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Abstract. First, we calculate the dimension of the Chow variety of
degree d cycles on projective space. We show that the component of
maximal dimension usually parametrizes degenerate cycles, confirming
a conjecture of Eisenbud and Harris. Second, for a numerical class α on
an arbitrary variety, we study how the dimension of the components of
the Chow variety parametrizing cycles of class mα grows as we increase
m. We show that when the maximal growth rate is achieved, α is
represented by cycles that are “degenerate” in a precise sense.

1. Introduction

Let X be an integral projective variety over an algebraically closed field.
Fix a numerical cycle class α on X and let Chow(X,α) denote the com-
ponents of Chow(X) which parametrize cycles of class α. Our goal is to
study the dimension of Chow(X,α) and its relationship with the geometry
and positivity of the cycles representing α. In general one expects that the
maximal components of Chow should parametrize subvarieties that are “de-
generate” in some sense, and our results verify this principle in a general
setting.

We first consider the most important example: projective space. [EH92]
analyzes the dimension of the Chow variety of curves on Pn. Let ` denote
the class of a line in Pn. Then for d > 1,

dim Chow(Pn, d`) = max

{
2d(n− 1),

d2 + 3d

2
+ 3(n− 2)

}
.

The first number is the dimension of the space of unions of d lines on Pn, and
the second is the dimension of the space of degree d planar curves. Note
the basic dichotomy: in low degrees the maximal dimension is achieved
by unions of linear spaces, while for sufficiently high degrees the maximal
dimension is achieved by “maximally degenerate” irreducible curves.

We prove an analogous statement in arbitrary dimension, establishing a
conjecture of [EH92]:

The author is supported by NSF Award 1004363.

1



2 BRIAN LEHMANN

Theorem 1.1. Let α denote the class of the k-plane on Pn. Then for d > 1
the dimension of Chow(Pn, dα) is

max

{
d(k + 1)(n− k),

(
d+ k + 1
k + 1

)
− 1 + (k + 2)(n− k − 1)

}
.

The first number is the dimension of the space of unions of d k-planes on
Pn and the second is the dimension of the space of degree d hypersurfaces
in (k + 1)-planes. The same dichotomy seen for curves also holds in higher
dimensions. The approach is to reduce to the result of [EH92] by cutting
down by hyperplane sections. It would be interesting to develop analogous
results for other varieties with simple structure, e.g. quadrics or rational
normal scrolls.

For arbitrary varieties X, it is too much to hope for a precise relation-
ship between dim Chow(X,α) and the “degeneracy” of cycles. Instead, by
analogy with the divisor case, we obtain a cleaner picture by studying the
asymptotics of dim Chow(X,mα) as m increases. For a Cartier divisor L on
a smooth variety X of dimension n, the asymptotic behavior of sections is
controlled by an important invariant known as the volume:

vol(L) := lim sup
m→∞

dimH0(X,OX(mL))

mn/n!
.

We formulate and study an analogous construction for arbitrary cycles.
The expected growth rate of dim Chow(X,mα) as m increases can be

predicted by supposing that mα is a the pushforward of a divisor class
on a fixed (k + 1)-dimensional subvariety of X: Theorem 5.1 shows that
dim Chow(X,mα) < Cmk+1 for some constant C. The variation function
identifies the best possible constant C.

Definition 1.2. Let X be a projective variety and suppose α ∈ Nk(X)Z for
0 ≤ k < dimX. The variation of α is

var(α) = lim sup
m→∞

dim Chow(X,mα)

mk+1/(k + 1)!
.

Remark 1.3. It is important to formulate this function using the Chow
variety and not the Hilbert scheme. For example, [Nol97, Corollary 1.6]
shows that there are infinitely many components of Hilb(P3) parametriz-
ing subschemes whose underlying cycle is a double line. Furthermore the
dimensions of these components is unbounded. Thus it seems difficult to
understand anything about the underlying cycle from the perspective of the
Hilbert scheme.

It turns out that var is homogeneous and so extends naturally to Q-
numerical classes. In fact, Theorem 5.12 shows that var extends to a con-
tinuous function on the interior of Effk(X).

Example 1.4. Using Theorem 1.1, we see that for the hyperplane class
α ∈ Nk(Pn) we have var(α) = 1.
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Example 1.5. Let X be the blow-up of P3 at a closed point. Let E denote
the exceptional divisor and let α be the class of a line in E. For any positive
integer m, every effective cycle of class mα is contained in E. Thus, the
variation coincides with the variation of the line class ` on P2, showing that
that var(α) = 1.

The previous examples are typical: components of Chow(X) with large
dimension tend to parametrize cycles that are as “degenerate” as possible.
Note that, in contrast to the divisor case, a class may have positive variation
but fail to be a big class as in Example 1.5.

Remark 1.6. [Leh16] defines a related function known as the mobility.
The mobility measures how much a cycle moves using asymptotic point
incidences. The variation and the mobility are complementary in the sense
that they capture the behavior of Chow in different ranges (see Remark 5.5).
The mobility function seems to be a closer analogue of the volume function
for divisors, while the variation is more suitable for working with Chow.

To state our main theorem, we will need to recall some notions concern-
ing the positivity of numerical cycle classes. Let Nk(X) denote the vector
space of numerical classes of k-cycles on X with R-coefficients. The pseudo-
effective cone Effk(X) ⊂ Nk(X) is defined to be the closure of the cone
generated by all effective k-cycles. Classes that lie in the interior of the cone
are known as big classes.

