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Abstract. A conjecture of Batyrev and Manin relates arithmetic properties of varieties
with ample anticanonical class to geometric invariants. We analyze the geometry underlying
these invariants using the Minimal Model Program and then apply our results to primitive
Fano threefolds.

1. Introduction

Let X be a smooth projective variety defined over a number field F and L = (L, ‖ · ‖) an
ample, adelically metrized, line bundle on X. Such line bundles give rise to height functions

X(F ) → R>0

x 7→ HL(x)

on the set of F -rational points (see, e.g., [CLT01, Section 1.3] for the definitions). A basic
result is that the associated counting function

N(X(F ),L, B) := #{x ∈ X(F ) |HL(x) ≤ B}

is finite, for each B ∈ R. Conjectures of Manin and Batyrev-Manin concern the asymp-
totic behavior of N(X,L, B), as B → ∞, for Fano varieties, i.e., varieties X with ample
anticanonical class −KX . The conjectures predict that this asymptotic is controlled by the
geometry of X and L [BM90]. More precisely, define the geometric constants

a(X,L) = min{t ∈ R | t[L] + [KX ] ∈ Λeff(X)}.

and

b(X,L) = the codimension of the minimal

supported face of Λeff(X) containing

the numerical class a(X,L)[L] + [KX ].

The following extension of Manin’s original conjecture builds on [BM90], [Pey95], [BT98]:

Manin’s Conjecture. Let X be a smooth projective variety over a number field, with
ample anticanonical class −KX . Let L = (L, ‖ · ‖) be an ample adelically metrized line
bundle on X. There exists a Zariski open set X◦ ⊆ X such that for every sufficiently large
finite extension F ′ of the ground field F , one has

(1.1) N(X◦(F ′),L, B) ∼ c(X◦,L)Ba(X,L) log(B)b(X,L)−1, B →∞,

for some constant c(X◦,L) > 0.
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Implicitly this conjecture anticipates a compatibility between the constants a(X,L), b(X,L)
and the constants a(Y, L), b(Y, L) for subvarieties Y of X: any subvariety Y with Y ∩X◦ 6= ∅
must satisfy

(1.2) (a(Y, L), b(Y, L)) ≤ (a(X,L), b(X,L))

in the lexicographic order. In particular, to construct a suitable open set X◦ we have to
remove L-accumulating subvarieties of X, i.e., subvarieties Y ⊂ X which fail inequality
(1.2).

While there is a large body of work proving Manin’s conjecture for various classes of
varieties (see [Tsc09] for a survey), the conjecture is also known to fail in certain examples
[BT96]. All known failures of Manin’s Conjecture are explained by the existence of a dense
set of subvarieties whose a and b invariants are at least as large as those for X (see Examples
8.1 and 8.3). Thus, to understand Manin’s conjecture it is crucial to better develop the
geometric theory of these constants.

In this paper, we give a systematic analysis of the geometric invariants a and b, building on
[BT98] and [HTT15], and apply the resulting theory to Fano threefolds. We will mostly work
over an algebraically closed field of characteristic zero, to focus on the underlying geometry.
Our main goals are:

• to test the plausibility of Manin’s conjecture from the viewpoint of the geometry of
the constants a and b,
• to develop systematic geometric techniques for identifying the L-accumulating sub-

varieties of a variety X,
• to identify classes of varieties for which there is no geometric obstruction to Manin’s

conjecture.

We should emphasize that the a and b constants have played an important role in many other
geometric problems and are thus worth studying in their own right. There is a vast body of
literature analyzing the Fujita constant a, particularly with regards to Fujita’s Conjecture
or the index of Fano varieties. The b constant is less well-studied, but has recently found
some interesting applications to the existence of cylinders in del Pezzo surfaces in [CPW15].

Our first results show that the geometric behavior of the a constant is compatible with
Manin’s Conjecture as formulated above.

Theorem 1.1. Let X be a smooth projective variety and L an ample line bundle on X.
There is a countable union V of proper closed subsets of X such that every subvariety Y ⊂ X
satisfying

a(Y, L) > a(X,L)

is contained in V .

Although the countability of V is necessary in general, Manin’s conjecture predicts a
stronger statement: for uniruled varieties X, the subset V in Theorem 1.1 should be Zariski
closed. It is perhaps surprising that this prediction relies on some deep conjectures in bira-
tional geometry. We will rely on the weakest version of the Borisov-Alexeev-Borisov Con-
jecture:
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Conjecture WBABn. There is a positive number δ(n) such that every Q-factorial terminal
Fano variety X of Picard number 1 with dimension ≤ n satisfies

(−KX)dimX ≤ δ(n).

This conjecture is known in dimension at most 3; the boundedness of smooth Fano surfaces
was shown by del Pezzo and Fano, and the case of threefolds was first proved in [Kaw92].

Theorem 1.2. Assume Conjecture WBABn−1. Let X be a smooth uniruled projective variety
of dimension n and L an ample divisor on X. Then there exists a proper closed subset V ⊂ X
such that every subvariety Y ⊂ X satisfying a(Y, L) > a(X,L) is contained in V .

In particular, the statement holds for X of dimension at most 4.

An important subtlety in the proof is that subvarieties violating the a-inequality do not
form a bounded family.

The two theorems above can be seen as evidence for a weaker form of Manin’s Conjecture:

Conjecture 1.3. Let X be a smooth uniruled projective variety over a number field F . Let
L = (L, ‖ · ‖) be an ample adelically metrized line bundle on X. There exists a Zariski dense
open set X◦ ⊆ X such that

N(X◦(F ),L, B)� Ba(X,L)+ε, ε > 0, B →∞.
In contrast, the properties of the constant b are more subtle: it often increases on sub-

varieties, allowing one to construct many potential counterexamples to Manin’s conjecture.
This geometric behavior can indeed have number-theoretic consequences; see [BT96] as well
as Section 8 for examples.

We thus turn our focus to understanding which geometric situations are compatible with
Manin’s conjecture. The notion of a balanced line bundle was introduced in [HTT15] to
codify this compatibility. It is essential to note that the subvarieties Y in the following
definition are allowed to be arbitrarily singular; this is an important source of difficulties in
computing examples. For a singular Y , we compute the constants a and b by pulling back
the big and nef divisor L to a resolution.

Definition 1.4. Let X be a smooth uniruled projective variety and L an ample line bundle
on X. We say that the pair (X,L) (or just L if X is understood) is weakly balanced if there
is a proper closed subset V ⊂ X such that for every subvariety Y 6⊂ V we have

a(Y, L) ≤ a(X,L) and if a(Y, L) = a(X,L), then b(Y, L) ≤ b(X,L).

We say that (X,L) is balanced if there is a proper closed subset V such that for Y 6⊂ V we
have the stronger condition

• a(Y, L) < a(X,L), or
• a(Y, L) = a(X,L) and b(Y, L) < b(X,L).

In either case, we call the subset V exceptional, or accumulating.

By analogy, we say that (X,L) is (weakly) a-balanced if there is a proper closed subset V
such that for Y 6⊂ V the invariant a(Y, L) is (no greater than or) strictly less than a(X,L).

These notions have applications to proofs of Manin’s conjecture for certain equivariant
compactifications of homogeneous spaces. Indeed, this property was used in [GTBT11] and
[ST15] to ensure that only the trivial representation component of the spectral expansion
contributes to the main term of the asymptotic formula; see Proposition 5.5.
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The following result gives a strong restriction on the class of varieties whose geometry
behaves compatibly with Manin’s conjecture, and is closely related to conjectures of [BT98].
Recall that an effective Q-divisor D on X is called rigid if H0(X,mD) = 1 for all sufficiently
divisible m ∈ N.

Theorem 1.5. Let X be a smooth uniruled projective variety and L an ample divisor on X.
If (X,L) is balanced, then KX+a(X,L)L is numerically equivalent to a rigid effective divisor.
In fact, X is birational to a log-Fano variety (via an application of the KX+a(X,L)L-MMP)
and KX + a(X,L)L is numerically equivalent to an exceptional divisor for a birational map.

It is also interesting to look for classes of varieties for which there is no geometric obstruc-
tion to Manin’s conjecture. One natural class from both the geometric and the number-
theoretic perspective is the class of equivariant compactifications of linear algebraic groups.
While there are still many varieties for which Manin’s conjecture is open, we have the fol-
lowing geometric result (as a special case of a more general theorem; see Section 5):

Theorem 1.6. Let G be a connected linear algebraic group and X a smooth projective G-
variety with open orbit U and L an ample line bundle on X. Then a(Y, L) ≤ a(X,L) for
every subvariety Y such that Y ∩ U 6= ∅.

Finally, our techniques are also useful for analyzing specific varieties. A smooth Fano
threefold is called primitive when it is not the blow-up of another smooth Fano manifold
along a smooth curve. In the second half of the paper we perform an in-depth analysis of the
balanced property of −KX for (most) primitive Fano threefolds, relying on the classification
theory of [Isk77], [Isk78], [Isk79], and [MM82]. Given a Fano variety X, we let r(X) denote
the index and d(X) denote the degree. Then:

Theorem 1.7. Suppose that X is a Fano threefold of ρ(X) = 1;

• if r(X) = 4 or 3, then −KX is balanced;
• if r(X) = 2 and d(X) ≥ 16, then −KX is weakly balanced, but not balanced;
• if r(X) = 2 and d(X) = 8, then −KX is weakly a-balanced, but not balanced;
• if r(X) = 1 and d(X) ≥ 10, then −KX is weakly balanced, but not balanced;
• if r(X) = 1 and d(X) = 8 or 6 then −KX is weakly a-balanced, but not balanced;
• if r(X) = 1, d(X) = 4, and −KX is very ample, then −KX is weakly a-balanced, but

not balanced.

Theorem 1.8. Let X be a primitive Fano threefold of ρ(X) = 2;

• if d(X) = 12, 14, 30, 48, 54, 56, 62, then −KX is balanced;
• if d(X) = 24, then −KX is weakly balanced, but not balanced;
• if d(X) = 6, then −KX is weakly a-balanced, but not weakly balanced.

Here is the roadmap of the paper: In Section 2 we recall basic notions of the Minimal
Model Program which will be relevant for the analysis of balanced line bundles, introduced
in Section 3. In Section 4, we study properties of exceptional sets. In Section 5, we present
a first series of examples, illustrating the general features of the theory of balanced line
bundles discussed in previous sections. In Sections 6 and 7, we turn to Fano threefolds and
determine in which cases the anticanonical line bundles are balanced. In Section 8, we work
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over number fields and discuss several arithmetic applications of the theory of balanced line
bundles in this context.
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2. Preliminaries

In Sections 2-7 we work over an algebraically closed field of characteristic zero. A variety
is an irreducible reduced scheme of finite type over this field.

2.1. Basic definitions. Let X be a smooth projective variety and NS(X) its Néron-Severi
group. We denote the corresponding Néron-Severi space by NS(X,R) = NS(X) ⊗ R and
the cone of pseudo-effective divisors, i.e., the closure of the cone of effective R-divisors in
NS(X,R), by Λeff(X). The interior of Λeff(X) is known as the big cone and is denoted
by Big1(X). We identify divisors and line bundles with their classes in NS(X,R), when
convenient. We write KX for the canonical class of X and Bs(L) for the base locus of a line
bundle L.

Definition 2.1. Let X be a normal projective variety of dimension n and L a Cartier divisor
on X. The volume of L is

vol(L) = lim sup
m→∞

h0(X,mL)

mn/n!
.

We record the following facts about the volume (see [Laz04, Section 2.2.C]):

• vol is homogeneous: vol(aL) = anvol(L). Thus vol can naturally be defined for
Q-divisors as well.
• vol extends to a continuous function NS(X,R)→ R.
• vol(L) > 0 precisely when L lies in the interior of Λeff(X).

Definition 2.2. Let X be a normal projective variety and L a pseudo-effective Q-Cartier
divisor on X. The stable base locus of L is

B(L) :=
⋂

m∈Z>0,mL Cartier

Bs(mL).

We will often work with the following perturbed versions. The augmented base locus is

B+(L) :=
⋂

A ample Q-Cartier

B(L− A).

[ELM+06, Proposition 1.5] verifies that there is some ample Q-Cartier divisor A such that
B+(L) = B(L − A). In particular B+(L) is a closed subset. When L is big, then L|Y is
again big for any subvariety Y 6⊂ B+(L).

The diminished base locus is

B−(L) :=
⋃

A ample Q-Cartier

B(L+ A).

[BCHM10, Theorem 1.2] shows that this set is closed for L = KX + ∆ + A when (X,∆) is
a normal Q-factorial klt pair and A is an ample divisor.
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2.2. Families of subvarieties. We describe families of subvarieties on a smooth projective
variety X using the Chow variety of [Kol96]. Fix an ample divisor L on X. [Kol96, I.3.10
Definition] defines a family of r-dimensional algebraic cycles on X of L-degree d over a base
W . One can think of a family as a cycle U on X ×W which is “essentially flat”, although
the precise definition is more involved. We use the notation π : U → W to denote a family
of this kind.

