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Abstract. In this survey paper we study Manin’s Conjecture from a geometric perspective.
The focus of the paper is the recent conjectural description of the exceptional set in Manin’s
Conjecture due to Lehmann-Sengupta-Tanimoto. After giving an extensive background, we
give a precise description of this set and compute it in many examples.

1. Introduction

Let X be a smooth projective Fano variety over a number field F . Let L = (L, ‖ · ‖) be
an adelically metrized divisor on X. Then one can define a height function associated to L

HL : X(F )→ R≥0.

When the underlying divisor L is ample, the height function satisfies the Northcott property,
i.e., for any positive real number T , the set

{P ∈ X(F ) | HL(P ) ≤ T}
is finite. Thus, for any subset Q ⊂ X(F ), one can define the counting function

N(Q,L, T ) := #{P ∈ Q | HL(P ) ≤ T}.
Manin’s Conjecture, formulated in [FMT89] and [BM90], predicts that the asymptotic be-
havior of the counting function as T increases is controlled by geometric invariants of X and
L.

Before stating the conjecture, we need to recall a definition: a thin subset of X(F ) is a
finite union ∪ifi(Yi(F )), where each fi : Yi → X is a morphism that is generically finite onto
its image and admits no rational section. Conceptually it is helpful to separate into two
cases:

(1) When fi is not dominant, then fi(Yi(F )) is not Zariski dense.
(2) When fi is dominant, it is possible for fi(Yi(F )) to be Zariski dense, but it is still

“small” in the same sense that the set of squares is “small” in the set of rational
numbers.

Thus we can view a thin set as a “small” set of points that generalizes the notion of a
non-Zariski dense set of points.

Manin’s Conjecture predicts that the growth of rational points is controlled by two geo-
metric invariants a(X,L) and b(F,X,L) associated to X and L. We defer the definition of
these invariants to Sections 3 and 4, where we discuss these two constants in great detail.

Conjecture 1.1 (Manin’s Conjecture). Let F be a number field. Let X be a geometrically
rationally connected and geometrically integral smooth projective variety defined over F and
let L be a big and nef line bundle with an adelic metrization on X.
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Suppose that X(F ) is not a thin set. Then there exists a subset Z ⊂ X(F ) which is
contained in a thin subset of X(F ) such that

N(X(F ) \ Z,L, T ) ∼ c(F,Z, L)T a(X,L) log(T )b(F,X,L)−1

as T →∞ where c(F,Z, L) is Peyre-Batyrev-Tschinkel’s constant introduced in [Pey95] and
[BT98b].

The subset Z ⊂ X(F ) in Manin’s Conjecture is known as the exceptional set. The original
versions of Manin’s Conjecture predicted that it suffices to remove an exceptional set of
rational points which is not Zariski dense ([BM90] and [Pey95]). However, a counterexample
to this version was identified in [BT96b]; several more counterexamples to this version have
been constructed since. [Pey03] was the first to suggest that the exceptional set in Manin’s
Conjecture should be contained in a thin subset of rational points, and [LR14] was the first to
exhibit such an instance of Manin’s Conjecture. There is currently no known counterexample
to the thin set version of Manin’s Conjecture.

In [LST18], the authors and A. Sengupta proposed a conjectural construction of the ex-
ceptional set Z. This construction is motivated by geometry. Suppose we have a morphism
of smooth projective varieties f : Y → X which is generically finite and does not admit a
rational section. If

(a(X,L), b(F,X,L)) < (a(Y, f ∗L), b(F, Y, f ∗L))

in the lexicographic order, then we expect the rate of growth of points on Y to be higher
than the desired growth rate on X. Thus one should include f(Y (F )) in the exceptional set.
If we have equality of the a, b invariants, then f(Y (F )) can affect the leading constant and
one must consider carefully whether or not such points should be part of the exceptional set.
Loosely speaking, [LST18] predicts that the exceptional set should be the union of the sets
f(Y (F )) as we vary over all morphisms f : Y → X as above. The main theorem of [LST18]
is that the proposed exceptional set is indeed contained in a thin set as predicted by Manin’s
Conjecture.

The goals of this paper are:

(1) to give an introduction to the geometry of the a and b invariants. In Sections 3 and
4 we study their basic computational and theoretical properties.

(2) to describe precisely the proposed exceptional set in [LST18]. We do this in Section
5. In particular, we give a careful accounting of when one should remove the point
contributions from a morphism f : Y → X where the a and b invariants are equal.

(3) to explain how to construct a thin set containing the exceptional set. In Section 6
we give an algorithm intended for arithmetic geometers who would like to compute
the set constructed by [LST18] in specific examples. We also survey the theoretical
results needed for proving thinness.

(4) to illustrate the above results via examples, collected in Sections 7 – 12.

Most of the techniques and theorems we describe are currently distributed in a series of papers
[HTT15], [LTT18], [HJ17], [LT17b], [LT17a], [Sen17a], [Sen17b], [LST18], and [LT18]. We
present a few new results scattered throughout Sections 3 and 4. Some of the examples in
the later sections are also new. We highlight three here:

Example 1.2. In Section 9 we prove that for a del Pezzo surface over a number field with
the anticanonical polarization the proposed exceptional set of [LST18] is not Zariski dense.
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(When the del Pezzo surface has degree 1 we need to assume that either the Picard rank is
at least 2 or the geometric model is general in moduli.) This matches up with the currently
known results on Manin’s Conjecture for surfaces; see, e.g., [dlBBD07], [Bro09], [Bro10], and
[dlBBP12].

Example 1.3. Suppose that X is a toric variety and L is a big and nef divisor on X. We
show that the only maps f : Y → X whose point contributions are removed by [LST18] have
image in the toric boundary. Manin’s Conjecture for toric varieties was proved in [BT96a],
[BT98a], and [Sal98] after removing rational points on the boundary.

Example 1.4. Recently [BHB18] proved the thin set version of Manin’s Conjecture for a
diagonal quadric surface bundle. In Section 12 we show that the proposed exceptional set
of [LST18] exactly coincides with the thin exceptional set computed by [BHB18] in this
example.

We close the paper with some open questions in Section 13.
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2. Background

Throughout we will work over a fixed field F of characteristic 0. All morphisms will be
F -morphisms unless otherwise noted. We will denote an algebraic closure of F by F . If X
is a scheme over F , we will denote by X its base change to F .

A variety is a separated integral scheme of finite type over the ground field.

Definition 2.1. Let X and Y be projective varieties. A map f : Y → X is thin if it is
generically finite onto its image and admits no rational section.

Thus if F is a number field, a thin subset of X(F ) is precisely a finite union ∪jfj(Yj(F ))
where fj : Yj → X are thin maps over F .

2.1. Pseudo-effective and nef cones. On any projective variety X there is an intersection
pairing between Cartier divisors and 1-cycles (that is, integer linear combinations of 1-
dimensional subvarieties of X). We say that a Cartier divisor or a 1-cycle is numerically
trivial if it defines the zero linear functional under this pairing. The quotient of the group
of Cartier divisors by the subgroup of numerically trivial divisors is called the Néron-Severi
group; we denote this group by N1(X)Z. This is a finite rank free abelian group. The dual
group of 1-cycles up to numerical equivalence is denoted by N1(X)Z. We then set

N1(X) := N1(X)Z ⊗ R N1(X) := N1(X)Z ⊗ R
The former is known as the Néron-Severi space of X.
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Loosely speaking, one can view N1(X) as the natural “homology space” for algebraic
divisors. When our ground field is C and X is smooth, then N1(X) is exactly the subspace
of H2(X,R) spanned by divisor classes. Analogously, N1(X) is the natural “homology space”
for algebraic curves and for smooth projective varieties over C it coincides with the subspace
of H2(X,R) spanned by curve classes.

Example 2.2. If X is a smooth projective Fano variety then numerical equivalence of Cartier
divisors on X coincides with linear equivalence and N1(X)Z is simply the Picard group of
X.

Remark 2.3. If L is a Cartier divisor on X, we will also denote its equivalence class in
N1(X) by L. While a bit sloppy, in practice this convention is unlikely to cause confusion.

The pseudo-effective cone of divisors, denoted by Eff
1
(X), is the closure in N1(X) of

the convex cone generated by classes of effective divisors. Loosely speaking, one can view

Eff
1
(X) as the “homological shadow” of the algebraic structure of X – it records the possible

homology classes of codimension 1 subvarieties. A divisor class is said to be big if it lies in the

interior of Eff
1
(X). Analogously, the pseudo-effective cone of curves, denoted by Eff1(X), is

the closure in N1(X) of the convex cone generated by classes of effective curves.
The nef cone of divisors Nef1(X) is the dual cone of the pseudo-effective cone of curves un-

der the intersection pairing. The famous result of [Kle66] shows that the nef cone of divisors
is the same as the closure of the cone generated by classes of ample divisors. Analogously,
the nef cone of curves Nef1(X) is the dual cone of the pseudo-effective cone of divisors. By
[BDPP13] it is the same as the closure of the cone generated by irreducible curves whose
deformations dominate X.

2.2. Big and nef divisors. While the most important notion of “positivity” for divisors is
ampleness, it will be helpful to have a slight generalization which is invariant under pullback
by dominant generically finite morphisms. A divisor class is said to be big and nef if it lies

both in Nef1(X) and in the interior of Eff
1
(X). Every ample class is big and nef, but the

converse is not true. As suggested above, the advantage of this notion is that the pullback
of a big and nef divisor by a dominant generically finite morphism is again big and nef.

