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Abstract. A numerical equivalence class of k-cycles is said to be big if
it lies in the interior of the closed cone generated by effective classes. We
construct analogues for arbitrary cycle classes of the volume function for
divisors which distinguishes big classes from boundary classes.

1. Introduction

Let X be an integral projective variety over an algebraically closed field.
We will let Nk(X)Z denote the group of numerical classes of k-cycles on X
and Nk(X) := Nk(X)Z ⊗R. The pseudo-effective cone Effk(X) ⊂ Nk(X) is
defined to be the closure of the cone generated by all effective k-cycles; this
cone encodes the homology of all k-dimensional subvarieties of X and is an
important tool in higher dimensional geometry. While the pseudo-effective
cone has been thoroughly studied for divisors and curves, much less is known
about cycles in general.

The most basic problem concerning Effk(X) is to find geometric criteria
that distinguish classes on the interior of the cone – known as big classes –
from boundary classes. This question has interesting links to a number of
other geometric problems (see for example [Voi10, Theorem 0.8], [DJV13,
Remark 6.4], and Section 6.2). Our goal is to give several geometric charac-
terizations of big cycles similar to well-known criteria for divisors.

Example 1.1. One might expect that a subvariety with “positive” nor-
mal bundle will have a big numerical class. However, [Voi10, Example 2.4]
shows that even a subvariety with an ample normal bundle need not be big,
indicating the need for a different geometric approach.

An important tool for understanding big divisor classes is the volume
function. The volume of a Cartier divisor L is the asymptotic rate of growth
of dimensions of sections of L. More precisely, if X has dimension n,

vol(L) := lim sup
m→∞

dimH0(X,OX(mL))

mn/n!
.

It turns out that the volume is an invariant of the numerical class of L and
satisfies many advantageous geometric properties. On a smooth variety X,
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divisors with positive volume are precisely the divisors with big numerical
class.

Our first generalization of the volume function is geometric in nature. One
can interpret the volume of a divisor L as an asymptotic measurement of
the number of general points contained in members of |mL| as m increases.
[DELV11] suggests studying a similar notion for arbitrary cycles. Given a
class α ∈ Nk(X)Z, we define

mc(α) = max

{
b ∈ Z≥0

∣∣∣∣ any b general points of X are contained
in an effective cycle of class α

}
.

We would then like to understand the asymptotic behavior of mc(mα) as m
increases. The “expected” growth behavior can be predicted by considering
complete intersections in Pn: an intersection of n − k general elements of
|O(d)| has dimension k, degree dn−k, and will contain about 1

n!d
n general

points. Thus one expects (and can easily verify) that mc(mα) ∼ Cm
n

n−k for
some constant C. The mobility function identifies the best possible constant
C. (See Definition 5.3 for a more precise formulation.)

Definition 1.2. Let X be an integral projective variety of dimension n and
suppose α ∈ Nk(X)Z for 0 ≤ k < n. The mobility of α is

mob(α) = lim sup
m→∞

mc(mα)

m
n

n−k /n!

The mobility function shares many of the important properties of the
volume function for divisors. Our first theorem shows that bigness is char-
acterized by positive mobility, confirming [DELV11, Conjecture 6.5].

Theorem 1.3. Let X be an integral projective variety. Then mob extends
uniquely from Nk(X)Z to a continuous homogeneous function on Nk(X). In
particular, α ∈ Nk(X) is big if and only if mob(α) > 0.

Remark 1.4. Theorem 1.3 has analogues in the setting of other equivalence
relations on cycles. The main step in the proof of Theorem 1.3 is to show
that if mob(α) > 0 then α is big; the proof does not use any special feature
of Nk(X) besides the ability to intersect against Cartier divisors. To prove
the converse implication, one needs to work with an equivalence relation
whose classes form a finitely generated group.

For example, suppose X is an integral projective variety over C. The
statement of Theorem 1.3 holds for the subspaceN ′k(X) ⊂ H2k(X,R) spanned
by classes of cycles and for the homological analogue of the mobility func-
tion.

The following examples illustrate how the mobility captures basic geomet-
ric information about a class. They also show that the mobility is difficult to
compute; however, see Question 1.14 for a conjectural intersection-theoretic
description.
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Example 1.5. If X is a smooth projective variety and L is a Cartier divisor
then mob([L]) = vol(L) as shown in Example 5.7. However, the definition of
mobility makes sense for a numerical Weil divisor class on any integral pro-
jective variety. [FL14] verifies that if X admits a resolution of singularities
φ : X ′ → X, then the mobility of a divisor class α is

mob(α) = sup
β∈Nk(X′), φ∗β=α

vol(β)

Example 1.6. Let ` denote the class of a line on P3. The mobility of ` is
determined by an enumerative question: what is the minimal degree of a
curve in P3 going through b general points?

It turns out that the answer to this question is not known (even asymptot-
ically as the degree increases). [Per87] conjectures that the “optimal” curves
are complete intersections of two divisors of equal degree, which would im-
ply that mob(`) = 1. We discuss this interesting question in more depth in
Section 6.1.

Example 1.7. We define the rational mobility of a class α ∈ Nk(X)Z in
a similar way by counting the number of general points lying on cycles in
a fixed rational equivalence class inside of α (see Definition 5.3). Rational
mobility is interesting even for 0-cycles.

Let A0(X) denote the set of rational equivalence classes of 0-cycles on
X. Recall that A0(X) is said to be representable if the addition map

X(r) → A0(X)deg(r) is surjective for some r > 0. In Section 6.2 we show for
normal varieties over C that A0(X) is representable if and only if the rational
mobility of the class of a point is the maximal possible value (dimX)!.

Example 1.8. Suppose that α ∈ Effk(X)Z lies on the boundary of the
pseudo-effective cone. Theorem 1.3 implies that the growth of mc(mα) is

bounded above by Cmr/n−k for some constant r < n. It is natural to ask:
what is the optimal value of r? (This is the analogue of the Iitaka dimension
for divisors.)

The first case to consider is when X is a Grassmannian and α is the class
of a Schubert cycle on X. It turns out that often the optimal exponent r
can be calculated in this case. A closely related property known as Schur
rigidity has been extensively studied – see for example [Wal97], [Bry05],
[Hon05], [Hon07], [RT12], and [Rob13]. Schur rigidity of α implies that the
optimal constant is r = 1.

Example 1.9. In contrast to the situation for divisors, it is possible for a
subvariety V to have big numerical class even if no multiple of V moves in
an algebraic family. For example, [FL82] constructs a surface S with ample
normal bundle in a fourfold X such that no multiple of S moves in X. [Pet09,
Example 4.10] and a calculation of Fulger verify that [S] ∈ N2(X) is big.
This highlights the importance of working with an appropriate equivalence
relation.
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Our next generalization of the volume function comes from intersection
theory. Recall that for an ample divisor A we have vol(A) = An; more
generally, the volume of a big divisor can be computed as an intersection of
an ample divisor on a birational model via a Fujita approximation. Thus
the volume of a divisor is in a sense an “intersection theoretic” quantity.

Recently [Xia15] has defined an interesting positivity function for curves:
for an integral projective variety X of dimension n and for α ∈ Eff1(X) set

v̂ol(α) = inf
A big and nef R-divisor

(
A · α

vol(A)1/n

)n/n−1

.

The function v̂ol satisfies all the expected properties of a volume function
and gives a rich theory for curves parallel to the divisor case. The two
definitions can be unified in the following way. For α, β ∈ Nk(X), we write
α � β if β − α ∈ Effk(X).

Definition 1.10. Let X be an integral projective variety of dimension n
and suppose α ∈ Nk(X) for 0 ≤ k < n. Define

v̂ol(α) := sup
φ,A
{An}

as φ : Y → X varies over all birational models of X and as A varies over all
big and nef R-Cartier divisors on Y such that φ∗[A

n−k] � α.

When α is not in the interior of the pseudo-effective cone, the set of
suitable divisors A is empty and this expression should be interpreted as
returning 0.

Example 1.11. When X is smooth and L is a Cartier divisor, the theory
of Fujita approximations (extended by [Tak07] to arbitrary characteristic)

shows that v̂ol([L]) = vol(L).

Example 1.12. Suppose that B is a big and nef R-Cartier divisor and set

α = [Bn−k]. Then Example 7.3 shows that v̂ol(α) = vol(B). Many more
examples for curve classes are computed in [LX15].

v̂ol satisfies the most basic properties of a volume-type function.

Theorem 1.13. Let X be an integral projective variety. Then v̂ol is a
continuous homogeneous function on Nk(X). In particular, α ∈ Nk(X) is

big if and only if v̂ol(α) > 0.

While this function is easier to compute than the mobility, it is unclear
how it relates to the geometry of the cycles of class proportional to α. This
interpretation is provided by our main question.

Question 1.14. Let X be an integral projective variety of dimension n and
suppose α ∈ Effk(X) for some 0 < k < n. Then is

v̂ol(α) = mob(α)?
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Theorem 7.6 proves the inequality ≤. Question 1.14 is known for divisor
classes (even in the singular case), and [LX15] shows that for curves it suffices
to prove the special case when α = An−1 for an ample divisor A. For classes

of intermediate codimension, one may need to broaden the definition of v̂ol
from ample divisors to other kinds of positive classes to obtain an equality.

Our final generalization of the volume function extrapolates between the
two previous ones: in some examples it can be computed using intersection
theory but it retains the flavor of the mobility. The key idea is that singular
points of cycles should contribute more to the mobility count. This con-
vention better reflects the intersection theory on the blow-up of the points,
as the strict transform of a cycle which is singular at a point will be have
larger intersection against the exceptional divisor than the strict transform
of a smooth cycle.

Following a suggestion of R. Lazarsfeld, we define the weighted mobility
count of a class α ∈ Nk(X)Z as:

wmc(α) = max

b ∈ Z≥0

∣∣∣∣∣∣
there is a µ ∈ Z>0 and an effective cycle of

class µα through any b points of X with
multiplicity at least µ at each point

 .

This definition has the effect of counting singular points with a higher
“weight”. It is designed to be compatible with the calculation of mul-
tipoint Seshadri constants – see Section 8 for details. Just as with our
other constants, the expected growth rate on a variety of dimension n is
wmc(mα) ∼ Cmn/n−k, suggesting the following definition.

Definition 1.15. Let X be an integral projective variety of dimension n
and suppose α ∈ Nk(X)Z for 0 ≤ k < n. The weighted mobility of α is

wmob(α) = lim sup
m→∞

wmc(mα)

m
n

n−k

The rescaling factor n! is now omitted to ensure that the hyperplane class
on Pn has weighted mobility 1.

Theorem 1.16. Let X be an integral projective variety. Then wmob is a
continuous homogeneous function on Nk(X). In particular, α ∈ Nk(X) is
big if and only if wmob(α) > 0.

Example 1.17. Suppose thatX is smooth over an uncountable algebraically
closed field and that L is a Cartier divisor on X. Then Example 8.23 shows
that wmob([L]) = vol(L).

Example 1.18. Suppose that X is an integral projective variety over an
uncountable algebraically closed field and that α = Hn−k where H is a big
and nef R-divisor. Then Example 8.22 shows that wmob(α) = vol(H).

[LX15] shows that there is an equality wmob(α) = v̂ol(α) for curve classes.
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1.1. Organization. Section 2 reviews background material on cycles. Sec-
tion 3 describes several geometric constructions for families of cycles. Section
4 analyzes the geometric properties of the mobility count. Section 5 defines
mobility and proves Theorem 1.3. Section 6 discusses some examples of the

mobility. Section 7 defines and analyzes v̂ol. Finally, Section 8 analyzes the
weighted mobility function.

1.2. Acknowledgements. My sincere thanks to A.M. Fulger for numerous
discussions and for his suggestions. I am grateful to R. Lazarsfeld for numer-
ous conversations and for suggesting the approach in Section 8. Thanks to
C. Voisin for recommending a number of improvements on an earlier draft.
I am grateful to B. Bhatt and B. Hassett for helpful conversations and to
Z. Zhu and X. Zhao for reading a draft of the paper.

2. Preliminaries

Throughout we work over a fixed algebraically closed field K. A variety
will mean a quasiprojective scheme of finite type over K (which may be
reducible and non-reduced). We will often use the following special case of
[RG71, Théorème 5.2.2].

Theorem 2.1 ([RG71], Théorème 5.2.2). Let f : X → S be a projective
morphism of varieties such that some component of X dominates S. There
is a birational morphism π : S′ → S such that the morphism f ′ : X ′ → S′

is flat, where X ′ ⊂ X ×S S′ is the closed subscheme defined by the ideal of
sections whose support does not dominate S′.

2.1. Cycles. Suppose that X is a projective variety. A k-cycle on X is
a finite formal sum

∑
aiVi where the ai are integers and each Vi is an

integral closed subvariety of X of dimension k. The support of the cycle
is the union of the Vi (with the reduced structure). The cycle is said to
be effective if each ai ≥ 0. For a k-dimensional closed subscheme V of X,
the fundamental cycle of V is

∑
miVi where the Vi are the k-dimensional

components of the reduced scheme underlying V and the mi are the lengths
of the corresponding Artinian local rings OV,Vi .