[Kol96] defines a functor Chowr,d(W ) parametrizing effective families over W . By [Kol96,
I.3.21 Theorem], for seminormal schemes this functor is representable by a seminormal pro-
jective variety Chowr,d(X). We let Chow(X) denote the disjoint union over all r and d of
Chowr,d(X).

By a family of subvarieties of X, we mean a family of effective cycles on X whose general
member is irreducible and reduced over a base which is normal, reduced and irreducible. Such
families always yield a morphism W → Chow(X), and conversely any family of generically
irreducible cycles in the sense of [Kol96] can be decomposed into a union of such families
after a normalization procedure on the base.

2.3. Minimal model program. We frequently use the following result of [BCHM10], some-
times without making an explicit reference. Recall that a birational contraction is a birational
map φ : X 99K X ′ which does not extract any divisor.

Theorem 2.3. Let X be a smooth projective variety and L a big and nef Q-divisor on X.
Suppose that KX + L is pseudo-effective. Then by running the KX + L-MMP we can find a
birational contraction φ : X 99K X ′ to a Q-factorial terminal variety X ′ such that KX′+φ∗L
is semiample.

We will (somewhat abusively) say that X ′ is a minimal model for (X,L) and that the
image Z of the semiample fibration on X ′ is a canonical model for (X,L).

Proof. By Wilson’s theorem (see [Laz04, Theorem 2.3.9]), there exists an effective divisor E
such that for sufficiently small t, L− tE is ample. Choose a t ∈ Q small enough so that the
pair (X, tE) is terminal. It follows from [Kol97, Theorem 4.8] that there exists a Q-divisor
L′ which is Q-linearly equivalent to L− tE such that (X,L′+ tE) is terminal. By [BCHM10,
Theorem 1.2], after a sequence of KX +L′+ tE-flips and divisorial contractions φ : X 99K X ′

we obtain a klt pair (X ′, φ∗(L
′ + tE)) such that KX′ + π∗L is semiample. The singularities

of X ′ are terminal by the following lemma. �

Lemma 2.4. Let X be a smooth variety and L a big and nef Q-divisor on X. Suppose that
φ : X 99K X ′ is a finite sequence of KX + L-flips and divisorial contractions. Then there is
some effective Q-divisor L′ ≡ L such that (X ′, φ∗L

′) has terminal singularities.

Proof. Fix an ample divisor A on X. For sufficiently small rational ε > 0, each step of φ
is also a step of the KX + L + εA-MMP. Since L + εA is ample, it is Q-linearly equivalent
to an ample divisor D such that (X,D) is terminal and D does not contain any divisorial
exceptional component of φ. Since the steps of the MMP are numerical, X ′ is again a
sequence of KX +D-flips and divisorial contractions. By [KM98, Corollaries 3.42 and 3.43]
the pair (X ′, φ∗D), and hence also X ′, has terminal singularities.

Now, although it is not true in general that a divisorial contraction of a terminal pair

(X̃, L̃) preserves the terminal property, it is true if the target has terminal singularities and

the coefficient of the contracted divisor is sufficiently small in L̃. By applying Wilson’s
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Theorem (see [Laz04, Theorem 2.3.9]) to L, we see that we can choose an L′ ≡ L so that
every contracted divisor has arbitrarily small coefficient in L′, and our claim follows. �

Proposition 2.5. Let X be a smooth projective variety and L a big and nef Q-divisor.
Suppose that KX + a(X,L)L has Iitaka dimension 0. Then X is birational to a log-Fano
variety and is rationally connected.

Proof. Applying MMP as above, one finds a divisor L′ that is Q-linearly equivalent to
a(X,L)L and a klt pair (X ′, π∗L

′) with KX′ + π∗L
′ ≡ 0. Note that π∗L

′ is big, so we
can write π∗L

′ ≡ E + A for an effective Q-divisor E and an ample Q-divisor A. Then for
sufficiently small ε, (X ′, (1− ε)π∗L′ + εE) is still a klt pair. But since

KX′ + (1− ε)π∗L′ + εE ≡ −εA

is anti-ample, we conclude that X is birational to a log-Fano variety. Then X is rationally
connected by [Zha06, Theorem 1] or [HM07, Corollary 1.3]. �

2.4. Rational curves. Rather than parametrizing rational curves as subvarieties of X, it
will be more convenient to use the space Mor(P1, X) as in [Kol96, I.1.9 Definition]. We use
the following fundamental results concerning the deformation of rational curves.

Lemma 2.6 ([Kol96], II.5.14 Theorem). Let X be a smooth projective variety of dimension
n. Suppose that KX is not pseudo-effective. Then there is a rational curve C on X such
that

• C deforms to cover X,
• −KX · C ≤ n+ 1.

Lemma 2.7 ([Kol96], II.3.10.1 Corollary). Let X be a smooth projective variety of dimension
n. Let π : C → S be a family of rational curves admitting a dominant morphism s : C → X.
Then, for a general member C of the family π we have:

(1) TX |C is nef.
(2) dims|C Mor(P1, X) = −KX · C + n.

In particular, −KX · C ≥ 2.

2.5. Fujita-type statements. Other tools in the study of adjoint divisors are vanishing
theorems. These tend to lead to better results than the corresponding versions for rational
curves, but require stronger hypotheses. We use the following Fujita-type statements:

Theorem 2.8 ([Rei88]). Let X be a smooth projective surface and L a nef divisor on X
with L2 ≥ 5. If |KX + L| has a basepoint at x ∈ X, then there is an effective divisor D
containing x satisfying

L ·D = 0 and D2 = −1 or

L ·D = 1 and D2 = 0.

Theorem 2.9 ([Rei88]). Let X be a smooth projective surface and L a nef divisor on X
with L2 ≥ 10. If |KX + L| fails to separate two points x, y (possibly infinitely near), then
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there is an effective divisor D through x and y such that

L ·D = 0 and D2 = −1 or − 2; or

L ·D = 1 and D2 = 0 or − 1; or

L ·D = 2 and D2 = 0.

In general, we have:

Proposition 2.10. Let X be a smooth projective variety of dimension n and L a big and
nef divisor on X. Then KX + (n+ 1)L is pseudo-effective.

Proof. The argument is due to Siu. Put P (m) := χ(OX(KX + mL)). By Hirzebruch-
Riemann-Roch, P (m) is a polynomial in m of degree at most n. By Kawamata-Viehweg
vanishing, for m > 0 we have

P (m) = H0(X,KX +mL).

Note that P (m) is not identically zero since for m large we have H0(X,KX + mL) > 0.
Thus P (m) cannot have n+ 1 roots, so that H0(X,KX +mL) > 0 for some 1 ≤ m ≤ n+ 1.
Increasing the coefficient of L, we see that KX + (n+ 1)L must be pseudo-effective. �

As in Reider’s result it is useful to have an intersection-theoretic criterion instead. The
main theorem in this direction is due to [AS95], with many improvements in the subsequent
years.

3. Balanced line bundles

Here we study the invariants appearing in Manin’s conjecture (1.1).

3.1. a-constants.

Definition 3.1. [HTT15, Definition 2.2] Let X be a smooth projective variety and L a big
Cartier divisor on X. The Fujita invariant is

a(X,L) := min{t ∈ R | t[L] + [KX ] ∈ Λeff(X)}.

By [HTT15, Proposition 7], a(X,L) is a birational invariant: if φ : W → X is a birational
map of smooth varieties then a(X,L) = a(W,φ∗L). Hence, we define the Fujita invariant for
a singular projective variety X by taking a smooth resolution β : X̃ → X:

a(X,L) := a(X̃, β∗L).

This definition does not depend on the choice of β. By [BDPP13], a(X,L) is positive if and
only if X is uniruled.

Lemma 3.2. Let X be a smooth projective variety. The function

a(X,−) : Big1(X)→ R

is continuous.
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Proof. Fix a big divisor L and consider the closure T of a small neighborhood of the numerical
class L in the big cone. Note that the a values for D ∈ T are bounded in absolute value by
some constant M , since T ± 1

M
KX lies in the big cone for large enough M . Consider the set

T × [−M,M ]. The volume map

vol : (D, a) 7→ vol(KX + aD)

is continuous, so the preimage of 0 is closed. Similarly, the addition map

p : (D, a) 7→ KX + aD

is continuous, so the preimage of the pseudo-effective cone is closed. The intersection of these
two sets is exactly the set of pairs (D, a(X,D)). Using the limit-definition of compactness,
we see that a(X,D) must vary continuously. �

3.2. b-constants.

Definition 3.3. Let V be a finite dimensional vector space over R and Λ ⊂ V a closed convex
cone. A supporting function σ : V → R is a linear functional such that σ is non-negative on
Λ. A supported face is a face of the form

F = Λ ∩ {σ = 0}.
It is an extremal face of Λ.

Definition 3.4. [HTT15, Definition 2.8] Let X be a smooth projective variety with non-
pseudo effective canonical class. Let L be a big Cartier divisor on X. We define b(X,L) to
be

the codimension of the minimal supported face of Λeff(X) containing the numerical class
a(X,L)[L] + [KX ].

By [HTT15, Proposition 9] this is a birational invariant: if φ : W → X is a birational map
of smooth varieties then b(X,L) = b(W,φ∗L). So we define b(X,L) for a singular variety X
by taking a smooth resolution β : X̃ → X

b(X,L) := b(X̃, β∗L).

This definition does not depend on the choice of β.

Lemma 3.5. Let X be a smooth projective variety and L a big and nef divisor on X. Let
π : X 99K X ′ be a minimal model for the pair (X, a(X,L)L). Then b(X,L) = b(X ′, π∗L).

Proof. For notational convenience, we rescale L so that a(X,L) = 1. As in Section 2.3, X ′

has Q-factorial terminal singularities so that we may calculate b-constants directly on X ′

(with no resolution needed) by [HTT15, Proposition 9].
Let W be a smooth birational model admitting birational morphisms φ : W → X and

φ′ : W → X ′. Then

b(X,L) = b(W,φ∗L) and b(X ′, π∗L) = b(W,φ′∗π∗L).

We have
φ∗L+ E = φ′∗π∗L

for some effective φ′-exceptional divisor E. Note that the minimal supported face for KW +
φ′∗π∗L contains the minimal supported face for KW + φ∗L. Write

KW + φ∗L = P +N
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for the σ-decomposition ofKW+φ∗L. Then P is semiample and the support ofN contains the
union of the φ′-exceptional divisors (since by Lemma 2.4 (X ′, L′) has terminal singularities
for some L′ ≡ π∗L). Therefore, any nef curve class that has vanishing intersection with
KW + φ∗L also has vanishing intersection with N , and thus also with E. We conclude that
the minimal supported faces for KW + φ∗L and KW + φ′∗π∗L coincide. �

Definition 3.6. Let X be a Q-factorial terminal projective variety and D an pseudo-effective
R-divisor which is in the boundary of Λeff(X). We say D is locally rational polyhedral if either
D is numerically zero or there exist finitely many linear functionals

λi : NS(X,Q)→ Q
such that λi(D) > 0 and

Λeff(X) ∩ {v : λi(v) ≥ 0 for every i},
is finite rational polyhedral and generated by effective Q-divisors.

Lemma 3.5 is naturally compatible with the following proposition.

Proposition 3.7 ([HTT15], Proposition 2.18). Let X be a uniruled Q-factorial terminal
projective variety and L a big divisor on X. Suppose that KX +a(X,L)L is locally rationally
polyhedral and semiample and that κ(KX + a(X,L)L) ≥ 1. If π : X → Z denotes the
morphism defined by KX + a(X,L)L, then

b(X,L) = rk NS(X)− rk NSπ(X),

where NSπ(X) is the lattice generated by π-vertical divisors.

Remark 3.8. While [HTT15, Proposition 2.18] is only stated for smooth varieties, the proof
works equally well for varieties with terminal singularities. Note also that the necessary
condition κ(KX + a(X,L)L) ≥ 1 was omitted.

In general, if π : X 99K X ′ is a minimal model for (X, a(X,L)L), then (X ′, a(X,L)π∗L)
satisfies the hypotheses of Proposition 3.7 and thus gives a geometric interpretation of the
constant b(X,L).

Corollary 3.9. Let X be a smooth uniruled projective variety and L a big and nef divisor
on X. Suppose that κ(KX + a(X,L)L) ≥ 1. Let π : X 99K Z be the rational map to the
canonical model of (X, a(X,L)L). Then

b(X,L) = rk NS(X)− rk NSπ(X),

where NSπ(X) is the sublattice generated by all π-vertical divisors and all divisors contracted
by the (a(X,L)L+KX)-MMP.

Proof. If φ : X̃ → X is a blow-up with smooth center, then the desired formula holds for
(X,L) if and only if it holds for (X̃, φ∗L). By resolving, we may assume that the rational
map π is a morphism, factoring through a morphism to a minimal model ψ : X → X ′.