Remark 2.4. Sometimes it is useful to be a little more precise about the relationship between
pullbacks and ample divisors, namely:

• The pullback of an ample divisor under a dominant generically finite map f : X → Y
is a big and semiample divisor. (The converse is also true if one works with Q-divisors
and Q-linear equivalence.)
• A divisor L is big and basepoint free if and only if there is a dominant generically

finite map f : X → Y and a very ample divisor A on Y such that f ∗A is linearly
equivalent to L.

An important distinction between ample divisors and big and nef divisors is that in the
latter case it is possible for subvarieties to have vanishing L-degree. However, the behavior
of such subvarieties is controlled:

Theorem 2.5 ([Nak00]). Let X be a projective variety and let L be a big and nef divisor on
X. The union of all subvarieties V on X satisfying LdimV · V = 0 is a proper closed subset
of X.
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When X is smooth, the proper closed subset in Theorem 2.5 is known as the augmented
base locus of L and is denoted by B+(L). Note that for an ample divisor L the set B+(L)
is empty. It turns out that many well-known theorems for ample divisors have analogues for
big and nef divisors L. For example, the set of subvarieties of X of bounded L-degree which
are not contained in B+(L) is parametrized by a bounded subset of Chow(X). Similarly, if
we equip a big and nef line bundle L = OX(L) with an adelic metric, then the corresponding
height function satisfies the Northcott property outside of B+(L): for any positive integer
T , there are only finitely many rational points in the complement of B+(L) of L-height ≤ T .

2.3. Canonical divisor. Suppose that X is a smooth variety of dimension n. Then ΩX

denotes the sheaf of differential forms on X which is a locally free sheaf of rank n. Its top
exterior power is called the canonical bundle and is denoted by ωX . We will participate
in the traditional abuse of notation by letting KX denote any Cartier divisor satisfying
OX(KX) ' ωX . We call KX “the” canonical divisor on X. Such a divisor is only unique up
to linear equivalence, but since our statements are all linear-equivalence invariant this abuse
is harmless in practice.

When X is normal, one can still define the canonical divisor as a Weil divisor: there is a
smooth subset U ⊂ X whose complement has codimension 2, and we define KX to be the
unique Weil divisor corresponding to KU . However, when X has worse singularities there
may no longer be a natural way to define the canonical divisor.

There are various singularity types whose definitions involve the birational behavior of the
canonical divisor: terminal, canonical, kawamata log terminal, etc. The definitions can be
found in any standard text on the minimal model program, e.g. [KM98].

3. The a-invariant

3.1. Definition. Let X be a smooth projective variety and let L be a big and nef divisor
on X. Our first invariant measures the negativity of KX against L. Since L is in the interior

of Eff
1
(X), we know that KX +mL will be contained in Eff

1
(X) for all m sufficiently large.

The a-invariant is the infimum of all such m:

Definition 3.1. Let X be a smooth projective variety and let L be a big and nef divisor.
We define the Fujita invariant, or the a-invariant, to be

a(X,L) = min{t ∈ R | KX + tL ∈ Eff
1
(X)}. (3.1)

When L is nef but not big, we formally set a(X,L) = +∞. (Note that we use this convention
even when the right hand side of Equation (3.1) is well-defined and finite. This convention
harmonizes with the fact that such L can fail the Northcott property.)

Example 3.2. Suppose that X is a Fano variety and that L = −KX . Then a(X,L) = 1.
Indeed, KX + tL will be anti-ample for t < 1 and will be ample for t > 1, and the boundary
point is exactly t = 1.

Example 3.3. Let X be Pn and let L be the hyperplane class. Since KX = −(n+ 1)L, we
have a(X,L) = n+ 1.

Example 3.4. Let X be a smooth hypersurface of degree d in Pn and let L be the hyperplane
class. By adjunction we have a(X,L) = n+ 1− d.
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In examples where one can identify the pseudo-effective cone of divisors, it is usually easy
to compute a-values by hand.

Example 3.5. Let X be P1×P1 and let H1 and H2 denote the pullbacks of the hyperplane
class under the first and second projections respectively. With this notation we can identify
KX = −2H1 − 2H2.

In order to compute the a-invariant we must know the structure of the pseudo-effective
cone. In this situation N1(X) is spanned by H1 and H2 and

Eff
1
(X) = Nef1(X) = R≥0H1 + R≥0H2.

Any big and nef divisor L will have the form L = rH1 + sH2 where r, s > 0. Then

a(X, rH1 + sH2) = max

{
2

r
,
2

s

}
.

Example 3.6. Let X be the blow-up of P2 at a point. Let H denote the pullback of the
hyperplane class on P2 and let E denote the exceptional divisor. With this notation we can
identify KX = −3H + E.

In this situation N1(X) is spanned by H and E. We have

Eff
1
(X) = R≥0E + R≥0(H − E)

Nef1(X) = R≥0H + R≥0(H − E)

Any big and nef divisor L will have the form L = rH + s(H − E) where r > 0 and s ≥ 0.
Then

a(X, (r + s)H − sE) = max

{
3

r + s
,
2

r

}
3.2. First properties. Note that the a-invariant is positive, zero, or negative when KX is

contained in the complement, the boundary, or the interior of Eff
1
(X) respectively. We will

mostly be interested in the first case, which is given a geometric interpretation by [BDPP13].

Theorem 3.7 ([BDPP13], 0.3 Corollary). Let X be a smooth projective variety and let L be
a big and nef divisor on X. Then a(X,L) > 0 if and only if X is geometrically uniruled.

Using [BCHM10] we can reinterpret the a-constant using sections. If a(X,L) > 0 then we
have an equality

a(X,L) = min
{ r
s
∈ Q

∣∣∣ dimH0(X, sKX + rL) > 0
}
. (3.2)

Note that this is a minimum, not an infimum; in particular a(X,L) is always a rational
number (but it need not be an integer). The following list summarizes the key properties of
the a-invariant.

Proposition 3.8. Let X be a smooth projective geometrically uniruled variety and let L be
a big and nef divisor on X.

• The a-invariant is (−1)-homogeneous: for any t > 0 we have a(X, tL) = 1
t
a(X,L).

• The a-invariant is birational: if φ : X ′ → X is a birational morphism of smooth
projective varieties then a(X,L) = a(X ′, φ∗L). ([HTT15, Proposition 2.7])
• The a-invariant is geometric: if F ′/F is any field extension then a(X,L) = a(XF ′ , L).
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Remark 3.9 (Extension to singular varieties). Suppose now that X is a singular projective
variety and that L is a big and nef Cartier divisor on X. It is not possible to define a(X,L)
using Equation 3.1 since for singular varieties it may not be possible to define KX . Even
when X is normal and Q-Gorenstein, the presence of singularities will affect the computation
in an undesirable way.

The simplest and best solution is to use birational invariance: we define a(X,L) by taking
any resolution of singularities φ : X ′ → X and setting a(X,L) := a(X ′, φ∗L). This conven-
tion harmonizes nicely with the birational invariance of Manin’s Conjecture. When X has
only mild (i.e. canonical Q-Gorenstein) singularities, the right hand side of Equation 3.1 can
still be used to compute a(X,L).

The following definition plays a crucial role in our analysis of the a-invariant.

Definition 3.10. Let X be a smooth projective variety and let L be a big and nef divisor
on X. We say that (X,L) is adjoint rigid if for any sufficiently divisible positive integer m
we have that dimH0(X,m(KX + a(X,L)L)) = 1.

By an abuse of notation we will sometimes say that (X,L) is adjoint rigid when X is
singular if the pullback of L to a resolution of singularities yields an adjoint rigid pair.
Loosely speaking, one can think of an adjoint rigid pair as a birational version of a Fano
variety. More precisely:

Lemma 3.11 ([BCHM10]). Let X be a smooth projective variety and let L be a big and
nef divisor on X such that (X,L) is adjoint rigid. Let E denote the unique effective divisor
linearly equivalent to m(KX+a(X,L)L) for sufficiently divisible m. Then there is a birational
contraction map φ : X 99K X ′ to a log Fano variety X ′ which contracts E to a subvariety of
smaller dimension.

It follows from [HM07] that if X is a smooth geometrically integral projective variety,
L is a big and nef divisor, and (X,L) is adjoint rigid then X is geometrically rationally
connected.

3.3. Geometric properties of the a-invariant. In this section we discuss how the a-
invariant changes under some natural geometric operations. The first and most important
is the behavior of the a-invariant under covering maps.

Lemma 3.12. Let X be a smooth projective variety and let L be a big and nef divisor on
X. Then for any dominant generically finite morphism f : Y → X of smooth projective
varieties we have a(Y, f ∗L) ≤ a(X,L).

Proof. By the Riemann-Hurwitz formula there is some effective divisor R such that KY =
f ∗KX +R. Since KX + a(X,L)L is pseudo-effective, we see that

KY + a(X,L)f ∗L = f ∗(KX + a(X,L)L) +R

is also pseudo-effective, proving the inequality of a-values. �

Using this result, one can prove:

Lemma 3.13 ([LTT18] Proposition 4.1). Let X be a smooth projective variety over an
algebraically closed field carrying a big and nef divisor L and let Y be a general member of
a dominant family of subvarieties of X. Then a(Y, L) ≤ a(X,L).
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Next, we discuss the behavior of the a-invariant in smooth families. Using invariance of
plurigenera as in [HMX13, Theorem 4.2] one can show:

Theorem 3.14. Let π : X → T be a smooth family of projective geometrically uniruled
varieties. Let L be a big and semiample divisor on X . Then the function T → R defined by
t 7→ a(Xt, L|Xt) is constant.