The pushforward of a big class from a subvariety V of X will always have
positive variation. Our main theorem shows that this is essentially the only
way to construct classes of positive variation. A class can only have positive
variation if it is represented by cycles which are “maximally degenerate” in
the sense that they deform maximally in a fixed subvariety of dimension one
higher.

Theorem 1.7. Let X be a projective variety and suppose α ∈ Nk(X)Q for
0 ≤ k < dimX. Then var(α) > 0 if and only if there is a k+ 1-dimensional
integral subvariety Y ⊂ X and a big class β ∈ Nk(Y )Q such that some
multiple of α− f∗β is represented by an effective cycle.

The main conceptual advance used in the proof of Theorem 1.7 is an
analysis of restriction maps. A key step in the proof of Theorem 1.7 is
using an a priori bound on asymptotic growth to find a family of cycles
whose restriction to a hyperplane H coincides. This replaces the use of
exact sequences of sheaf cohomology for divisors.

1.1. Organization. Section 2 reviews background material on cycles. Sec-
tion 3 describes several geometric constructions for families of cycles. In
Section 4 we bound the dimension of components of Chow(Pn). Finally,
section 5 introduces the variation function and proves its basic geometric
properties.
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2. Preliminaries

Throughout we work over a fixed algebraically closed field K. A variety
will mean a reduced irreducible quasiprojective scheme of finite type over
K.

Lemma 2.1. Let X be a variety. Suppose that f : X 99K Y is a rational map
to a variety Y and g : X 99K Z is a rational map to a variety Z. Let F be a
general fiber of f over a closed point of Y (so in particular F is not contained

in the locus where g is not defined). Then dim(g(X)) ≤ dim(g(F )) + dimY .

Proof. Let U be an open subset of X where both f and g are defined and
let h : U → Y ×Z be the induced map. Since F is a general fiber, h(F ∩U)
is dense in its closure in Y × Z. By considering the first projection, we see
that dim(h(U)) ≤ dim(g(F ∩ U)) + dimY . �

We will often use the following special case of [RG71, Théorème 5.2.2].

Theorem 2.2 ([RG71], Théorème 5.2.2). Let f : X → S be a projective
morphism of varieties such that some component of X dominates S. There
is a birational morphism π : S′ → S such that the morphism f ′ : X ′ → S′

is flat, where X ′ ⊂ X ×S S′ is the closed subscheme defined by the ideal of
sections whose support does not dominate S′.

2.1. Cycles. Suppose that X is a projective scheme. A k-cycle on X is a
finite formal sum

∑
aiVi where the ai are integers and each Vi is an integral

closed subvariety of X of dimension k. The cycle is said to be effective if
each ai ≥ 0. The group of k-cycles is denoted Zk(X) and the group of
k-cycles up to rational equivalence is denoted Ak(X). We will follow the
conventions of [Ful84] in the use of various intersection products on Ak(X).

[Ful84, Chapter 19] defines a k-cycle on X to be numerically trivial if
its rational equivalence class has vanishing intersection with every weighted
homogeneous degree-k polynomial in Chern classes of vector bundles on X.
By quotienting Zk(X) by numerically trivial cycles, we obtain an abelian
group Nk(X)Z which is finitely generated by [Ful84, Example 19.1.4].

We also define

Nk(X)Q := Nk(X)Z ⊗Q
Nk(X) := Nk(X)Z ⊗ R

Suppose that f : Z → X is an l.c.i. morphism of codimension d. Then
[Ful84, Example 19.2.3] shows that the Gysin homomorphism f∗ : Ak(X)→
Ak−d(Z) descends to numerical equivalence classes. We will often use this
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fact when Z is a Cartier divisor on X to obtain maps f∗ : Nk(X) →
Nk−1(Z).

Convention 2.3. When we discuss k-cycles on a projective scheme X, we
will always implicitly assume that 0 < k < dimX. This allows us to focus
on the interesting range of behaviors without repeating hypotheses.

For a cycle Z on X, we let [Z] denote the numerical class of Z, which can
be naturally thought of as an element in Nk(X)Z, Nk(X)Q, or Nk(X). If α
is the class of an effective cycle Z, we say that α is an effective class. We
write α � β if the difference β − α is an effective class.

Definition 2.4. Let X be a projective scheme. The pseudo-effective cone
Effk(X) ⊂ Nk(X) is the closure of the cone generated by all classes of
effective k-cycles. The big cone is the interior of the pseudo-effective cone.

[FL16, Theorem 1.4] shows that Effk(X) is a full-dimensional cone which
contains no lines. For any morphism of projective varieties f : X → Y , there
is a pushforward map f∗ : Nk(X)→ Nk(Y ). [FL16, Theorem 1.4] shows that
when f is surjective there is an induced equality f∗(Effk(X)) = Effk(Y ).

3. Families of cycles

In this section we set up a framework for discussing families of cycles (used
also in [Leh16, Section 3]). Although there are several different notions of
a family of cycles in the literature, the theory we will develop is somewhat
insensitive to the precise choices. It will be most convenient to use a simple
geometric definition.

Definition 3.1. Let X be a projective variety. A family of k-cycles on X
consists of a variety W , a reduced closed subscheme U ⊂ W × X, and an
integer ai for each component Ui of U , such that for each component Ui of
U the first projection map p : Ui →W is flat dominant of relative dimension
k. If each ai ≥ 0 we say that we have a family of effective cycles.