Once we verify that KX′+a(X,L)ψ∗L is locally rationally polyhedral, we can conclude by
applying Lemma 3.5 and Proposition 3.7. Note that the locally rational polyhedral property
can be pushed forward under a birational map. Thus it suffices to show that KX +a(X,L)L
is locally polyhedral. By Wilson’s theorem, we can write a(X,L)L = A + ∆, where A
is an ample Q-divisor and (X,∆) is a klt pair. Since the hyperplane (KX + A + ∆)⊥
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does not intersect NE1(X)KX+∆≥0, we conclude the existence of the linear functionals by
[Leh12]. Furthermore, any pseudo-effective Q-divisor in a sufficiently small neighborhood of
KX +A+∆ rescales to be of the form KX +A′+∆ for an ample divisor A′. Then [BCHM10,
Theorem 1.2] shows the Q-effectiveness of the corresponding ray, yielding the result. �

We will also need a version in the Iitaka dimension 0 case.

Lemma 3.10. Let X be a smooth uniruled projective variety and L a big and nef divisor
on X. Suppose that κ(KX + a(X,L)L) = 0. Let φ : X 99K X ′ be a minimal model for
(X, a(X,L)L). Then

b(X,L) = rk NS(X ′) = rk NS(X)− rk NSφ(X).

Proof. This follows immediately from Lemma 3.5. �

3.3. Balanced divisors.

Definition 3.11. Let X be a uniruled projective variety and L a big Cartier divisor on
X. Suppose that Y ⊂ X is an irreducible proper subvariety of X. The divisor L is weakly
balanced with respect to Y if

• L is big on Y ;
• a(Y, L) ≤ a(X,L);
• if a(Y, L) = a(X,L), then b(Y, L) ≤ b(X,L).

It is balanced with respect to Y if it is weakly balanced and one of the two inequalities is
strict.

The divisor L is weakly balanced (resp. balanced) on X if there exists a Zariski closed
subset Z ( X such that L is weakly balanced (resp. balanced) with respect to every Y not
contained in Z. The subset Z will be called exceptional.

Note the slight incongruity that an exceptional set for a balanced pair (X,L) might differ
from an exceptional set when we consider (X,L) as a weakly balanced pair. We also use a
weaker version of the balanced property:

Definition 3.12. Let X be an uniruled projective variety and L a big Cartier divisor on
X. Let Y ⊂ X be an irreducible proper subvariety of X. The divisor L is weakly a-balanced
with respect to Y if L is big on Y and a(Y, L) ≤ a(X,L). It is a-balanced with respect to Y
if we have a strict inequality.

The divisor L is weakly a-balanced if there exists a proper Zariski closed subset Z ⊂ X
such that L is weakly a-balanced with respect to any Y not contained in Z, or a-balanced in
the case of strict inequality. The subset Z will be called a-exceptional.

4. Properties of the exceptional set

In this section we compare the value of a(X,L) to a(Y, L) for subvarieties Y .

4.1. Dominant families of subvarieties.

Proposition 4.1. Let X be a smooth projective variety and L a big and nef Q-divisor. Let
π : U → W be a family of subvarieties of X such that s : U → X is dominant. Then a
general member Y of the family U satisfies a(Y, L) ≤ a(X,L).
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Proof. Let U ′ be a resolution of the universal family and let π′ and s′ be the corresponding
maps. By [Pet12, 6.8 Theorem], any smooth fiber Y ′ of π′ with trivial normal bundle has
the natural map Nef1(Y ′)→ Nef1(U ′) under the natural inclusion. In particular, for any nef
curve class α on Y ′ we have that (s′|Y ′)∗α is nef on X. For such a Y ′, let Y denote its image
in U .

Let d denote the dimension of Y and n the dimension of X. By cutting down W by general
hyperplane sections to an (n− d)-dimensional base T , we obtain a smooth restricted family
U ′T containing Y ′ whose map to X is generically finite. Then

KU ′T ≡ s′∗KX + E

for some effective divisor E. Since Y ′ has trivial normal bundle in U ′T as well, [Pet12, 6.8
Theorem] still applies to U ′T .

Consider a nef curve class α on Y ′. Letting i : Y ′ → U ′T denote the inclusion,

(KY ′ + a(X,L)(s′|Y ′)∗L) · α = (KU ′T + a(X,L)(s′|U ′T )∗L) · i∗α
≥ (KX + a(X,L)L) · (s′|Y ′)∗α.

In particular, since a divisor is pseudo-effective exactly when it has non-negative intersection
against every nef curve class,

a(Y, L) = a(Y ′, s′∗L) ≤ a(X,L).

�

Theorem 4.2. Let X be a smooth projective variety and L a big and nef Q-divisor. Let
π : U → W be a family of subvarieties of X. There exists a proper closed subset V ⊂ X
such that if a member Y of the family U satisfies a(Y, L) > a(X,L) then Y ⊂ V .

Proof. Let f : U → X be the family. If f(U) ( X then we can set V to be this subset.
Otherwise, Proposition 4.1 shows that a general member of U satisfies a(Y, L) ≤ a(X,L).
Let W ′ ⊂ W be the closure of the subset over which this inequality does not hold. Arguing
by Noetherian induction on the components of W ′ (and modifying the base to obtain a union
of families of subvarieties), we obtain the proof. �

Using the countability of the Hilbert scheme, we immediately obtain:

Corollary 4.3. Let X be a smooth projective variety and L an ample divisor on X. There
is a countable union V of proper closed subsets of X such that any subvariety Y satisfying

a(Y, L) > a(X,L)

is contained in V .

Example 4.4. The countability of V is necessary: consider for example a K3 surface X
containing infinitely many rational curves. Then a(X,L) = 0, for every ample L, and

a(Y, L) = 2/ deg(Y ) > 0,

where deg(Y ) := L.Y is the L-degree of a rational curve Y ⊂ X.
12



4.2. Rigidity. In [HTT15], the balanced property was explored for del Pezzo surfaces and
equivariant compactifications of homogeneous spaces. For del Pezzos, the balanced property
for L is equivalent to the rigidity of the adjoint divisor a(X,L)L + KX . This was also
observed in [HTT15] for flag varieties and toric varieties, and it is compatible with the
conjectural picture of the Tamagawa constant in [BT98]. We show that this observation is
true in general, proving a conjecture of [BT98].

Theorem 4.5. Let X be a smooth uniruled variety and L a big and nef divisor on X. If
L is balanced, then KX + a(X,L)L is rigid. In particular, X is rationally connected and
KX + a(X,L)L is numerically equivalent to an exceptional divisor for a birational map.

The converse is false; in Section 6 we will see many examples of Fano threefolds for which
−KX is weakly balanced but not balanced.

Proof. Suppose that KX + a(X,L)L is not rigid, or equivalently, the Iitaka dimension of
KX + a(X,L)L is at least 1. By resolving, we may suppose that X admits a morphism
φ : X → X ′ to a minimal model X ′ for (X, a(X,L)L). Let π : X ′ → Z denote the canonical
model.

Theorem 4.2 shows that if Y is a general fiber of π ◦ φ : X → Z then a(Y, L) ≤ a(X,L).
In fact, equality is achieved since the restriction of KX + a(X,L)L to Y is not big.

We show that furthermore b(Y, L) ≥ b(X,L). By Corollary 3.9,

b(X,L) = rk NS(X ′)− rk NSπ(X ′).

Similarly, let Y ′ denote the image of Y , i.e., Y ′ is a fiber of π. Then (KX′+a(Y, L)φ∗L)|Y ′ ≡ 0.
By [KM98, Lemma 3.38], we can write

KX + a(X,L)L = φ∗(KX′ + a(X,L)φ∗L) + E

for some effective φ-exceptional divisor E. By the generality of Y , the restriction E|Y is also
π|Y -exceptional. We see that KY +a(X,L)L|Y is a π|Y -exceptional divisor. By Lemma 3.10,

b(Y, L) ≥ rk NS(Y )− rk NSπ(Y ) ≥ rk NS(Y ′).

To conclude, it suffices to show that the restriction NS(X ′)→ NS(Y ′) has kernel NSπ(X ′).
This is true because the fibers of π are rationally connected: suppose that L is a Q-divisor
satisfying L|Y ′ ≡ 0. Choose a sufficiently large integer m so that mL is Cartier. Let

ψ : X̂ → X ′ be a resolution and Ŷ denote the strict transform of Y ′. By generality of Y ′,

we may suppose that Ŷ is smooth. Let Ŷν denote the base change of the generic fiber of
π ◦ φ to the algebraic closure of the function field. Then [MP12, Proposition 3.6] constructs

a specialization map NS(Ŷν) → NS(Ŷt), compatible with pulling back from X̂, which is

injective for every smooth fiber Ŷt of π ◦ ψ. In particular, since mψ∗L|Ŷ ≡ 0, we also have
that mψ∗L|Ŷt ≡ 0 for a general fiber of π ◦ ψ.

Since a general fiber Y ′t of π is rationally chain connected with terminal singularities, using
[Zha06, Theorem 1] or [HM07, Corollary 1.3] and passing to a resolution we see that for a

general fiber Ŷt of π ◦ψ we have mψ∗L|Ŷt ∼ 0. Using Grauert’s theorem over an open subset
of Z, we determine that ψ∗L is Q-linearly equivalent to a pullback of a divisor from Z plus
some π-vertical divisors. By pushing forward we determine that L has the same property. �
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4.3. Closedness of the a-exceptional set. The following proposition is the basic tool for
controlling the strongly a-balanced property.

Proposition 4.6. Let X be a smooth uniruled projective variety of dimension n and L a big
and nef Q-divisor. Then either

(1) X is covered by varieties Y satisfying a(Y, L) = a(X,L), or
(2) X is birational to a Q-factorial terminal Fano variety X ′ of Picard number 1.

Proof. Let φ : X 99K X ′ be the result of the KX + a(X,L)L-MMP. We split the analysis
into two cases.

First, suppose that the Iitaka dimension of KX + a(X,L)L is at least 1. Then the fibers
of the Iitaka fibration satisfy property 1 as argued in the proof of Theorem 4.5.

Next, suppose that KX′ + a(X,L)φ∗L is numerically trivial. Choose a sufficiently small
ε > 0 and continue to run the KX+(1−ε)a(X,L)L-MMP. The result will be a birational map

ψ : X 99K X̃ (which WLOG we may assume is a morphism) and a Mori fibration π : X̃ → Z
such that KX̃ + a(X,L)ψ∗L is numerically trivial along the fibers of π. If dimZ > 0, let

Ỹ be a general fiber of π and let Y be its preimage on X. A general complete intersection

curve C̃ in Ỹ will avoid every ψ-exceptional center. Since ψ is a birational contraction, the
strict transform C on Y is nef and avoids the ψ-exceptional locus so that

(KY + a(X,L)L) · C = 0.

By Theorem 4.2, we have a(Y, L) = a(X,L). Otherwise, dimZ = 0 and X̃ is a Q-factorial
terminal Fano variety of Picard number 1. �

We will also need a lemma concerning big and nef divisors. It was used in earlier joint
work of the first author with Mihai Fulger.

Lemma 4.7. Let X be a smooth projective variety and L a big and nef Q-divisor on X.
Fix a constant C. Then the subset of Chow(X) parametrizing subvarieties of X that are not
contained in B+(L) and are of L-degree at most C is bounded.

Proof. By definition, there is an effective Q-divisor E such that L ≡ A+E for an ample Q-
divisor A and the stable base locus of E is equal to B+(L). Suppose that Z is a d-dimensional
subvariety not contained in B+(L). Then there is a divisor E ′ that is Q-linearly equivalent
to E whose support does not contain Z. Note that

Ld − (L− E)d ≡ E ′ ·

(
d∑
i=1

Li−1(L− E)d−i

)
where the term in parentheses is a positive combination of complete intersections of nef
divisors. Since E ′ · Z is an effective cycle, we have that

Ld · Z ≥ (L− E)d · Z

and we conclude by the usual boundedness for ample divisors. �

Theorem 4.8. Let X be a smooth uniruled projective variety and L a big and nef Q-divisor
on X. There is a proper closed V ⊂ X such that any integral curve C with a(C,L) > a(X,L)
is contained in V .

14



Proof. Since a(X,L) > 0 it suffices to consider rational curves C. Suppose that C 6⊂ B+(L).
Then L · C > 0 and a(C,L) = 2

L·C . Thus, if a(C,L) > a(X,L) then L · C < 2
a(X,L)

. By

Lemma 4.7, there are only finitely many families of such curves, and we conclude by Theorem
4.2. �

In order to extend this result to higher-dimensional subvarieties, we need to apply a
boundedness conjecture for terminal Q-Fanos.

Lemma 4.9. Assume Conjecture WBABn. Let X be a projective variety of dimension n
and L a big and nef Q-divisor on X. Then either:

(1) X is dominated by subvarieties Y such that a(Y, L) = a(X,L), or
(2) Ln ≤ δ(n)/a(X,L)n.

Proof. By Proposition 4.6, we may assume there is a birational contraction φ : X 99K X ′

to a Q-factorial terminal Fano variety X ′ of Picard number 1 and that KX′ + a(X,L)φ∗L is
numerically trivial. By Conjecture WBABn we have

a(X,L)nvol(φ∗L) ≤ δ(n).