When L is only big and nef, [LT17b, Theorem 4.3] proves that this function is lower semi-
continuous, which is good enough for most applications. (We are unsure whether one should
expect the function to be constant in this situation.) Note that the theorem does not hold
if we allow singular fibers in our family – imagine for example a family of elliptic curves
deforming to a nodal rational curve, where the a-invariant will be 0 on the general fiber
but positive on the singular fiber. Finally, we discuss the behavior under taking hyperplane
sections.

Theorem 3.15. Let X be a smooth projective geometrically uniruled variety of dimension n
and let L be a big and basepoint free divisor on X. Let H be a general member of |L|. Then
one of the following holds:

(1) a(X,L) ≤ 1, or
(2) X is covered by geometrically rational curves C with L·C = 1, and we have a(X,L) =

2 and κ(KX + a(X,L)L) = n− 1, or
(3) a(H,L) = a(X,L)− 1 and κ(KH + a(H,L)L) = κ(KX + a(X,L)L).

Proof. First we assume that the ground field is algebraically closed. Suppose that a(X,L) >
1. By [EP12, Corollary D] for H general there is a surjection

H0(X,m(KX + a(X,L)L))→ H0(H,m(KH + (a(X,L)− 1)L))

for any sufficiently divisible m. Furthermore the kernel of this map is 0 since KX +a(X,L)L
is on the pseudo-effective boundary and H is big.

First suppose that a(H,L) < a(X,L) − 1 so that KH + (a(X,L) − 1)L is big. Using the
isomorphisms above we see that κ(KX + a(X,L)L) = n− 1. Thus after making a birational
change φ : X ′ → X we obtain a morphism π : X ′ → Z whose general fiber is a rational
curve C ′ satisfying a(C ′, φ∗L) = a(X ′, φ∗L). Let C be φ∗C

′. Since a(C ′, φ∗L) = 2/φ∗L · C ′,
either a(X,L) = a(C,L) ≤ 1 or X is covered by rational curves with L · C = 1 and
a(X,L) = a(C,L) = 2.

Otherwise a(H,L) = a(X,L) − 1 and we have an equality κ(KH + a(H,L)L) = κ(KX +
a(X,L)L).

If the ground field is not algebraically closed, then the only thing to check is the existence
of the curves C over the ground field in case (2). But this follows from the fact that the map
defined by sections of multiples of KX + a(X,L)L is defined over the ground field. �

3.4. Varieties with large a-invariant. The Fujita invariant was introduced by [Som86]
and [Fuj92] due to its relationship with the positivity of divisors of the form KX +mA for an
ample divisor A. When dimH0(X,KX +mL) > 0 we know that m ≥ a(X,L). Note however
that when KX + mL fails to have sections we can not deduce anything about a(X,L) (see
Equation (3.2)). Thus the study of sections of KX + mL is mostly useful for constructing
upper bounds on a(X,L). In this subsection we discuss some applications to varieties with
large a-value.
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Lemma 3.16. Let X be a smooth projective variety of dimension n and let L be a big and
nef divisor on X. Then a(X,L) ≤ n+ 1.

To the best of our knowledge this argument is due to Siu.

Proof. Set P (m) := χ(OX(KX+mL)). By Hirzebruch-Riemann-Roch, P (m) is a polynomial
in m of degree at most n. By Kawamata-Viehweg vanishing, for m > 0 we have

P (m) = H0(X,KX +mL).

Note that P (m) is not identically zero since for m large we have H0(X,KX +mL) > 0. Thus
P (m) cannot have n+ 1 roots, so that H0(X,KX +mL) > 0 for some 1 ≤ m ≤ n+ 1. �

The papers [Fuj89], [Hör10], [And13] give a classification of varieties with large a-value in
the spirit of the work of Kobayashi-Ochiai ([KO73]). The first step in the classification is:

Proposition 3.17 ([Fuj89], [Hör10]). Let X be a smooth projective variety of dimension n
over an algebraically closed field and let L be a big and nef divisor on X.

• If a(X,L) > n then a(X,L) = n+ 1 and the pair (X,L) is birationally equivalent to
(Pn, H) where H is the hyperplane divisor on Pn.
• If a(X,L) = n and (X,L) is adjoint rigid then (X,L) is birationally equivalent to

(Q,H) where Q is a (possibly singular) quadric hypersurface and H is the hyperplane
class on Q.
• If a(X,L) = n and (X,L) is not adjoint rigid, up to birational equivalence the canon-

ical map π : X → C realizes X as a Pn−1-bundle over a curve C and L = Oπ(1).
• If n− 1 < a(X,L) < n then (X,L) is birationally equivalent to PP2(O(2)⊕O⊕(n−2))

with the divisor OX/P2(1). In this case (X,L) is adjoint rigid and a(X,L) = n− 1
2
.

Here we say that two pairs (X,L) and (X ′, L′) are birationally equivalent if there is a
projective variety W and birational maps φ1 : W → X and φ2 : W → X ′ such that φ∗1L and
φ∗2L

′ are numerically equivalent.
More generally, one can use techniques from the study of Fujita’s Conjecture to analyze

a-values. [LTT18] gives some applications of Reider’s Theorem to the study of a-values for
surfaces. It turns out that techniques arising from the minimal model program are usually
more powerful, and we discuss these next.

3.5. The a-invariant and the minimal model program. Let X be a smooth projective
variety and let L be a big and nef divisor on X. The minimal model program associates to
KX + a(X,L)L a rational map π : X 99K Z which encapsulates vital information about the
a-invariant.

Theorem 3.18 ([BCHM10] Theorem 1.1). Let X be a smooth geometrically uniruled pro-
jective variety and let L be a big and nef divisor on X. Choose a positive integer d such that
d(KX + a(X,L)L) is a Cartier divisor. Then the section ring

R(X,KX + a(X,L)L) := ⊕m≥0H
0(X,md(KX + a(X,L)L))

is finitely generated.

Since this ring is finitely generated, we can define a projective variety Z = ProjR(X,KX+
a(X,L)L). This variety is known as the “canonical model” for the pair (X, a(X,L)L). Using
the properties of the Proj construction we obtain a rational map π : X 99K Z known as the
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“canonical map” for the pair (X, a(X,L)L). (This is also the rational map defined by sections
of any sufficiently large multiple of KX + a(X,L)L.) Note that (X,L) is adjoint rigid if and
only if π contracts X to a point.

In fact [BCHM10] tells us much more; we know that the rational map π : X 99K Z
can be resolved by a sequence of birational changes known as “running the minimal model
program.”

Lemma 3.19 ([KM98] Lemma 3.38 and Corollary 3.53). Let X be a smooth uniruled pro-
jective variety and let L be a big and nef divisor on X. Then the a-invariant is preserved by
birational steps of the (X, a(X,L)L)-MMP. More precisely, if φ : X 99K X ′ is a birational
contraction constructed from steps of the minimal model program, then a(X,L) = a(X ′, φ∗L).

Remark 3.20. In the setting of the lemma above φ∗L need not be nef, but we nevertheless
define a(X ′, φ∗L) using Equation (3.1).

The most important consequences for us are summarized by the next proposition:

Proposition 3.21. Let X be a smooth uniruled projective variety and let L be a big and
nef divisor on X. Let F be (the closure of) a general fiber of the canonical model map
π : X 99K Z for (X, a(X,L)L). Then:

• We have a(X,L) = a(F,L).
• The pair (F,L) is adjoint rigid.

In other words, every variety X with positive a-value is birationally fibered by adjoint
rigid varieties with the same a-value. In order to study the original variety, we can think
of it as a family of adjoint rigid varieties. We will use this idea pervasively in the following
sections to reduce questions about arbitrary varieties to the adjoint rigid case.

3.6. Boundedness results. The main advantage of working with adjoint rigid pairs is that
they have very special geometric properties.

Proposition 3.22 ([LT17b] Theorem 3.5). Let X be a smooth uniruled projective variety
of dimension n over an algebraically closed field and let L be a big and nef divisor such
that (X,L) is adjoint rigid. Then X is birational to a Q-Gorenstein Fano variety X ′ with
canonical singularities satisfying a(X,L)nLn ≤ (−KX′)

n.

This proposition allows us to leverage the recent solution of the Borisov-Alexeev-Borisov
Conjecture in [Bir16a], [Bir16b]. In these papers Birkar proves that all Fano varieties with
mild singularities lie in a bounded family, and in particular, admit a universal upper bound
for the anticanonical volume. Thus:

Theorem 3.23. There is a constant C = C(n) satisfying the following property. Suppose
that X is a smooth uniruled projective variety of dimension n over an algebraically closed
field and that L is a big and nef divisor on X such that (X,L) is adjoint rigid. Then
a(X,L)nLn ≤ C.

While this theorem is not effective in higher dimensions, for surfaces and threefolds there
are nearly-tight bounds on the anticanonical volume of mildly singular Fanos. It is worth em-
phasizing that the adjoint rigid assumption is necessary – there is in general no boundedness
theorem for the a-invariant.

10



Example 3.24. Let X be the product of P1 with a non-uniruled surface S. Let L be any
ample divisor on X. If C denotes a fiber of the projection π : X → S, then a(X,L) = 2/L ·C
and π will be the map to the canonical model for (X, a(X,L)L).

Let Y ⊂ X denote the π-preimage of any curve in S. Then a(Y, L) = a(X,L). In
particular, subvarieties of X with the same a-value as X can have arbitrarily large degree
against L.