In this situation p : U → W will denote the first projection map and
s : U → X will denote the second projection map unless otherwise specified.
We will usually denote a family of k-cycles using the notation p : U → W ,
with the rest of the data implicit.

For a closed point w ∈W , the base change w×W Ui is a subscheme of X
of pure dimension k and thus defines a fundamental k-cycle Zi on X. The
cycle-theoretic fiber of p : U → W over w is defined to be the cycle

∑
aiZi

on X. We will also call these cycles the members of the family p.

Note that a family of k-cycles naturally determines a (k + dimW )-cycle
on W ×X. Conversely, the following construction shows how to construct
a family of cycles from a cycle on W ×X.

Construction 3.2. Let X be a projective variety and let W be a variety.
Suppose that Z =

∑
aiVi is a (k + dimW )-cycle on W ×X such that the



6 BRIAN LEHMANN

first projection maps each Vi dominantly onto W . Let W 0 ⊂ W be the
(non-empty) open locus over which every projection p : Vi → W is flat and
let U ⊂ Supp(Z) denote the preimage of W 0. Then the map p : U → W 0

defines a family of cycles where we assign the coefficient ai to the component
Vi ∩ U of U .

Using Construction 3.2, we can translate cycle-theoretic operations into
operations on families of cycles. (This is essentially the same as doing a
cycle-theoretic operation to a general member of a family of cycles.) Note
that the resulting family will usually only be defined over an open subset of
the base W . In this way we can define:

• Proper pushforward families.
• Flat pullback families (which increase the dimension of the members

of the family by the relative dimension of the map).
• Restrictions of families to subvarieties of W via base change of the

flat map p.
• Family sums: given two families p : U → W and q : S → T , we

construct a family p+ q over an open subset of W × T whose cycle-
theoretic fibers are sums of the fibers of p and q.
• Strict transform families: given a birational map φ : X 99K Y of

projective varieties, we first remove any components of U whose
image is contained in the locus where φ is not an isomorphism, and
then take the strict transform of the rest.
• Intersections against the members of a linear series |L|: this defines

a family of k − 1 cycles over an open subset of W × |L|.

Since these constructions are usually only defined over an open subset of
the base, it is useful to be able to pass to a projective completion using a
flattening argument.

Lemma 3.3. Let X be a projective variety and let p : U → W be a family
of effective cycles on X. Then there is a normal projective integral variety
W ′ that is birational to W and a family of cycles p′ : U ′ → W ′ such that
ch(W ′) = ch(W ).

3.1. Chow varieties and the Chow map. In this section we verify that
the differences between Definition 3.1 and the construction of the Chow
variety in [Kol96] can safely be neglected.

Fix a projective variety X and an ample divisor H on X. For any re-
duced scheme Z over the ground field, [Kol96, Chapter I.3] introduces a
more refined definition of a family of k-cycles of X of H-degree d over Z.
Kollár then constructs a semi-normal projective variety Chowk,d,H(X) that
parametrizes families of effective k-cycles of H-degree d. Chow(X) denotes
the disjoint union over all k and d of Chowk,d,H(X) for some fixed ample
divisor H; it does not depend on the choice of H.
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The precise way in which Chow(X) parametrizes cycles is somewhat sub-
tle in characteristic p. For a discussion of the Chow functor and universal
families, see [Kol96]. We will need the following properties of Chow(X):

• Any family of cycles in the sense of Definition 3.1 naturally yields
a family of cycles in the refined sense of [Kol96, I.3.11 Definition]
by applying [Kol96, I.3.14 Lemma] with the identity map (see also
[Kol96, I.3.15 Corollary]).
• For any weakly normal integral variety W and any (refined) family

of effective cycles p : U → W , there is an induced morphism chp :
W → Chow(X) by [Kol96, I.4.8-I.4.10]. (We will denote this map
simply by ch when the family p is clear from the context.)

For any family of effective cycles p : U → W the base change to the
normal locus W 0 ⊂ W is still a family of cycles (where we assign the same
coefficients). Thus there is an induced rational map chp : W 99K Chow(X)
that is a morphism on the normal locus of W .

The following crucial lemma encapsulates the set-theoretical nature of
the Chow functors constructed in [Kol96, Chapter I.3]. The point is simply
that a non-trivial family of effective cycles, in the Chow sense, can not all
have the same support (as opposed to the Hilbert scheme, where one allows
variation of non-reduced structure).

Lemma 3.4. Let X be a projective variety and let p : U → W be a family
of effective k-cycles on X over a weakly normal W . A curve C ⊂ W is
contracted by ch : W → Chow(X) if and only if every cycle-theoretic fiber
over C has the same support.

We will freely use the notation of [Kol96] in the verification.

Proof. First suppose that every cycle-theoretic fiber of p over C has the same
support. Since Chowk,d,H(X) is constructed by taking a semi-normalization
(which is set-theoretically bijective), we may instead consider the induced
map to Chow′k,d,H(X). This map factors through the map ch for a projective
space containing an embedding of X; therefore it suffices to consider the case
when X = P. Then the construction following [Kol96, Ch. I Eq. (3.23.1.5)]
shows that the Cartier divisors on (P∨)k+1 parametrized by the image of C
in H must all have the same support. But this implies they are equal.

