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Abstract. We characterize the movable cone of divisors using inter-
sections against curves on birational models.

1. Introduction

Cones of divisors play an essential role in describing the birational geom-
etry of a smooth complex projective variety X. A key feature of these cones
is their interplay with cones of curves via duality statements. The dual of
the nef cone and the pseudo-effective cone of divisors were determined by
[Kle66] and [BDPP13] respectively. We consider the third cone commonly
used in birational geometry: the movable cone of divisors.

Definition 1.1. Let X be a smooth projective variety over C. The movable

cone Mov
1
(X) ⊂ N1(X) is the closure of the cone generated by classes of

effective Cartier divisors L such that the base locus of |L| has codimension

at least 2. We say a divisor is movable if its numerical class lies in Mov
1
(X).

Definition 1.2. Let X be a smooth projective variety over C. We say that
an irreducible curve C on X is movable in codimension 1, or a mov1-curve,
if it deforms to cover a codimension 1 subset of X.

It is natural to guess that a divisor L is movable if and only if it has non-
negative intersection with every mov1-curve. This is false, as demonstrated
by [Pay06] Example 1. Nevertheless, Debarre and Lazarsfeld have asked
whether one can formulate a duality statement for movable divisors and
mov1-curves. This has been accomplished for toric varieties in [Pay06] and
for Mori Dream Spaces in [Cho12b] by taking other birational models of
X into account. Our main theorem proves an analogous statement for all
smooth varieties.

Before stating this theorem, we need to analyze the behavior of the mov-
able cone under birational transformations. Suppose that φ : Y → X is
a birational map of smooth projective varieties and that L is a movable
divisor on X. It is possible that φ∗L is not movable – for example, some φ-
exceptional centers could be contained in the base locus of L. The following
definition from [Nak04] allows us to quantify the loss in movability.
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Definition 1.3. Let X be a smooth projective variety over C and let L be
a pseudo-effective R-divisor on X. Fix an ample divisor A on X. For any
prime divisor Γ on X we define

σΓ(L) = lim
ε→0+

inf{multΓ(L′)|L′ ≥ 0 and L′ ∼R L+ εA}

where ∼R denotes R-linear equivalence. As demonstrated by [Nak04] III.1.5
Lemma, σΓ is independent of the choice of A.

Suppose that E is an exceptional divisor for a birational map φ : Y →
X. The R-divisor σE(φ∗L)E represents the “extra contribution” from E
to the non-movability of φ∗L. By subtracting these contributions, we can
understand the geometry of the original divisor L.

Definition 1.4. Let X be a smooth projective variety over C and let L be
a pseudo-effective R-divisor on X. Suppose that φ : Y → X is a birational
map from a smooth variety Y . The movable transform of L on Y is defined
to be

φ−1
mov(L) := φ∗L−

∑
E φ−exceptional

σE(φ∗L)E.

Note that the movable transform is not linear and is only defined for
pseudo-effective divisors. We can now state our main theorem.

Theorem 1.5. Let X be a smooth projective variety over C and let L be a
pseudo-effective R-divisor. L is not movable if and only if there is a mov1-
curve C on X and a birational morphism φ : Y → X from a smooth variety
Y such that

φ−1
mov(L) · C̃ < 0

where C̃ is the strict transform of a generic deformation of C.

There does not seem to be an easy way to translate Theorem 1.5 into a
statement involving only intersections on X. This is a symptom of the fact
that the natural operation on movable divisors is the push-forward and not
the pull-back.

The proof of Theorem 1.5 is accomplished by reinterpreting the orthogo-
nality theorem of [BDPP13] and [BFJ09] using the techniques of [Leh13].

Example 1.6. For surfaces Theorem 1.5 reduces to the usual duality of the
nef and pseudo-effective cones.