3.7. Computing the a-invariant in small dimensions. For small dimensions we can
apply previous results to give many concrete techniques for computing the a-invariant.

3.7.1. Curves. Suppose that C is an irreducible (but not necessarily smooth) rational curve.
For any big and nef Cartier divisor L on C we have a(C,L) = 2/degC(L).

3.7.2. Surfaces. If we interpret Theorem 3.23 in this situation, we obtain the following ex-
plicit bound:

Theorem 3.25. Let S be a projective surface and let L be a big and nef Cartier divisor on
X. Then either S is dominated by curves C satisfying a(C,L) = a(S, L) or

a(S, L)2L2 ≤ 9.

The minimal model program can be used to derive more specific information. We start
from a smooth projective surface S and a big and nef divisor L. Suppose that KS+a(S, L)L is
not nef. Then there must be a Galois orbit of (−1)-curves E on S satisfying a(S, L)L ·E < 1.
Let φ : S → S ′ be the contraction of these curves. Then L′ = φ∗L is still big and nef and we
have a(S, L) = a(S ′, L′).

Continuing in this way we eventually find a birational model φ̃ : S → S̃ for which KS̃ +

a(S, L)L̃ is nef where L̃ = φ̃∗L. There are two possibilities:

• Some multiple of this divisor defines a map π : S̃ → Z to a curve Z. (This will of
course be the canonical map discussed in Section 3.5.) In this case the general fiber
of π will be a curve with the same a-value as S.
• We have KS̃ = −a(S, L)L̃. In this case S̃ is known as a weak del Pezzo surface. This

class of surfaces is well-understood, and the a-invariant can be computed easily once

the surface S̃ is identified and L̃2 is calculated.

Here are a couple theorems that can be proved using these techniques:

Lemma 3.26 ([LT18] Lemma 5.3). Suppose that Y is a normal surface and L is an ample
Cartier divisor on Y . Then one of the following holds:

• a(Y, L) < 1, or
• Y has canonical singularities and a(Y, L)L ≡ −KY , or

• for a resolution φ : Ỹ → Y the adjoint pair KỸ + a(Y, L)φ∗L has Iitaka dimension 1.

Lemma 3.27 ([LT17b] Theorem 3.7 and [LT18] Lemma 5.4). Suppose that Y is a normal
surface and L is an ample Cartier divisor on Y .

• Suppose that the smallest L-degree of a rational curve through a general point of Y
is > 3. Then a(Y, L) < 1.
• Suppose that the smallest L-degree of a rational curve through a general point of Y

is 3. Then either a(Y, L) < 1 or Y ∼= P2 and L = O(1).
11



3.7.3. Threefolds. The cleanest statement for threefolds is:

Theorem 3.28 ([LT17b] Theorem 3.7). Let X be a smooth projective threefold and let L be
a big and nef divisor on X. Then either a(X,L)3 ≤ 64/L3 or X is dominated by subvarieties
with the same a-value.

Here the constant 64 is arising from an explicit anticanonical volume bound for singular
Fanos. It is helpful to know the exact bound in various situations:

Theorem 3.29. (1) If X is a Gorenstein terminal Fano threefold then −K3
X ≤ 64, and

the bound is sharp. ([Nam97])
(2) If X is a Q-factorial non-Gorenstein terminal Fano threefold of Picard rank 1 then
−K3

X ≤ 125/2, and the bound is sharp. ([Pro07])
(3) If X is a Gorenstein canonical Fano threefold then −K3

X ≤ 72, and the bound is
sharp. ([Pro05])

Remark 3.30. In dimension ≥ 4 there are smooth Fano varieties whose anticanonical vol-
ume is larger than the anticanonical volume (n+ 1)n of Pn. However, projective space does
have the largest anticanonical volume amongst all smooth Kähler-Einstein Fano varieties;
see [Fuj15].

4. The b-invariant

Definition 4.1. Let X be a smooth geometrically integral projective variety over a field F
and let L be a big and nef divisor on X. We define the b-invariant by

b(F,X,L) = the codimension of the minimal supported face

of Eff
1
(X) containing KX + a(X,L)L.

We will only ever consider this invariant when a(X,L) > 0. If L is nef but not big, we
formally set b(X,L) =∞.

Recall that a face F of a cone C is said to be supported if there is a linear functional ` such
that `(v) ≥ 0 for every v ∈ C and F = {v ∈ C|`(v) = 0}. In general the issue of whether
a face is supported or not can be somewhat subtle. However, the situation is better for the
face F of Definition 4.1. According to [HTT15, Theorem 2.16] the minimal supported face

of Eff
1
(X) containing KX + a(X,L)L coincides with the minimal face of Eff

1
(X) containing

KX + a(X,L)L. Thus KX + a(X,L)L lies in the interior of the face.

Example 4.2. Suppose that X is a smooth Fano variety and that L = −KX . Then
b(F,X,L) is the Picard rank of X.

Example 4.3. We return to the setting of Example 3.6. Let X be the blow-up of P2 at
a point. Let H denote the pullback of the hyperplane class on P2 and let E denote the
exceptional divisor. With this notation we can identify KX = −3H + E.

As discussed in Example 3.6, we have

a(X, (r + s)H − sE) = max

{
3

r + s
,
2

r

}
.

It is straightforward to see that

b(F,X, (r + s)H − sE) =

{
2 if L is proportional to −KX , i.e. r = 2s
1 otherwise

12



4.1. First properties. We discuss some of the elementary properties of the b-invariant.

Proposition 4.4. Let X be a smooth geometrically integral geometrically uniruled projective
variety and let L be a big and nef divisor on X.

• The b-invariant is invariant under rescaling: for any t > 0 we have b(F,X, tL) =
b(F,X,L).
• The b-invariant is birational: if φ : X ′ → X is a birational morphism of smooth

projective varieties then b(F,X,L) = b(F,X ′, φ∗L). ([HTT15, Proposition 2.10])

However, as suggested by the notation the b-invariant is not geometric: it can increase
under base change (e.g. when X is Fano and the the Picard rank increases upon base change).

Proposition 4.5. Let X be a smooth geometrically integral geometrically uniruled projective
variety defined over a field F and let L be a big and nef divisor on X. Let F ′/F be a finite
extension. Then we have

b(F,X,L) ≤ b(F ′, XF ′ , LF ′).

Proof. Let F be an algebraic closure of F . Then b(F,X,L) is given by

dim Eff1(XF )Gal(F/F ) ∩ (KX + a(X,L)L)⊥.

It is then clear that the b-value can only increase upon field extension. �

4.2. The b-invariant and the minimal model program. It is clear that the b-invariant
is somehow related to the Picard rank of X and the Picard rank of Z where π : X 99K Z
is the canonical map associated to (X, a(X,L)L). In this section we make this intuition
precise.

It is most convenient to separate into two cases: when (X,L) is adjoint rigid and when it
is not.

Lemma 4.6. Let X be a smooth geometrically uniruled geometrically integral projective
variety defined over F and let L be a big and nef divisor on X. Suppose that (X,L) is
adjoint rigid. Fix a sufficiently divisible integer d. Then there is a unique effective divisor
E such that md(KX + a(X,L)L) ∼ mE for all m ≥ 0. We have

b(F,X,L) = dimN1(X)/Span{Ei}
where Ei are the irreducible components of E.

Note that E is exactly the divisor that gets contracted when one runs the minimal model
program on X. If we denote the resulting birational map by X 99K X ′, then the b-value of
(X,L) is precisely the Picard rank of X ′.

When X is not adjoint rigid, the b-invariant is measured by a “relative” analogue of the
calculation in Lemma 4.6. In essence, the b-invariant measures the monodromy-invariant
Picard rank of a general fiber of the canonical map after quotienting by the horizontal rigid
divisors.

Lemma 4.7 ([LST18] Lemma 2.6). Let X be a smooth geometrically uniruled geometrically
integral projective variety defined over F . Let π : X 99K Z be the canonical map for KX +
a(X,L)L. Suppose that there is a non-empty open set Z◦ ⊂ Z such that π is well-defined
and smooth over Z◦. For any z ∈ Z◦(F ) we have

b(F,X,L) = dimN1(Xz)
πét

1 (Z◦,z)/Span{Ei}
13



where the {Ei} are the classes of all irreducible divisors which dominate Z and which satisfy

KX + a(X,L)L− ciEi ∈ Eff
1
(X) for some ci > 0. Furthermore, there are only finitely many

such Ei.

Another useful observation is that the b-invariant is preserved by the steps of the MMP:

Lemma 4.8 ([HTT15] Proposition 2.18). Let X be a smooth uniruled projective variety
and let L be a big and nef divisor on X. Then the b-invariant is preserved by birational
steps of the (X, a(X,L)L)-MMP. More precisely, if φ : X 99K X ′ is a birational contraction
constructed from steps of the minimal model program, then b(F,X,L) = b(F,X ′, φ∗L).

Remark 4.9. In the setting of the lemma above φ∗L need not be nef, but we nevertheless
define b(F,X ′, φ∗L) as in Definition 4.1.

Remark 4.10. It is tempting to try to combine Lemma 4.7 and Lemma 4.8 to measure
the b-invariant using the fibers of the canonical map after running the MMP. However, the
analogue of Lemma 4.7 may not be valid in this case if the general fiber of the canonical
map fails to be Q-factorial. See [CFST16, Section 2] for an in-depth discussion of this issue.

4.3. Geometric properties of the b-invariant. In this section we discuss how the b-
invariant changes under some natural geometric operations. Unfortunately it is not nearly
as well behaved as the a-invariant. The following examples show that the b-invariant can
either increase or decrease under taking covers with the same a-invariant.