Conversely, suppose that C is contracted by ch. As discussed in [Kol96,
I.3.27.3], C is also contracted by the morphism to Hilb((P∨)k+1). Again
comparing with [Kol96, Ch. I Eq. (3.23.1.5)], we see that the support of
each of the cycles parametrized by C is the same. �

3.2. Chow dimension of families. Let p : U →W be a family of effective
k-cycles on a projective variety X. Then all the cycle-theoretic fibers of p
are algebraically equivalent. Indeed, for any two closed points of W , let C
be the normalization of a curve through those two points; since the base
change of U to C is a union of flat families of effective cycles, we see that
the corresponding cycle-theoretic fibers are algebraically equivalent.
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Definition 3.5. Let p : U → W be a family of effective k-cycles on a
projective variety X. We say that p represents α ∈ Nk(X)Z if the cycle-
theoretic fibers of our family have class α.

Definition 3.6. Let X be a projective variety and let p : U → W be an
effective family of k-cycles. We define the Chow dimension of p to be

chdimX(p) := dim(Im ch: W 99K Chow(X))

Note that chdimX(p) is finite, since there are only finitely many components
of Chow(X) parametrizing cycles of bounded degree. If α ∈ Nk(X)Z, we
define

chdimX(α) = max{chdim(p)|p : U →W represents α}.
We will usually omit the subscript when it is clear from the context.

Remark 3.7. When our ground field K has characteristic 0, [Kol96] con-
structs a universal family over any component of Chow(X). Using Con-
struction 3.2 this can be turned into a family of effective cycles in the sense
of Definition 3.1. Thus

chdim(α) = max{dim(Y ) |Y is a component of Chow(X) representing α}.
Even when K has characteristic p, for any component of Chow(X) [Kol96,
I.4.14 Theorem] constructs a family of cycles whose chow map ch is domi-
nant, so that we still have the same interpretation.

Using Lemma 3.4, it is easy to understand how modifications of families
of cycles change the Chow dimension. The most important examples are:

Lemma 3.8. Let f : X → Y be a morphism of projective varieties. Let
p : U → W be a family of effective k-cycles on X such that for every
component Ui of U the image s(Ui) is not contracted to a variety of smaller
dimension by f . Then chdim(p) = chdim(f∗p).

Proof. Let T be an integral curve through a general point of W that is not
contracted by chp and set S = p−1(T ). Then dim(s(S)) = dim(f(s(S))).
Thus the cycle-theoretic fibers parametrized by T do not pushforward to
the same cycle on Y . We conclude by Lemma 3.4 that T is not contracted
by chf∗p. �

Lemma 3.9. Let X be a projective variety and let p : U →W and q : S → T
be two families of effective k-cycles on X. Then chdim(p+ q) = chdim(p) +
chdim(q).

Proof. A curve through a general point of (W × T )0 is contracted by chp+q
if and only if its projection to W and to T are contracted by chp and chq
respectively. We conclude by Lemma 3.4. �

Remark 3.10. When computing the Chow dimension of a class α, it suffices
to consider families of cycles p : U → W such that the generic fiber of each
component of U is integral. Indeed, since geometric integrality of fibers is
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a constructible property, we can modify each component of U by a finite
base change so that the result has generically irreducible fibers. By taking
a family sum of these various components, we then obtain a family of cycles
representing α, whose components have integral generic fibers, and whose
Chow dimension is at least as large as for our original family p.

4. Chow dimension of projective space

In this section we compute the dimension of the Chow variety of Pn.
[EH92] computes the dimension of the Chow variety of curves. The precise
statement is as follows: let ` denote the class of a line on Pn. Then for d > 1,

dim Chow(Pn, d`) = max

{
2d(n− 1),

d2 + 3d

2
+ 3(n− 2)

}
.

Note that the first number is the dimension of the space of unions of d lines
on Pn, and the second is the dimension of the space of degree d plane curves.

Remark 4.1. Although [EH92] does not specify the ground field, some of
the references explicitly work only over C. However, the results of [EH92]
holds equally well over any algebraically closed field. The argument of
[EH92] involves mainly estimates on the dimension of the space of sections
of a normal sheaf. Since we are only working with embedded curves, we do
not need to worry about pathologies of tangent spaces in characteristic p.
The only additional verifications one needs to make are:

• The Halphen bounds on genus, and their extensions in [Har82], hold
in arbitrary characteristic using the same arguments.
• The deformation theoretic results of [AC81] used in the paper are

also true in arbitrary characteristic. Indeed, suppose that f : C →
Pn is a morphism from a smooth curve such that f restricts to an
isomorphism from an open set of C onto its image. Using the de-
formation theory for maps as explained in [Ser06], one sees that
deformations of f that change the image must be associated with
first-order deformations which are not torsion sections of the normal
sheaf (since they can not fix an open subset).

In this section we prove the analogue of [EH92, Theorem 3] in arbitrary
dimension.

Theorem 4.2. Let α denote the class of the k-plane on Pn. Then for d > 1
the dimension of Chow(Pn, dα) is

max

{
d(k + 1)(n− k),

(
d+ k + 1
k + 1

)
− 1 + (k + 2)(n− k − 1)

}
.

Again, the first number is the dimension of the space of a union of d
k-planes on Pn and the second is the dimension of the space of degree d
hypersurfaces in (k + 1)-planes.

The basic tool in [EH92] is Castelnuovo theory for curves. It is unclear
how best to formulate an analogue in higher dimension. Thus we take an
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alternative approach: the strategy is to reduce the general case to the calcu-
lation for curves using hyperplane sections. Our first lemma estimates the
dimension of the “kernel” of restriction to a hyperplane.