Example 1.7. Suppose that X is a smooth Mori dream space and L is an
R-divisor on X. The positive part Pσ(L) is a movable divisor. By running
the Pσ(L)-MMP as in [HK00], we obtain a small modification φ : X 99K X ′,
a morphism f : X ′ → Z, and an ample R-divisor A on Z such that

φ−1
∗ Pσ(L) ≡ f∗A

where φ−1
∗ denotes the strict transform.
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Let W be any smooth variety admitting birational maps ψ : W → X and
ψ′ : W → X ′. Using [Nak04] III.5.5 Proposition, one verifies that

ψ−1
mov(L) ≡ ψ′∗f∗A+ ψ−1

∗ Nσ(L)

where ψ−1
∗ Nσ(L) is a (f ◦ ψ′)-exceptional divisor (see [Cho12b]). Proposi-

tion 3.2 guarantees the existence of a curve that has negative intersection
with ψ−1

mov(L) that deforms to cover a component of ψ−1
∗ Nσ(L) and is not

contracted by ψ′. The push forward of this curve to X ′ is the mov1-curve
on a small modification of X that realizes the failure of L to be movable as
in [Pay06] and [Cho12b]. (However the conclusion of Theorem 1.5 is weaker
than the results of the cited references since the computation occurs on W
rather than X ′.)

Example 1.8. Suppose that X is a smooth projective variety with KX

numerically trivial. [Cho12b] explains how to apply techniques of the min-

imal model program to analyze Mov
1
(X). Just as before, a divisor class is

movable if and only if its strict transform class on every Q-factorial small
modification has non-negative intersection with every mov1-curve. When X
is hyperkähler, [Huy03] and [Bou04] show that in fact it suffices to consider
small modifications that are also smooth hyperkähler varieties.

More generally, [Cho12b] shows that small modifications can detect cer-

tain regions of Mov
1
(X) by using the minimal model program.

We will also prove a slightly stronger version of Theorem 1.5 that involves
the non-nef locus B−(L) of L (which will be defined in Definition 2.2).
Although the non-nef locus represents the “obstruction” to the nefness of L,
it is not true that B−(L) is covered by curves C with L · C < 0. However,
Proposition 3.2 formulates a birational version of this negativity using the
movable transform.

Finally, we will use Proposition 3.2 to understand k-movability for k > 1.
Define the k-movable cone of X to be the closure of the cone in N1(X)
generated by effective Cartier divisors whose base locus has codimension at
least k − 1. We say that a divisor is k-movable if its numerical class lies in

the k-movable cone. Note that the 1-movable cone is just Mov
1
(X).

Debarre and Lazarsfeld have asked whether there is a duality between
the k-movable cone of divisors and the closure of the cone of irreducible
curves that deform to cover a codimension k subset (for 0 < k < dimX).
Corollary 3.3 constructs a birational version of this duality. Again, this
generalizes results for toric varieties in [Pay06] and for Mori dream spaces
in [Cho12a].

1.1. Acknowledgements. Thanks to the referee for the careful revisions.

2. Background

Throughout X will denote a smooth projective variety over C. We use the
notations ∼,∼Q,∼R,≡ to denote respectively linear equivalence, Q-linear
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equivalence, R-linear equivalence, and numerical equivalence of R-divisors.
The volume of an R-divisor L is

volX(L) = lim sup
m→∞

h0(X, bmLc)
mdimX

.

2.1. Divisorial Zariski decomposition. Let L be a pseudo-effective R-
divisor on a smooth projective variety X. Recall that for a prime divisor Γ
on X we have defined

σΓ(L) = lim
ε→0+

inf{multΓ(L′)|L′ ≥ 0 and L′ ∼R L+ εA}

where A is any fixed ample divisor. [Nak04] III.1.11 Corollary shows that
there are only finitely many prime divisors Γ on X with σΓ(L) > 0, allowing
us to make the following definition.

Definition 2.1 ([Nak04] III.1.16 Definition). Let L be a pseudo-effective
R-divisor on X. Define

Nσ(L) =
∑

σE(L)E Pσ(L) = L−Nσ(L)

The decomposition L = Nσ(L) + Pσ(L) is called the divisorial Zariski de-
composition of L.

Note that for a birational morphism φ : Y → X we have φ−1
mov(L) =

Pσ(φ∗L)+φ−1
∗ Nσ(L) where φ−1

∗ denotes the strict transform. The divisorial
Zariski decomposition is closely related to the non-nef locus of L.

Definition 2.2. Let X be a smooth projective variety and let L be a pseudo-
effective R-divisor on X. We define the R-stable base locus of L to be the
subset of X given by

BR(L) =
⋂
{Supp(L′)|L′ ≥ 0 and L′ ∼R L}.