Example 4.11. Suppose F is algebraically closed. Then [LT17b, Corollary 6.6] shows that
the b-invariant will always decrease for a covering map of adjoint rigid surfaces with the
same a-invariant. One can construct such maps by taking del Pezzo surfaces with canonical
singularities and constructing covers which are étale in codimension 1; some explicit examples
can be found in [MZ88].

Example 4.12 ([LR14]). Let S be the quadric surface P1× P1 defined over Q and consider

the Hilbert scheme X = Hilb[2](S); this is a weak Fano 4-fold. Let L = −KX . Then we have

a(X,L) = 1, b(Q, X, L) = 3,

because the Picard rank of X is 3. Consider the variety W which is the blow-up of S × S
along the diagonal. These fit into a diagram

W //

f

��

S × S
g
��

X // Chow2(S)

where the vertical maps are the natural symmetric quotients. Then we have

a(W, f ∗L) = 1 b(Q,W, f ∗L) = 4

and (W, f ∗L) is adjoint rigid. Thus the b-value can increase for adjoint rigid covers with the
same a-invariant.

Next, we discuss the behavior of the b-invariant in smooth families.
14



Theorem 4.13 ([Sen17a] Theorem 1.2). Let π : X → T be a smooth family of projective
uniruled varieties over an algebraically closed field F . Let L be a big and nef divisor on X .
Consider the function T → R defined by t 7→ b(F,Xt, L|Xt). There is an open subset T ◦ ⊂ T
such that the b-invariant is constant on T ◦.

When the ground field is not algebraically closed, the behavior can be more complicated.
For example, in a smooth family of Fano varieties over a number field the Picard rank can
jump up over a thin dense set of points. Thus if we take L to be the relative anticanonical
divisor, the b-value may not be constant on any open subset.

Finally, we discuss the behavior under taking hyperplane sections.

Theorem 4.14. Let X be a smooth projective uniruled variety of dimension ≥ 4 and let L
be a very ample divisor on X. Let H be a general member of |L|. Suppose that a(X,L) > 1
and that a(H,L) = a(X,L)− 1. Then b(F,X,L) ≥ b(F,H,L).

Suppose furthermore that there is an open neighborhood U of L contained in the ample
cone such that κ(X,KX + a(X,L′)L′) < dim(X) − 1 for any Q-divisor L′ in U . Then
b(F,X,L) = b(F,H,L).

Proof. By the Lefschetz theorem the restriction map res : N1(X) → N1(H) is bijective.

Furthermore res(Eff
1
(X)) ⊂ Eff

1
(H). Since KH + (a(H,L))L = res(KX + a(X,L)L) we see

that the minimal face containing the adjoint divisor can only increase in dimension. Thus
b(F,X,L) ≥ b(F,H,L).

To show the second statement, note that after possibly shrinking U we may suppose that
for any Q-divisor L′ in U there is an ample divisor AL′ such that

a(X,L′)L′ = H + AL′ .

Using [EP12, Corollary D] and the assumption on Iitaka dimensions, by arguing as in The-
orem 3.15 we see that a(X,L′) − 1 = a(H,L′) for any Q-divisor L′ in U . In other words,
there is an open neighborhood V of KX + a(X,L)L such that

res(V ∩ Eff
1
(X)) ∩N1(H)Q = res(V ) ∩ Eff

1
(H) ∩N1(H)Q.

Since the minimal supported face of Eff
1
(X) containing KX + a(X,L)L is rational and

contains KX + a(X,L)L in its interior, this suffices to show equality of b-invariants. �

5. The exceptional set in Manin’s Conjecture

LetX be a smooth projective geometrically rationally connected and geometrically integral
variety over a number field F and let L be a big and nef divisor on X. Recall that a map of
projective varieties f : Y → X is thin when f is generically finite onto its image but is not
birational and dominant. [LST18] predicts that the exceptional set in Manin’s Conjecture is
a union of subsets f(Y (F )) as f : Y → X varies over thin maps satisfying certain geometric
conditions. The goal of this section is to give a precise description of the set constructed in
[LST18].

5.1. Fano varieties. The most important case is when X is a smooth projective geometri-
cally integral Fano variety over a number field and L = −KX . Suppose that f : Y → X is a
thin map where Y is a smooth projective geometrically integral variety. As discussed in the
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introduction, the exceptional set in Manin’s Conjecture should certainly include f(Y (F ))
when we have an inequality

(a(Y, f ∗L), b(F, Y, f ∗L)) > (a(X,L), b(F,X,L))

in the lexicographic order. If f yields an equality then sometimes the contributions from Y
should be removed and sometimes they should not, and it is important to carefully distinguish
between the two situations.

First suppose that dim(Y ) < dim(X) and the a and b invariants are equal. Then we
should always remove point contributions from Y . Indeed, [BL17, Theorem 1.2] shows that
if rational points grow at the expected rate on Y and we include these points in our count
then Manin’s Conjecture with Peyre’s constant will be violated for an appropriate choice of
anticanonical height function. In fact, we should remove the points on any family of such
subvarieties, or even a cover of such a family. Precisely: suppose that f : Y → X is a thin
map satisfying

(a(Y, f ∗L), b(F, Y, f ∗L)) = (a(X,L), b(F,X,L))

and that the fibers of the canonical map for (Y, f ∗L) have smaller dimension than X. Then
we include f(Y (F )) in the set we must remove.

The other possibility is that f : Y → X is a dominant thin map satisfying

(a(Y, f ∗L), b(F, Y, f ∗L)) = (a(X,L), b(F,X,L))

and (Y, f ∗L) is adjoint rigid. In this situation, [LT17a] introduced a new invariant to distin-
guish when f(Y (F )) should be included.

Definition 5.1. [LT17a, Definition 3.5] Let X be a smooth geometrically integral projective
variety and let L be a big and nef divisor on X. Suppose that f : Y → X is a morphism
of smooth projective varieties that is dominant generically finite and satisfies a(Y, f ∗L) =
a(X,L). Let FY denote the face of Nef1(Y ) perpendicular to KY + a(Y, f ∗L)f ∗L and let FX
denote the face of Nef1(X) perpendicular toKX+a(X,L)L. In this situation the pushforward
map f∗ : N1(Y )→ N1(X) takes FY into FX . We say that f is a face contracting morphism
if f∗ : FY → FX is not injective.

One should think of the face contraction condition as a refinement of the b-invariant.
Indeed, since the dimensions of FY and FX are b(F, Y, f ∗L) and b(F,X,L) respectively, when
the b-value of Y is greater than the b-value of X the map is automatically face contracting.
However, the converse is not true (see [LT17a, Example 3.6]).

When constructing the exceptional set in Manin’s Conjecture, we include f(Y (F )) when-
ever f is a dominant face contracting map. When we have an equality of a, b-values and f
is not face contracting, we do not remove the contributions.

The following statement summarizes the discussion so far.

Conjecture 5.2. Let X be a smooth projective geometrically integral Fano variety over a
number field. Set L = −KX . Let Z be the union of f(Y (F )) where f : Y → X varies
over all thin maps from a smooth projective geometrically integral variety Y such that
(a(X,L), b(F,X,L)) ≤ (a(Y, f ∗L), b(F, Y, f ∗L)) and either

(1) dim(Y ) < dim(X), or
(2) dim(Y ) = dim(X) and κ(KY + a(Y, f ∗L)f ∗L) > 0, or
(3) dim(Y ) = dim(X), κ(KY + a(Y, f ∗L)f ∗L) = 0 and f is face contracting.
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Then Z coincides with the exceptional set in Manin’s Conjecture for X with an anticanonical
polarization.

5.2. General case. Let X be a smooth projective geometrically rationally connected and
geometrically integral variety over a number field F and let L be a big and nef divisor on
X. In brief, one can see the general construction as a “relative version” of the simpler
construction given above for Fano varieties. It is convenient to make one more definition.

Definition 5.3. Let X be a smooth projective variety defined over a field F of characteristic
0. Let L be a big and nef Q-divisor on X. We define

d(X,L) = dim(X)− κ(KX + a(X,L)L).

When X is singular, we define d(X,L) by pulling L back to a smooth model. Note that
d(X,L) is invariant under extension of the ground field.

We now describe the conjectural exceptional set. Without loss of generality we may assume
that the canonical map π : X 99K W for KX + a(X,L)L is a morphism. Let Z0 be the set
of rational points contained in the union of B+(L) and a proper closed subset π−1S where
S ⊂ W is a proper closed subset such that π is smooth over the complement of S.

Suppose we have a thin map f : Y → X such that d(X,L) = d(Y, f ∗L), a(X,L) =
a(Y, f ∗L) and the image of Y is not contained in π−1S. In this situation, we say that f is
face contracting if it satisfies the condition of Definition 5.1. Note that even when f is not
dominant this is a sensible definition since the image of FY under f∗ is still FX under these
assumptions.

Next as f : Y → X varies over all thin maps such that Y is geometrically integral and
smooth, d(Y, f ∗L) < d(X,L) and

(a(X,L), b(F,X,L)) ≤ (a(Y, f ∗L), b(F, Y, f ∗L)),

we define the set Z1 ⊂ X(F ) by

Z1 =
⋃
f

f(Y (F )) ⊂ X(F ).