The group of k-cycles is denoted Zk(X) and the group of k-cycles up to
rational equivalence is denoted Ak(X). We will follow the conventions of
[Ful84] in the use of various intersection products on Ak(X).

[Ful84, Chapter 19] defines a k-cycle on X to be numerically trivial if
its rational equivalence class has vanishing intersection with every weighted
homogeneous degree-k polynomial in Chern classes of vector bundles on
X. Two cycles are numerically equivalent if their difference is numerically
trivial. We let Nk(X)Z denote the abelian group of numerical equivalence
classes of k-cycles on X. By [Ful84, Example 19.1.4] Nk(X)Z is a finitely
generated free abelian group.
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We also define

Nk(X)Q := Nk(X)Z ⊗Q
Nk(X) := Nk(X)Z ⊗ R

Thus Nk(X) is a finitely generated R-vector space and there are natural
injections Nk(X)Z ↪→ Nk(X)Q ↪→ Nk(X). We denote the dual group of
Nk(X)Z by Nk(X)Z and the dual vector spaces of Nk(X)Q and Nk(X) by
Nk(X)Q and Nk(X) respectively.

[Ful84] defines the Chern class of a vector bundle ci(E) as an opera-
tion Ak(X)→ Ak−i(X). It follows formally from the definition that Chern
classes descend to maps Nk(X)→ Nk−i(X).

Suppose that f : Z → X is an l.c.i. morphism of codimension d. Then
[Ful84, Example 19.2.3] shows that the Gysin homomorphism f∗ : Ak(X)→
Ak−d(Z) descends to numerical equivalence classes. We will often use this
fact when Z is a Cartier divisor on X to obtain maps f∗ : Nk(X) →
Nk−1(Z).

Convention 2.2. When we discuss k-cycles on an integral projective variety
X, we will always implicitly assume that 0 ≤ k < dimX. This allows us to
focus on the interesting range of behaviors without repeating hypotheses.

For a cycle Z on X, we let [Z] denote the numerical class of Z, which can
be naturally thought of as an element in Nk(X)Z, Nk(X)Q, or Nk(X). If α
is the class of an effective cycle Z, we say that α is an effective class.

Definition 2.3. Let X be a projective variety. The pseudo-effective cone
Effk(X) ⊂ Nk(X) is the closure of the cone generated by all classes of effec-
tive k-cycles. Effk(X) is a full-dimensional salient cone by [FL13, Theorem
0.2]. The big cone is the interior of the pseudo-effective cone. The cone
in Nk(X) dual to the pseudo-effective cone is known as the nef cone and

denoted Nefk(X).
We say that α ∈ Nk(X) is pseudo-effective (resp. big) if it lies in the

pseudo-effective cone (resp. big cone), and β ∈ Nk(X) is nef if it lies in the
nef cone. For α, α′ ∈ Nk(X) we write α � α′ when α′−α is pseudo-effective.

For any morphism of projective varieties f : X → Y , there is a pushfor-
ward map f∗ : Nk(X) → Nk(Y ). It is clear that f∗(Effk(X)) ⊂ Effk(Y ).
There is also a formal dual f∗ : Nk(Y )→ Nk(X) that preserves nefness.

The following lemmas record some basic properties of pseudo-effective
cycles.

Lemma 2.4 ([FL13], Corollary 3.20). Let f : X → Y be a surjective mor-
phism of integral projective varieties. Then f∗ Effk(X) = Effk(Y ).

Lemma 2.5. Let X be an integral projective variety.

(1) If A is a nef Cartier divisor then ·A : Nk(X) → Nk−1(X) takes
Effk(X) into Effk−1(X).
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(2) If α ∈ Nk(X) is a big class and A is an ample Cartier divisor then
α ·A ∈ Nk−1(X) is also big.

(3) Let D be the support of an effective big j-cycle Z with injection
i : D → X. If α ∈ Nk(D) is big (for 0 ≤ k ≤ j) then i∗α ∈ Nk(X)
is big.

Proof. By continuity and homogeneity it suffices to prove (1) when A is
very ample. Let Z be an integral k-dimensional subvariety; for sufficiently
general elements H ∈ |A|, the cycle underlying H|Z is an effective cycle of
class [Z] ·A, proving (1). To see (2), write α = α′+ cAn−k for some pseudo-
effective class α′ and some small c > 0. Applying (1), it suffices to note
that An−k+1 is a big class by [FL13, Theorem 0.2]. Similarly, to show (3)
fix an ample Cartier divisor A on X and consider the class β := (i∗A)j−k

in Nk(D). Choose m large enough so that m[D] � [Z]. By the projection
formula i∗(mβ) � [Aj−k · Z], so that i∗β is big on X by (2). Writing
α = α′+ cβ for a sufficiently small c, the claim follows from the fact that i∗
preserves pseudo-effectiveness. �

2.2. Analytic lemmas. We are interested in invariants constructed as as-
ymptotic limits of functions on Nk(X)Z. The following lemmas will allow
us to conclude several important properties of these functions directly from
some easily verified conditions.

Lemma 2.6 ([Laz04] Lemma 2.2.38). Let f : N → R≥0 be a function.
Suppose that for any r, s ∈ N with f(r) > 0 we have that f(r + s) ≥ f(s).
Then for any k ∈ R>0 the function g : N→ R ∪ {∞} defined by

g(r) := lim sup
m→∞

f(mr)

mk

satisfies g(cr) = ckg(r) for any c, r ∈ N.

Remark 2.7. Although [Laz04, Lemma 2.2.38] only explicitly address the
volume function, the essential content of the proof is the more general state-
ment above. In particular k does not need to be an integer.

Lemma 2.8. Let V be a finite dimensional Q-vector space and let C ⊂ V
be a salient full-dimensional closed convex cone. Suppose that f : V → R≥0

is a function satisfying

(1) f(e) > 0 for any e ∈ Cint,
(2) there is some constant c > 0 so that f(me) = mcf(e) for any m ∈

Q>0 and e ∈ C, and
(3) for every v ∈ Cint and e ∈ Cint we have f(v + e) ≥ f(v).

Then f is locally uniformly continuous on Cint.

Proof. Endow V with the Euclidean metric for some fixed basis. Let T ⊂
Cint be any bounded set such that

inf
p∈T,q 6∈C

‖p− q‖ > 0.
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We show that f is uniformly continuous on T . Let T be the cone over T .
There is some constant ξ > 0 such that if v ∈ T satisfies ‖v‖ = µ then the
open ball Bξµ(v) satisfies Bξµ(v) ⊂ Cint.

Let M = supw∈T f(w); since there is some element x ∈ Cint such that
T ⊂ x− Cint, we see that M is a positive real number.

Fix ε > 0 and let v ∈ T . Note that the set
(
1− ε

M

)1/c
v + Cint contains

the open ball Brv(v), where

rv = ξ

(
1−

(
1− ε

M

)1/c
)
‖v‖

Every e ∈ Brv(v) satisfies f(e) ≥ f(v)− ε. Similarly, the set
(
1 + ε

M

)1/c
v+

(−Cint) contains the open ball Bsv(v) where

sv = ξ

((
1 +

ε

M

)1/c
− 1

)
‖v‖

Every e ∈ Bsv(v) satisfies f(e) ≤ f(v) + ε.
As we vary v ∈ T , the length ‖v‖ has a positive lower bound (since by

assumption T avoids a sufficiently small neighborhood of the origin). Thus,
there is some δ > 0 such that δ < infv∈T min{sv, rv}. Then |f(v′)−f(v)| ≤ ε
for every v and v′ in T satisfying ‖v′ − v‖ < δ, showing uniform continuity
on T . By varying T , we obtain local uniform continuity on Cint. �

3. Families of cycles

Although there are several different notions of a family of cycles in the
literature, the theory we will develop is somewhat insensitive to the precise
choices. It will be most convenient to use a simple geometric definition.

Definition 3.1. Let X be a projective variety. A family of k-cycles on X
consists of an integral variety W , a reduced closed subscheme U ⊂W ×X,
and an integer ai for each component Ui of U , such that for each component
Ui of U the first projection map p : Ui → W is flat dominant of relative
dimension k. If each ai ≥ 0 we say that we have a family of effective cycles.
We say that

∑
aiUi is the cycle underlying the family.

In this situation p : U → W will denote the first projection map and
s : U → X will denote the second projection map unless otherwise specified.
We will usually denote a family of k-cycles using the notation p : U → W ,
with the rest of the data implicit.

For a closed point w ∈W , the base change w×W Ui is a subscheme of X
of pure dimension k and thus defines a fundamental k-cycle Zi on X. The
cycle-theoretic fiber of p : U → W over w is defined to be the cycle

∑
aiZi

on X. We will also call these cycles the members of the family p.

Definition 3.2. Let X be a projective variety. We say that a family of
k-cycles p : U → W on X is a rational family if every cycle-theoretic fiber
lies in the same rational equivalence class.
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Remark 3.3. Definition 3.1 has a number of deficiencies. For example,
many intuitive constructions of families of cycles fail to meet the criteria:
the map A2×A2 → Sym2A2 is not flat over a characteristic 2 field as pointed
out in [Kol96]. Since we are primarily interested in the “generic” behavior
of families of cycles, these shortcomings are not important for us. On the
other hand, the geometric flexibility of Definition 3.1 will be very useful.

For any projective varietyX, [Kol96] constructs a Chow variety Chow(X).
Any family of cycles in the sense of Definition 3.1 is also a family of cycles
in the refined sense of [Kol96]; this is an immediate consequence of [Kol96,
I.3.14 Lemma] and [Kol96, I.3.15 Corollary]. Thus, if p : U →W is a family
of cycles, there is an induced map ch : W 99K Chow(X) defined on the open
locus where W is normal. For a more in-depth discussion of the relationship
between Definition 3.1 and [Kol96] we refer to [Leh14].

The following constructions show how to construct families of cycles from
subsets U ⊂W ×X.

Construction 3.4 (Cycle version). Let X be a projective variety and let
W be an integral variety. Suppose that Z =

∑
aiVi is a (k + dimW )-cycle

on W ×X such that the first projection maps each Vi dominantly onto W .
Let W 0 ⊂ W be the (non-empty) open locus over which every projection
p : Vi → W is flat and let U ⊂ Supp(Z) denote the preimage of W 0. Then
the map p : U →W 0 defines a family of cycles where we assign the coefficient
ai to the component Vi ∩ U of U .

Construction 3.5 (Subscheme version). Suppose that Y is a reduced vari-

ety and that X is a projective variety. Let Ũ ⊂ Y ×X be a closed subscheme
such that the fibers of the projection p : Ũ → Y are equidimensional of di-
mension k. There is a natural way to construct a finite collection of families
of effective cycles associated to the subscheme Ũ .

Consider the image p(Ũ) (with its reduced induced structure). Let {W̃j}
denote the irreducible components of p(Ũ). For each there is a non-empty

open subset Wj ⊂ W̃j such that the restriction of p to each component of
p−1(Wj)red is flat. Since furthermore p has equidimensional fibers, we obtain
a family of effective k-cycles pj : Uj → Wj where Uj = p−1(Wj)red and we
assign coefficients so that the cycle underlying the family pj coincides with

the fundamental cycle of p−1(Wj). We can then replace Ũ by the closed

subscheme obtained by taking the base change to p(Ũ)−∪jWj and repeat.
The end result is a collection of families pi : Ui → Wi parametrizing the
cycles contained in Ũ .

If p(Ũ) is irreducible and we are interested only in the generic behavior

of the cycles in Ũ , we can stop after the first step to obtain a single family
of cycles.

It will often be helpful to replace a family p : U → W by a slightly
modified version.
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Lemma 3.6. Let X be a projective variety and let p : U → W be a family
of effective cycles on X. Then there is a normal projective variety W ′ that
is birational to W and a family of cycles p′ : U ′ → W ′ such that p and p′

agree over an open subset of the base.

Proof. Let W̃ be any projective closure of W and let Ũ be the closure of U in
W̃ ×X. Let φ : W ′ → W̃ be the normalization of a simultaneous flattening
of the morphisms p̃ : Ũi → W̃ for the components Ũi of Ũ . Let U ′ denote
the reduced subscheme of W ′ ×X defined by the components of Ũ ×W̃ W ′

that dominate W ′. Since the components of U ′ are in bijection with the
components of U , we can assign to each component of U ′ the coefficient
of the corresponding component of U . Then p′ : U ′ → W ′ is a family of
effective k cycles. �

Remark 3.7. It is also important to know whether a rational family p :
U → W can be extended to a rational family over a projective closure
of W (although we will not need such statements below). The arguments
of [Sam56, Theorem 3] show that the subset of Chow(X) parametrizing
cycles in a fixed rational equivalence class is a countable union of closed
subvarieties. Thus we can extend families in this way when working over an
uncountable algebraically closed field K.

3.1. Geometry of families.

Definition 3.8. Let X be a projective variety and let p : U → W be a
family of effective cycles on X. We say that p is an irreducible family if U
only has one component. For any component Ui of U , we have an associated
irreducible family pi : Ui →W (with coefficient ai).

We will also need several geometric constructions.