Note that

vol(L) ≤ vol(φ∗φ∗L) = vol(φ∗L),

since X̃ is normal and Q-factorial. Since vol(L) = Ln, we obtain the desired statement. �

Theorem 4.10. Assume Conjecture WBABn−1. Let X be a smooth uniruled projective
variety of dimension n and L a big and nef Q-divisor on X. There exists a proper closed
subset V ⊂ X such that every subvariety Y with a(Y, L) > a(X,L) is contained in V .

Proof. We construct V by induction on the dimension of Y . Theorem 4.8 shows that there
is a proper closed subset V1 so that any curve C with a(C,L) > a(X,L) is contained in V1.

Suppose we have constructed a proper closed subset Vi such that any subvariety Y of
dimension at most i satisfying a(Y, L) > a(X,L) is contained in Vi. We construct Vi+1 as
follows. Suppose that Y is an (i + 1)-dimensional subvariety satisfying a(Y, L) > a(X,L).
Lemma 4.9 shows that either:

• Y is covered by proper subvarieties Z with

a(Z,L) = a(Y, L) > a(X,L),

or
• Y · Li+1 ≤ δ(i+ 1)/a(Y, L)i+1 < δ(i+ 1)/a(X,L)i+1.

In the first case, Y is contained in Vi. In the second case, Y has L-degree bounded above
by some constant. By Lemma 4.7 there is a closed subset S of Chow(X) parametrizing
all subvarieties of this bounded degree not contained in B+(L). Theorem 4.2 shows that
there is a proper closed subset V ′i+1 ⊂ X so that any subvariety Y in this family with
a(Y, L) > a(X,L) is contained in V ′i+1. Set Vi+1 = Vi ∪ V ′i+1 ∪B+(L). �

Example 4.11. The argument above does not show that Y with a(Y, L) > a(X,L) have
bounded L-degree. In fact, this stronger boundedness is not true.

For example, suppose T ⊂ W is a smooth surface in a smooth fourfold and A is an ample
divisor on W . Let π : X → W be the blow-up along T with exceptional divisor E and define
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the ample divisor L := π∗A− εE, for some sufficiently small rational ε > 0. Note that if C
is a fiber of π|E, then

a(C,L) =
1

ε
a(C,−E|C) =

2

ε
Fix Z ⊂ T a smooth curve and let Y ⊂ E be the preimage of Z. Since Y is ruled by
the fibers of the blow-up, Proposition 4.1 shows that a(Y, L) ≥ a(C,L). Thus, if we fix ε
sufficiently small then a(Y, L) > a(X,L). Note however that the L-degrees of such surfaces
Y are unbounded. Indeed, we have

Y · (π∗A− εE)2 = ε(2A · Z + εc1(N∨T ) · Z).

so that the L-degree depends linearly on the class of the curve Z in the surface T . Thus, if
we fix a very ample divisor H on T and set Zm to be a general section of |mH| for positive
integers m, we see that the L-degree of the corresponding surfaces increases without bound.

4.4. b-exceptional sets. The b constants seem more difficult to work with geometrically.
The most basic question is:

Question 4.12. Let X be a smooth uniruled projective variety and L a big and nef Q-divisor
on X. Consider the pairs

(a(Y, L), b(Y, L))

as Y varies over all subvarieties which deform to cover X. Does this set attain a maximum
(in the lexicographic order)?

If so, Theorem 4.5 shows that the maximum is attained on a Y whose smooth model Y ′ has
the property that KY ′ + a(X,L)L is rigid. [BT98, Section 2] proposes a stronger statement:
the moving subvarieties with maximal constants define a fibration structure on X. The
following question reinterprets this expectation in terms of the minimal model program.

Definition 4.13. Let X be a projective variety with terminal singularities and L a Q-divisor
on X. We say that a morphism π : X → Z is L-negative if L is π-anti-ample, and L-trivial
if L is π-numerically trivial. Similarly, if φ : X 99K X ′ is a flip, we say that φ is L-negative
or L-trivial based on the intersection of L with the defining ray.

Now suppose that X is a smooth projective variety and L is a big and nef Q-divisor. An
a-fibration on X consists of:

• a finite sequence of steps {φi : Xi 99K Xi+1}r−1
i=0 of the KX-MMP (with composition

ψi : X 99K Xi) such that KXi
+ a(X,L)ψi∗L-negative or trivial, for all i, and

• a KX-negative fibration π : Xr → Z that is KXr + a(X,L)ψr∗L-trivial.

Question 4.14. Let X be a smooth uniruled projective variety and L a big and nef Q-
divisor. Consider pairs

(a(Y, L), b(Y, L)),

as Y varies over subvarieties which deform to cover X. Is the maximum of (a(Y, L), b(Y, L))
achieved by the strict transform of a fiber of an a-fibration?

If the answer is yes, then the finiteness of models as in [BCHM10] reduces the calculation
to a finite number of possibilities. However, there does not seem to be a good way to identify
the best choice of an a-fibration, a priori.
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Remark 4.15. It is not true that any moving subvariety Y ⊂ X with a(Y, L) = a(X,L)
is a fiber of an a-fibration. In Section 6, we will see many counterexamples involving ra-
tional curves on primitive Fano threefolds. The first difficulty concerning Question 4.14 is
characterizing subvarieties with a(Y, L) = a(X,L).

Remark 4.16. The value of the b-constant for an a-fibration is closely related to the mon-
odromy action on the base. See [CFSL14] for an analysis of this relationship (e.g., Theorem
2.6). This seems to be a practical way to detect jumps in the b-constant.

In particular, this leads to:

Question 4.17. Let X be a smooth projective variety over a number field F and L = (L, ‖·‖)
an ample adelically metrized line bundle on X. Is there a Zariski open subset X◦ ⊆ X such
that for every sufficiently large finite extension F ′ of the ground field F one has

N(X◦(F ′),L, B) ∼ cBa(X,L) log(B)b
′(X,L)−1, B →∞,

for some constant c, where b′(X,L) is the value of b(Y, L), for Y the strict transform of a
general fiber of some a-fibration?

Note that even if this question is answered in the affirmative, the value of c may be
difficult to pin down. In particular, as discussed in [BL13], one may not simply take c to be
the Tamagawa-type constant calculated for the fiber Y selected in Question 4.17.

5. Examples

We have seen several methods of analyzing the a-constant using the minimal model pro-
gram, Reider-type statements, or the geometry of rational curves. These methods indicate
that subvarieties Y satisfying a(Y, L) > a(X,L) tend to be:

• covered by low degree rational curves, or
• singular varieties of low L-degree, or
• contained in B−(KX + a(X,L)L).

We first consider several general examples.

Example 5.1. Each projective space Pn is balanced with respect to the hyperplane class L
with empty exceptional set. To see this, first note that a(Pn, L) = n + 1. By Proposition
2.10, a(Y, L) ≤ n for any variety Y of dimension ≤ n− 1 and for any ample Cartier divisor
L. In particular a(Y, L) < a(Pn, L) for any proper subvariety Y of Pn.

The following conjecture gives an additional tool for analyzing the a-constants using the
geometry of rational curves. We will verify in Lemma 5.8 that it holds for surfaces.

Conjecture 5.2. Let X be a smooth projective variety and L a big and nef Q-divisor on
X. If KX +L is not pseudo-effective, then there is a rational curve C that deforms to cover
X satisfying (KX + L) · C < 0.

Example 5.3. Let Q ⊂ Pn+1 be a smooth quadric hypersurface, for n > 2. Assuming
Conjecture 5.2, we show that Q is balanced with respect to the hyperplane class L with
empty exceptional set.

To see this, note that a(Q,L) = n. By Proposition 2.10, a(Y, L) < n for any subvariety
Y of dimension at most n − 2. Thus, to show the balanced property it suffices to consider
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divisors on Q. By Lemma 2.6 and Conjecture 5.2, the only way a divisor Y on Q can fail to
be balanced is if Y is covered by lines (that is, rational curves C with L · C = 1) and the
dimension of the space of lines on Y is 2n − 4. However, in this case any two points of Y
can be connected by a line in Y , showing that Y must be an (n − 1)-dimensional plane in
Pn+1. Since a smooth quadric (of dimension > 2) cannot contain any such plane, we obtain
the statement.

[HTT15] analyzed toric varieties and equivariant compactifications of homogeneous spaces.
The main results are:

Proposition 5.4 ([HTT15], Proposition 1.4). Let X be a smooth projective toric variety
and L a big divisor on X. Then L is balanced with respect to all subtoric varieties if and
only if KX + a(X,L)L is rigid.

Proposition 5.5 ([HTT15], Theorem 1.3). Let H ⊂ M ⊂ G be connected linear algebraic
groups. Let X be a smooth projective G-equivariant compactification of H\G and Y ⊂ X the
induced compactification of H\M . Assume that the projection G→M\G admits a rational
section. Then −KX is balanced with respect to Y .

Proposition 5.5 was used in [GTBT11] and [ST15] to verify Manin’s conjecture for certain
equivariant compactifications of homogeneous spaces.

For equivariant compactifications of homogeneous spaces X, one expects that X should
have the boundary set as the a-exceptional set, for any big and nef divisor on X. We are
able to verify this using previous results.

Theorem 5.6. Let G be a connected linear algebraic group and X be a smooth projective
G-variety with the open orbit U . Let L be a big and nef Q-divisor on X. Then (X,L) is
weakly a-balanced and the a-exceptional set is the boundary set X \ U

Proof. Let Y be any subvariety of X such that Y ∩ U 6= ∅. We can construct a dominant
family of subvarieties of X using the transitive group action on Y . Note that the a values
for general members of this family agree with a(Y, L). By Proposition 4.1, X is weakly
a-balanced with respect to Y . �

5.1. Surfaces. We next analyze invariants of surfaces.

Proposition 5.7. [HTT15, Lemma 4.1 and Proposition 4.2] Let X be a del Pezzo surface,
i.e., a smooth projective surface with ample anticanonical class. Let L be a big divisor on X.
Then L is weakly balanced. Moreover, L is balanced if and only if the Q-divisor a(X,L)L+KX

is rigid.

Note the equivalence between the balanced property and the rigidity of the adjoint divisor
a(X,L)L + KX . Similar techniques can be used to analyze surfaces in general. A key
preliminary result is:

Lemma 5.8. Let X be a smooth surface and L a big and nef Q-divisor on X. If KX +L is
not pseudo-effective then there is a rational curve C that deforms to cover X such that

0 < L · C < −KX · C ≤ 3.

Proof. Let φ : X 99K X ′ and π : X ′ → Z be the Mori fibration obtained by running the
(KX+L)-MMP. Note that X ′ has terminal singularities by Lemma 2.4, so that X ′ is smooth.
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Thus there is a rational curve on X ′ with −KX · C ≤ 3 contracted by π and avoiding any
φ-exceptional center, and the strict transform of this curve satisfies the desired property. �

We split our analysis into two cases based on the Iitaka dimension of KX + a(X,L)L.

Proposition 5.9. Let S be a smooth uniruled projective surface and let L denote a big and
nef divisor on S.

(1) Suppose that κ(KS + a(S, L)L) = 1. Let F be a general fiber of the Iitaka fibration.
Then

a(S, L) =
2

L · F
and b(S, L) = 1.

In particular L is weakly balanced, but not balanced.
(2) Suppose that κ(KS + a(S, L)L) = 0. Let π : S → S ′ be a minimal model of

(S, a(S, L)L) and let C be any nef curve on S ′. Then

a(S, L) =
−KS′ · C
π∗L · C

b(S, L) = ρ(S ′).

In particular L is balanced.

If S is not rational, then it always lands in case (1).

Note that the minimal model of (S, a(S, L)L) will be smooth, by Lemma 2.4.

Proof. (1) Let π : S → T denote the fibration defined by KS + a(S, L)L. (Note that π
is a morphism by standard results of the MMP.) Recall that KS + a(S, L)L has vanishing
intersection with a rational curve that deforms to cover S. In this situation the only choice
is the general fiber C of the ruling. Since KS ·C = −2, we obtain the desired expression for
a(S, L). To determine b(S, L), by Lemma 3.5 we may do the calculation on a minimal model
φ : S → S ′ for KS+a(S, L)L. On S ′, the divisor KS′+a(S, L)φ∗L is proportional to a general
fiber of the ruling. In particular, if D has vanishing intersection against KS′ + a(S, L)φ∗L
then D also has vanishing intersection with any curve that is vertical for the ruling. We
conclude that b(S, L) = 1 using the description of N1(X) for ruled surfaces.

We next show that L is weakly balanced. By Theorem 4.8, there is a finite collection of
rational curves satisfying a(C,L) > a(S, L). Since b(C,L) = 1 for each of these curves, we
see that L is weakly balanced. However, L is never balanced, since the general fibers F of π
have the same a and b constants as S.

(2) In this case KS +a(S, L)L is a rigid divisor. Let π : S → S ′ be the map to the minimal
model, so that KS′ + a(S, L)π∗L = 0. Since π∗L is big and nef, we have π∗L · C 6= 0. Using
Lemma 3.10 we obtain the given interpretations of the geometric constants.