Lemma 4.3. Let p : U → W be a family of irreducible degree d effective
k-cycles on Pn. Suppose there is a fixed reduced subvariety Z of degree d and
dimension k − 1 such that every member of the family contains Z. Then

chdim(p) ≤ (n− k − 1) +

(
d+ k
k + 1

)
.

The strategy of the proof is to take a generic projection π : Pn 99K Pn−1.
The pushforward family will still satisfy the hypotheses of the theorem, so by
induction it is enough to estimate the dimension of the fibers of the induced
map π∗ : Chow(Pn) 99K Chow(Pn−1). Since the projection is general, two
irreducible cycles are identified by π∗ only if they map to the same subvariety
V ; thus, we reduce to understanding the dimension of spaces of divisors on
the cone π−1(V ). This estimate is provided by Lemma 4.4 below.

Proof. The proof is by decreasing induction on the codimension n− k. For
the base case, suppose first that p consists of a family of divisors. Then
the family has dimension at most h0(Pn, IZ(d))− 1. We can find an upper
bound on this dimension by considering a deformation of Z to a degenerate
subscheme Z ′ contained in a hyperplane H. More precisely, we can degen-
erate by rescaling a coordinate in Pn, so that the general member of the
family will be isomorphic to Z. Then by upper semicontinuity

h0(Pn, IZ(d)) ≤ h0(Pn, IZ′(d)).

Note that the cycle Z̃ underlying Z ′ is a degree d divisor on the hyperplane
H ∼= Pn−1. Thus, an element of OPn(d) can contain Z ′ only if it contains H

or its restriction to H agrees with Z̃. Thus

h0(Pn, IZ′(d)) ≤ dim ker(H0(Pn,O(d))→ H0(H,OH(d))) + 1

and we obtain the desired inequality for n− k = 1.
Now suppose n − k > 1. Consider the projection away from a general

point in Pn and let φ : P → Pn and π : P → Pn−1 be the resolution given
by blowing up the point. We may assume a general element of p does not
contain the center of the projection, so that the pushforward family of p
again satisfies the hypotheses of the theorem as a family on Pn−1. We seek
an upper bound on dim(F ) where F is a component of a general fiber of the
rational map chπ∗p : W 99K Chow(Pn−1).

Let T be a general cycle parametrized by the component F . Note that T
is a divisor in the projective bundle π : π−1π(T ) → π(T ); we will estimate
dim(F ) using the geometry of divisors in this vector bundle. First we must
normalize: let ν : R→ π(T ) be the normalization of π(T ), and consider the
pullback bundle

S := P(OR ⊕ ν∗O(1)).
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Let ψ : S → Pn denote the natural map taking S to a cone. We let L =
ψ∗H|S for a general hyperplane H and let E denote the pull-back to S of
the exceptional divisor for φ.

Let p′ denote the family of divisors on S defined by F via strict transform.
(Since the normalization ν happens over the base, we can take the strict
transform of any divisor which maps surjectively onto π(T ), and furthermore
the normalization does not affect the Chow dimension.) After replacing F
by an open subset, by construction no element of p′ intersects E. In other
words, the divisors D parametrized by p′ satisfy Lk ·D = d and E ·D = 0.
Thus any element of p′ must actually lie in |L| by Lemma 4.4.

Now fix a general element D of p′. Note that the intersection of any
member of |L| with D has degree d against L; by assumption the image of
any such intersection in Pn must contain the degree d subset Z. It is easy
to deduce that p′ lies in a fiber of the restriction map |L| → |L|D|. Taking
sections of the short exact sequence

0→ OS → OS(L)→ OD(L)→ 0

we see that chdim(p′) ≤ 1. Then, arguing by induction we conclude

chdim(p) ≤ chdim(π∗p) + 1 ≤ (n− k − 2) +

(
d+ k
k + 1

)
+ 1.

�

Lemma 4.4. Let R be a normal projective variety of dimension n ≥ 1.
Suppose that the Cartier divisor A on R is the pullback of a very ample
divisor under a birational map and set d = An. Define

S = PR(OR ⊕OR(A))

and π : S → R the projection. Set L to be a Cartier divisor representing
the relative dualizing sheaf OS/R(1) and E to be the effective Cartier divisor
corresponding to the unique section of OS/R(1) ⊗ π∗OR(−A). Then any
irreducible effective Weil divisor D satisfying Ln ·D = d and E ·D = 0 must
lie in |L| (and in particular must be Cartier).

Proof. Note that for any rank one reflexive sheaf L on R we have that π∗L
is still reflexive. Furthermore, π∗π

∗L ∼= L, since upon restriction to the
smooth locus U ⊂ R both agree with π∗π

∗L|U .
Consider the reflexive sheaf OS(D). There is a unique integer q and

reflexive rank one sheaf OR(T ) such that

OS(D) ∼= OS/R(1)⊗q ⊗ π∗OR(T ).

(One can verify this over the smooth locus of R using the usual description
of the Picard group of a projective bundle.) The numerical conditions on
D imply that q = 1 and [T ] ∈ Nn−1(R) is the 0 class. Then by pushing
forward we see that

H0(S,OS(D)) ∼= H0(R,OR(T +A)⊕OR(T )).
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Suppose that OR(T ) is not the trivial bundle. Then H0(R,OR(T )) = 0 and
sections of OS(D) are constructed by taking a flat pullback of an effective
divisor in H0(R,OR(T + A)) and adding on E. Such divisors can not be
irreducible. Thus T = 0 and we have proved the statement. �

Now that we have an estimate on the dimension of the “kernel” of restric-
tion to a hyperplane, we can estimate the total dimension via an inductive
argument.