Construction 3.9 (Flat pullback families). Let g : Y → X be a flat
morphism of projective varieties of relative dimension d. Suppose that
p : U → W is a family of effective k-cycles on X with underlying cycle
V . The flat pullback cycle g∗V on W × Y is effective and has relative di-
mension (d+ k) over W . We define the flat pullback family g∗p : U ′ →W 0

of effective (d + k)-cycles on Y over an open subset W 0 ⊂ W by applying
Construction 3.4 to g∗V .

Construction 3.10 (Pushforward families). Let f : X → Y be a morphism
of projective varieties. Suppose that p : U → W is a family of effective k-
cycles on X with underlying cycle V . Consider the cycle pushforward f∗V
on W ×Y and assume f∗V 6= 0. Construction 3.4 yields a family of k-cycles
f∗p : Ũ → W 0 over an open subset of W . We call f∗p the pushforward
family. Note that this operation is compatible with the pushforward on
cycle-theoretic fibers over W 0 by [Kol96, I.3.2 Proposition].

Construction 3.11 (Restriction families). Let X be a projective variety
and let p : U →W be a family of effective k-cycles on X. Let W ′ ⊂W be an



12 BRIAN LEHMANN

integral subvariety. For each component Ui of U , the restriction Ui ×W W ′

is flat over W ′ of relative dimension k. Consider the cycle V on W ′ × X
defined as the sum V =

∑
i aiVi where Vi is the fundamental cycle of Ui

restricted to W ′. We define the restriction of the family p to W ′ over an
open subset W ′0 ⊂ W ′ by applying Construction 3.4 to V . Note that this
operation leaves the cycle-theoretic fibers unchanged over W ′0. Note also
that if W ′ ⊂ W is open, then we may take W 0 = W ′ and the family p is
simply the base-change to W 0.

Construction 3.12 (Family sum). Let X be a projective variety and let
p : U → W and q : S → T be two families of effective k-cycles on X. We
construct the family sum of p and q over an open subset of W ×T as follows.
Let Vp and Vq denote the underlying cycles for p and q on W ×X and T ×X
respectively. The family sum of p and q is the family defined by applying
Construction 3.4 to the sum of the flat pullbacks of Vp and Vq to W ×T ×X.

Construction 3.13 (Strict transform families). Let X be an integral pro-
jective variety and let p : U → W be a family of effective k-cycles on X.
Suppose that φ : X 99K Y is a birational map. We define the strict transform
family of effective k-cycles on Y as follows.

First, modify U by removing all irreducible components whose image in
X is contained in the locus where φ is not an isomorphism. Then define the
cycle U ′ on W × Y by taking the strict transform of the remaining compo-
nents of U . We define the strict transform family by applying Construction
3.4 to U ′ over W .

Note that when φ is a morphism, the strict transform family may differ
from the pushforward family due to the removed components.

Construction 3.14 (Intersecting against divisors). Let X be a projective
variety and let p : U → W be a family of effective k-cycles on X. Let
D be an effective Cartier divisor on X. If every cycle in our family has a
component contained in Supp(D), we say that the intersection family of p
and D is empty.

Otherwise, let s : U → X denote the projection map. By assumption
the effective Cartier divisor s∗D does not contain any component of U , so
we may take a cycle-theoretic intersection of s∗D with the cycle underlying
the family p to obtain a (k − 1 + dimW )-cycle V on W × Supp(D). We
then apply Construction 3.4 to obtain a family of cycles on Supp(D) over
an open subset of W which we denote by p · D. We can also consider the
intersection as a family of cycles on X by pushing forward.

Finally, suppose that we have a linear series |L|. We define the intersection
of |L| with a family p : U → W as follows. Consider the flat pullback
family q : U ′ → W 0 on P(|L|)×X. Then intersect the family q against the
pullback of the universal divisor on P(|L|)×X to obtain a family of cycles on
P(|L|)×X. The underlying cycle has dimension k−1+dimW+dim(P(|L|));
by using Construction 3.4, we can convert this cycle to a family of effective
(k − 1)-cycles on X over an open subset of W × P(|L|).
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4. Mobility count

The mobility count of a family of effective cycles can be thought of infor-
mally as a count of how many general points of X are contained in members
of the family. Although we are mainly interested in families of cycles, it will
be helpful to set up a more general framework.

Definition 4.1. Let X be an integral projective variety and let W be a
reduced variety. Suppose that U ⊂W×X is a subscheme and let p : U →W
and s : U → X denote the projection maps. The mobility count mc(p) of
the morphism p is the maximum non-negative integer b such that the map

U ×W U ×W . . .×W U
s×s×...×s−−−−−−→ X ×X × . . .×X

is dominant, where we have b terms in the product on each side. (If the map
is dominant for every positive integer b, we set mc(p) =∞.)

For α ∈ Nk(X)Z, the mobility count of α, denoted mc(α), is defined to
be the largest mobility count of any family of effective cycles representing
α. We define the rational mobility count rmc(α) in the analogous way by
restricting our attention to rational families.

Example 4.2. Let X be an integral projective variety and let p : U →W be
a family of effective k-cycles on X. Then mc(p) ≤ (dimW )/(dimX−k). In-
deed, if the map of Definition 4.1 is dominant then dimension considerations
show that mc(p)k + dimW ≥ mc(p) dimX.

The mobility count should be seen as an analogue of the dimension of
H0(X,OX(L)) for a Cartier divisor L, as demonstrated by the following
example. This analogue is surprisingly robust and seems a good indication
of what behavior to expect for higher codimension cycles.

Example 4.3. Let X be an normal projective variety and let L be a Cartier
divisor on X. Let p : U → W denote the family of effective divisors on X
defined by the complete linear series for L. Then

mc(p) = dimH0(X,OX(L))− 1.

Indeed, it is easy to see that the set of divisors in our family which contain
a general point of X corresponds to a codimension 1 linear subspace of
|L|. Furthermore, an easy induction argument shows that the collection
of b sufficiently general points corresponds to a collection of b hyperplanes
which intersect transversally. Thus, the maximum number of general points
contained in a member of |L| is exactly dimP(|L|), and using the incidence
correspondence one identifies this number as mc(p) as well.

Lemma 4.4. Let X be an integral projective variety. Let W be a reduced
variety and let p : U →W denote a closed subscheme of W×X. Suppose that
T is another reduced variety and q : S → T is a closed subscheme of T ×X
such that every fiber of p over a closed point of W is contained in a fiber of
q over some closed point of T (as subsets of X). Then mc(p) ≤ mc(q).
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Proof. The conditions imply that for any b > 0, the sb-image of any fiber of
pb : U×W b → W over a closed point of W is set-theoretically contained in
the image of a fiber of qb : S×T b → T over a closed point of T (as subsets of
X×b). The statement follows. �

Proposition 4.5. Let X be an integral projective variety.

(1) Let W be an integral variety and let U ⊂ W × X be a closed sub-
scheme such that p : U → W is flat. For an open subvariety
W 0 ⊂ W let p0 : U0 → W 0 be the base change to W 0. Then
mc(p) = mc(p0).

(2) Let p : U → W be a family of effective cycles on X. For an open
subvariety W 0 ⊂ W let p0 : U0 → W 0 be the restriction family.
Then mc(p) = mc(p0).

(3) Let W be a normal integral variety and let U ⊂ W ×X be a closed
subscheme such that:
• Every fiber of the first projection map p : U →W has the same

dimension.
• Every component of U dominates W under p.

Let W 0 ⊂ W be an open subset and p0 : U0 → W 0 be the preimage
of W 0. Then mc(p) = mc(p0).

Remark 4.6. Proposition 4.5 indicates that the mobility count is insensitive
to the choice of definition of a family of effective cycles. It also shows that
the mobility count only depends on general members of the family.

Proof. (1) The map pb : U×W b →W is proper flat, so that every component
of U×W b dominates W . Then (U0)×W0b is dense in U×W b for any b. Thus
mc(p0) = mc(p).

(2) Let {Ui} denote the irreducible components of U . Every irreducible
component of U×W b is contained in a product of the Ui over W . Since each
p|Ui : Ui →W is flat, we can apply the same argument as in (1).

(3) The inequality mc(p) ≥ mc(p0) is clear. To show the converse inequal-
ity, we may suppose that U is reduced. We may also shrink W 0 and assume
that p0 is flat.

Let p′ : U ′ → W ′ be a flattening of p via the birational morphism φ :
W ′ → W . We may ensure that φ is an isomorphism over W 0. Choose a
closed point w ∈W and let T ⊂W ′ be the set-theoretic preimage. Since W
is normal T is connected.

Choose a closed point w′ ∈ T . By construction the fiber U ′w′ is set the-
oretically contained in Uw (as subsets of X). Since they have the same
dimension, U ′w′ is a union of components of Uw. Since p′ is flat over T and
T is connected, in fact U ′w′ and Uw have the same number of components
and thus are set-theoretically equal. Applying Lemma 4.4 and part (1) we
see that mc(p) ≤ mc(p′) = mc(p0). �

We can now describe how the mobility count changes under certain geo-
metric constructions of families of cycles.
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Lemma 4.7. Let X be an integral projective variety and let p : U → W
be a family of effective k-cycles. Suppose that U has a component Ui whose
image in X is contained in a proper subvariety. Then mc(p) = mc(p′) where
p′ is the family defined by removing Ui from U .

Proof. This is immediate from the definition. �

Lemma 4.8. Let ψ : X 99K Y be a birational morphism of integral projective
varieties. Let p : U → W be a family of effective k-cycles on X and let p′

denote the strict transform family on Y . Then mc(p) = mc(p′).

Proof. By Lemma 4.7 we may assume that every component of U dominates
X. Using Proposition 4.5 (2), we may replace p by the restricted family
p0 : U0 → W 0, where W 0 is the locus of definition of the strict transform
family p′ : U ′ → W 0. The statement is then clear using the fact that
the morphisms (U0)×W0b → X×b and (U ′)×W0b → Y ×b are birationally
equivalent for every b. �

Lemma 4.9. Let X be an integral projective variety. Suppose that W and
T are reduced varieties and that p1 : U → W and p2 : S → T are closed
subschemes of W ×X and T ×X respectively. Let q : V → W × T denote
the subscheme

U × T ∪W × S ⊂W × T ×X.
Then mc(q) = mc(p1) + mc(p2).

In particular, if p1 and p2 are families of effective k-cycles, then the mo-
bility count of the family sum is the sum of the mobility counts.

Proof. Set b1 = mc(p1) and b2 = mc(p2). There is a dominant projection
map (

U×W b1 × T
)
×W×T

(
W × S×T b2

)
→ X×(b1+b2).

Since the domain is naturally a subscheme of V ×W×T b1+b2 , we obtain mc(q) ≥
mc(p1) + mc(p2).

Conversely, any irreducible component of V ×W×T c is (up to reordering the
terms) a subscheme of(

U×W c1 × T
)
×W×T

(
W × S×T c2

)
for some non-negative integers c1 and c2 with c = c1 + c2 where the map to
X×b is component-wise. This yields the reverse inequality.

To extend the lemma to the family sum, first replace p1 and p2 by their
restrictions to the normal locus of W and T respectively; this does not
change the mobility count by Proposition 4.5 (2). Then by Proposition 4.5
(3) the mobility count of the family sum is the same as the mobility count
of the subscheme U × T ∪W × S as defined in Construction 3.12. �

Corollary 4.10. Let X be an integral projective variety and let p : U →W
be a family of effective k-cycles. Let pi : Ui → W denote the irreducible
components of U . Then mc(p) ≤

∑
i mc(pi).
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Proof. Let q : S → T denote the family sum of the pi. By Lemma 4.4 we
have mc(p) ≤ mc(q); by Lemma 4.9 mc(q) =

∑
i mc(pi). �

4.1. Families of divisors. We next analyze families of effective divisors.
The goal is to find bounds on the mobility count that depend only on the
numerical class of the divisor. The key result is Corollary 4.12, which is the
base case of inductive arguments used in the following sections.

Proposition 4.11. Let X be an integral projective variety of dimension n.
Let α ∈ Nn−1(X)Z and suppose that A is a very ample divisor such that
α− [A] is not pseudo-effective. Then for a general element H ∈ |A|

mc(α) ≤ mcH(α ·H).

Proof. For a general H ∈ |A| we have that H is integral. Let p : U →W be
a family of effective (n − 1)-cycles representing α. By Lemma 3.6 we may
suppose that s : U → X is projective and W is normal. Set b = mc(p) so
that

U×W b → X×b

is surjective. Since surjectivity is preserved by base change, we see that the
base change of s to H is still surjective, yielding a closed subset UH ⊂W×H
with mobility count ≥ b. Note that since α− [A] is not pseudo-effective, no
divisor in the family p can contain H in its support, so that UH has pure
relative dimension n− 2 over W .

Since no divisor in the family p contains H in its support, we have a
well-defined intersection family p ·H on H in the sense of Construction 3.14.
Over an open subset W 0 of the parameter space, this family coincides set-
theoretically with the closed subset UH . By Proposition 4.5.(3), the mobility
count of UH does not change upon restriction to the open subset of the base,
so that mcH(p · H) ≥ b. The result follows by varying p over all families
representing α. �

Corollary 4.12. Let X be an integral projective variety of dimension n and
let α ∈ Nn−1(X)Z.