Next as f : Y → X varies over all thin maps such that Y is geometrically integral and
smooth, d(Y, f ∗L) = d(X,L), and either

(a(X,L), b(F,X,L)) < (a(Y, f ∗L), b(F, Y, f ∗L)),

or the a and b values are equal and f is face contracting, we define the set Z2 ⊂ X(F ) by

Z2 =
⋃
f

f(Y (F )) ⊂ X(F ).

Finally, as f : Y → X varies over all thin maps such that Y is geometrically integral and
smooth, d(Y, f ∗L) > d(X,L) and

(a(X,L), b(F,X,L)) ≤ (a(Y, f ∗L), b(F, Y, f ∗L)),

we define the set Z3 ⊂ X(F ) by

Z3 =
⋃
f

f(Y (F )) ⊂ X(F ).
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The union Z := ∪3
i=0Zi can be viewed as the potential geometric obstructions to the

validity of Manin’s Conjecture. [LST18] predicts that Z coincides with the exceptional set
in Manin’s Conjecture.

6. Computing the thin set

The main theorem of [LST18] shows that the “geometric exceptional set” Z constructed
in the previous section is always contained in a thin set.

Theorem 6.1 ([LST18] Theorem 3.5). Let X be a geometrically uniruled geometrically in-
tegral smooth projective variety defined over a number field F and let L be a big and nef
divisor on X. The subsets Z0, Z1, Z2, and Z3 defined above are contained in a thin subset
of X(F ).

In the first subsection, we give a step-by-step construction of a thin subset containing the
Zi. In the later subsections, we describe the theoretical results underlying the construction.
Readers who are primarily interested in seeing this construction in action may skip the later
subsections and progress directly to examples.

6.1. The exceptional set. Here is a list of steps which identifies a thin set containing the
set of rational point contributions Z0, Z1, Z2, Z3 as in Theorem 6.1. While the steps are
unfortunately somewhat complicated, in examples it is not uncommon for many of these
complications to disappear. Sections 7 - 12 are devoted to examples of this construction;
Section 12 gives a nice example of how to carry out the process.

(0) Define V to be the proper closed subset B+(L). We will increase V subsequently.
(1) Find all adjoint rigid subvarieties with a(Y, L) ≥ a(X,L). By Theorem 3.23 such

subvarieties are either contained in B+(L) or have L-degree bounded above by some
constant C. In low dimensions the constant C is known explicitly, giving an explicit
bound on the degree of subvarieties Y which must be considered. For subvarieties
with small degree usually one must compute the a-invariant by hand by identifying
the possible singularity types.

Step (1) identifies the bounded subset of Chow(X) parametrizing all adjoint rigid sub-
varieties with a(Y, L) ≥ a(X,L). These yield a finite collection of families of subvarieties
Ui → Wi. For each index i, we add on contributions to our thin set as follows.

(2) If Ui is not geometrically integral, then the rational points on Ui will all map into a
proper closed subset of X. Enlarge V by adding this subset.

(3) If Ui is geometrically integral and the map Ui → X is not dominant, we enlarge V
by adding the image of Ui.

(4) If Ui is geometrically integral and the map Ui → X is dominant and has degree ≥ 2,
we will include the image of the rational points on Ui in our thin set.

The only remaining case is when Ui is geometrically integral and the map Ui → X is
birational. (This includes the possibility that X itself is adjoint rigid and Ui = X.) In this
case the construction is more complicated, and we carry it out in several steps.

(5) Suppose that Ui is geometrically integral and the map Ui → X is birational. Make
the following modifications to the family. After resolving and shrinking the base, we
may suppose that Ui → Wi is a smooth family of adjoint rigid varieties and that the
a-invariant of the fibers is constant. Let Qi ⊂ Ui denote the union of all codimension
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1 subvarieties D of fibers F such that a(D,L) > a(F,L). After shrinking the base
further, we may suppose that Qi is flat over Wi and that the restriction of the map
Ui → Wi to the complement of Qi is topologically locally trivial over F . We then
take a Galois cover W ′

i → Wi such that the main component U ′i of Ui×Wi
W ′
i admits a

section W ′
i → U ′i avoiding the analogously defined subset Q′i. After these changes, the

map U ′i → X will be proper étale over an open subset, and we add the complement
to V . We also add the image of Q′i in X to V .

(6) Let V ′i denote the complement of Q′i in U ′i . The section constructed in the previous
step gives us a way of identifying the étale fundamental groups of P ∩ V ′i as we vary
the fiber P of U ′i → W ′

i .
Fix any smooth adjoint rigid variety P in our family U ′i . After passing to the

algebraic closure of the ground field, there are up to birational equivalence only
finitely many dominant generically finite maps f : Y → P such that a(Y , f ∗L) =
a(P ,L) and (Y , f ∗L) is adjoint rigid. Associated to each such cover there is a finite
index subgroup of πét

1 (V ′i ∩P ). Identify all such finite index subgroups as we vary the
fiber P in our family U ′i .

To achieve this classification, first note that the degree of f is bounded above
by Theorem 3.23. Furthermore, by [Sen17b] any component of the branch divisor
for such a map f : Y → P must have a-invariant which is strictly larger than the
a-invariant for P . Applying [HJ17] we see there is a finite list of possible branch
divisors for f . Together these results show that for any fixed fiber P there is a finite
set of possible maps f : Y → P as above. Since the degree of the cover is bounded,
we see there are only finitely many possible finite index subgroups as we vary P .

(7) Using the section constructed above we have an identification

πét
1 (V ′i) = πét

1 (V ′i ∩ P ) o πét
1 (Wi

′
)

where P is any fiber of Ui
′ → Wi

′
. In step (6) we constructed a finite set of covers

of various P which yield a finite set of subgroups {Ξi,j}j∈J of πét
1 (V ′i ∩ P ). For each

subgroup Ξi,j, we let Ni,j denote the largest finite index subgroup of πét
1 (Wi) which

normalizes Ξi,j and such that the monodromy action on the cosets of the intersection
of conjugates of Ξi,j is trivial. The finite index subgroup Ξi,joNi,j of the fundamental
group defines a geometric étale cover, and after taking completions we obtain a cover

Yi,j → U ′i and a family structure Yi,j → T i,j compatible with the map U ′i → W
′
i. We

now divide into three cases:
(a) Suppose that the general fiber of Yi,j → T i,j has smaller a-value than the general

fiber of U ′i → W
′
i or fails to be adjoint rigid. Then there is a non-dense subset

of T i,j which parametrizes all fibers with the same a-value and are adjoint rigid.
The closure of the image in X of the union of such fibers is a proper subset, and
we increase V by adding this set and its Galois conjugates.

(b) Otherwise, the general fiber has the same a-value and is adjoint rigid. Now
suppose that Yi,j → U ′i descends to our ground field F to yield a map Yi,j → U ′i
in such a way that Yi,j admits a rational point whose image in X is not contained
in V (as constructed so far). Then we retain the map Yi,j → Ti,j for the later
constructions. Up to twists and birational equivalence, there are only a finite
set of such maps Yi,j → Ti,j.
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(c) Finally, it may happen that a general fiber has the same a-value and is adjoint
rigid, but the map Yi,j → U ′i does not descend in such a way as to admit a

rational point as explained above. Let Yi,j
◦

denote the open subset consisting of
the fibers of the map to Ti,j whose a-values agree with the generic value. In this
case we increase V by adding all Galois conjugates of the proper closed subset
of X which is the union of the image of Yi,j\Yi,j

◦
with the locus where Yi,j → X

is not proper étale.
(8) At the end of step (7) we have constructed a finite set of families Yi,j → Ti,j. We next

modify each family. After a birational change we may suppose that Yi,j is smooth.
After shrinking Ti,j we may suppose that the map Ti,j → W ′

i is étale and that the
map is smooth over Ti,j, the a-constant is constant over Ti,j, and the set QY defined
as before is flat over Ti,j and Yi,j\QY is locally topologically trivial over Ti,j. After
a base change we may suppose that Ti,j → W ′

i is Galois and that the geometric
monodromy action on the geometric Néron-Severi space of the fibers is trivial. After
another birational change we may suppose that the automorphism group of Yi,j/U i
is equal to the full birational automorphism group. After these changes, the map
Yi,j → X will be proper étale over an open subset, and we add the complement to
V . We then replace Yi,j and Ti,j be projective closures while preserving the existence
of a map Yi,j → Ti,j.

(9) We have a proper closed subset V ( X from Steps (0)-(8), a finite collection of
dominant maps fi : Ui → X of degree ≥ 2 from step (4), and a finite collection of
dominant maps gi,j : Yi,j → X from step (8). Our thin set is

V (F ) ∪

(⋃
i

f(Ui(F ))

)
∪
⋃
i,j

 ⋃
σ∈H1(Gal(F/F ),Aut(Y i,j/X))

gσi,j(Yσi,j(F ))


where the latter union takes place over all twists σ such that

(a(X,L), b(F,X,L)) ≤ (a(Yσi,j, gσ∗i,jL), b(F,Yσi,j, gσ∗i,jL)),

and gσi,j is face contracting.

Remark 6.2. [LT17b] conjectured that the covers as in Step (6) must be birationally equiv-
alent to maps that are étale in codimension 1. If true, then one could replace the indirect
classification of Step (6) by a calculation involving the étale fundamental group. See Question
13.3 for a further discussion.

Remark 6.3. It is possible that our constructed thin set Z includes more than we should.
We have made no attempt to minimize the closed set V so it might be larger than necessary.
There is an additional issue in Step (4), where we have made no attempt to compare a, b-
values for the family we remove. Note that it does not suffice to check the a, b-values for
the family Ui; even if the a, b-values for the family Ui are lower, there still might be a cover
with higher a, b-values, and we should remove the points from such covers. In practice it
is usually easy to see when our thin set Z is too large and which parts of the construction
should be modified to give a tight bound.