Theorem 4.5. Let p : U → W be a family of irreducible degree d effective
k-cycles on Pn. Then

chdim(p) ≤
(
d+ k + 1
k + 1

)
− 1 + (k + 2)(n− k − 1).

Proof. The proof is by induction on k. When k = 1, we have a family of
curves on Pn and the statement is proved by [EH92].

For arbitrary k, fix a general hyperplane H. Consider the intersection
family p ·H. By Lemma 2.1, we have

chdimPn(p) ≤ chdimPn(p|F ) + chdimH(p ·H)

where F is a component of a general fiber of chp·H : W 99K Chow(H).
Since H is general, two cycles in our family are identified if and only if their
intersection with H is the same. This is exactly the setting of Lemma 4.3,
where Z is the common intersection of H with our cycles. The lemma shows
that

chdimPn(p|F ) ≤ (n− k − 1) +

(
d+ k
k + 1

)
and since p ·H is a family of irreducible (k− 1)-cycles in Pn−1, by induction

chdimH(p ·H) ≤
(
d+ k
k

)
− 1 + (k + 1)(n− k − 1).

Combining these two bounds gives the result. �

Now we have bounded the dimension of an irreducible family of cycles.
However, in low degrees the maximal component of Chow(Pn) will param-
etrize reducible cycles. To finish the proof, we just need to compare all
possible ways of partitioning a degree d cycle into irreducible components
of smaller degrees.

Proof of Theorem 4.2: Note that as λ := (a1, . . . , aq) varies over all parti-
tions of d, we have

dim Chow(Pn, dα) = sup
λ

{
q∑
i=1

dim Chowirr(Pn, aiα)

}
where Chowirr denotes the components of Chow parametrizing irreducible
reduced subvarieties.
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For simplicity, we define the functions f(d) = d(k + 1)(n− k) and

g(d) =

(
d+ k + 1
k + 1

)
− 1 + (k + 2)(n− k − 1).

Note that f(d) is the dimension of the component of Chow(Pn) parametriz-
ing a union of planes and g(d) is the upper bound on the dimension of an
irreducible family of cycles of degree d provided by Theorem 4.5. We want
to show that the dimension of the degree d dimension k cycles on Pn is the
maximum of f(d), g(d).

Let r be the largest integer such that f(r) ≥ g(r). For d ≤ r, it is easy
to see by induction that the dimension of Chow(Pn, dα) is f(d) since f is
linear in d:

dim Chow(Pn, dα) = sup
λ

{
q∑
i=1

g(ai)

}
≤ sup

λ

{
q∑
i=1

f(ai)

}
= f(d).

Now suppose d > r. We prove by induction that the dimension of Chow is
given by g(d). For the base case d = r+1, we note that any reducible family
will have dimension at most f(r+ 1), which is strictly less than g(r+ 1) by
construction. For the induction step, it suffices to prove that

g(d) ≥ sup
1≤q≤d−r−1

{g(q)+g(d−q)} and g(d) ≥ sup
d−r≤q≤d−1

g(q)+f(d−q).

These inequalities express the fact that we can do no better by splitting off a
degree q irreducible component, where the remainder of degree d− q falls in
the range where g or f is the optimum respectively. In fact, we can replace
the second inequality by the simpler inequality

g(d) ≥ g(d− 1) + f(1).

Indeed, if d−q ≤ r then the maximal dimensional component of Chow(Pn, (d−
q)α) parametrizes a union of planes, so we may as well partition our cycles
differently into a degree 1 irreducible piece and a degree d− 1 piece, and by
induction the degree d− 1 piece has Chow dimension at most g(d− 1).

Since d > r we must have(
d+ k
k

)
≥
(
r + 1 + k

k

)
.

Since we must have g(r + 1)− g(r) > f(r + 1)− f(r) = (k + 1)(n− k), the
inequality g(d) ≥ g(d− 1) + f(1) follows easily.



14 BRIAN LEHMANN

We still need to check the other inequality g(d) ≥ g(q) + g(d − q) where
1 ≤ q ≤ d− r − 1. Then note that(

d+ k + 1
k + 1

)
−
(
d− q + k + 1

k + 1

)
−
(
q + k + 1
k + 1

)
=

q∑
i=0

((
d− q + k + i

k

)
−
(
k + i
k

))
≥ (q + 1)

((
d− q + k

k

)
− 1

)
≥ (q + 1)

((
r + 1 + k

k

)
− 1

)
≥ (q + 1)((k + 1)(n− k)− 1)

≥ 2(k + 1)(n− k)− 2

> (k + 2)(n− k − 1)− 1

and the conclusion follows by rearranging the inequality. �

5. The variation function

The variation of a class α ∈ Nk(X)Z measures the rate of growth of the
dimensions of components of Chow(X) that represent mα as m increases.
The main theorem in this section is Theorem 5.16 which shows that variation
is in some sense a measure of bigness along subvarieties of X.

5.1. Dimensions of families of cycles. Before defining the variation, we
need to find bounds for the dimension of components of Chow(X). The
following theorem incorporates a suggestion of Voisin who pointed out that
the coefficient in the original version could be improved by considering a
generically finite map to projective space.