(1) Suppose that A is a very ample Cartier divisor on X and s is a
positive integer such that α ·An−1 < sAn. Then

mc(α) < snAn.

(2) Suppose n ≥ 2. Let A and H be very ample divisors and let s
be a positive integer such that α − [H] is not pseudo-effective and
α ·An−2 ·H < sAn−1 ·H. Then

mc(α) < sn−1An−1 ·H.

Proof. (1) The proof is by induction on the dimension of X. The statement
is clear if X is a curve, since an effective family of points of degree d can vary
in at most a dimension d family. In general, note that α−s[A] is not pseudo-
effective since it has negative intersection against the class [An−1]. Note also
that the numerical condition on α, A, and s is preserved by restriction to



VOLUME-TYPE FUNCTIONS FOR NUMERICAL CYCLE CLASSES 17

a general element A′ ∈ |sA|. Thus by Proposition 4.11 and the induction
hypothesis

mc(α) < sn−1(A|A′)n−1 = snAn.

(2) Apply Proposition 4.11 to H, then apply (1) to α and A restricted to
H. �

Finally, we prove a similar statement for sections of line bundles.

Lemma 4.13. Let X be an equidimensional projective variety of dimension
n and let A be a very ample Cartier divisor on X. Then

h0(X,OX(A)) ≤ (n+ 1)An.

Proof. Computing the cohomology of the exact sequence

0→ OX(−A)→ OX → OA → 0

shows by induction on dimension that h0(X,OX) ≤ An. Computing the
cohomology of the exact sequence

0→ OX → OX(A)→ OA(A)→ 0

gives the desired statement by induction on dimension. �

5. The mobility function

As suggested by [DELV11], we will define the mobility of a class α ∈
Nk(X)Z to be the asymptotic growth rate of the number of general points
contained in cycles representing multiples of α. We prove that big classes
are precisely those with positive mobility, confirming [DELV11, Conjecture
6.5].

Recall that by Convention 2.2 we only consider k-cycles for 0 ≤ k <
dimX. The first step is:

Proposition 5.1. Let X be an integral projective variety of dimension n
and let α ∈ Nk(X)Z. Fix a very ample divisor A and choose a positive
constant c < 1 so that h0(X,mA) ≥ bcmnc for every positive integer m.
Then any family p : U →W representing α has

mc(p) ≤ (n+ 1)2n
(

2(k + 1)

c

) n
n−k

(α ·Ak)
n

n−kAn.

In particular, there is some constant C so that mc(mα) ≤ Cm
n

n−k .

We will develop a bound that does not depend on the constant c in The-
orem 5.16.

Proof. By Lemma 4.13, the support Z of any effective cycle representing α
satisfies

h0(X, IZ(dA)) ≥ bcdnc − (k + 1)dk(α ·Ak)



18 BRIAN LEHMANN

for any positive integer d. Thus an effective cycle representing α is set-
theoretically contained in an element of |ddeA| as soon as d is sufficiently
large to make the right hand side greater than 1, and in particular, for

d =

(
2(k + 1)

c

) 1
n−k

(α ·Ak)
1

n−k .

Let q : Ũ → P(|ddeA|) denote the family of divisors defined by the linear
series. By Lemma 4.4 we have mc(p) ≤ mc(q). Since c < 1, d ≥ 1 so that
dde < 2d. Applying Lemma 4.13 again, Example 4.3 indicates that

mc(p) ≤ h0(X, ddeA)− 1 < (n+ 1)2n
(

2(k + 1)

c

) n
n−k

(α ·Ak)
n

n−kAn.

�

Furthermore, the growth rate of Cm
n

n−k is always achieved by some big
class as demonstrated by the next example.

Example 5.2. Let X be an integral projective variety and let A be a very
ample divisor such that hi(X,OX(mA)) = 0 for every i > 0,m > 0 and
h0(X,OX(mA)) > 0. Choose a positive constant c such that we have
h0(X,OX(mA)) > cmn for every positive integer m.

For any positive integer s, one can construct by induction a collection of
s distinct reduced closed points Ps ⊂ X with

h1(X, IPs(A)) = max{0, s− h0(X,OX(A))}.
Furthermore this is the maximal value of h1(X, IP (A)) for any collection of
s distinct closed points P . Thus the ideal sheaf IP is m-regular as soon as
c(m−n)n > s. In particular, for large m we can find a complete intersection
of k elements of |mA| that has dimension n−k and contains any bc(m−n)nc
closed points of X. Setting α = An−k, it is then clear that

rmc(mn−kα) ≥ bc(m− n)nc.

Proposition 5.1 and Example 5.2 indicate that we should make the fol-
lowing definition.

Definition 5.3. LetX be an integral projective variety and let α ∈ Nk(X)Z.
The mobility of α is

mobX(α) = lim sup
m→∞

mc(mα)

mn/n−k/n!
.

We will omit the subscript X when the ambient variety is clear from the
context. We define the rational mobility ratmob(α) in an analogous way
using rmc.

The coefficient n! is justified by Section 6.1. We verify in Example 5.7
that the mobility agrees with the volume function for Cartier divisors on a
smooth integral projective variety.
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Remark 5.4. There is another way to generalize the volume function for
divisors. If one interprets h0(X,OX(mL)) as measuring “how much mL
deforms”, it is natural to consider the asymptotic behavior of the dimension
of Chow(X,mα), the space parametrizing all effective cycles on X with
numerical class mα. This alternative is studied in [Leh14].

Example 5.5. Let X be an integral projective variety of dimension n and
let α ∈ N0(X) be the class of a point. Then mc(mα) = m, so that the
mobility of the point class is n!. Rational mobility is more interesting; we
will analyze it in more detail in Section 6.2.

5.1. Basic properties. We now turn to the basic properties of the mobility
function.

Lemma 5.6. Let X be an integral projective variety and let α ∈ Nk(X)Z.

Fix a positive integer a. Then mob(aα) = a
n

n−k mob(α) (and similarly for
ratmob).

Proof. If mc(rα) > 0 then rα is represented by a family of effective cycles.
Thus mc((r + s)α) ≥ mc(sα) for any positive integer s by the additivity of
mobility count under family sums as in Lemma 4.9. Conclude by Lemma
2.6. �

Lemma 5.6 allows us to extend the definition of mobility to any Q-class
by homogeneity, obtaining a function mob : Nk(X)Q → R≥0.

Example 5.7. Let X be a smooth projective integral variety of dimension
n. For any Cartier divisor L on X we have

ratmob([L]) = mob([L]) = vol(L).

To prove this, note first that by Example 4.2 we have

rmc(m[L]) ≤ mc(m[L]) ≤ dim Chow(X,m[L])

where Chow(X,m[L]) is the locus of Chow(X) parametrizing divisors of
class m[L]. We can estimate the latter using

h0(X,OX(mL))− 1 ≤ dim Chow(X,m[L])

≤ dim Pic0(X) + max
D≡mL

h0(X,OX(D))− 1.

While the rightmost term may be greater than h0(X,OX(mL))− 1, the dif-
ference is bounded by a polynomial of degree n − 1 in m (see the proof of
[Laz04, Proposition 2.2.43]). By taking asymptotics, we find that ratmob([L]) ≤
mob([L]) ≤ vol(L). In particular, if L is not big then we must have equalities
everywhere.

Conversely, by Example 4.3 we have rmc(m[L]) ≥ h0(X,OX(mL))−1, so
that taking asymptotics ratmob([L]) ≥ vol(L).

Lemma 5.8. Let X be an integral projective variety. Suppose that α, β ∈
Nk(X)Q are classes such that some positive multiple of each is represented
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by an effective cycle. Then mob(α+ β) ≥ mob(α) + mob(β) (and similarly
for ratmob).

Proof. We may verify the inequality after rescaling α and β by the same
positive constant c. Thus we may suppose that every multiple of each is
represented by an effective cycle. Using the additivity of mobility counts
under family sums as in Lemma 4.9, we see that

mc(m(α+ β)) ≥ mc(mα) + mc(mβ)

and the conclusion follows. �

By Example 5.2, we find:

Corollary 5.9. Let X be an integral projective variety and let α ∈ Nk(X)Q
be a big class. Then mob(α) > 0 (and similarly for ratmob).

Theorem 5.10. Let X be an integral projective variety. The function mob :
Nk(X)Q → R≥0 is locally uniformly continuous on the interior of Effk(X)Q
(and similarly for ratmob).

Theorem 5.20 extends this result to prove that mob is continuous on all
of Nk(X).

Proof. The conditions (1)-(3) in Lemma 2.8 are verified by Corollary 5.9,
Lemma 5.6, and Lemma 5.8. �

The mobility should also have good concavity properties. Here is a strong
conjecture in this direction:

Conjecture 5.11. Let X be an integral projective variety. Then mob is a
log-concave function on Effk(X): for any classes α, β ∈ Effk(X) we have

mob(α+ β)
n−k
n ≥ mob(α)

n−k
n + mob(β)

n−k
n

We note one other basic property:

Proposition 5.12. Let π : X → Y be a dominant generically finite mor-
phism of integral projective varieties. For any α ∈ Nk(X)Q we have mob(π∗α) ≥
mob(α).

Proof. For sufficiently divisible m set pm to be a family of effective k-cycles
representing mα of maximal mobility count. The pushforward family π∗pm
clearly has the same mobility count as pm and represents π∗(mα), giving
the result. �

5.2. Mobility and bigness. We now show that big cycles are precisely
those with positive mobility:

Theorem 5.13. Let X be an integral projective variety and let α ∈ Nk(X)Q.
The following statements are equivalent:

(1) α is big.
(2) ratmob(α) > 0.
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(3) mob(α) > 0.

The implication (1) =⇒ (2) follows from Corollary 5.9 and (2) =⇒
(3) is obvious. The implication (3) =⇒ (1) is a consequence of the more
precise statement in Corollary 5.17.

Example 5.14. Let X be a smooth projective variety. By Example 5.7,
Theorem 5.13 is equivalent to the usual characterization of big divisors using
the volume function.

Example 5.15. Let α be a curve class on an integral projective complex
variety X. [BCE+02, Theorem 2.4] shows that if two general points of X
can be connected by an effective curve whose class is proportional to α, then
α is big. Theorem 5.13 is a somewhat weaker statement in this situation.

For positive integers n and for 0 ≤ k < n, define εn,k inductively by
setting εn,n−1 = 1 and

εn,k =
n−k−1
n−k εn−1,k

n−1
n−k−1 − εn−1,k

.

For positive integers n and for 0 ≤ k < n, define τn,k inductively by setting
τn,n−1 = 1 and

τn,k = min

{
n− k − 1

n− 1
τn−1,k,

n−k−1
n−k τn−1,k

n−1
n−k−1 − τn−1,k

}
.

It is easy to verify that 0 < τn,k ≤ εn,k ≤ 1
n−k and that the last inequality is

strict as soon as n− k > 1.

Theorem 5.16. Let X be an integral projective variety and let α ∈ Nk(X)Z.
Let A be a very ample divisor and let s be a positive integer such that α·Ak <
sAn. Then

(1)

mc(α) < 2kn+3ns
n

n−kAn.

(2) Suppose furthermore that α− [A]n−k is not pseudo-effective. Then

mc(α) < 2kn+3ns
n

n−k
−εn,kAn.

(3) Suppose that t is a positive integer such that t ≤ s and α − t[A]n−k

is not pseudo-effective. Then

mc(α) < 2kn+3ns
n

n−k
−τn,ktτn,kAn.

Proof. We prove (1) by induction on the dimension n of X. The induction
step may reduce the codimension n−k of our cycle class by at most 1. Thus,
for the base case it suffices to consider when k = 0 or when n is arbitrary
and n − k = 1. These cases are proved by Example 5.5 and Corollary 4.12
(1) respectively.

Let p : U → W be a family of effective k-cycles representing α. By
Proposition 4.5 we may modify p by Lemma 3.6 to assume W is projective
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without changing the mobility count of p. Choose a general divisor H in the

very ample linear series |ds
1

n−k eA| on X such that H is integral and does not
contain the image of any component of U . We can associate several families
of subschemes to p and to H.

• Consider the base change U×XH. We can view this as a subscheme
UH ⊂W ×H with projection map π : UH →W .
• We can intersect the family p with the divisor H to obtain a family

of effective (k − 1) cycles q : S → T on H as in Construction 3.14.
Note that T is an open subset of W ; we may shrink T so that it is
normal. By Lemma 3.6 we may extend q over a projective closure
of T which we continue to denote by q : S → T .
• Let V ⊂ UH be the reduced closed subset consisting of points whose

local fiber dimension for π attains the maximal possible value k.
The map π|V : V → W has equidimensional fibers of dimension k.
Thus we can associate to π|V a collection of families pi : Vi → Wi

as in Construction 3.5. We will think of these as families of effective
k-cycles on H.

It will be useful to combine q and the pi as follows. Let W̃ denote the
disjoint union of the irreducible varieties T ×Wi as we vary over all i. This

yields the subscheme S× (tiWi)∪T × (tiVi) of W̃ ×X. We denote the first
projection map by p̃.

Using the universal property, one can see that

(U ×X H)×W b ∼= (U×W b)×X×b H×b.

