q) of Q. Note
that s(1,1)(Q) = s2(Q∨), i.e. the second dual Segre class.



20 MIHAI FULGER AND BRIAN LEHMANN

If we use only monomials in Chern classes of Q, then we get the smaller cone generated by c2
1(Q)

and c2(Q). While if we use only monomials in dual Segre classes of Q, we obtain the “complemen-
tary” cone generated by s2(Q∨) = c2

1(Q)− c2(Q) and s2
1(Q∨) = c2

1(Q).
However, if we also use R, the dual of the universal subbundle of rank 2, so that we have an

exact sequence 0 → R∨ → O⊕4
X → Q → 0 and R is globally generated, then c1(R) = c1(Q) and

c2(R) = s2(Q∨). Therefore Eff
2
(X) is generated by the Chern monomials c2(R) and c2(Q), or by

the dual Segre monomials s2(Q∨) and s2(R∨). �

It is interesting to see if in higher codimension one can express the classes of Schubert cycles on
Grassmannians as Chern monomials and as Segre monomials of globally generated bundles obtained
by tensoring Schur functors Sλ(R)⊗ Sµ(Q).

Example 3.13 describes the pliant cone for products of Grassmann varieties. The next example
to consider is homogeneous varieties.

Question 6.3. Let f : X → H be a morphism to a projective nonsingular homogeneous variety

(e.g. partial flag variety, or an abelian variety) and let α ∈ Eff
k
(H). Is it true that f∗α ∈ PLk(X)?

Equivalently, is it true that Eff
k
(H) = PLk(H)?

A property of nefness is that it can be checked on dominant covers. It is not clear that the same
is true for pliancy.

Question 6.4. Let X be a (smooth) (complex) projective variety, and let π : Y → X be a dominant
projective morphism. Assume that π∗α ∈ PLk(Y ). Then does α ∈ PLk(X)?

By analogy with the other notions of positivity, we ask:

Question 6.5. Let π : Y → X be a flat morphism from a projective variety Y to a smooth
projective variety X of relative dimension d. Suppose that α ∈ PLk+d(Y ). Then is π∗α ∈ PLk(X)?

6.2. Chern classes for ample vector bundles. Another way to modify the definition of the pliant
cone is to allow arbitrary nef vector bundles, instead of just globally generated ones. However, it
is not clear if the resulting cone consists of effective classes. The following question is also posed in
[FL83] and [DELV11, §6].

Question 6.6. Let E be a nef (or ample) vector bundle on a projective variety, and let λ be a
partition. Is the Schur class sλ(E) ∩ [X] pseudoeffective? Is this true for Chern classes?

Since nefness is preserved by pullback, this is the same as asking if sλ(E) is universally pseu-
doeffective. The answer is yes for dual Segre classes sk(E

∨) := s(1r)(E), i.e. when λ is the
partition (1, . . . , 1) of k. The answer is also known to be yes for the Chern classes ck(E) when
k ∈ {1, dimX−1,dimX}. Quite generally it is a consequence of a result of Bloch–Gieseker ([Laz04,

Theorem 8.2.1]) that sλ(E) ∈ Nefk(X) for any partition λ of length k. The first unknown case is
c2 for nef bundles on fourfolds. The issue here is that if say E is ample, then Symm(E) (or in char-
acteristic zero also E⊗m) is globally generated for large m, but c2(E) is not a scalar multiple of the
pliant classes c2(Symm(E)) or c2(E⊗m). It is also true that if E is p-ample in characteristic p > 0
(cf. [Gie71]), then ck(E) is pseudoeffective for all k, since ck(E) is proportional to ck(E

pe), and the
iterated Frobenius pullback Ep

e
is globally generated for large e. Gieseker [Gie71] constructs an

example of an ample bundle on P2 that is not p-ample.

Question 6.7. Let E be a nef (i.e. OP(E)(1) is a nef line bundle) vector bundle on X. Is it true
that sλ(E) is pliant?

Another question related to Question 6.6 is:

Question 6.8. Let X be a smooth projective variety and let Y be a closed subvariety with nef (or
ample) normal bundle. Is [Y ] universally pseudoeffective?
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If f : Z → X is a morphism of projective varieties, then f∗[Y ] = p1∗(Γf · [Z × Y ]), where
p1 : Z×X → Z is the first projection, and Γf ⊂ Z×X is the graph of f . Given that NZ×Y Z×X =
(p1|Y )∗NYX is still nef, the universal pseudoeffectivity of Chern classes of nef bundles would imply
the pseudoeffectivity of Γf · [Z×Y ] in view of [Ful84, Proposition 6.1.(b)], hence also that of f∗[Y ].
It is known ([Laz04, Corollary 8.4.3]) that [Y ] is nef.