The non-nef locus of L is then defined to be

B−(L) =
⋃

A ample R-divisor

BR(L+A).

The following proposition records the basic properties of the divisorial
Zariski decomposition.

Proposition 2.3 ([Nak04] III.1.14 Proposition, III.2.5 Lemma, V.1.3 The-
orem). Let X be a smooth projective variety and let L be a pseudo-effective
R-divisor.

(1) Pσ(L) is a movable R-divisor. In particular for any prime divisor E
the restriction Pσ(L)|E is pseudo-effective.

(2) If φ : Y → X is a birational morphism of smooth varieties and Γ
is a prime divisor on Y that is not φ-exceptional, then σΓ(φ∗L) =
σφ(Γ)(L).

(3) The union of the codimension 1 components of B−(L) coincides with
Supp(Nσ(L)).
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2.2. Numerical dimension and orthogonality. Given a pseudo-effective
divisor L, the numerical dimension ν(L) of [Nak04] and [BDPP13] is a nu-
merical measure of the “positivity” of L. There is also a restricted variant
νX|V (L) introduced in [BFJ09]; since the definition is somewhat involved,
we will only refer to a special subcase using an alternate characterization
from [Leh13].

Definition 2.4. Let L be a pseudo-effective divisor on X. Fix a prime
divisor E on X and choose L′ ≡ L whose support does not contain E. We
say νX|E(L) = 0 if

lim inf
φ

vol
Ẽ

(Pσ(φ∗L′)|
Ẽ

) = 0

where φ : X̃ → X varies over all birational maps and Ẽ denotes the strict
transform of E.

The connection with geometry is given by the following version of the
orthogonality theorem of [BDPP13] and [BFJ09].

Theorem 2.5 ([BFJ09], Theorem 4.15). Let L be a pseudo-effective divisor.
If a prime divisor E ⊂ X is contained in Supp(Nσ(L)) then νX|E(L) = 0.

Proof. Fix an ample divisor A. Choose an ε > 0 sufficiently small so that
Supp(Nσ(L)) = Supp(Nσ(L + εA)) and apply [BFJ09] Theorem 4.15. The
comparison between the numerical dimension of [BFJ09] and Definition 2.4
is given by [Leh13] Theorem 7.1. �

3. Proof

Proof of Theorem 1.5: Suppose that L is not movable. Denote by E a fixed
component of Nσ(L); we may replace L by a numerically equivalent divisor
whose support does not contain E.

Fix a sufficiently general ample divisor A on X and choose ε small enough
so that E is a component of Nσ(L+εA). Applying the orthogonality theorem
of [BDPP13] to L+ εA, we see that for any fixed positive constant δ there is

a birational map φ : Y → X such that the strict transform Ẽ of E satisfies
vol

Ẽ
(Pσ(φ∗(L+ εA))|

Ẽ
) < δ. In particular, setting δ = volE(εA|E), there is

a choice of birational map φ so that:

(1) vol
Ẽ

(Pσ(φ∗(L+ εA))|
Ẽ

) < volE(εA|E) = vol
Ẽ

(εφ∗A|
Ẽ

).

(2) Ẽ is smooth.
(3) The strict transform of every component of Nσ(L) is disjoint.

There is a unique expression

Pσ(φ∗(L+ εA)) = Pσ(φ∗L) + εφ∗A+ α(ε)Ẽ + F

where F is an effective divisor with F ≤ Nσ(φ∗L) whose support does not

contain E and α(ε) is positive and goes to 0 as ε goes to 0. Since α(ε)Ẽ+F ≤
Nσ(φ∗L) we see that α(ε) ≤ σE(L).
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Note that Pσ(φ∗L), εφ∗A, and F all remain pseudo-effective when re-

stricted to Ẽ. Condition (2) above, along with Lemma 3.1, show that the

restriction (Pσ(φ∗L) + α(ε)Ẽ)|
Ẽ

is not pseudo-effective. This implies that

(Pσ(φ∗L) + tẼ)|
Ẽ

can not be pseudo-effective for any t ≥ α(ε): if it were,
then

(Pσ(φ∗L) + α(ε)Ẽ)|
Ẽ

=
α(ε)

t
(Pσ(φ∗L) + tẼ)|

Ẽ
+
t− α(ε)

t
Pσ(φ∗L)|

Ẽ

would have to be pseudo-effective as well, a contradiction. In particular

since α(ε) ≤ σE(L), we also have that (Pσ(φ∗L) +σE(L)Ẽ)|
Ẽ

is not pseudo-
effective. As the strict transforms of components of Nσ(L) are disjoint, the

restriction of Pσ(φ∗L) + φ−1
∗ Nσ(L) to Ẽ is still not pseudo-effective.