Since the base change of a surjective map is surjective, we see that mcH(π) ≥
mcX(p). Furthermore, by Krull’s principal ideal theorem every component
of a fiber of π over a closed point of W has dimension k or k − 1. In
particular, any member of the family π is set theoretically contained in a
member of the family p̃. Applying in order the inequality from the start of
this paragraph, Lemma 4.4, and Lemma 4.9, we obtain

mcX(p) ≤ mcH(π) ≤ mcH(p̃) = mcH(q) + sup
i

mcH(pi).

We will use induction to bound the two terms on the right, giving us our
overall bound for mcX(p).

The family q of effective (k − 1)-cycles on H has class α ·H. Note that

(α · H) · A|k−1
H < sA|n−1

H . By induction on the dimension of the ambient
variety,

mcH(q) < 2(k−1)(n−1)+3(n−1)s
n−1
n−k (A|n−1

H )

≤ 2(k−1)(n−1)+3(n−1)s
n−1
n−k (2s

1
n−kAn)

≤ 2(k−1)(n−1)+3(n−1)+1s
n

n−kAn.

Next consider a family pi of effective k-cycles on H. Let αi denote the
corresponding class. Let j : H → X be the inclusion; by construction, it is
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clear that α− j∗αi is the class of an effective cycle. In particular

αi ·A|kH ≤ α ·Ak < ds
n−k−1
n−k eA|n−1

H .

By induction on the dimension of the ambient variety,

mcH(pi) < 2(n−1)k+3(n−1)ds
n−k−1
n−k e

n−1
n−k−1 (A|n−1

H )

≤ 2(n−1)k+3(n−1)2
n−1

n−k−1 s
n−1
n−k (2s

1
n−kAn)

≤ 2(n−1)k+3(n−1)+k+2s
n

n−kAn.

By adding these contributions, we see that

mcX(p) ≤ 2kn+3ns
n

n−kAn.

(2) is proved in a similar way. The argument is by induction on the
codimension n− k of α. The base case – when n is arbitrary and n− k = 1
– is a consequence of Corollary 4.12 (2) (applied with H = A).

Let p : U → W be a family of effective k-cycles representing α. Set
c := 1

n−k−εn,k. Let H be an integral element of |dsceA| that does not contain
the image of any component of U . We construct the families q : S → T and
pi : Vi →Wi just as in (1). The same argument shows that

mcX(p) ≤ mcH(q) + sup
i

mcH(pi).

The family q of effective (k − 1)-cycles on H has class α ·H. Note that

(α ·H) ·A|k−1
H < sA|n−1

H . By (1), we have

mcH(q) < 2(k−1)(n−1)+3(n−1)s
n−1
n−k (A|n−1

H )

≤ 2(k−1)(n−1)+3(n−1)s
n−1
n−k (2scAn)

≤ 2(k−1)(n−1)+3(n−1)+1s
n

n−k
−εn,kAn.

Next consider the family pi of effective k-cycles on H. Let αi denote the
class of the family pi on H. Let j : H → X be the inclusion; by construction,
it is clear that α− j∗αi is the class of an effective cycle. In particular

αi ·A|kH ≤ α ·Ak <
⌈
s1−c⌉A|n−1

H .

Note furthermore that αi − [A|H ]n−1−k is not pseudo-effective; otherwise it
would push forward to a pseudo-effective class on X, contradicting the fact
that α− [A]n−k is not pseudo-effective. By induction on the codimension of
the cycle,

mcH(pi) < 2k(n−1)+3(n−1)ds1−ce
n−1

n−k−1
−εn−1,k(A|n−1

H )

≤ 2k(n−1)+3(n−1)2
n−1

n−k−1 s
(1−c)(n−1)

n−k−1
−(1−c)εn−1,k(2scAn)

≤ 2k(n−1)+3(n−1)+k+2s
n

n−k
−εn,kAn.

Adding the two contributions proves the statement as before.
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The proof of (3) is also very similar. The argument is by induction on the
codimension n− k of α. The base case – when n is arbitrary and n− k = 1
– is a consequence of Corollary 4.12 (2) (applied with H = tA).

Let p : U → W be a family of effective k-cycles representing α. Set
c := 1

n−k − τn,k. Let H be an integral element of |dsctτn,keA| that does
not contain the image of any component of U . We construct the families
q : S → T and pi : Vi →Wi just as in (1). The same argument shows that

mcX(p) ≤ mcH(q) + sup
i

mcH(pi).

The family q of effective (k − 1)-cycles on H has class α ·H. Note that

(α ·H) ·A|k−1
H < sA|n−1

H . By (1), we have

mcH(q) < 2(k−1)(n−1)+3(n−1)s
n−1
n−k (A|n−1

H )

≤ 2(k−1)(n−1)+3(n−1)s
n−1
n−k (2sctτn,kAn)

≤ 2(k−1)(n−1)+3(n−1)+1s
n

n−k
−τn,ktτn,kAn.

Next consider the family pi of effective k-cycles on H. Let αi denote the
class of the family pi on H. Let j : H → X be the inclusion; by construction,
it is clear that α− j∗αi is the class of an effective cycle. In particular

αi ·A|kH ≤ α ·Ak <
⌈
s1−ct−τn,k

⌉
A|n−1

H .

Also, we have that

αi − dt1−τn,ks−ce[A|H ]n−k−1

is not pseudo-effective, since the difference between α − t[A]n−k and the
push forward of this class to X is pseudo-effective. Finally, note that
ds1−ct−τn,ke ≥ dt1−τn,ks−ce so that we may apply (3) inductively to the
family pi with the constants s′ = ds1−ct−τn,ke and t′ = dt1−τn,ks−ce.

There are two cases to consider. First suppose that t1−τn,ks−c ≥ 1. Then
by induction on the codimension of the cycle,

mcH(pi) < 2k(n−1)+3(n−1)ds1−ct−τn,ke
n−1

n−k−1
−τn−1,k

dt1−τn,ks−ceτn−1,k(A|n−1
H )

≤ 2k(n−1)+3(n−1)2
n−1

n−k−1 s
(1−c)(n−1)

n−k−1
−τn−1,k

tτn−1,k− n−1
n−k−1

τn,k(2sctτn,kAn)

≤ 2k(n−1)+3(n−1)+k+2s
n

n−k
−τn,k+( n−1

n−k−1
τn,k−τn−1,k)

tτn,k+(τn−1,k− n−1
n−k−1

τn,k)An.

Since τn−1,k ≥ n−1
n−k−1τn,k, the part of the exponents in parentheses is non-

positive for s and non-negative for t. By assumption s ≥ t, so

mcH(pi) < 2kn+3(n−1)+2s
n

n−k
−τn,ktτn,kAn
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Next suppose that t1−τn,ks−c < 1. Then by (2) we find

mcH(pi) < 2k(n−1)+3(n−1)ds1−ct−τn,ke
n−1

n−k−1
−εn−1,k(A|n−1

H )

≤ 2k(n−1)+3(n−1)ds1−ce
n−1

n−k−1
−τn−1,k(A|n−1

H )

≤ 2k(n−1)+3(n−1)2
n−1

n−k−1 s
(1−c)(n−1)

n−k−1
−(1−c)τn−1,k(2sctτn,kAn)

≤ 2kn+3(n−1)+2s
n

n−k
−τn,ktτn,kAn.

This upper bound for the two cases is the same; by adding it to the upper
bound for mcH(q) we obtain the desired upper bound for mc(p). �

We can apply Theorem 5.16 (2) to any class α in ∂ Effk(X) ∩Nk(X)Z to
obtain the following corollary.

Corollary 5.17. Let X be an integral projective variety and suppose that
α ∈ Nk(X)Z is not big. Let A be a very ample divisor and let s be a positive
integer such that α ·Ak < sAn. Then

mc(α) < 2kn+3n(k + 1)s
n

n−k
−εn,kAn.

Remark 5.18. The exponent n
n−k − εn,k in Corollary 5.17 is not optimal in

general. For example, [BCE+02, Theorem 2.4] shows that for a curve class
α that is not big there is a positive constant C such that mc(mα) < Cm.

Example 5.19. Let f : X → Z be a surjective morphism from a smooth
integral projective variety of dimension n to a smooth integral projective
variety of dimension k for some 1 < k < n. Fix ample divisors A on
X and H on Z and define α = [A]n−k−1 · [f∗H]. α is not big since
α · [f∗H]k = 0. By taking the complete intersection of (n−k−1) elements of

H0(X,OX(bm
k

(n−k)(k+1) cA)) with an element ofH0(X,OX(bm
n

(n−k)(k+1) cf∗H))
we see

mc(mα) ≥ Cm
nk

(n−k)(k+1)

for some positive constant C. Rewriting

nk

(n− k)(k + 1)
=

n

n− k
− n

(n− k)(k + 1)

shows that the optimal value of εn,k is at most n
(n−k)(k+1) .

5.3. Continuity of mobility. Theorem 5.16 also allows us to prove the
continuity of the mobility function.

Theorem 5.20. Let X be an integral projective variety. Then the mobility
function mob : Nk(X)Q → R can be extended to a continuous function on
Nk(X).

Proof. Note that mob can be extended to a continuous function on the
interior of Effk(X) by Theorem 5.10. Furthermore mob is identically 0 on
every element in Nk(X)Q not contained in Effk(X). Thus it suffices to show

that mob approaches 0 for classes approaching the boundary of Effk(X).
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Let α be a point on the boundary of Effk(X). Fix µ > 0; we show that
there exists a neighborhood U of α such that mob(β) < µ for any class
β ∈ U ∩Nk(X)Q.

Fix a very ample divisor A and a positive integer s such that α·Ak < s
2A

n.
Choose δ sufficiently small so that

n!2kn+3n+1s
n

n−kAnδτn,k < µ.

Let U be a sufficiently small neighborhood of α so that:

• β ·Ak < sAn for every β ∈ U , and
• β − δs[A]n−k is not pseudo-effective for every β ∈ U .

Suppose now that β ∈ U ∩Nk(X)Q and that m is any positive integer such
that mβ ∈ Nk(X)Z. Then:

• mβ ·Ak < smAn and
• mβ − dδmse[A]n−k is not pseudo-effective.

Theorem 5.16 shows that

mc(mβ) < 2kn+3n(ms)
n

n−k
−τn,k(dδmse)τn,kAn.

When m is sufficiently large, dδmse ≤ 2δms, so we obtain for such m

mc(mβ) < 2kn+3n+1m
n

n−k s
n

n−kAnδτn,k <
µ

n!
m

n
n−k

showing that mob(β) < µ as desired. �

Remark 5.21. It is sometimes easier to compute the mobility count of
families satisfying extra conditions (for example, smoothness or ACMness
of each component of a general fiber). If one formulates the condition so
that it is preserved by

• closure of families,
• family sums,
• intersections against general very ample divisors, and
• pushforwards from subvarieties

then by an analogous construction one can define a “mobility-type” func-
tion which only considers families with this restriction. These functions
share many of the same formal properties as the mobility. However, any im-
provements in computability seem more than offset by the loss of theoretical
flexibility.

6. Examples of mobility

The mobility seems difficult to calculate explicitly. By analogy with the
volume, one wonders whether the mobility is related to intersection numbers
for “sufficiently positive” classes (just as the volume of an ample divisor is
a self-intersection product). In particular, we ask:
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Question 6.1. Let X be an integral projective variety and let H be an
ample Cartier divisor. For 0 < k < n, is

mob(Hn−k) = vol(H)?

An affirmative answer would imply that the “optimal cycles” with respect
to the mobility count for Hn−k are complete intersections of (n− k) general
elements of |dH|. This question is vastly generalized by Question 1.14, but
already this particular case is very interesting.

Remark 6.2. Note that the statement in Question 6.1 does not hold for
point classes: for an ample divisor H we have vol(H) = Hn but mob(Hn) =
n!Hn.

Example 6.3. It is not hard to show that mob(Hn−k) ≥ Hn for an ample
divisor H. Indeed, by homogeneity we may suppose that H is very ample
and that all the higher cohomology of multiples of H vanishes. Arguing
as in Example 5.2, we see that we can find a basepoint free family of di-
visors of class m[H] containing h0(X,mH) − 1 general points of X. By
taking complete intersections, we obtain a family of class mn−k[Hn−k] going
through h0(X,mH) − 1 − n + k general points of X. Taking a limit shows
the inequality.

In the remainder of this section we discuss two examples in detail. We
will work over the base field C to cohere with the cited references.

6.1. Curves on P3. Let ` denote the class of a line on P3 over C. The
mobility of ` is determined by the following enumerative question: what is
the minimal degree of a curve in P3 going through b very general points?
The answer is unknown (even in the asymptotic sense).

[Per87] conjectures that the “optimal” curves are the complete intersec-
tions of two hypersurfaces of degree d. Indeed, among all curves not con-
tained in a hypersurface of degree (d−1), [GP78] shows that these complete
intersections have the largest possible arithmetic genus, and thus conjec-
turally the corresponding Hilbert scheme has the largest possible dimension.

Complete intersections of two hypersurfaces of degree d have degree d2

and pass through ≈ 1
6d

3 general points. Letting d go to infinity, we find the
lower bound

1 ≤ mob(`)

and conjecturally equality holds.