When (X,L) is adjoint rigid, the extra points that we remove will not affect the asymptotic
growth rate. Indeed, removing further proper closed subsets won’t affect the asymptotic
because Z1 includes all contributions from subvarieties with a, b-invariants higher than or
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equal to the invariants of X. Also any cover f : Y → X inducing a family in Step (4) satisfies
d(Y, f ∗L) < d(X,L), so Z1 contains all contributions from such Y with the invariants higher
than or equal to the invariants of X.

6.2. Classifying subvarieties with ≥ a-value. We now turn to the theoretical results
underlying the description above. The main finiteness result for subvarieties is:

Theorem 6.4 ([HJ17] Theorem 1.1). Let X be a smooth projective uniruled variety over an
algebraically closed field and let L be a big and nef divisor on X. There is a closed proper
subset V ⊂ X which contains every subvariety Y satisfying a(Y, L) > a(X,L).

In fact, the components of V are themselves subvarieties of higher a-value than X.

Proof. We explain the proof carefully for rational curves on X. Recall that the a-invariant
of any rational curve on X is 2/L ·C. We know that any curve not contained in B+(L) will
have positive intersection against L. Thus the rational curves on X not contained in B+(L)
with a(C,L|C) > a(X,L) all have bounded degree. Such curves must lie on a bounded family
in X. Lemma 3.13 completes the proof.

For subvarieties of higher dimension, the proof is exactly the same, except that one must
appeal to Proposition 3.21 to show that one only need consider adjoint rigid varieties and
then to Theorem 3.23 to bound the degree. �

While adjoint rigid subvarieties Y satisfying a(Y, L) = a(X,L) will still lie in a bounded
family, they no longer need to be contained in a closed subset since Lemma 3.13 no longer
gives any restriction. Nevertheless the geometry of such families is very special.

Theorem 6.5 ([LT17b] The proof of Proposition 4.14). Let X be a smooth projective uniruled
variety over an algebraically closed field and let L be a big and nef divisor on X. Suppose
that Y → T is a family of adjoint rigid subvarieties of X whose general member satisfies
a(Y, L) = a(X,L). Suppose also that the family map Y → X is dominant. If the induced
rational map T 99K Chow(X) is generically finite then the map Y → X is also generically
finite.

6.3. Classifying covers with ≥ a-value. We now turn to the other extreme and suppose
that f : Y → X is a dominant generically finite morphism of projective varieties. Lemma
3.12 shows that the a-invariant of a cover can only decrease, and we would like to see when
equality is attained. In general there can be infinitely many such maps.

Example 6.6. Let X be P1×P1 and let L = −KX . Then for any map of curves g : C → P1

the induced map f : C × P1 → X has that a(C × P1, f ∗L) = 2 = a(X,L).

However, we can expect a better situation when our varieties are adjoint rigid. The
essential ingredient is the following result of [Sen17b].

Theorem 6.7 ([Sen17b] Corollary 2.8). Let X be a smooth projective geometrically uniruled
variety and let L be a big and nef divisor on X. Suppose that f : Y → X is a dominant
generically finite map of smooth varieties such that (Y, f ∗L) is adjoint rigid and a(Y, f ∗L) =
a(X,L). Then every component B of the branch divisor on X satisfies a(B,L) > a(X,L).

By Theorem 6.4 there are only finitely many possible divisors in the branch locus of such
a map, and by Theorem 3.23 the degrees of such maps are bounded. This yields:
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Corollary 6.8 ([Sen17b] Theorem 1.1). Let X be a smooth projective geometrically uniruled
variety and let L be a big and nef divisor on X. Up to birational equivalence, there are only
finitely many dominant generically finite maps of smooth varieties f : Y → X such that
(Y, f ∗L) is adjoint rigid and a(Y, f ∗L) = a(X,L).

6.4. Classifying thin maps with ≥ a-values.

Definition 6.9. Let X be a smooth projective variety over a field of characteristic 0 and
let L be a big and nef Q-divisor on X. Let π : X 99K Z be the Iitaka fibration associated to
KX + a(X,L)L. An Iitaka base change of X is the normalization of a projective closure of
the main component of T ×Z X for some dominant morphism T → Z.

Just as in Example 6.6 we can not expect there to be only finitely many thin maps with
larger a and b invariants. Indeed, any Iitaka base change of such a map will also have
larger a and b invariants. However, the following statement proves finiteness up to birational
equivalence and Iitaka base change.

Theorem 6.10 ([LST18] Theorem 4.10). Let X be a uniruled smooth projective variety over
an algebraically closed field and let L be a big and nef divisor on X. There is a finite set of
thin maps {fi : Yi → X} with a(Yi, f

∗
i L) ≥ a(X,L) satisfying the following property. For any

thin map f : Y → X satisfying a(Y, f ∗L) ≥ a(X,L), after an Iitaka base change to obtain a

variety Ỹ the induced map f̃ : Ỹ → X will factor rationally through some fj. Furthermore,
we have

a(Y, f ∗L) = a(Ỹ , f̃ ∗L) ≤ a(Yj, f
∗
j L)

and if equality of a-values is achieved then

b(Y, f ∗L) ≤ b(Ỹ , f̃ ∗L) ≤ b(Yj, f
∗
j L).

6.5. Twists. In this section, we assume that our ground field is a number field F . Let
(X,L) be an adjoint rigid pair defined over F . Using the boundedness of singular Fano
varieties, we obtain a boundedness statement over the algebraic closure F for adjoint rigid
covers f : Y → X with the same a-invariant as X. However, the corresponding statement
over the ground field is not true due to the existence of twists.

Suppose that we have a generically finite dominant F -morphism f : Y → X of projective
varieties defined over F . A twist of f is another F -morphism f ′ : Y ′ → X such that over
the algebraic closure the two covers are isomorphic, i.e., there exists an X-isomorphism

φ : Y ∼= Y
′
. An excellent reference about twists is Poonen’s book [Poo17]. One can show

that the isomorphism classes of twists of f are parameterized by the Galois cohomology

H1(Gal(F/F ),Aut(Y /X)).

Let us state this one-to-one correspondence explicitly. Suppose that we have a twist
f ′ : Y ′ → X of f . We assume that this becomes isomorphic to f over a finite extension
F ′/F . Thus we have XF ′-isomorphism φ : YF ′ ∼= Y ′F ′ . Then the associated 1-cocycle is given
by

Gal(F ′/F ) 3 s 7→ φ−1 ◦ φs ∈ Aut(Y /X),

where φs is the conjugate of φ by s.
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On the other hand, if we have a 1-cycle Gal(F ′/F ) 3 s 7→ σs ∈ Aut(YF ′/XF ′), then we
consider the action of s ∈ Gal(F ′/F ) on Y ⊗ F ′ by the composition of σs and id ⊗ s; then
we take the quotient

Y σ = (Y ⊗ F ′)/Gal(F ′/F ).

This is called as the twist of Y by σ.
One of the main ingredients of Theorem 6.1 is the Hilbert Irreducibility Theorem and the

following consequence:

Theorem 6.11 (Hilbert Irreducibility Theorem). Suppose that f : Y → X is a surjective
generically finite morphism of normal geometrically integral projective varieties defined over
a number field F . Suppose that the extension of the geometric function fields F (Y )/F (X)
is Galois with Galois group G. Then there is a thin set of points Z ⊂ X(F ) such that if
P ∈ X(F ) \ Z, then f−1(P ) is irreducible and the corresponding extension of residue fields
is Galois with Galois group G.

The following theorem is a consequence of the Hilbert Irreducibility Theorem:

Theorem 6.12. [LST18, Theorem 5.2] Let X be a geometrically uniruled normal projective
variety defined over a number field F . Let L be a big and nef divisor on X. We assume that
f : Y → X is a dominant generically finite morphism from a normal projective variety. As
σ varies over all σ ∈ H1(F,Aut(Y /X)) such that Y σ is irreducible,

(a(X,L), b(F,X,L)) ≤ (a(Y σ, (fσ)∗L), b(F, Y σ, (fσ)∗L))

and fσ is face contracting, the set

Z =
⋃
σ

fσ(Y σ(F )) ⊂ X(F )

is contained in a thin set of X(F ).

By combining this theorem with the geometric finiteness in Theorem 6.10 one can prove
that the proposed exceptional set of [LST18] is contained in a thin set.

7. Hypersurfaces

In the remainder of the paper we will give a number of examples illustrating the compu-
tation of thin sets as above. The easiest examples are varieties with large a-invariants. In
this section we discuss low degree hypersurfaces. Throughout L will denote the restriction
to X of the hyperplane class on the ambient projective space.

Example 7.1. Consider Pn with the hyperplane class L. We have a(Pn, L) = n + 1. By
Lemma 3.16 it is impossible for any variety Y with dim(Y ) < n to have a(Y, L) ≥ a(Pn, L).
We claim there is also no dominant thin map f : Y → Pn with a(Y, f ∗L) = a(Pn, L). Indeed,
suppose we have such a map. Theorem 6.7 shows that (Y, f ∗L) can not be adjoint rigid.
But if (Y, f ∗L) is not adjoint rigid then it is covered by subvarieties with the same a-value,
again a contradiction to Lemma 3.16.