If Schur polynomials in Chern classes of nef bundles are not universally pseudoeffective, then it
is interesting to ask what cone they generate. In particular, it would be very interesting if they
generate the entire nef cone. The following question is a step in this direction:

Question 6.9. Let E and F be nef vector bundles on X, and let λ and µ be partitions. Is
sλ(E) · sµ(F ) nef?

A positive answer, applied to the examples of [DELV11], would show that Nefk(X) is not the
closure of the cone generated by classes sλ(E) with E nef and λ a partition of k. A negative answer
would show that the answer to Question 6.6 is also no.

6.3. The universally pseudoeffective cone. By considering all maps of projective varieties π :
Y → X in the definition of universal pseudoeffectivity, we guaranteed that this notion is preserved
by pullback and in particular stable under products, thus removing some of the pathologies of
nefness exhibited in [DELV11].

Question 6.10. Let α ∈ Nk(X) be such that ı∗α ∈ Eff
k
(Y ) for all embeddings of closed subvarieties

ı : Y ↪→ X. Then is α ∈ Upsefk(X)?

A slightly weaker version of this also appears in [DELV11]:

Question 6.11. Let X be a smooth (complex) projective variety. Let α ∈ Nk(X) be such that

α · [Y ] is pseudoeffective for any closed subvariety Y ⊂ X. Is it true that α ∈ Upsefk(X)?

This is weaker than the previous question because the pseudoeffectivity of α · [Y ] = ı∗ı
∗α is only

implied by that of ı∗α. We expect that the answer to the next question is no, but a counterexample
is missing:

Question 6.12. Let X be a (smooth) (complex) projective variety. Is Upsefk(X) = Eff
k
(X) ∩

Nefk(X)?

June Huh asks whether a stronger statement is true:

Question 6.13. Let X be a smooth complex projective variety. Is Eff
k
(X) ∩Nefk(X) the closure

of the cone generated by classes α such that for each subscheme T ⊂ X there exists a Q-cycle Z
whose support meets T properly and with [Z] = α?

The smallest dimension where a counterexample might exist is n = 4 and k = 2. It is also
expected that a counterexample should exist in any birational equivalence class of sufficiently large
dimension.

6.4. Curves. Curves provide an important test case for understanding the various positive cones.
Let X be a smooth projective variety of dimension n and define the cone CIn−1(X) ⊂ Nn−1(X)
to be the cone generated by complete intersections of nef divisors. Note that CIn−1(X) is a good
cone: it is full-dimensional, salient, nef, and contains complete intersections of ample divisors in its
interior.

We have Nefn−1(X) = Upsefn−1(X) and

CIn−1(X) ⊂ PLn−1(X) ⊂ BPFn−1(X) ⊂ Nefn−1(X).

The question is whether any other equalities hold. Example 3.11 shows that there can be a strict
containment CIn−1(X) ( PLn−1(X), and Example 5.11 gives many examples where CIn−1(X) (
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BPFn−1(X). However, one wonders if for example the (n− 1)-dual Segre class of an ample vector
bundle (corresponding to the partition λ = (1n−1)) is contained in CIn−1(X).

Recall that by the main result of [BDPP13], the nef cone of curves is generated by pushforwards of
complete intersections of ample divisors on birational models. It is sometimes inconvenient that this
cone does not coincide with CIn−1(X), and it would be very interesting if the complete intersection
cone could be recovered naturally from a different perspective.

6.5. Other positive cones. There are many other ways to construct positive cones. We have
already discussed several variations of the definition of the pliant cone: one can use a smaller set
of classes (such as dual Segre classes; see Section 6.1) or a larger set of bundles (such as all ample
bundles; see Section 6.2). It would be very interesting to have a better understanding of the resulting
cones.

One can also define many minor variations of the basepoint free cone. For example, one can
define BPFk(X) by taking the cone generated by classes of k-dimensional components of arbitrary
flat families of subschemes. The resulting cone also contains the pliant cone, but it is not clear how
it differs otherwise.

Finally, there are many other notions of positivity in the literature which may be suitable for
constructing cones. First, [Har70] defines an ample subvariety of a smooth variety X to be an
l.c.i. subscheme with ample normal bundle. Unfortunately, it is not clear that the classes of such
subvarieties span Nk(X); indeed, this is a very subtle question even just for l.c.i. subvarieties. An
alternative is proposed by [Ott12], which defines positivity by the q-ampleness of the exceptional
divisor on a blow-up. Ottem has communicated to us a sketch of the fact that the classes of such
subvarieties span a full-dimensional cone in Nk(X).

Alternatively, one can focus on the positivity of currents as discussed in [BDPP13] and [DELV11].
Unfortunately, to relate the resulting cones with cycles in higher codimensions it seems that one
often must assume some version of the Hodge Conjecture. Nevertheless, it would be useful to see
some different approaches to positivity from this perspective.
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