We still must show that L is balanced. First suppose ρ(S ′) ≥ 2. Then it suffices to show
that S is weakly a-balanced; this follows from Theorem 4.8.

Otherwise, ρ(S ′) = 1 and S ′ ∼= P2. Note that KS + a(S, L)L is an exceptional divisor
for the map to P2 with support equal to the entire exceptional locus. We show that L is
balanced with respect to any rational curve N except possibly for curves contained in the
π-exceptional locus and rational curves satisfying −KS ·N < 2 of bounded L-degree. Recall
that if N is a member of a dominant family of rational curves on S then −KS · N ≥ 2, by
Lemma 2.7. Thus, the rational curves satisfying −KS · N < 2 of bounded L-degree form a
closed subset of S, by Lemma 4.7, and we can conclude that L is balanced.
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Let N ⊂ S be a rational curve not contained in the π-exceptional locus. Then

a(N,L) =
2

L ·N
a(S, L) =

3

deg(π∗L)

First, suppose that N does not intersect a π-exceptional curve. Then

L ·N ≥ deg(π∗L),

so that a(S, L) > a(N,L). Now suppose that N does intersect a π-exceptional curve. Then

a(S, L)L ·N > (−KS) ·N.
If −KS · N ≥ 2 then a(N,L) < a(S, L) and L is balanced with respect to N . Also, if
L · N > 2

3
deg(π∗L) then L is balanced with respect to N , and we conclude that L is

balanced, by the argument above. �

6. Fano threefolds with ρ(X) = 1

In this section and the next we investigate the geometry of smooth Fano threefolds, i.e.,
smooth projective threefolds with ample anticanonical class. There are 105 deformation
types; a list of these can be found in [MM82], [IP99, Chapter 12], and in [MM04], which
includes a previously missing case.

6.1. Classification. The main invariants of Fano threefolds are:

• the rank of the Picard group, ρ(X) = b(X,−KX),
• the index r = r(X): the largest r ∈ N such that KX is divisible by r in Pic(X),
• the degree d(X) := (−KX)3,
• the Mori invariant m = m(X): the smallest m ∈ N such that every point of X lies

on a rational curve C with −KX · C ≤ m.

The Picard rank ρ(X) coincides with the second Betti number of X. There are 17 de-
formation types of Fano threefolds with ρ(X) = 1, classified in [Isk77], [Isk78], and [Isk79].
There are 88 deformation types of Fano threefolds with ρ(X) ≥ 2, classified by Mori-Mukai
in [MM82] and [MM04].

A Fano threefold is called imprimitive if it is isomorphic to the blow-up of a Fano threefold
along a smooth irreducible curve. A Fano threefold is primitive if it is not imprimitive. Fano
threefolds of Picard rank one are primitive.

Theorem 6.1. Let X be a Fano threefold, with Pic(X) = ZL and −KX = r(X)L. Then X
is one of the following:

• P3, with r(X) = 4, or a quadric, with r(X) = 3, or
• r(X) = 2 and d(X) ∈ {8, 16, 24, 32, 40}, or
• r(X) = 1 and d(X) ∈ {2, 4, 6, 8, 10, 12, 14, 16, 18, 22}.

Primitive Fano threefolds with ρ(X) ≥ 2 are classified in [MM82], and a detailed analysis
is given in [Ott05]. There are 13 deformation types, and they have the following restrictions
on their structures:

Theorem 6.2. [MM83, Theorem 1.6] Let X be a primitive Fano threefold. Then

(1) ρ(X) ≤ 3,
(2) if ρ(X) = 2, then X is a conic bundle over P2,
(3) if ρ(X) = 3, then X is a conic bundle over P1 × P1.
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Another useful description is given in [Man93, Section 2]:

Proposition 6.3. Every smooth Fano threefold over an algebraically closed field of charac-
teristic zero is isomorphic to one of the following:

(1) a generalized flag variety P\G;
(2) a variety X with m(X) = 2;
(3) a blowup of varieties of type (1) or (2);
(4) a direct product of P1 and a del Pezzo surface.

In the following sections we determine which smooth Fano threefolds X have balanced
−KX .

6.2. ρ(X) = 1 and r(X) = 3, 4.
When r(X) = 4, X = P3; by Example 5.1, −KX is balanced and the exceptional set is

empty. When r(X) = 3, X ⊂ P4 is a quadric.

Proposition 6.4. Let X ⊂ P4 be a smooth quadric. Then −KX is balanced and the excep-
tional set is empty.

Proof. The class −KX is balanced with respect to curves, as r(X) = 3. Let S ⊂ X be
an irreducible surface. Choose a resolution of singularities β : S̃ → S. The fundamental
divisor L is the restriction of O(1) on P4 and a(X,L) = 3. Consider the adjoint divisor
2β∗L|S̃ + KS̃. Since X is a smooth quadric, we have (2L)2.S ≥ 4L3 = 8. By Reider’s
theorem (Theorem 2.8), 2β∗L|S̃ +KS̃ is effective. Thus a(S, L|S) ≤ 2. �

6.3. ρ(X) = 1 and r(X) = 2.
We have Pic(X) = ZL, with −KX = 2L. An irreducible curve C with −KX · C = 2 is

called a −KX-conic. The Hilbert scheme F (X) of −KX-conics is called the Fano surface of
−KX-conics.

Suppose that d(X) ≥ 24 = 8 · 3. Then L is very ample [IP99, Theorem 3.2.4] and
the dimension of its linear series is given by L3 + 1. The Fano surface F (X) is smooth,
projective, and of pure dimension 2 ([Isk79]). Let U be the universal family of −KX-conics.
The evaluation map U → X is surjective, hence −KX-conics cover X. We have

Proposition 6.5. Suppose that d(X) ≥ 8 · 3. Then −KX is weakly balanced and the excep-
tional set is empty. However, −KX is not balanced.

Proof. Let L be the fundamental divisor of X. The assumption in our statement implies
that L3 ≥ 3. The divisor L is very ample and its linear series determines an embedding into
PL3+1. Since the index is 2, a(X,L) = 2, and −KX is weakly balanced with respect to any
curve. However, −KX is not balanced with respect to −KX-conics, and these sweep out X.
Thus −KX is not balanced.

Suppose that S ⊂ X is an irreducible proper surface. Let β : S̃ → S be a resolution of
singularities. Then (2β∗L)2 ≥ 12 and Theorem 2.8 implies that D = 2β∗L+KS̃ is effective,
thus

a(S, L) ≤ a(X,L) = 2.

Suppose that a(S, L) = a(X,L) = 2. We claim that the Iitaka dimension of 2β∗L+KS̃ is 1.
If not, then the Iitaka dimension of D is 0. In particular, two general points x, y cannot be
separated by |D|, hence Theorem 2.9 indicates that there exists a −KX-conic C containing x
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and y. This implies that S ⊂ PL3+1 is a plane, but X cannot contain a plane, contradiction.
By Proposition 5.9, we have b(S, L) = 1. Thus L is weakly balanced with respect to S. �

Suppose that d(X) = 8 · 2 = 16. Then X is a double cover of P3 ramified along a smooth
quartic surface W ⊂ P3, i.e., X is defined by

f4(x0, x1, x2, x3) = w2,

in the weighted projective space P(1, 1, 1, 1, 2), where deg(xi) = 1, deg(w) = 2, and f4 is a
homogeneous polynomial of degree 4. Let L be the fundamental divisor. The linear system of
L defines the double cover π : X → P3. The Fano surface of −KX-conics is two dimensional
and −KX conics dominate X. (See the Remark of Proposition 1.3, Chapter III in [Isk79].)
We need to classify all possible singularities of divisors of |L|.

Lemma 6.6. For any S ∈ |L|, S has only isolated singularities, hence S is normal.

Proof. Suppose otherwise. Without loss of generality we assume that S is defined by x0 = 0.
By our assumption, S is singular along a curve C. On C, we have(

∂f4

∂x1

,
∂f4

∂x2

,
∂f4

∂x3

,−2w

)
= (0, 0, 0, 0).

Thus C is contained in P ∼= P2 defined by x0 = w = 0. On the other hand, ∂f4
∂x0

= 0 defines a
1 dimensional scheme G on P , and G meets with C. At G∩C, X is singular, contradiction.
The last assertion follows from Serre’s Criterion. �

Lemma 6.7. For any S ∈ |L|, S has only canonical singularities or elliptic surface singu-
larities. Moreover, when S has an elliptic surface singularity, S is isomorphic to the cone
defined by

g4(x1, x2) = w2,

in the weighted projective space P(1, 1, 1, 2), where g4 is a homogeneous polynomial of degree
4 with distinct roots.

Proof. Assume that S has an isolated singularity P . We may assume that S is defined by
x0 = 0 and P is given by (0 : 0 : 0 : 1 : 0). We consider an affine patch {x3 6= 0}, then S is
given by

q4(x1, x2) = w2,

in A3, where q4 is a polynomial of degree 4, and P is given by x1 = 0, x2 = 0, w = 0. We
apply the discussion of [KM98, Section 4.25] to this surface and conclude that S has an (at
worst) canonical singularity at P if and only if mult0(q4) ≤ 3. When mult0(q4) = 4, P is an
elliptic surface singularity ([KM98, Theorem 4.57]). By comparing against the local-analytic
form of the equation in [KM98], we see that if S has an elliptic singularity then it is a
cone. �

Proposition 6.8. Let X be a Fano threefold of ρ(X) = 1, r(X) = 2, and d(X) = 16. Then
−KX is weakly balanced and the exceptional set is the empty set. However, −KX is not
balanced.

Proof. The anticanonical class −KX is weakly balanced with respect to any curve, however,
−KX is not balanced with respect to −KX-conics. Let S ⊂ X be an irreducible surface and
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β : S̃ → S a resolution of singularities of S. Since (2β∗L) ≥ 8, Theorem 2.8 implies that
2β∗L+KS̃ is effective, thus a(S, L) ≤ a(X,L) = 2.

To show the weakly balanced property, we must consider the case when a(S, L) = a(X,L) =
2. If S ∈ |mL|, where m ≥ 2, then by Theorem 2.9 we conclude that the Iitaka dimension
of 2β∗L + KS̃ is 1 (since otherwise two general points of S could be connected by a −KX-
conic). Its canonical fibration is a ruling and one can conclude that b(S, L) = 1. Thus −KX

is weakly balanced with respect to S. Assume that S ∈ |L|. If S is smooth or has at most
canonical singularities, then by the adjunction formula, we have 2L|S +KS = S|S is ample.
Since the a constant can be computed on any model with canonical singularities by [HTT15,
Proposition 2.7], a(S, L) < 2, contradiction. Suppose that S is a cone defined by

g4(x1, x2) = w2,

where g4 is a homogeneous polynomial degree 4 with distinct roots. There is only one
singularity which is an elliptic surface singularity (0 : 0 : 1 : 0). We apply a weighted blow
up of type (1, 1, 2) at the cone point, and obtain a smooth resolution β : S̃ → S. The surface
S̃ admits a projection to an elliptic curve E defined g4 = w2 in P(1, 1, 2). Thus S is not
rational, so that b(S, L) = 1 by Proposition 5.9. Then −KX is weakly balanced with respect
to S. �

Suppose that X is a Fano threefold of ρ(X) = 1, r(X) = 2, and d(X) = 8. Then X is
a hypersurface of degree 6 in the weighted projective space P(1, 1, 1, 2, 3) ([IP99, Theorem
3.2.5]). The variety X is defined by

f6(x0, x1, x2) + f4(x0, x1, x2)y + y3 + z2 = 0,

where deg(xi) = 1, deg(y) = 2, deg(z) = 3 and f6, f4 are homogeneous polynomials of degree
6 and 4 respectively. Let L be the fundamental divisor. Then H0(X,O(L)) is generated by
x0, x1, x2 ([Mor75, Proposition 3.3]). The Fano scheme of −KX-conics is 2-dimensional, and
it may be non-reduced. Again X is swept out by −KX-conics. Next we classify possible
singularities of divisors in the linear system |L|.

Lemma 6.9. For any S ∈ |L|, S has only isolated singularities, hence S is normal.

Proof. One can proceed as in the proof of Lemma 6.6. �

Lemma 6.10. For any S ∈ |L|, S has only canonical singularities or elliptic surface singu-
larities. Moreover, when S has an elliptic singularity, S is isomorphic to the cone defined
by

ax6
1 + bx4

1y + y3 + z2 = 0,

in the weighted projective space P(1, 1, 2, 3) where a, b satisfies 4b3 + 27a2 6= 0.

Proof. Suppose that S has an isolated singularity P . Without loss of generality we may
assume that S is defined by x0 = 0 and P is given by (0 : 0 : 1 : y0 : 0). Consider an affine
patch {x2 6= 0}, then S is defined by

q6(x) + q4(x)y + y3 + z2 = 0,

in A3 where q6 and q4 are polynomials of degree 6 and 4 respectively, and P is given by
x = 0, y = y0, z = 0. Suppose that y0 6= 0. Then P is a canonical singularity. Indeed,
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compute the Hermitian matrix ∂2q6
∂x2

+ ∂2q4
∂x2

y ∂q4
∂x

0
∂q4
∂x

6y 0
0 0 2

 .