Theorem 6.4. Let ` be the class of a line on P3. Then

1 ≤ mob(`) < 3.54.

In the proof we simply repeat the argument of Theorem 5.16 with more
careful constructions of families and better estimates.

Proof. Fix a degree d. Let s =

⌈√
9−
√

69
2 d

⌉
and let S be a Noether-Lefschetz

general hypersurface of degree s. Then every curve on S is the restriction
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of a hypersurface on P3. In particular, Pic(S) ∼= Z, and if H denotes the
hyperplane class on P3 then the mobility count of cH|S is(

c+ 3
3

)
−
(
c− s+ 3

3

)
(where we use the convention that the rightmost term is 0 when c < s). Let
p : U → W be a family of degree d curves on P3. Consider the base change
p′ : U ×P3 S → W . Every component of a fiber of p′ has dimension 1 or 0.
We can stratify W by locally closed subsets Wi based on the degree d′ of
the components of the fibers of dimension 1; the components of dimension 0
then have degree (d− d′)s. Applying Construction 3.5 to construct families
of cycles as in the proof of Theorem 5.16, Lemma 4.4 implies that

mc(d`) ≤ max
0≤d′≤d

mcS((d− d′)` · S) + mcS

(⌈
d′

s

⌉
H|S

)
≤ max

0≤d′≤d
(d− d′)s+

(
dd′s e+ 3

3

)
−
(
dd′s e − s+ 3

3

)
.

A straightforward computation shows that for dd′/se ≥ s the maximum
value is achieved when d′ = d and for dd′/se < s the maximum value is
achieved when d′ = 0. In either case, the asymptotic value of the computa-
tion above is

mc(d`) ≤

√
9−
√

69

2
d3/2 +O(d)

yielding the desired bound. �

Remark 6.5. Suppose that p : U →W is a family of smooth curves on P3

of degree d. Then [Per87, Proposition 6.29] proves the stronger result

mc(p) ≤ 1

2
d3/2 +O(d)

To prove a statement of this kind, note that one may assume that the general
curve in the family is not contained on a surface of degree <

√
d. Using the

Gruson-Peskine bounds on genus in [GP78], one can estimate the dimension
of the normal bundle of the curve, and hence the dimension of the Hilbert
scheme parametrizing such curves. The result follows easily.

6.2. Rational mobility of points. In this section we relate rational mo-
bility with the theory of rational equivalence of 0-cycles. In order to cohere
with the cited references, we work only with normal integral varieties X
over C (although the results easily extend to a more general setting). Recall
that A0(X) denotes the group of rational-equivalence classes of 0-cycles on

X. We will denote the rth symmetric power of X by X(r); by [Kol96, I.3.22
Exercise] this is the component of Chow(X) parametrizing 0-cycles of degree
r.
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Remark 6.6. The universal family of 0-cycles of degree r (in the sense of

Definition 3.1) is not u : X×r → X(r) but a flattening of this map. However,
note that the rational mobility computations are the same whether we work
with u or a flattening by Lemma 4.5. For simplicity we will work with u
and X(r) despite the slight incongruity with Definition 3.1.

We start by recalling the results of [Rŏı72] concerning A0(X). Consider

the map γm,n : X(m)×X(n) → A0(X) sending (p, q) 7→ p−q. [Rŏı72, Lemma
1] shows that the fibers of γm,n are countable unions of closed subvarieties.

A subset V ⊂ A0(X) is said to be irreducible closed if it is the γm,n-image

of an irreducible closed subset Y of X(m) × X(n) for some m and n. The
dimension of such a subset V is defined to be the dimension of Y minus the
minimal dimension of a component of a fiber of γm,n|Y . [Rŏı72, Lemma 9]
shows that the dimension is independent of the choice of Y , m, and n.

Lemma 6.7. Let V,W ⊂ A0(X) be irreducible closed subsets with V (W .
Then dim(V ) < dim(W ).

Proof. Let Z ⊂ X(m) × X(n) be an irreducible closed subset whose γm,n-
image is W . Let Y ⊂ Z denote the preimage of V ; [Rŏı72, Lemma 5] shows
that Y is a countable union of closed subsets. By [Rŏı72, Lemma 6] some
component Y ′ ⊂ Y dominates V . But then dim(Y ′) < dim(Z), proving the
statement. �

We are mainly interested in when A0(X) is an irreducible closed set. This
is equivalent to the following notion:

Definition 6.8. A0(X) is said to be representable if there is a positive

integer r such that the addition map ar : X(r) → A0(X)deg r is surjective.

We now relate these notions to the rational mobility of 0-cycles on X.

Proposition 6.9. Let X be a normal integral projective variety over C and
let α denote the class of a point in N0(X). Then the following are equivalent:

(1) A0(X) is representable.
(2) ratmob(α) = n!.
(3) ratmob(α) > n!/2.

Proof. (1) =⇒ (2). Suppose that A0(X) is representable. There is some

positive integer r such that the addition map ar : X(r) → A0(X)deg r is
surjective. Fix m > 0 and choose some class τ ∈ A0(X)deg(m+r). For any
effective 0-cycle Z of degree m, there is an effective 0-cycle TZ of degree r
such that TZ + Z ∈ τ . As Z ∈ X(m) varies, the effective cycles Z + TZ are
rationally equivalent, showing that rmc((m+r)α) ≥ m and ratmob(α) = n!.

(3) =⇒ (1). Suppose that A0(X) is not representable. Note that non-
representability implies that for every m there is some closed point p such
that am(X(m)) + p ( am+1(X(m+1)) for every m: if we had equality for
some m and every p, we would also have equality for every m′ > m and
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the map am : X(m) → A0(X)degm would be surjective. Thus by Lemma 6.7

dim(am(X(m))) strictly increases in m.
Suppose that rmc(mα) = b. This implies that there is some ratio-

nal equivalence class τ of degree m so that for any p ∈ X(b), there is
an element q ∈ X(m−b) such that p + q ∈ τ . In particular, the sub-
set τ − X(b) ⊂ A0(X)degm−b is contained in am−b(X

(m−b)). By Lemma

6.7, dim(ab(X
(b))) ≤ dim(am−b(X

(m−b))). But since these dimensions are
strictly increasing inm we must havem ≥ 2b. Thus we see that ratmob(α) ≤
n!/2, proving the statement. �

Example 6.10. Let X be an integral projective variety of dimension n and
let α be the class of a point in N0(X). Let A be a very ample divisor on
X; for sufficiently large m we have h0(X,OX(mA)) ≈ 1

n!A
n. By taking

complete intersections of n elements of |mA|, we see that ratmob(α) ≥ 1.

Example 6.11. Let X be a smooth surface over C and let α be the class of
a point. By combining Example 6.10 with Proposition 6.9 we see that there
are two possibilites:

• A0(X) is representable and ratmob(α) = 2.
• A0(X) is not representable and ratmob(α) = 1.

7. Intersection-theoretic volume function

In this section we study the function v̂ol defined in the introduction.

Definition 7.1. Let X be an integral projective variety of dimension n and
suppose α ∈ Nk(X) for 0 ≤ k < n. Define the volume of α to be

v̂ol(α) := sup
φ,A
{An}

as φ : Y → X varies over all birational models of X and as A varies over
all big and nef R-Cartier divisors on Y such that φ∗A

n−k � α. If the set of
appropriate data φ,A is empty, then we interpret this expression as returning
0.

In contrast to the mobility, one can readily compute this function in simple
examples.

Example 7.2. If α ∈ N0(X), then v̂ol(α) is exactly the degree of α.

Example 7.3. Suppose that B is a big and nef R-Cartier divisor and that

α = [Bn−k]. We claim that v̂ol(α) = vol(B).
Indeed, suppose that φ : Y → X is a birational map and A is a big and nef

R-Cartier divisor such that φ∗[A
n−k] � α. Recall that by the Khovanskii-

Teissier inequalities (see for example [Laz04, Corollary 1.6.3 and Remark
1.6.5])

An−k · φ∗Bk ≥ vol(A)n−k/n vol(B)k/n.
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Then we have

vol(A) ≤
(
An−k · φ∗Bk

vol(B)k/n

)n/n−k
≤
(

α ·Bk

vol(B)k/n

)n/n−k
= vol(B).

Since clearly v̂ol(α) ≥ vol(B), we obtain the claimed equality.

Example 7.4. Suppose that X is smooth and that α ∈ Eff1(X) is a curve

class. Then [LX15] shows that v̂ol(α) agrees with the expression in [Xia15]
and so can be computed once one knows the nef cone of X:

v̂ol(α) = inf
A big and nef R-divisor

(
A · α

vol(A)1/n

)n/n−1

.

In fact, for curve classes the supremum in Definition 7.1 is actually achieved
by a divisor on X – there is no need to pass to a birational model. This
leads to a robust notion of a Zariski decomposition for curve classes (see
[LX15] for more details).

Lemma 7.5. Let X be an integral projective variety of dimension n and
suppose α ∈ Nk(X) for 0 ≤ k < n.

(1) For any positive constant c we have v̂ol(cα) = cn/n−kv̂ol(α).

(2) If α is big then v̂ol(α) > 0.
(3) If α is pseudo-effective, then for any class β ∈ Nk(X) we have

v̂ol(α+ β) ≥ v̂ol(β).

Proof. To see (1), note that for any birational map φ : Y → X and for any
big and nef R-Cartier divisor A on Y we have φ∗[A

n−k] � α if and only if

φ∗[(c
1/n−kA)n−k] � cα.

For (2), if α is big then there is some ample divisor A on X such that

[An−k] � α. So certainly v̂ol(α) > 0.
To see (3), note that if φ∗[A

n−k] � β then certainly φ∗[A
n−k] � α as

well. �

The main point is to understand the behavior of v̂ol as we approach the
boundary. This is controlled by the following theorem.

Theorem 7.6. Let X be an integral projective variety of dimension n. For
any α ∈ Effk(X) we have

v̂ol(α) ≤ mob(α).

Proof. Consider varying all birational morphisms φ : Y → X and all big
and nef divisors A satisfying φ∗[A

n−k] � α. By combining Lemma 5.8
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with the continuity of mob, we see that mob(α) ≥ mob(φ∗[A
n−k]) whenever

α � φ∗[An−k]. Thus

mob(α) ≥ sup
φ,A

mob(φ∗[A
n−k])

≥ sup
φ,A

mob([An−k]) by Proposition 5.12.

≥ sup
φ,A

vol(A) by Example 6.3.

This latter quantity is v̂ol(α). �

Corollary 7.7. Let X be an integral projective variety. Then v̂ol is a con-
tinuous function on Nk(X) for any 0 ≤ k < n.

Proof. Lemma 7.5 verifies the hypotheses of Lemma 2.8, showing that v̂ol is
continuous on the interior of the big cone. Theorem 5.20 and Theorem 7.6

show that v̂ol must limit to 0 as we approach the boundary of the pseudo-
effective cone. �

8. Weighted mobility

One approach for calculating the mobility is to study the geometry of the
blow-up of X through general points, but unfortunately this does not seem
very effective (see Example 8.1). One can obtain a closer relationship using
a “weighted” mobility count. The key idea is that the singular points of a
family of cycles should contribute more to the mobility count – this better
reflects the intersection theory on the blow-up, as the strict transform of
a cycle which is singular at a point will have larger intersection against
the exceptional divisor than the strict transform of a smooth cycle. This
idea was suggested to me by R. Lazarsfeld and this section is based off his
suggestion.

Example 8.1. One could try to compute the mobility of the line class ` on
Pn as follows. Consider all curves of degree dn−1. Let φ : Y → Pn be the
blow-up of b general points with exceptional divisors Ei. Choose positive
constants {ai}bi=1 such that D = dφ∗H −

∑
i aiEi is nef. If C ′ is the strict

transform of a degree dn−1 curve containing all b points then

0 ≤ D · C ′ ≤ dn −
∑
i

ai.

If we could find a nef divisor on Y satisfying
∑

i ai > dn, then we would
know that mc(dn−1`) < b.

Unfortunately, it is impossible to find such a nef divisor for values of b near
the conjectural mobility count ≈ dn

n! . Indeed, the condition on the ai is then

incompatible with the self-intersection condition 0 ≤ Dn = dn−
∑
an−1
i . In

other words, the strict transform of a smooth degree dn−1 curve through ≈
dn

n! points is necessarily in the interior of the pseudo-effective cone. While one
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can obtain upper bounds for mc(`) on P3 in this way, they are significantly
worse than Theorem 6.4.

8.1. Seshadri constants. We start with a few reminders about Seshadri
constants at general points; see [Laz04] or [BDRH+09] for a more thorough
introduction to the area.

Definition 8.2. Let X be an integral projective variety of dimension n and
let A be an ample Cartier divisor on X. Fix distinct closed reduced points
{xi}bi=1 in the smooth locus of X. Set φ : Y → X to be the blow-up of the
xi and let E denote the sum of all the exceptional divisors. The Seshadri
constant of A along the {xi} is

ε({xi}, A) := max {r ∈ R≥0 |φ∗A− rE is nef} .