Theorem 5.1. Let X be a projective variety of dimension n and let α ∈
Nk(X)Z. Suppose that A is a very ample divisor on X and set d = α · Ak.
Then we have

chdim(α) ≤
(
d+ k + 1
k + 1

)
+ d(k + 1)(n− k).

Proof. Suppose that p : U → W is a family of effective cycles representing
α. Since the desired upper bound is superadditive in d, by Lemma 3.9 we
may prove the bound for each irreducible component of U separately. Hence
we assume that U is irreducible.

Let π : X → Pn be a generically finite morphism defined by a general
subspace of |A|. There are two possibilities:

(1) The general member of the family p is contracted by π. Then every
member of p must be contained in the π-exceptional locus of X, and
we conclude by induction on the dimension n.
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(2) The general member of p is not contracted by π. By Lemma 3.8 we
see that chdim(p) = chdim(π∗p). Thus we obtain the upper bound
by Theorem 4.2.

�

Theorem 5.1 shows that for any class α ∈ Nk(X)Z, there is some positive
constant C such that chdim(mα) < Cmk+1. Furthermore, there is always a
class on X achieving this growth rate as in the following example.

Example 5.2. Let H1, . . . ,Hn−k be general very ample divisors on X and
set α = H1 · . . . · Hn−k. Let V denote the scheme-theoretic intersection
H1 ∩ . . . ∩Hn−k−1. The linear series |m(Hn−k|V )| defines a rational family
of k-cycles representing mα. Thus

chdim(mα) ≥ (H1 · . . . ·Hn−k−1 ·Hk+1
n−k)

mk+1

(k + 1)!
+O(mk)

5.2. Definitions. Theorem 5.1 and Example 5.2 suggest that one should
compare the growth rate of chdim(mα) against mk+1.

Definition 5.3. Let X be a projective variety. For any α ∈ Nk(X)Z, we
define the variation of α to be

var(α) := lim sup
m→∞

chdim(mα)

mk+1/(k + 1)!
.

The choice of the coefficient (k + 1)! is justified by our calculations for
projective space.

Example 5.4. Let X be a normal projective variety of dimension n and
suppose that X admits a resolution φ : Y → X such that the kernel of φ∗ :
Nn−1(Y ) → Nn−1(X) is spanned by φ-exceptional divisors. (For example
X could be smooth or normal Q-factorial over C.) Then for any Cartier
divisor D on X we have var([D]) = vol(D).

To verify this, note that since chdim is preserved by passing to strict
transform families of divisors we have

chdim(m[D]) = max

{
chdim(β)

∣∣∣∣ β is a class on Y
with φ∗β = m[D]

}
.

Let L denote any divisor in the class β attaining this maximum value. We
may write L ≡ mφ∗D + E where E is some φ-exceptional divisor. Since
increasing the coefficients in E can only increase chdim, we may assume
that E is effective. But then

h0(Y,OY (L)) = h0(Y,OY (L− E))

by the negativity of contraction lemma (see for example [Nak04, III.5.7
Proposition]). Thus

h0(X,OX(mD))− 1 ≤ chdim(m[D])

≤ dim Pic0(Y ) + max
D′≡mφ∗D

h0(Y,OY (D′))− 1.
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While the rightmost term may be greater than h0(X,OX(mD)) − 1, the
difference is bounded by a polynomial of degree n− 1 in m (see the proof of
[Laz04, Proposition 2.2.43]). Thus var([D]) agrees with the volume.

Remark 5.5. It is also interesting to analyze the dimension of other com-
ponents of Chow(X). For curves on P3, [Per87] conjectures that calculating
the dimensions of components of Chow(X) parametrizing “general” curves
of degree d – in the sense that the corresponding cycles are not contained
in any hypersurface of degree < d1/2 – will yield the values predicted by the
mobility function of [Leh16].

Remark 5.6. One could also consider a “rational variation” function, where
we maximize the dimension of subvarieties of Chow(X) parametrizing ra-
tionally equivalent subvarieties. Most of the theory developed in this paper
goes through in this setting with no changes. For example, the rational
variation is interesting already for 0-cycles, where it is closely related to the
invariants of [Rŏı72].

5.3. Basic properties. We next verify some of the basic properties of the
variation.

Lemma 5.7. Let X be a projective variety and let α ∈ Nk(X)Z. Then for
any positive integer c we have var(cα) = ck+1 var(α).

Proof. If chdim(α) > 0 then α is represented by an effective cycle Z. Thus
chdim(α+ β) ≥ chdim(β) for any class β: if p is a family of effective cycles
of class β then we can add the constant cycle Z to p (using the family sum
construction) to obtain a family representing α + β with the same Chow
dimension. We conclude by the following Lemma 5.8. �

Lemma 5.8 ([Laz04] Lemma 2.2.38). Let f : N → R≥0 be a function.
Suppose that for any r, s ∈ N with f(r) > 0 we have that f(r + s) ≥ f(s).
Then for any k ∈ R>0 the function g : N→ R ∪ {∞} defined by

g(r) := lim sup
m→∞

f(mr)

mk

satisfies g(cr) = ckg(r) for any c, r ∈ N.

Remark 5.9. Although [Laz04, Lemma 2.2.38] only explicitly address the
volume function, the essential content of the proof is the more general state-
ment above.

Lemma 5.7 allows us to extend the definition of variation to any Q-class
by homogeneity. Thus we obtain a function

var : Nk(X)Q → R≥0.