By [BDPP13, 0.2 Theorem] there is a curve C̃ whose deformations cover

Ẽ such that
(Pσ(φ∗L) + φ−1

∗ Nσ(L)) · C̃ < 0.

Since Ẽ is not φ-exceptional, C = φ(C̃) is a mov1-curve.
Conversely, if L is movable, then φ−1

mov(L) = Pσ(φ∗L) is also movable for
every φ. Thus every movable transform has non-negative intersection with
the strict transform of every mov1-curve general in its family. �

Lemma 3.1. Let X be a smooth projective variety and let L and L′ be
pseudo-effective divisors on X. Then volX(L+ L′) ≥ volX(L).

Proof. We may assume L is big since otherwise the inequality is automatic.
Then for any sufficiently small ε > 0 we have

volX(L+ L′) = volX((1− ε)L+ (εL+ L′)) ≥ (1− ε)dimXvolX(L)

since εL+ L′ is big. �

We now give an alternate formulation of Theorem 1.5.

Proposition 3.2. Let X be a smooth projective variety and let L be a
pseudo-effective R-divisor. Suppose that V is an irreducible subvariety of
X contained in B−(L) and let ψ : X ′ → X be a smooth birational model re-
solving the ideal sheaf of V . Then there is a birational morphism φ : Y → X ′

from a smooth variety Y and an irreducible curve C̃ on Y such that

φ−1
mov(ψ

∗L) · C̃ < 0

and ψ ◦ φ(C̃) deforms to cover V .

Proof. Let E be the ψ-exceptional divisor dominating V . Since we have
E ⊂ Supp(Nσ(ψ∗L)), we may argue as in the proof of Theorem 1.5 for ψ∗L
and E to find a birational map φ such that φ−1

mov(ψ
∗L)|

Ẽ
is not pseudo-

effective.
[BDPP13, 2.4 Theorem] shows that there is some curve C̃ on Ẽ with

φ−1
mov(ψ

∗L) · C̃ < 0 such that C̃ deforms to cover Ẽ and is not contracted

by any morphism from Ẽ to a variety of positive dimension. Choosing C̃ on
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Ẽ to satisfy this stronger property, we obtain the statement of Proposition
3.2. �

Proposition 3.2 shows that the non-nef locus is covered by L-negative
curves in a birational sense. Alternatively, one can rephrase this result
using k-movability.

Corollary 3.3. Let X be a smooth projective variety and let L be a pseudo-
effective R-divisor. Then L is not k-movable if and only if there is a bi-
rational morphism ψ : X ′ → X from a smooth variety X ′, a birational

morphism φ : Y → X ′ from a smooth variety Y , and an irreducible curve C̃
on Y such that

φ−1
mov(ψ

∗L) · C̃ < 0

and ψ ◦ φ(C̃) deforms to cover a k-dimensional subset of V .

Proof. To say that L is not k-movable is equivalent to saying that B−(L)
has a component of dimension at least k. Apply Proposition 3.2 to obtain
the forward implication. The converse is immediate. �

Remark 3.4. It is unclear whether Corollary 3.3 is the best formulation
possible for the duality of k-movable divisors. For Mori Dream Spaces vari-
eties and for 2 < k < dimX, [Pay06] Theorem 1 and [Cho12a] Corollary 3
prove a slightly stronger statement. The essential difference is that one does
not need to blow-up along top-dimensional components of B−(L). More
precisely, if L is not k-movable, one may find a Q-factorial small modifi-
cation f : X 99K X ′ that is regular at the generic point of a component
V ⊂ B−(L) of codimension at most k and a family of curves covering the
strict transform of V with f∗L · C < 0. In contrast, Corollary 3.3 may
produce a birational map that is not regular at any point of V .

References
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