We can identify the collection of sets of b distinct closed points in the
smooth locus of X with an open subset of the symmetric power X(b). Using
the openness of ampleness in families of divisors, one sees that for any such
set of b points, there is an open neighborhood in the parameter space X(b)

such that ε can only increase on the corresponding sets.
It is not hard to see that the values of ε are bounded above as we vary

the set of b points. We define εb(A) to be the supremum over all sets of b
distinct closed points {xi}bi=1 in the smooth locus of X of ε({xi}, A). When
we are working over an uncountable field there is actually a set of points
achieving this supremum, but we will not need this fact.

It is an important but difficult problem to precisely establish the value of
εb(A). The following estimate gives a good asymptotic bound on εb(A). It
is certainly well-known to experts and the first variant for higher dimension
varieties seems to have appeared in [Ang97].

Proposition 8.3. Let X be an integral projective variety of dimension n
over an uncountable algebraically closed field and let A be a very ample
divisor on X. Suppose that b ≤ tnAn for a positive integer t. Fix general
points {xi}bi=1 on X. Then

1

t
≤ ε({xi}, A) ≤ (An)1/n

b1/n
.

In particular 1
t ≤ εb(A) ≤ (An)1/n

b1/n
.

Proof. We first prove the upper bound. Let φ : Y → X be the blow-up of
X at the b points {xi} and let E denote the sum of the exceptional divisors.
Since φ∗A− ε({xi}, A)E is nef,

0 ≤ (φ∗A− ε({xi}, A)E)n = An − bε({xi}, A)n.

We next prove the lower bound. Using openness of ampleness in families
of divisors, it suffices to find a single blow-up of X at b points x1, . . . , xb such
that ε({xi}, A) ≥ 1/t. Set r = tnAn− b. Let W ⊂ |tA| be a general (n− 1)-
dimensional linear system with basepoints x1, . . . , xb, q1, . . . , qr. Let φ : Y →
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X be the blow-up of the points x1, . . . , xb with E the sum of the exceptional
divisors, and let φ′ : Y ′ → X be the blow-up of the entire base locus with
E′ the sum of the exceptional divisors. The strict transform of an element
H ∈ W to Y ′ is clearly nef and has class tφ′∗A − E′. Furthermore, the
pushforward of the movable part of φ′∗W to Y only accumulates basepoints
along a 0-dimensional set, so tφ∗A− E is also nef. Thus

1

t
≤ ε({xi}, A).

The final statement about εb(A) follows immediately since the upper
bound does not depend on the choice of points. �

8.2. Loci of points with multiplicity. If Z is an integral projective va-
riety and z ∈ Z is a reduced closed point, we denote by mult(Z, z) the
multiplicity of Z at z (that is, the multiplicity of the maximal ideal mZ,z in
the local ring OZ,z).

More generally, we define the multiplicity of a k-cycle V =
∑

i aiVi at a
reduced closed point v ∈ Supp(V ) via the expression

∑
ai mult(Vi, v). Note

that this definition is compatible with the blow-up definition of multiplicity:
if φ : Y → Supp(V ) denotes the blow-up of the reduced closed point v and V ′

denotes the strict transform of the cycle V , then mult(V, v) = (−1)k−1Ek ·V ′
where E is the exceptional divisor.

Lemma 8.4. Suppose that W is an integral variety. Let p : U → W be a
family of effective k-cycles on X and let U[w] denote the cycle-theoretic fiber
above w. The function on reduced closed points

u 7→ mult(U[f(u)], u)

is upper semi-continuous.

Proof. Let Y denote the blow-up of the reduced diagonal ∆red on U × U
with exceptional divisor E. By composing the blow-down with p × id we

obtain g : Y → W × U . Consider the flattening g̃ : Ỹ → W̃ × U as in

[RG71, Théorème 5.2.2] and let hW : W̃ × U →W×U denote the birational

morphism and hY : Ỹ → Y denote the restriction of the projection.

Note that the effective Cartier divisor h∗YE defines a subscheme of Ỹ such
that the restriction of g̃ to this subscheme has fibers of pure dimension k.
For a reduced closed point u ∈ U , the multiplicity mult(U[f(u)], u) coincides

with (−1)k−1h∗YE
k · Eu, where Eu denotes the g̃-fiber of h∗YE above any

closed point q ∈ W̃ × U satisfying hW (q) = (p(u), u). Using generic flatness
of g̃|h∗Y E one sees that the multiplicity is constant for an open subset of U due
to the invariance of intersections in flat families. Repeating the argument
and using Noetherian induction one sees that the multiplicity can only jump
up in closed subsets due to the relative anti-ampleness of h∗YE|h∗Y E . �

Definition 8.5. Let X be an integral projective variety and let p : U →
W denote a family of effective k-cycles on X. Let Uµ ⊂ U denote the
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closed subset consisting of reduced closed points with multiplicity in the
corresponding cycle-theoretic fiber at least µ. If pµ : Uµ → W denotes the
restriction of p, we define

mc(p;µ) := mc(pµ).

If α ∈ Nk(X)Z, we define

mc(α;µ) := sup
p

mc(p;µ)

as we vary p over all families of effective k-cycles representing α. (If there
are no such families, we set mc(α;µ) = 0.)

We note the following easy properties.

Lemma 8.6. Let X be an integral projective variety of dimension n and let
α ∈ Nk(X)Z. Then for any positive integer µ:

(1) If β is represented by an effective cycle then mc(α+β;µ) ≥ mc(α;µ).
(2) If both α and β are represented by effective cycles then mc(α+β;µ) ≥

mc(α;µ) + mc(β;µ).
(3) For any r ∈ Z>0 we have mc(α;µ) ≤ mc(rα; rµ).

Proof. The first two statements are obvious using the family sum construc-
tion since the multiplicity of a cycle at a point can only increase upon the
addition of an effective cycle. For the third, if a family p represents α, then
by rescaling the coefficients by r we obtain a family representing rα, and it
is clear the multiplicities go up by a factor of r. �

8.3. Weighted mobility count. By way of motivation, we start with a
calculation. Let X be an integral projective variety of dimension n over
an uncountable algebraically closed field and fix an ample divisor A on X.
Choose b very general points on X and let φ : Y → X be the blow-up of
these points. Write {Ei}bi=1 for the exceptional divisors and E for their sum.
Then

α′ = (φ∗A− εb(A)E)n−k

is a pseudo-effective cycle class on Y satisfying (−1)k−1α′ · Eki = εb(A)n−k.
It is unclear whether α′ is represented by an effective cycle. However, it is
approximated by complete intersections: if we perturb φ∗A−εb(A)E slightly
to a Q-class in the ample cone, then for sufficiently large d the class dn−k(α′)
is approximated by a complete intersection of very ample divisors.

Consider the pushforward α = φ∗α
′. The calculation above shows that

dn−kα is approximated arbitrarily closely by a k-dimensional cycle going
through b points with multiplicity at least ≈ dn−kεb(A)n−k at each. The
following definition is designed to choose these families of cycles as the “op-
timal” ones representing α.

Definition 8.7. Let X be an integral projective variety of dimension n and
let α ∈ Nk(X)Q. Define the weighted mobility count of α to be

wmc(α) = sup
µ

mc(µα;µ).
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where we vary µ over all positive integers such that µα ∈ Nk(X)Z.

There are a couple features of this definition deserving comment. First,
the wmc takes into account all multiples of α simultaneously but holds as
constant the ratio of the coefficient of α to the multiplicity. This coheres
with our calculation at the beginning of the section. The effect is to count
a singularity of multiplicity µ “with weight µ”.

Second, the wmc is calculated by insisting that each point contributing to
the count have multiplicity ≥ µ. Instead, one could allow different multiplic-
ities at every point and count with an appropriate weighting. By analogy,
this calculation should correspond to understanding the nef thresholds of
φ∗A−

∑
aiEi where the ai are allowed to vary. This is a much more subtle

problem; our current phrasing has the advantage of a close relationship with
Seshadri constants.

Remark 8.8. We expect that the “optimal” cycles for wmc are necessarily
very singular. In other words, the sup in Definition 8.7 should rarely agree
with the value for µ = 1. Examples 8.1 and 8.22 demonstrate this principle
for P3.

We next show that wmc(α) is always finite. This implies that we can
always choose a multiplicity µ maximizing the weighted mobility count, and
in particular, the weighted mobility count can be computed by a double
supremum as in the introduction (by combining Lemma 8.9 with Lemma
8.6). In fact, we prove a weak upper bound which also gives the correct
asymptotic rate of growth.

Lemma 8.9. Let X be an integral projective variety of dimension n and let
α ∈ Nk(X)Q. Fix a very ample Cartier divisor A on X. Then

wmc(α) ≤ sup

{
An,

(
2

(An)1/n

)nk/n−k
(Ak · α)n/n−k

}
.

Proof. Fix b general points {xi}bi=1 on X and let φ : Y → X be the blow-up
with total exceptional divisor E. Suppose that Z is an effective cycle of class
µα with multiplicity ≥ µ at each of the b points. Since φ∗A − ε({xi}, A)E
is nef, the strict transform Z ′ of Z satisfies

0 ≤ (φ∗A− ε({xi}, A)E)k · Z ′ = Ak · µα− bµε({xi}, A)k.

Proposition 8.3 shows that either b ≤ An (when t = 1) or ε({xi}, A) ≥
1
2(An)1/nb−1/n (when t > 1 so that t−1

t ≥
1
2). In the second case, for any

family pµ representing µα, we obtain

mc(pµ;µ) ≤
(

2

(An)1/n

)nk/n−k
(Ak · α)n/n−k.

Since this expression is independent of µ we obtain the proof. �
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Lemma 8.10. Let X be an integral projective variety of dimension n and
let α, β ∈ Effk(X)Q. Suppose that some multiple of α− β is represented by
an effective cycle. Then wmc(α) ≥ wmc(β).

Proof. Choose a sufficiently divisible integer µ so that µ(α−β) is represented
by an effective cycle, wmc(α) = mc(µα;µ), and wmc(β) = mc(µβ;µ). Then
mc(µα;µ) ≥ mc(µβ;µ) by Lemma 8.6. �

8.4. Weighted mobility. Lemma 8.9 indicates that we should take the
following asymptotic definition.

Definition 8.11. Let X be an integral projective variety of dimension n
and let α ∈ Nk(X)Q. The weighted mobility of α is:

wmob(α) := lim sup
m→∞

wmc(mα)

mn/n−k .

Note that there is no longer a factor of n!. Lemma 8.9 shows that the
weighted mobility is always finite.

Remark 8.12. One could also switch the limits and define

ŵmob(α) := sup
µ∈Z>0

lim sup
m→∞

mc(mµα;µ)

mn/n−k .

It is easy to see that ŵmob(α) ≤ wmob(α). (It is interesting, but subtle,
to ask whether the two coincide.) Since the construction of wmob adheres
more closely with the intuition developed for mob, we will work exclusively
with this invariant.

The weighted mobility satisfies the same properties as mob with the same
proofs; we make brief verifications when necessary.

Lemma 8.13. Let X be an integral projective variety and let α ∈ Nk(X)Q.

Fix a positive integer a. Then wmob(aα) = a
n

n−k wmob(α).

Proof. It suffices to consider the case when some multiple of α is effective.
Then Lemma 8.10 shows that we can apply Lemma 2.6. �

Lemma 8.14. Let X be an integral projective variety. Suppose that α, β ∈
Nk(X)Q are classes such that some positive multiple of each is represented
by an effective cycle. Then wmob(α+ β) ≥ wmob(α) + wmob(β).

Proof. It suffices to show that wmc(rα+ rβ) ≥ wmc(rα) + wmc(rβ) for any
positive integer r. Choose µ1, µ2 to be multiplicities computing these two
weighted multiplicity counts; then

wmc(rα+ rβ) ≥ mc(µ1µ2r(α+ β);µ1µ2) ≥ wmc(rα) + wmc(rβ)

by Lemma 8.6. �

It is not hard to show that a complete intersection of ample divisors
always has positive wmob; a precise computation is done in Example 8.22.
By Lemma 8.14 we obtain:
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Corollary 8.15. Let X be an integral projective variety and let α ∈ Nk(X)Q
be a big class. Then wmob(α) > 0.

Then Lemma 2.8 shows:

Theorem 8.16. Let X be an integral projective variety. The function
wmob : Nk(X)Q → R≥0 is locally uniformly continuous on the interior

of Effk(X)Q.

Note that the multiplicity of a cycle at a general point can only increase
upon taking a birational pushforward. Since mobility counts also can only
increase upon pushforward, we have

Proposition 8.17. Let π : X → Y be a surjective birational morphism of
integral projective varieties. For any α ∈ Nk(X)Q we have wmob(π∗α) ≥
wmob(α).

8.5. Continuity of weighted mobility. We analyze the continuity of the
weighted mobility function using similar arguments as for the mobility.
Again, the base case is in codimension 1.

Lemma 8.18. Let X be an integral projective variety of dimension n. Let
α ∈ Nn−1(X)Q and suppose that A is a very ample divisor and s is a positive
integer such that α · An−1 < sAn. Fix a positive integer µ such that µα ∈
Nn−1(X)Z. Fix a general element H ∈ |sA|. For 0 ≤ i ≤ µ − 1 there
are positive integers ki and collections of families of effective (n− 2)-cycles

{ri,j}kij=1 on H such that [ri,j ] ·A|n−2
H < (µ− i)sA|n−1

H and

mc(µα;µ) ≤ sup
i,j

mcH(ri,j ;µ− i).