Lemma 5.10. Let X be a projective variety. Suppose that α, β ∈ Nk(X)Q
are classes such that some positive multiple of each is represented by an
effective cycle. Then var(α+ β) ≥ var(α) + var(β).
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Proof. Note that we may check the inequality after rescaling α and β by the
same positive integer c. Thus we may suppose that every multiple of α and
β is represented by an effective cycle.

Suppose that p : U → W is a family representing mα and q : S → T is
a family representing mβ. Then the family sum p+ q represents m(α+ β).
Lemma 3.9 shows that

chdim(p+ q) = chdim(p) + chdim(q)

and the desired inequality follows. �

By Example 5.2, we find:

Corollary 5.11. Let X be a projective variety and let α ∈ Nk(X)Q be a big
class. Then var(α) > 0.

As a consequence, we see that var is a continuous function on the big
cone.

Theorem 5.12. Let X be a projective variety. The function var : Nk(X)Q →
R≥0 is locally uniformly continuous on the interior of Effk(X)Q.

Proof. var verifies conditions (1)-(3) of the following Lemma 5.13. �

Lemma 5.13 ([Leh16] Lemma 2.7). Let V be a finite dimensional Q-vector
space and let C ⊂ V be a salient full-dimensional closed convex cone. Sup-
pose that f : V → R≥0 is a function satisfying

(1) f(e) > 0 for any e ∈ Cint,
(2) there is some constant c > 0 so that f(me) = mcf(e) for any m ∈

Q>0 and e ∈ C, and
(3) for every v ∈ C and e ∈ Cint we have f(v + e) ≥ f(v).

Then f is locally uniformly continuous on Cint.

The behavior of the variation along the pseudo-effective boundary is more
subtle. Probably the most one can hope for is:

Question 5.14. LetX be a projective variety. Is the function var : Effk(X)Q →
R≥0 upper semi-continuous?

Finally we note that variation behaves well with respect to inclusions of
subvarieties.

Lemma 5.15. Let X be a projective variety and i : W → X an integral
closed subvariety. For any class β ∈ Nk(W )Q we have var(β) ≤ var(i∗β).

Proof. Let p be a family of effective cycles on W and consider the push-
forward family q on X. Recall that for a general cycle-theoretic fiber Z of p
the corresponding cycle in the push-forward family is just i∗Z; thus Lemma
3.4 shows that chdim(p) = chdim(q) and the result follows. �
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5.4. Variation and bigness. Example 1.5 shows that a class may have
positive variation even when it is not big. This class is constructed by
pushing forward a big class on a subvariety. In this section we show that
every class with positive variation arises in this way.

Theorem 5.16. Let X be a projective variety and let α ∈ Nk(X)Q. Then
the following conditions are equivalent:

(1) var(α) > 0.
(2) There is a (k + 1)-dimensional subvariety Y of X and a big class

β ∈ Nk(Y )Q such that some multiple of α− i∗β is represented by an
effective cycle.

Proof. We first show (1) =⇒ (2). Suppose that var(α) > 0. We may rescale
α so that α ∈ Nk(X)Z and every positive multiple of α is represented by an
effective cycle. Fix a very ample Cartier divisor A, and choose some positive
integer m sufficiently large so that

chdim(mα) >

(
mα ·Ak + k

k

)
+ (mα ·Ak)k(n− k + 1).

Let p : U →W denote a family of effective k-cycles that has maximal Chow
dimension among all the families representing mα. Denote the projection
map to X by s : U → X. By replacing A by a linearly equivalent divisor,
we may suppose that A that does not contain any component of s(U).

Let q : R → W 0 denote the intersection family of p with A (where W 0

is an appropriately chosen open set of W ). The family q has class β :=
mα ·A ∈ Nk−1(X). By Theorem 5.1, we have

chdim(β) < chdim(p).

Thus there is a curve T ⊂ W 0 through a general point of W that is con-
tracted by chq but not by chp. Let pT : UT → T denote the restriction of
the family p to (an open subset of) T . Using Lemma 3.3 we may extend the
family pT to a projective closure of T .

By Lemma 3.4 there is some irreducible component G of UT whose s-
image in X has dimension k + 1. Set Y = s(G) with the reduced induced
structure and i : Y → X the corresponding closed immersion. Let ρ : G→ T
denote the induced family of divisors on Y and σ : G → Y the restriction
of s to G. We claim that the class β′ of the family ρ is big as a class on
Y . Indeed, by construction every ρ-horizontal component of σ∗A on G has
σ-image of dimension at most k−1. Thus, the support of σ∗σ

∗A is contained
in the image of fibers of ρ. In other words, there is some multiple c of β′

such that cβ′ � [σ∗σ
∗A]. Since the latter class is big, the former is as well.

Recall that mα is represented by cycles which are sums of fibers of ρ with
effective cycles. Thus setting β = 1

mβ
′ finishes the implication.

To show (2) =⇒ (1), suppose that there is an inclusion f : Y → X
from a (k + 1)-dimensional integral projective subvariety Y and a big class
β ∈ Nk(Y )Q so that some multiple of α− f∗β is represented by an effective



ASYMPTOTIC BEHAVIOR OF THE DIMENSION OF THE CHOW VARIETY 19

cycle. Since β is big we have var(β) > 0, so by Lemma 5.15 var(i∗β) > 0.
Thus var(α) > 0 as well. �
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Supérieures [Seminar on Higher Mathematics], vol. 85, Presses de l’Université
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