At P it has rank 2 or 3. If it has rank 3, then the surface is locally isomorphic to x2+y2+z2 =
0 analytically and it is an A1-singularity (see [KM98] for the definition). If it has rank 2,
then it follows from the Weierstrass preparation theorem that the germ of the surface at P
is locally analytically isomorphic to

z2 + y2α(x, y) + yβ(x) + γ(x) = 0,

where α, β, γ are analytic functions such that α(0, 0) 6= 0. Replacing y by y− β
2α

, we conclude
that the surface is locally analytically isomorphic to

z2 + y2 + xm = 0,

which is an Am-singularity.
Suppose that y0 = 0. The point P is given by (0, 0, 0) and the surface is defined by

q6(x) + q4(x)y + y3 + z2 = 0.

Now we apply the discussion of [KM98, Section 4.25] and obtain that S has at worst canonical
singularity at P if and only if mult0(q6) ≤ 5 or mult0(q4) ≤ 3. When mult0(q6) ≥ 6 and
mult0(q4) ≥ 4, P is an elliptic surface singularity ([KM98, Theorem 4.57]). By comparing
against the local-analytic form of the equation in [KM98], we see that if S has an elliptic
singularity then it is a cone. �

Now we have

Proposition 6.11. Let X be a Fano threefold of ρ(X) = 1, r(X) = 2 and d(X) = 8. Then
the anticanonical class −KX is weakly a-balanced and the a-exceptional set is the empty set.
The anticanonical class −KX is not balanced.

Proof. Let L be the fundamental divisor of X. We have L3 = 1. The anticanonical class is
weakly balanced with respect to any curve because the index is 2. However, the anticanonical
class is not balanced due to the −KX-conics. Let S be an irreducible surface. We need to
show that a(S, L) ≤ a(X,L) = 2. If S is linearly equivalent to mL where m ≥ 2, then
(2L)2 · S ≥ 8. By Reider’s theorem (Theorem 2.8), we have a(S, L) ≤ 2. Suppose that
S ∈ |L|. If S is smooth or has at worst canonical singularities, then by the adjunction
formula, we have 2L|S + KS = S|S is ample. Since the a constant can be computed on any
model with canonical singularities by [HTT15, Proposition 2.7], we conclude that a(S, L) < 2.

Suppose that S has an elliptic singularity. We calculate a(S, L). By Lemma 6.10, S is a
cone defined by

ax6
1 + bx4

1y + y3 + z2 = 0.

The only elliptic surface singularity is (x1 : x2 : y : z) = (0 : 1 : 0 : 0) and there is no other
singular point. [KM98, Theorem 4.57] shows that if we do a weighted blow-up of type (1,2,3)
at the cone point (in the ambient C3), the resulting strict transform surface π : S → S has
canonical singularities and maps to an elliptic curve. Since S is not rational, we can apply
Proposition 5.9 to conclude that a(S, L) = 2. �
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To establish the weakly balanced property, one needs to classify all possible singularities
of divisors in the linear system |2L|.

6.4. ρ(X) = 1 and r(X) = 1.
Let L be the fundamental divisor of X, i.e., −KX = L. For simplicity, we assume that

L is very ample. This excludes two types of Fano threefolds ([IP99, Proposition 4.1.11]).
We denote the Fano scheme of −KX-conics by F (X). We also consider −KX-lines, i.e.,
irreducible curves C such that −KX · C = 1, and denote the corresponding Hilbert scheme
by Γ(X). The existence of −KX-lines and −KX-conics has been established by Shokurov
(see [IP99, Remark 4.2.8, Theorem 4.4.13, Theorem 4.5.10]). It is known that Γ(X) is of pure
dimension 1 [IP99, Proposition 4.2.2]. Let Z(X) be the surface swept out by −KX-lines.
The family of −KX-conics covers X (see [Isk79, Chapter III, Proposition 3.4]).

Proposition 6.12. Suppose that X is a Fano threefold of ρ(X) = 1, r(X) = 1, and d(X) ≥
10. Then −KX is weakly balanced and the exceptional set is Z(X), but it is not balanced.

Proof. For any curve C not contained in Z(X), we have −KX ·C ≥ 2. Thus −KX is weakly
balanced with respect to any curve C not contained in Z(X). However −KX-conics sweep
out X, hence −KX is not balanced.

Suppose that S is an irreducible surface not contained in Z(X). Let β : S̃ → S be
a resolution of singularities of S. Since (L|S)2 ≥ L3 ≥ 10, it follows from Theorem 2.8
that D = β∗L + KS̃ is effective. We conclude that a(S, L) ≤ a(X,L) = 1. Suppose that
a(S, L) = a(X,L) = 1. We claim that D has Iitaka dimension 1. If D has Iitaka dimension 0,
then |D| fails to separate general points x, y. By Theorem 2.9, there is a −KX-conic passing
through x, y. This implies that the dimension of the Hilbert scheme of −KX-conics on S
is greater than 1. [Isk79, Chapter III, Proposition 3.3] shows that S is a Veronese surface
in P5, one of its projections into a lower space, a quadric surface, or a plane. However, X
cannot contain these surfaces. Thus we have κ(D) = 1. Its canonical fibration is a ruling,
and we conclude that b(S, L) = 1. Thus −KX is weakly balanced with respect to S. �

Suppose that d(X) = 8 or 6. When d(X) = 8, then X is a complete intersection of three
quadrics in P6. When d(X) = 6, then X is a complete intersection of a cubic and a quadric
in P5. Using Reider’s theorems we have:

Proposition 6.13. Let X be a Fano threefold of ρ(X) = 1, r(X) = 1. Suppose that d(X) = 8
or 6. Then −KX is weakly a-balanced with the exceptional set Z(X), but is not balanced.

Again, to establish the weakly balanced property, one needs to classify possible singularities
of divisors in the linear system |L|. Suppose that d(X) = 4. In this case, X is a quartic
threefold in P4, defined by

f4(x0, x1, x2, x3, x4) = 0,

where f4 is a homogeneous polynomial of degree 4. To study the balanced property of the
anticanonical class, we need to classify all possible singularities of divisors in |L|.
Lemma 6.14. For any S ∈ |L|, S has only isolated singularities, hence S is normal.

Proof. One can discuss as Lemma 6.6. �

If a quartic surface does not have du Val singularities, then it has irrational singulari-
ties (see for example [Ume84]). A complete classification of normal quartic surfaces with
irrational singularities has been given in [IN04]. What we need is the following proposition:
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Proposition 6.15 ([IN04]). Suppose that S is a normal quartic surface with irrational sin-
gularities. Let β : S̃ → S be the minimal desingularization of S and L the hyperplace class
on S. Then either β∗L+KS̃ is nef or S is isomorphic to a cone over a smooth quartic plane
curve in P3.

Using Reider’s theorems, we obtain:

Proposition 6.16. Let X be a Fano threefold of ρ(X) = 1, r(X) = 1, d(X) = 4. Suppose
that −KX is very ample. Then −KX is weakly a-balanced with the a-exceptional set Z(X),
but not balanced.

Here, we need to classify possible singularities of divisors in |2L| to establish weakly
balanced property.

We summarize results of this section:

Theorem 6.17. Suppose that X is a Fano threefold of ρ(X) = 1;

• if r(X) = 4 or 3, then −KX is balanced;
• if r(X) = 2 and d(X) ≥ 16, then −KX is weakly balanced, but not balanced;
• if r(X) = 2 and d(X) = 8, then −KX is weakly a-balanced, but not balanced;
• if r(X) = 1 and d(X) ≥ 10, then −KX is weakly balanced, but not balanced;
• if r(X) = 1 and d(X) = 8 or 6 then −KX is weakly a-balanced, but not balanced;
• if r(X) = 1, d(X) = 4, and −KX is very ample, then −KX is weakly a-balanced, but

not balanced.

7. Primitive Fano threefolds with ρ(X) = 2

Let Z1(X) be the free group generated by irreducible curves on an algebraic variety X and
N1(X)Z = Z1(X)/ ≡ its quotient group of numerical equivalence classes. Put N1(X)R :=
N1(X)Z ⊗ R, it is dual to the Néron Severi space NS(X,R). A basic invariant of X is the
cone of effective curves NE1(X) ⊂ N1(X)Z, the convex cone generated by classes of effective
curves. It is known that for any Fano threefold X, the cone of effective curves NE1(X) is
rational polyhedral and finitely generated [Mor82]. Its edges are called extremal rays. Each
extremal ray R is generated by a rational curve. We define the length of R by

µR = min{−KX · C | C is a rational curve such that [C] ∈ R}
and denote a rational curve which achieves the minimum value by lR. We call it an extremal
curve of R. For each extremal ray R, there exists a morphism f : X → Y to a normal
projective variety such that f∗OX = OY and for any irreducible reduced curve C, [C] ∈ R if
and only if C is contracted by f [Mor82]. This morphism is unique up to isomorphism, and
we denote it by contR. It is known that for Fano threefolds, the following sequence is exact:

0→ Pic(Y )→ Pic(X)→ Z→ 0,

where the second map is the pullback of line bundles and the third map is defined by D · lR,
for D ∈ Pic(X). In particular,

ρ(X) = ρ(Y ) + 1,

and R and f = contR are classified as follows [Mor82]:

• dim(Y ) = 3: then there exists an irreducible reduced divisor D such that f |X\D is
an isomorphism and dim f(D) ≤ 1. The divisor D is called the exceptional divisor,
and X is the blow up of Y along f(D) (given the reduced structure).
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– type E1 : f(D) is a smooth curve, Y is smooth and f |D : D → f(D) is a
P1-bundle, µR = 1, and lR is a fiber of P1-bundle f |D;

– type E2 : f(D) is a point, Y is smooth, D ∼= P2 and OD(D) ∼= O(−1), µR = 2,
and lR is a line in D;

– type E3 : f(D) is an ordinary double point, D ∼= P1×P1, OD(D) ∼= O(−1,−1),
µR = 1 and lR is a ruling in D;

– type E4 : f(D) is a double point, D is an irreducible reduced singular quadric
in P3, OD(D) ∼= OD ⊗O(−1), µR = 1, and lR is a generator of the cone D;

– type E5 : f(D) is a quadruple point of Y , D ∼= P2, OD(D) ∼= O(−2), µR = 1,
and lR is a line in D.

• dim(Y ) = 2: then Y is a smooth projective rational surface [MM83, Proposition 3.5],
f : X → Y is a conic bundle, and we denote the discriminant locus by ∆f . We have

– type C1 : ∆f is non-empty, µR = 1, and lR is an irreducible component of a
reducible fiber or a reduced part of a multiple fiber or

– type C2 : f is the projective bundle of a rank two vector bundle, µR = 2 and lR
is a fiber of f .

• dim(Y ) = 1: then Y ' P1 and ρ(X) = 2. Every fiber of f is irreducible and reduced
and the generic fiber Xη is a del Pezzo surface. There are three cases:

– type D1 : Xη is a del Pezzo surface of degree d, 1 ≤ d ≤ 6, µR = 1, and lR is a
line on a fiber;

– type D2 : f is a quadric bundle, µR = 2, and lR is a line in a fiber;
– type D3 : f is a P2-bundle, µR = 3, and lR is a line in a fiber.

Suppose that X is a Fano threefold of ρ(X) = 2. The cone of effective curves NE1(X)
consists of two rays R1 and R2. Set fi = contRi

: X → Yi, µi = µRi
and li = lRi

. Let Li be
the pull back of the ample generator on Yi. The following theorem plays a central role in
our analysis:

Theorem 7.1. [MM83, Theorem 5.1] The set {L1, L2} forms a basis for Pic(X) and {l2, l1}
is the dual basis of N1(X)Z. The cone NE1(X) is generated by l1 and l2. Moreover we have

−KX ∼ µ2L1 + µ1L2.

We will also use the following results. A morphism π : X → Y is called a conic bundle
when X admits an embedding into a P2-bundle over Y such that every fiber of X is a conic
in the corresponding P2.

Lemma 7.2. Let X be a smooth threefold admitting the structure of a conic bundle π : X →
P2. Let C ⊂ P2 be a line not contained in the discriminant locus for π. Then π−1(C) is
normal.

Proof. Since X is a conic bundle, we have an inclusion X ⊂ PP2(E) into a P2-bundle over P2.
Let S denote the preimage of C. Note that S is irreducible by assumption on C. Since

S is a hypersurface, it suffices by Serre’s criterion to show that the singularities of S have
codimension at least 2. Again by assumption on C, the only way S can have non-isolated
singularities is if it contains a double line fiber of π.

Choose a sufficiently small open neighborhood U ⊂ A2 of the image of this fiber that
trivializes the bundle PP2(E). We may assume the point of the double fiber is given by
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x = y = 0 and the line C is defined by x = 0. X is defined locally by the vanishing of

F (x, y, t0, t1, t2) =
∑

fi,jtitj,

where the fi,j are rational functions in x and y. Along the fiber over (0, 0), we have dF
dy

=
dF
dti

= 0 for each i. But then the scheme dF
dx

= 0 meets with the double line, so X itself is
singular, a contradiction. �

The following lemma is known to experts; see for example [Che97, Theorem 1.8]. We
include a proof for completeness.