The ri,j are constructed by taking a family representing µα, considering
the subfamilies in which H occurs with multiplicity i, and then for each
removing H (with the appropriate multiplicity) and restricting to H.

Proof. For a general H ∈ |sA| we have that H is integral. Let p : U → W
be a family of effective (n− 1)-cycles representing µα realizing the weighted
mobility count. By Lemma 3.6 we may suppose that U → X is projective
and W is normal projective. Set pµ : Uµ → W to be the closed subset
of points whose multiplicity in the corresponding cycle-theoretic fiber is at

least µ. Let Ûµ denote the union of the components of Uµ which are not
contained in the singular locus of H and denote by p̂µ the restriction of pµ;
note that removing such components will not affect mobility counts. Set
b = mc(p;µ) so that

Û×W b
µ → X×b

is surjective.
Stratify W into locally closed subsets Wi such that H has multiplicity

exactly i in every fiber of p over a closed point of Wi. Note that since
µα−µH is not pseudo-effective, Wi is empty for i ≥ µ. Suppose that Wi has
ki irreducible components enumerated as Wi,j and consider the restriction



VOLUME-TYPE FUNCTIONS FOR NUMERICAL CYCLE CLASSES 39

of the family p (in the sense of Construction 3.11) to Wi,j . This restricted
family has one component corresponding to the constant divisor iH; after
removing this divisor, we obtain a family pi,j of divisors on X not containing
H in their support. Note that [pi,j ] + is[A] = µα.

Replace pi,j by a projective normalized closure as in Lemma 3.6. For each
family, let pi,j,µ−i denote the closed locus of points whose multiplicities in
the fibers is at least µ − i. We claim that every fiber of p̂µ over W is set
theoretically contained in a fiber of some pi,j,µ−i. Indeed, since µα − µH
is not pseudo-effective, we see that any point of multiplicity µ in a fiber of
our original family p which is not contained in a singular point of H must
have a contribution from components aside from H of multiplicity at least
µ− i. Thus, arguing as in Lemma 4.4 we obtain a finite collection of closed
subvarieties Ui,j,µ−i of Wi,j ×X such that⋃

i,j

U
×∪Wi,j

b

i,j,µ−i → X×b

is surjective. (In other words, away from the singular locus of H any point
which has fiberwise multiplicity ≥ µ in our original family must coincide
with a point which has multiplicity ≥ µ− i in one of our new families.) The
base change of a surjective map is again surjective; in this way we obtain
closed subsets UHi,j,µ−i such that the bth relative product over the base of the

family maps surjectively onto H×b.
Recall that the support of divisors in the family pi,j never contains H.

By intersecting the family pi,j with the divisor H we obtain a family ri,j :
Qi,j → Ti,j of (n− 2)-cycles on H satisfying

[ri,j ] ·A|n−2
H = [pi,j ] · sAn−1 = sµα ·An−1 − is2An

< (µ− i)s2An = (µ− i)sA|n−1
H .

Replace ri,j by a projective normalized closure as in Lemma 3.6, and note
that every intersection of a member of pi,j with H is contained in the fiber
of some ri,j . Since the multiplicity of a cycle-theoretic fiber along a point
in H can only increase upon intersection with H, we see that Qi,j,µ−i set-
theoretically contains the base change UHi,j,µ−i. Again applying Lemma 4.4
we obtain the desired statement. �

Proposition 8.19. Let X be an integral projective variety of dimension n
and let α ∈ Nk(X)Q.

(1) Suppose that A is a very ample Cartier divisor on X and s is a
positive integer such that α ·An−1 < sAn. Then

wmc(α) < snAn.

(2) Suppose n ≥ 2. Let A and H be very ample divisors and let s
be a positive integer such that α − [H] is not pseudo-effective and
α ·An−2 ·H < sAn−1 ·H. Then

wmc(α) < sn−1An−1 ·H.
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Proof. (1) The proof is by induction on the dimension of X. If X is a curve,
then for any class β ∈ N0(X)Z

mc(β;µ) =

⌊
deg(β)

µ

⌋
≤ deg(β)

µ
.

Thus

wmc(α) = sup
µ sufficiently divisible

mc(µα;µ) < sdeg(A).

In general, applying Lemma 8.18 to sA (and keeping the notation there) we
find for any sufficiently divisible µ

mc(µα;µ) ≤ sup
i,j

mcH(ri,j ;µ− i)

≤ sup
i,j

wmcH([ri,j ]/µ− i)

< sn−1A|n−1
H = snAn

where the final inequality follows from induction.
(2) This follows by a similar argument by applying Lemma 8.18 to H,

then applying (1) to α and A restricted to H. �

Define the constants εn,k, τn,k as in Theorem 5.16.

Theorem 8.20. Let X be an integral projective variety and let α ∈ Nk(X)Q.
Let A be a very ample divisor and let s be a positive integer such that 2nα ·
Ak < sAn. Then

(1)

wmc(α) < 2kn+3ns
n

n−kAn

(2) Suppose furthermore that 2nα− [A]n−k is not pseudo-effective. Then

wmc(α) < 2kn+3ns
n

n−k
−εn,kAn.

(3) Suppose that t is a positive integer such that t ≤ s and 2nα− t[A]n−k

is not pseudo-effective. Then

wmc(α) < 2kn+3ns
n

n−k
−τn,ktτn,kAn.

The proof is essentially the same as the proof of Theorem 5.16. The
key point is to understand how the weighted mobility count changes upon
specializing our cycles into the hypersurface H; we will only highlight the
necessary changes.

Proof. Choose a multiplicity µ and a family p : U → W representing µα
such that wmc(α) = mc(p;µ). Retain the constructions and notation of the
proof of Theorem 5.16 for the family p and the divisor H. Thus we have a
family of (k−1)-cycles q : S → T and families of k-cycles pi : Vi →Wi which
between them parametrize all the components of intersections of members
of p with H.
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Consider a fixed cycle
∑r

i=1 aiVi in the family p. We may suppose that
the first r′ of these cycles are the components contained in H. Then for any
point x ∈ Supp(Vi) ∩H,

mult(V, x) =

r∑
i=1

ai mult(Vi, x)

≤
r′∑
i=1

ai mult(Vi, x) +
r∑

i=r′

ai mult(Vi ·H,x)

as multiplicities can only increase upon intersection with a hyperplane. At
least one of the terms on the right is ≥ 1

2 mult(V, x). Thus, we see that
every fiber of pµ : Uµ → W , where Uµ denotes the locus of points which
have fiberwise multiplicity ≥ µ, is contained set theoretically in the union
over all j of the loci in S of points which have fiberwise multiplicity at least
µ/2 and the loci in Vi of points which have fiberwise multiplicity at least
µ/2. Arguing in families, we have

mc(µα;µ) ≤ mc(µα ·H;µ/2) + sup
i

mcH([pi];µ/2).

It is clear that mc(µα ·H;µ/2) ≤ wmcH(2α ·H) and supi mcH([pi];µ/2) ≤
supi∗β�α wmcH(2β).

At this point the proof of (1), (2), (3) proceeds exactly as in Theorem
5.16, but with some additional factors of 2:

• In the proof of (1), we must account for the halving of the multiplicity
(or equivalently, the potential doubling of the integer s) at each step
inductively. This is accomplished by the factor of 2n in the inequality
for α ·Ak; the constant s is then preserved by the inductive step.
• In the proof of (2) we need to ensure inductively that while adding

the coefficient of 2 to the families pi the hypothesis of (2) still holds
for the new families in the new ambient variety H. Again, the easiest
way to do this is simply to ensure that 2nα − [A] is not pseudo-
effective.
• The presence of the factor 2n still exactly preserves the inductive

structure of the argument for (3).

�

Arguing just as in the proof of Theorem 5.20, we find:

Theorem 8.21. Let X be an integral projective variety. Then the weighted
mobility function wmob : Nk(X)Q → R can be extended to a continuous
function on Nk(X).

8.6. Computations of weighted mobility. We now compute the weighted
mobility in two special examples: for complete intersections of ample divi-
sors and for big divisors on a smooth variety. For ease of notation we work
over an uncountable algebraically closed field (although the computation
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would work equally well over any algebraically closed field using a slight
perturbation of εb).

Example 8.22. Let X be an integral projective variety of dimension n
over an uncountable algebraically closed field and let H be a big and nef
R-Cartier divisor. Set α = [Hn−k]. We show that

wmob(α) = vol(H).

Using continuity and homogeneity it suffices to consider the case when H is
very ample.

We first show the inequality ≤. Suppose that Z is an effective Z-cycle of
class mµα which goes through b general points of X with multiplicity ≥ µ
at each. Let φ : Y → X be the blow-up of b very general points and let
E denote the sum of the exceptional divisors. Then the strict transform Z ′

satisfies

0 ≤ Z ′ · (φ∗H − εb(H)E)k ≤ mµ vol(H)− bµεb(H)k.

Choose a positive integer t such that (t−1)n vol(H) < b ≤ tn vol(H). Propo-
sition 8.3 shows

εb(H) ≥ 1

t
.

Combining the previous equations, we see that

b

tk
≤ m vol(H).

If t > 1 then we have the relationship 1
(t−1)k

> (vol(H)
b )k/n, yielding(

t− 1

t

)kn/n−k
b ≤ vol(H)mn/n−k

while if t = 1 then b ≤ vol(H). For sufficiently large b, the left hand side
approaches b. More precisely, for any δ > 0 there is a constant b0 such
that (1 − δ) wmc(mα) ≤ vol(H)mn/n−k as soon as wmc(mα) is at least b0.
Taking a limit, we find wmob(α) ≤ vol(H).

To show the other inequality ≥, we need to construct complete intersec-
tion families on X. Fix a positive integer t and set b = tn vol(H). Let
φ : Y → X be the blow-up of b very general points on X and let E be the
sum of the exceptional divisors. By Proposition 8.3 we see that εb(H) = 1/t.
Choose a sequence of rational numbers τi which limits to εb(H) from be-
neath and choose integers ci such that ci(φ

∗H − τiE) is very ample. Take
a complete intersection of elements of this very ample linear system and
pushforward under φ. The result is an effective Z-cycle of class cn−ki α which

has multiplicity ≥ cn−ki τn−ki at each of the b points.

Set m = tn−k and µ = (ciτi)
n−k. If we fix τi and let ci vary over all

sufficiently divisible integers, we find infinitely many values of µ for which
there is a cycle of class 1

τn−k
i tn−k

mµα going through mn/n−k vol(H) points

with multiplicity ≥ µ at each. Note that τn−ki tn−k can be made arbitrarily
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close to 1 for i sufficiently large. In other words, there is a sequence of
positive rational numbers εi converging to 0 such that for each εi there are
(infinitely many) values of µ satisfying

mc(mµ(1 + εi)α;µ) ≥ mn/n−k vol(H).

This easily yields wmob(α) ≥ vol(H).

Example 8.23. Suppose that X is a smooth projective variety of dimension
n over an uncountable algebraically closed field and that L is a big R-Cartier
divisor on X. Then

wmob([L]) = vol(L).

By continuity on the big cone it suffices to consider the case when L
is Q-Cartier. Let φ : Y → X and the ample Q-Cartier divisor A on Y
be an ε-Fujita approximation for X (constructed by [Tak07] in arbitrary
characteristic). Example 8.22 shows that wmob([A]) = vol(A), and push-
ing forward and applying Lemma 8.14 and Proposition 8.17 we see that
wmob([L]) ≥ vol(L)− ε for any positive ε > 0.

Conversely, again fix an ε-Fujita approximation for L via a birational
morphism φ : Y → X and an ample Q-Cartier divisor A on Y . Choose a
fixed multiple rA that is very ample. Suppose we take a family of effective
cycles pmµ representing mµ[L]. Consider the strict transform family p′mµ on
Y . Then we have [p′mµ] � mµφ∗[L] and mc(p′mµ;µ) = mc(pmµ;µ). Set b to
be this common weighted mobility count; let φ′ : Y ′ → Y be the blow-up of
b very general points and let E be the sum of the exceptional divisors. Let
Z ′ be the strict transform of a cycle in the family p′mµ. Then

0 ≤ Z ′ · (φ′∗A− εb(A)E)n−1 ≤ mµφ∗L ·An−1 − bµεb(A)n−1.

Choose a positive integer t so that (t−1)nrn vol(A) < b ≤ tnrn vol(A). Thus

εb(rA) = rεb(A) ≥ 1

t
.

Repeating the calculation of Example 8.22 we see that if t > 1 then(
t− 1

t

)n(n−1)

b ≤ mn (φ∗L ·An−1)n

(An)n−1
≤ mn(1− ε)1−n vol(L)

while if t = 1 then b ≤ rn vol(A). For any fixed δ > 0, we see that the left
hand side is at least (1 − δ)b whenever b is sufficiently large. Thus for any
fixed ε > 0 and δ > 0 we have (1 − δ) wmc(m[L]) ≤ mn(1 − ε)1−n vol(L)
whenever the lefthand side is sufficiently large, yielding the result.
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