Lemma 7.3. Let S be a normal Gorenstein surface admitting a morphism to a curve π :
S → P1 such that the general fiber of π is isomorphic to P1. Then S has at worst canonical
singularities.

Proof. We first recall some facts about singularities of surfaces. Let S̃ be a germ of a normal

Gorenstein surface singularity and φ̃ : Ỹ → S̃ a minimal resolution. Suppose that the

singularity of S̃ is not canonical. [Rei97, Proposition 4.20] shows that we have −KỸ /S̃ ≥
Znum, where Znum is the numerical cycle for the singularity. Furthermore, [Art66, Theorem
3] shows that pa(Znum) ≥ 1 (since by assumption the singularity is Gorenstein but not
canonical, and hence not rational).

Returning to our original situation, consider a singular point s of S. Let Y denote a
minimal desingularization of S. Let E be the part of −KY/S lying over this singularity, and
Enum the numerical cycle over this point. We have an exact sequence

H1(OY )→ H1(OEnum)→ H2(−Enum).

Since Y is rational, it has irregularity H1(OY ) = 0. The last space is dual to H0(KY +Enum);
since this divisor has negative intersection with the class of a fiber, the space is again 0. So we
see that H1(OEnum) = 0, showing that pa(Enum) ≤ 0. Thus every singularity is canonical. �

A typical application of these lemmas is:

Corollary 7.4. Let X be a smooth Fano threefold admitting a conic bundle structure π :
X → P2. Then, for any line C ⊂ P2 not contained in the discriminant locus, the divisor
−KX is balanced with respect to π−1(C).

Proof. Note that a(X,−KX) = 1. Also, sinceX admits a morphism to P2 we have b(X,−KX) =
dim NS(X,R) ≥ 2.

Lemma 7.2 shows that π−1(C) is normal irreducible (and hence Gorenstein). Apply-
ing Lemma 7.3 we see that π−1(C) has only canonical singularities. Note that Kπ−1(C) +
a(X,−KX)(−KX) has the class of a fiber F of the map to the line C. Since the relative
canonical divisor of a resolution of π−1(C) is trivial, we conclude by Proposition 5.9 (1) that
b(π−1(C),−KX) = 1. �

Suppose that X is a primitive Fano threefold of ρ(X) = 2. There are 9 deformation types,
and possible values of the degree d(X) are

d(X) ∈ {6, 12, 14, 24, 30, 48, 54, 56, 62}.

A list of these can be found in [MM83, Theorem 1.7].
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7.1. ρ(X) = 2 and d(X) = 62.
Then X ' P(OP2 ⊕OP2(2)), the type of (R1 − R2) is (C2 − E5), and there is a divisorial

contraction

f2 : X → Y2,

with exceptional divisor D ' P2 and a P1-bundle f1 : X → P2 with section D ([Ott05,
Lemma 4.5]). The intersection numbers are given by

L3
1 = 0, L2

1 · L2 = 1, L1 · L2
2 = 2, L3

2 = 4.

Proposition 7.5. −KX is balanced, with exceptional set D.

Proof. Put L := −KX and let C be any irreducible reduced curve on X. Then C ≡ nl1+ml2,
with n,m ∈ Z≥0, hence

L · C = (L1 + 2L2) · (nl1 +ml2) = 2n+m.

We conclude that L-lines are lines in D ∼= P2, and L-conics are conics in D and fibers of
f1. In particular, L is balanced with respect to any curve C not contained in D. Note that
b(X,L) = 2.

Suppose that S is an irreducible reduced surface which is not equal to D. Let β : S̃ → S
be a resolution of singularities of S. Since S is irreducible and reduced and is not equal to
D, S is linearly equivalent to nL1 +mL2 where n,m ∈ Z≥0. Therefore,

(β∗L|S̃)2 = L2 · S = (L1 + 2L2)2 · (nL1 +mL2) = 12n+ 25m.

By Theorem 2.8, β∗L|S̃ +KS̃ is effective and

a(S, L) ≤ a(X,L) = 1.

If a(S, L) = a(X,L), then Theorem 2.9 implies that the Iitaka dimension of β∗L|S̃ + KS̃ is
1. We conclude that b(S, L) = 1 and L is balanced with respect to S. �

7.2. ρ(X) = 2 and d(X) = 56.
Then X ' P(OP2 ⊕OP2(1)), the type of (R1−R2) is (C2−E2), and it admits a divisorial

contraction

f2 : X → Y2,

with exceptional divisor D ' P2. We have P1-bundle f1 : X → P2, and D is a section of this
fibration [Ott05, Lemma 4.5]. The intersection numbers are given by

L3
1 = 0, L2

1 · L2 = 1, L1 · L2
2 = 1, L3

2 = 1.

Proposition 7.6. −KX is balanced, with exceptional set D.

Proof. We have −KX = 2L1 + 2L2. Thus for any rational curve C we have

a(C,−KX) ≤ 1 = a(X,−KX) and b(C,−KX) = 1 < b(X,−KX).

So X is balanced with respect to arbitrary curves. The rest of the proof is similar to
Proposition 7.5. �
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7.3. ρ(X) = 2 and d(X) = 54.
Then X ' P2 × P1 and the type is (C2 −D3). The intersection numbers are given by

L3
1 = 0, L2

1 · L2 = 1, L1 · L2
2 = 0, L3

2 = 0.

Proposition 7.7. −KX is balanced, with empty exceptional set.

Proof. The proof is similar to before. The only change is that we need to consider the divisors
of class L1 and L2 with an additional (easy) argument. �

7.4. ρ(X) = 2 and d(X) = 48.
Then X ⊂ P2 × P2 is a nonsingular divisor of bidegree (1, 1) and the type of (R1 −R2) is

(C2 − C2). The intersection numbers are given by

L3
1 = 0, L2

1 · L2 = 1, L1 · L2
2 = 1, L3

2 = 0.

Proposition 7.8. −KX is balanced, with empty exceptional set.

Proof. The proof is similar to before. �

7.5. ρ(X) = 2 and d(X) = 30.
Then X ⊂ P2 × P2 is a nonsingular divisor of bidegree (1, 2) and the type of (R1 −R2) is

(C1 − C2). The intersection numbers are given by

L3
1 = 0, L2

1 · L2 = 2, L1 · L2
2 = 1, L3

2 = 0.

Let ∆f1 be the discriminant locus of the first projection f1 : X → P2. Write the union of
singular fibers of f1 by Z(X).

Proposition 7.9. −KX is balanced, with exceptional set Z(X).

Proof. Let L be the anticanonical class −KX . Suppose that C is an irreducible reduced
curve on X. Then C is numerically equivalent to nl1 +ml2 where n,m ∈ Z≥0. Thus we have

−KX · C = (2L1 + L2) · (nl1 +ml2) = n+ 2m.

We conclude that Z(X) is the surface swept out by L-lines, and L-conics are fibers of f1 and
f2. In particular, L is balanced with respect any curve C not contained in Z(X).

Let S be an irreducible and reduced surface on X not contained in Z(X). We choose a
smooth resolution β : S̃ → S. Since L1 and L2 generate the cone of pseudo-effective divisors,
S is linearly equivalent to nL1 +mL2 where n,m ∈ Z≥0. Then we have

(β∗L|S̃)2 = L2 · S = 9n+ 12m.

Theorem 2.8 shows that β∗L|S̃ + KS̃ is effective. We conclude that a(S, L) ≤ a(X,L) = 1.
Suppose that a(S, L) = a(X,L). If (n,m) 6= (1, 0), then it follows from Theorem 2.9 that
β∗L|S̃ +KS̃ has Iitaka dimension 1. Hence b(S, L) = 1 and L is balanced with respect to S.
If (n,m) = (1, 0), then S is the pullback f−1

1 (l) of a line l on P2 not contained in ∆f1 . This
case is treated by Corollary 7.4. �
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7.6. ρ(X) = 2 and d(X) = 24.
Then X → P2 × P1 is a double cover with branch locus a divisor of bidegree (2, 2). The

type of (R1 −R2) is (C1 −D2). The intersection numbers are given by

L3
1 = 0, L2

1 · L2 = 2, L1 · L2
2 = 0, L3

2 = 0.

We define Z(X) as the union of singular fibers of f1.

Proposition 7.10. −KX is weakly balanced, with exceptional set Z(X), but not balanced.

Proof. Write L for −KX . Smooth fibers S of f2 are smooth quadrics, so we have a(S, L) = 1
and b(S, L) = 2. Thus −KX is not balanced.

Let C be an irreducible reduced curve on X. Then C is numerically equivalent to nl1 +ml2
where n,m ∈ Z≥0. It follows that

−KX · C = (2L1 + L2) · (nl1 +ml2) = n+ 2m.

Thus L-lines are irreducible components of singular fibers of f1, and L-conics are general
fibers of f1 and rulings of fibers of f2. We conclude that L is balanced with respect to any
curve C not contained in Z(X).

Let S be an irreducible reduced surface on X. We choose a smooth resolution β : S̃ → S.
Since L1 and L2 generate the cone of pseudo-effective divisors, S is linearly equivalent to
nL1 +mL2 where n,m ∈ Z≥0. Therefore we have

(β∗L|S̃)2 = L2.S = 8n+ 8m.

By Theorem 2.8, β∗L|S̃ +KS̃ is effective, so

a(S, L) ≤ a(X,L) = 1.

If (n,m) 6= (1, 0), (0, 1), then Theorem 2.9 shows that β∗L|S̃ + KS̃ has Iitaka dimension
1 so that b(S, L) = 1. We conclude that L is balanced with respect to S. Suppose that
(n,m) = (0, 1). Then S is a fiber of f2 and S is either a smooth quadric or a singular
quadric cone in P3. It follows that L is weakly balanced with respect to S. The case of
(n,m) = (0, 1) is treated by Corollary 7.4.

�

7.7. ρ(X) = 2 and d(X) = 14.
Then f : X → V7 := P(OP2 ⊕ OP2(1)) is a double cover, with branch locus a member of
−KV7 . The type of (R1−R2) is (C1−E3) or (C1−E4). Thus we have a divisorial contraction

f2 : X → Y2.

We denote its exceptional divisor by D. We also have the conic fibration f1 : X → P2, and
the restriction of f1 to D is a double cover ([Ott05, Lemma 4.5]). The intersection numbers
are given by

L3
1 = 0, L2

1 · L2 = 2, L1 · L2
2 = 2, L3

2 = 2.

Let Z(X) be the union of singular fibers of f1 and D.

Proposition 7.11. −KX is balanced, with exceptional set Z(X).
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Proof. Let L be the anticanonical class −KX . It is easy to verify that L is balanced with
respect to any curve C not contained in Z(X). Suppose that S is an irreducible and reduced
surface on X not contained in Z(X). Let β : S̃ → S be a smooth resolution of S. Since S
is not equal to D, S is linearly equivalent to nL1 +mL2 where n,m ∈ Z≥0. Then we have

(β∗L|S̃)2 = L2 · S = 6n+ 8m.

It follows from Theorem 2.8 that a(S, L) ≤ a(X,L) = 1. Suppose that a(S, L) = a(X,L) = 1.
First we assume that (n,m) 6= (1, 0), (0, 1). If the Iitaka dimension of β∗L+KS̃ is zero, then
Theorem 2.9 shows that any general pair x, y can be connected by a L-conic D with D2 = 0.
Note that if we fix a general point x and choose any two general points y, y′, the corresponding
conics D,D′ satisfy D ·D′ > 0 but D2 = D′2 = 0. Thus, there are infinitely many numerical
classes of curves on S with bounded −KX |S-degree, which is a contradiction. This shows
that the Iitaka dimension of β∗L + KS̃ is 1, and we conclude that b(S, L) = 1. The divisor
L is balanced with respect to S.

Next suppose that S is an irreducible surface of class (1, 0). Corollary 7.4 shows that −KX

is balanced with respect to S.
Finally, suppose that S is an irreducible surface of class (0, 1). The variety Y2 is a double

cover of P3 ramified along a quartic with one singular point. Then the image H of S under
the morphism to P3 is a hyperplane in P3. Thus S is a double cover of P2 ramified over a
quartic, which avoids the singular point. Such surfaces were analyzed in Lemmas 6.6 and
6.7. There we showed that S is normal and has at worst elliptic singularities. Moreover, S
has only canonical singularities unless the quartic defining the branch locus has a singularity
of multiplicity 4.

If S has canonical singularities, then since S|S is big we see that a(S,−KX) < a(X,−KX).
Assume we are in the elliptic singularity case. Write f(x, y, z) for the quartic defining the

branch locus. By a coordinate change we may assume a singularity of multiplicity 4 occurs
at (x, y, z) = (1, 0, 0), so that in fact f(x, y, z) = f(y, z) only depends on two variables. Then
we can realize S as the hypersurface w2 = f(y, z) in P(1, 1, 1, 2). This shows that S has at
most one elliptic singularity. Note that in this equation f(y, z) can not have any multiple
roots since S is normal.

Let φ : S ′ → S be a weighted blow-up of the cone point. Then S ′ admits a morphism to
the curve w2 = f(y, z) with general fiber isomorphic to P1. Since f has no multiple roots this
equation defines an elliptic curve. Thus S is not rational and we conclude that b(S,−KX) = 1
by Proposition 5.9. Since we have already verified the inequality of a-constants, we see that
−KX is balanced with respect to S. �

7.8. ρ(X) = 2 and d(X) = 12.
Let W6 ⊂ P2×P2 be a nonsingular divisor of bidegree (1, 1). Then X is either isomorphic

to a double cover of W6 whose branch locus is a member of |−KW6|, or a nonsingular divisor
on P2 × P2 of bidegree (2, 2). The type of (R1 −R2) is (C1 −C1). The intersection numbers
are given by

L3
1 = 0, L2

1 · L2 = 2, L1 · L2
2 = 2, L3

2 = 0.

Let Z(X) be the union of singular fibers of f1 and f2. Then we have

Proposition 7.12. −KX is balanced, with exceptional set Z(X).
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Proof. Write L for −KX . It is easy to check that L is balanced with respect to any curve
C not contained in Z(X). Suppose that S ⊂ X is an irreducible and reduced surface. Let
β : S̃ → S be a resolution of singularities. Then S is linearly equivalent to nL1 +mL2 where
n,m ∈ Z≥0. We have

(β∗L|S̃)2 = L2 · S = 6n+ 6m.

By Theorem 2.8, a(S, L) ≤ a(X,L) = 1. If a(S, L) = a(X,L) = 1 and (n,m) 6= (1, 0), (0, 1),
then by arguing just as in the proof of Proposition 7.11, Theorem 2.9 shows that b(S, L) = 1.
The remaining cases (n,m) = (1, 0), (0, 1) are handled by Corollary 7.4. �

7.9. The case of ρ(X) = 2 and d(X) = 6.
Then X → P2 × P1 is a double cover, with branch locus a divisor of bidegree (4, 2). The

type of (R1 −R2) is (C1 −D1). The intersection numbers are given by

L3
1 = 0, L2

1 · L2 = 2, L1 · L2
2 = 0, L3

2 = 0.

Let Z(X) be the union of singular fibers of f1 and f2, and lines in general fibers of f2. Then
we have

Proposition 7.13. −KX is weakly a-balanced, with a-exceptional set Z(X), but not weakly
balanced.

Proof. Write L for −KX . A general fiber S of f2 is a del Pezzo surface of degree 2. Thus
a(S, L) = 1 and b(S, L) = 8. The anticanonical class −KX is not weakly balanced. It is easy
to verify that L is balanced with respect to any curve not contained in Z(X). Suppose that
S is an irreducible and reduced surface on X not contained in Z(X). Let β : S̃ → S be a
resolution of singularities of S. Since S is linearly equivalent to nL1+mL2 where n,m ∈ Z≥0,
we have

(β∗L|S̃)2 = L2 · S = 4n+ 2m.

If (n,m) 6= (1, 0), (0, 1), then by Theorem 2.8, a(S, L) ≤ a(X,L) = 1. The case (n,m) =
(0, 1) was already discussed. The remaining case was treated by Corollary 7.4.

�

We summarize our results for primitive Fano threefolds of ρ(X) = 2:

Theorem 7.14. Let X be a primitive Fano threefold of ρ(X) = 2;

• if d(X) = 12, 14, 30, 48, 54, 56, 62, then −KX is balanced;
• if d(X) = 24, then −KX is weakly balanced, but not balanced;
• if d(X) = 6, then −KX is weakly a-balanced, but not weakly balanced.

8. Arithmetic applications

In this section we discuss applications of the theory of balanced line bundles to counting
problems, specifically to Manin’s conjecture and its generalizations formulated in Section 1
(see (1.1)). We work over a number field F , focus on smooth Fano varieties, and restrict our
attention to L = −KX .

In Section 4 we showed that there exists a Zariski closed subset V ⊂ X such that all
subvarieties Y ( X with a(Y,−KX) > 1 are contained in V : Theorem 4.10 establishes this
under the WBABn−1 conjecture, if dim(X) ≥ 5, and unconditionally if dim(X) ≤ 4.
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Put X◦ := X \ V . Thus, a first approximation to Manin’s conjecture would be

N(X◦(F ′),−KX , B)� B1+ε, B →∞,
for all finite extensions F ′/F and all ε > 0. This is an open problem even for smooth cubic
surfaces, but at least, we know of no counterexamples. As for lower bounds, currently, even
potential density of rational points, i.e., Zariski density after a finite field extension, is an
open problem.

The detailed analysis of the geometry of Fano threefolds in Sections 6 and 7 shows that, ge-
ometrically, there may exist dominating families Y → B of subvarieties Yb ( X, parametrized
by a base B, such that for each b in some Zariski open subset B◦ ⊂ B,

a(Yb,−KX) = 1, but b(Yb,−KX) ≥ b(X,−KX).

Such families are sources of counterexamples to Manin’s conjecture and its refinement by
Peyre concerning the shape of the leading constant in (1.1). The philosophy of MMP (finite
generation of ample and effective cones in the Fano case) suggests that there should be
finitely many such families.

For arithmetic applications, the following issue is apparent:

• The parametrizing families could have arbitrary Kodaira dimension: some of the
bases B satisfy potential density of rational points, while others are of general type,
and have few rational points.

We will now present several examples from the literature and from Section 7, which illus-
trate this issue:

• There exist dominating families Y → B of cubic surfaces with

a(Yb,−KX) = 1, but b(Yb,−KX) > b(X,−KX) = 2,

for a Zariski dense set of b ∈ B(F ), see Example 8.1.
• There exist dominating families Y → B with

a(Yb,−KX) = 1, but b(Yb,−KX) = b(X,−KX) ≤ 2,

for a Zariski dense set of b ∈ B(F ), e.g., quadric bundles in Example 8.2 and Exam-
ple 8.3. Moreover, numerical experiments in Example 8.2 suggest that the leading
constant c(−KX) is a sum of a Tamagawa type constant, as predicted by Peyre, and
constants arising from b ∈ B(F ) parametrizing split fibers.
• There exist dominating families Y → B of quadrics with

a(Yb,−KX) = 1, but b(Yb,−KX) = b(X,−KX) = 2,

but only for finitely many b ∈ B(F ′), for all finite extensions F ′/F , see Example 8.4.
• There exist dominating families Y → B of degree two Del Pezzo surfaces with

a(Yb,−KX) = 1, but b(Yb,−KX) < b(X,−KX) = 2,

for all but finitely many b ∈ B(F ′), for all finite extensions F ′/F , while, geometrically,
each fiber Yb has b(Yb,−KX) = 8.

Example 8.1. [BT96] Consider the Fano fivefold

X =

{
3∑
i=0

xiy
3
i = 0

}
⊂ P3

x0,x1,x2,x3
× P3

y0,y1,y2,y3
.
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The first projection π : X → P3 fibers X in cubic surfaces. Let Y denote a fiber of π. We
have

a(X,−KX) = 1 = a(Y,−KX), and b(X,−KX) = 2.

The Picard rank of Y can vary depending on the ground field. However, [BT96] shows
that over any field containing

√
−3, a Zariski dense set of fibers attains the maximal value

b(Y,−KX) = 7. Thus, the behavior of the anticanonical counting function on X is controlled
by the invariants of the cubic surfaces instead of the invariants for X.

Example 8.2. [Els11] Let X be a smooth threefold defined by

ax2 + by2 + l1(a, b)z2 + l2(a, b)w2 = 0,

in P1 × P3, where l1 and l2 are linear forms in a, b. This is a Fano threefold which admits
a fibration into quadric surfaces. The anticanonical class −KX is not balanced with respect
to split quadrics, and there are infinitely many such fibers if the elliptic curve

u2 = abl1(a, b)l2(a, b)

has positive Mordell-Weil rank and there is at least one split fiber. Thus Peyre’s constant
should not govern the growth of rational points on X. In [Els11], Elsenhans conducted a
experiment and observed that after removing contributions from split fibers, the leading
constant converges to Peyre’s constant, at least numerically.

Example 8.3. [BL13] Let X be a complete intersection of two quadrics in P5; it is covered
by lines C; the a and b invariants coincide for X and for C. However, the Tamagawa-type
constants do not coincide, and in fact the asymptotics are not controlled by the Tawagama-
type constant for X. However, as discussed in [BL13, Conjecture 1.4] there is the possibility
that if one removes the contributions to the point count coming from thin subsets then the
original version of Manin’s conjecture is still valid.

Example 8.4. Let X be a double cover of P2 × P1 ramified along a smooth divisor of
bidegree (2, 2). The variety X is a primitive Fano theefold of ρ(X) = 2 and d(X) = 24.
The projection π : X → P1 is a quadric surface bundle. Consider the variety W → P1 of
relative lines for π. Take the Stein factorization W → C → P1. Then C is a double cover of
P1. When X is general, C is smooth and irreducible. Moreover, C is ramified at six points.
Hence C is a curve of genus two. By Faltings’ theorem, there are only finitely many rational
points on C, thus there are only finitely many split fibers of π.

We can expect that for a fixed number field, after removing finitely many split fibers,
the growth rate of heights of rational points is as predicted by Manin’s Conjecture (with
Peyre’s constant). However, Manin’s Conjecture predicts the behavior over all extensions as
well. Since any fixed Zariski open X◦ ⊂ X will intersect split fibers over some extension,
we should expect to find “extra” contributions to the constant c(X◦,−KX) arising from the
fibers.

Example 8.5. Let X → P2 × P1 be a double cover ramified along a smooth divisor of
bidegree (4, 2). It is a primitive Fano threefold of ρ(X) = 2 and d(X) = 6. We assume that
X is general enough so that the fibers of π admit at most one A1-singularity. The projection
π : X → P1 is a degree 2 del Pezzo surface fibration, and we consider the variety f : C → P1

of relative lines for π. We claim that C is a smooth irreducible curve. Interpreting C as the
relative Hilbert scheme of lines, a normal bundle calculation shows that C is smooth. Let
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U be the complement of the discriminant hypersurface in the space of plane quartics. The
variety X induces a conic F in the space of plane quartics, and it follows from a Lefschetz
theorem that for a general F

π1(F ∩ U)→ π1(U)

is surjective. The monodromy group of π1(U) on a plane quartic was computed in [Bea86],
it is the symplectic group of the first cohomology of the plane quartic. There is a one-to-one
correspondence between smooth nonhyperelliptic curves of genus 3 with Aronhold bases and
del Pezzo surfaces S of degree 2 with marked Picard group (see, e.g., [GH04, Section 7]).
The symplectic group acts on the set of Arnonhold bases transitively, thus the monodromy
acts on the 56 lines on the degree 2 del Pezzo surface transitively. We conclude that C is
irreducible. The projection f : C → P1 is a finite map of degree 56. Since the degree of the
discriminant hypersurface in the space of plane quartics is 27, f is ramified at 54 points. Any
del Pezzo surface with one A1-singularity contains 44 lines, thus it follows from the Hurwitz
formula that

2g(C)− 2 = 56 · (−2) + 54(56− 44).

This implies that g(C) = 269, so by Faltings’ theorem there are only finitely many rational
points on C. Next let C(k) be the relative Hilbert scheme of disjoint collections of k lines
where where 2 ≤ k ≤ 7. Again C(k) is smooth and irreducible. By using Hurwitz formula,
one can conclude that C(k) is a higher genus curve. Thus it follows from Faltings’ theorem
that there are only finitely many rational points on C(k). We further consider the variety
W → P1 of relative conics for π. As the case of the variety of lines, one can show that W is
smooth and irreducible. Consider the Stein factorization

W → D
h−→ P1.

The projection h has degree 126, since every smooth del Pezzo surface of degree two contains
126 families of conics. A surface with one A1-singularity contains 93 families of conics. By
Hurwitz formula, we have g(D) = 766. Thus for all but finitely many fibers, a fiber contains
no lines, no conics and no disjoint collections of lines defined over the ground field. A
fiber with no disjoint collections of lines is minimal over the ground field. According to
the classification of minimal rational surfaces over the ground field, any minimal rational
surface has either Picard rank 1 or 2. However, if it is 2, then a fiber is a conic bundle which
contains a conic. Hence for all but finitely many fibers, it has Picard rank 1 over the ground
field. Again, for any fixed number field, we can expect the growth of heights to behave as in
Manin’s conjecture, after removing finitely many fibers.

References

[Art66] Michael Artin. On isolated rational singularities of surfaces. Amer. J. Math., 88:129–136, 1966.
[AS95] Urban Angehrn and Yum Tong Siu. Effective freeness and point separation for adjoint bundles.

Invent. Math., 122(2):291–308, 1995.
[BCHM10] C. Birkar, P. Cascini, Chr. D. Hacon, and James McKernan. Existence of minimal models for

varieties of log general type. J. Amer. Math. Soc., 23(2):405–468, 2010.
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