In sum, we see that there are no thin maps f : Y → Pn with a(Y, L) ≥ a(Pn, L). This
means that the set of rational points we should remove is the empty set. For projective
space the asymptotic formula in Manin’s Conjecture was first confirmed in [Sch79] and was
generalized to arbitrary metrization in [Pey95].
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Example 7.2. Let Q denote a smooth quadric hypersurface of dimension n ≥ 3. We have
a(Q,L) = n. By Lemma 3.16 it is impossible for any variety Y with dim(Y ) < n− 1 to have
a(Y, L) ≥ a(Q,L). Furthermore, by Proposition 3.17 any divisor with a(Y, L) ≥ a(Q,L) must
have L-degree 1, an impossibility in our dimension range. Using similar logic as in Example
7.1 we can use Theorem 6.7 to prove there are no dominant thin maps with a(Y, L) ≥ a(X,L).

In sum, we see that there are no thin maps f : Y → X with a(Y, L) ≥ a(X,L). This means
that the set we should remove is the empty set. Manin’s Conjecture has been confirmed in
[FMT89].

Example 7.3. Let X denote a smooth cubic hypersurface of dimension n ≥ 5. We have
a(X,L) = n− 1. By Lemma 3.16 it is impossible for any variety Y with dim(Y ) < n− 2 to
have a(Y, L) ≥ a(X,L). Using Proposition 3.17 one can prove that there are no subvarieties
with a(Y, L) ≥ a(X,L). Using similar logic as in Example 7.1 we can use Theorem 6.7 to
prove there are no dominant thin maps with a(Y, L) ≥ a(X,L).

In sum, we see that there are no thin maps f : Y → X with a(Y, L) ≥ a(X,L). This
means that the set we should remove is the empty set. Manin’s Conjecture is known for
n ≥ 7 by [Hoo94]. For the diagonal cubic we have a result for n = 6 by the work of [Vau86].

An interesting but challenging problem is to extend the result to hypersurfaces of any
degree. Based on the properties of rational curves on low degree hypersurfaces proved by
[HRS04], [BK13], [RY16], [BV17] and the connection with a and b invariants proved in
[LT17a], we expect there are no thin maps f : Y → X with ≥ a, b-invariants when X is
a general smooth hypersurface in Pn of degree ≤ n − 2 or when X is an arbitrary smooth
hypersurface in Pn of degree ≤ n/2.

8. Varieties with large group actions

Example 8.1 (Homogeneous spaces). Suppose that X is a homogeneous space G/P and
L is a big and nef divisor on X. Using the group action, we see that every subvariety of
X can be realized as a general member of a dominant family of subvarieties. By Lemma
3.13 we see that a(Y, L) ≤ a(X,L) for every subvariety Y . By Theorem 6.7 there are
no adjoint rigid covers (Y, f ∗L) with the same a-value as X. Any fibration on X has the
form f : G/P → G/M where M ⊃ P is a parabolic subgroup of G. Any adjoint rigid
subvariety Y with a(Y, L) = a(X,L) is a fiber of some such fibration f . Indeed, suppose
that Y contains a point coming from the identity and let N be the stabilizer of Y , i.e.,
N = {g ∈ G | g · Y = Y }. Then translations give us an injection G/N → Chow(X). Let U
be the pullback of the universal family on G/N which is a family of adjoint rigid subvarieties.
Then we have a dominant morphism

U → X

Since the induced map G/N → Chow(X) is injective, it follows from Theorem 6.5 that the
above map is generically finite. In particular, we conclude that dimY = dimN − dimP .
Since we have the injection N/N ∩ P ↪→ Y , this implies that N ⊃ P and Y = N/P . Thus
our assertion follows.

Suppose that L is proportional to −KX . Then there is no thin map g : Y → X such that

(a(X,L), b(F,X,L)) ≤ (a(Y, g∗L), b(F, Y, g∗L)).

Indeed, without loss of generality we may assume that (Y, g∗L) is adjoint rigid. Then g(Y )
is an adjoint rigid subvariety so the above discussion shows that g(Y ) itself is a homogenous
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space. This shows that g(Y ) admits no adjoint rigid cover. Thus Y is an adjoint rigid
subvariety of X and it is smooth. It follows from [HTT15, Proposition 3.5] that we have the
balanced property, i.e.,

(a(Y, L), b(F, Y, L)) < (a(X,L), b(F,X,L)).

Thus our assertion follows.
In sum we conclude that our proposed exceptional set is the empty set. Another direct

approach to this problem is discussed in [LST18, Example 3.9]. Manin’s Conjecture for
generalized flag varieties has been confirmed in [FMT89].

Example 8.2 (Equivariant compactifications of vector groups). Let G = Gn
a be the n-

dimensional vector space and let X be a smooth projective equivariant compactification
of G defined over a number field F . Manin’s Conjecture has been proved after removing
rational points on the boundary in [CLT02]. Let L be a big and nef divisor on X. It is clear
that any subvariety with higher a-invariant is contained in the boundary. Since any vector
group is simply connected, we conclude that there is no adjoint rigid cover with the same
a-invariant as X. Let Y be an adjoint rigid subvariety with the same a-invariant as X and
meeting with G. Let N be the stabilizer of Y . We fix a section G/N → G. Then using this
section translations define a dominant morphism

G/N × Y → X.

By Theorem 6.5, this map is generically finite. In particular, we conclude that dimY =
dimN . Since we have the injection N ↪→ Y , this implies that Y is an equivariant compacti-
fication of N . When (X,L) is adjoint rigid, it follows from [HTT15, Theorem 5.4] that we
have

(a(Y, L), b(F, Y, L)) < (a(X,L), b(F,X,L)).

Hence we conclude that our proposed exceptional set is contained in the boundary. Readers
can find a more arithmetic treatment of this problem in [LST18, Example 3.10].

Example 8.3 (Toric varieties). Let X be a geometrically integral smooth toric variety
defined over a number field F and let L be a big and nef divisor on X. Manin’s Conjecture
for such a variety was proved in [BT96a], [BT98a], and [Sal98] after removing rational points
on the boundary.

The maps f : Y → X such that a(Y, f ∗L) ≥ a(X,L) are controlled by the following
restrictions:

• By Lemma 3.13 any subvariety with larger a-value must be contained in the toric
boundary.
• If we have a dominant family of subvarieties Y with a(Y, L) = a(X,L), then by the

argument of [LT17b, Theorem 9.5] the varieties Y must be the fibers of a rational
toric map X 99K W .
• Let f : Y → X be a dominant thin map such that a(Y, f ∗L) = a(X,L) and (Y, L) is

adjoint rigid. We claim that after applying some birational modification, Y is toric
and f is equivariant. Indeed, taking the Stein factorization, we may assume that f is
finite. By Theorem 6.7, the branch locus is contained in the boundary, so Y contains
a torus T as a dense open set. For any t ∈ T , we may define a birational map
gt : Y 99K Y by translation on T . We also have the corresponding automorphism
ht : X → X. Let A be an ample divisor on X. Then we see that g∗t f

∗A ∼ f ∗A. Thus
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gt must be regular. By applying an equivariant resolution we may assume that Y is
a smooth toric variety and f is equivariant.

We next claim that f is birational to a map f ′ : Y ′ 99K X ′ that is étale in codimen-
sion 1. It suffices to prove that the branch divisor B on X has Iitaka dimension 0.
One can then contract B by a toric map X 99K X ′, and the Stein factorization of the
induced map Y 99K X ′ is the map f ′. To prove the claim on the branch divisor B,
we note that there is some multiple mR of the ramification divisor R on Y such that
mR− f ∗B is pseudo-effective. Indeed, it is clear that every f -exceptional divisor has
positive coefficient in R. Furthermore, the map f∗ induces a bijection between the
non-f -exceptional torus invariant divisors on Y and the torus-invariant divisors on
X. In particular, the pullback of any component of the branch divisor is a positive
linear combination of f -exceptional divisors and the unique torus-invariant divisor
lying above it. Since mR− f ∗B is pseudo-effective and R has Iitaka dimension 0, B
also must have Iitaka dimension 0.

Together, these results show that the only thin maps f : Y → X with a(Y, f ∗L) ≥ a(X,L)
must come from (compositions of) maps of toric varieties and inclusions of torus-invariant
subvarieties. In principle one should be able to classify all such maps combinatorially.

In order to show that the proposed exceptional set of [LST18] is contained in the boundary,
it suffices to prove that there is no dominant thin map f : Y → X such that

(a(X,L), b(F,X,L)) ≤ (a(Y, f ∗L), b(F, Y, f ∗L))

and f is face contracting. Suppose f is a dominant thin map such that a(Y, f ∗L) = a(X,L).
By the reasoning above we may assume that f is toric. Write

KY + a(Y, f ∗L)f ∗L = f ∗(KX + a(X,L)L) +R.

Then R must include every f -exceptional divisor in its support. Furthermore, the map f∗
induces a bijection between the non-f -exceptional torus invariant divisors on Y and the
torus-invariant divisors on X so that there is a unique torus invariant divisor on Y which
dominates a given toric invariant divisor on X. Thus we see that the map f can never be
face contracting. This shows that our proposed exceptional set is compatible with the known
results on Manin’s Conjecture. An alternative arithmetic approach to this problem is given
in [LST18, Example 3.10].

One can also consider equivariant compactifications of other linear algebraic groups.
Manin’s Conjecture for such varieties has been proved in [STBT07] and [ST16]. One can
show that our proposed exceptional set is contained in the boundary using the arithmetic
arguments of [LST18, Example 3.10].

9. Surfaces

Manin’s Conjecture has been verified for many surfaces; see [dlBBD07], [Bro09], [Bro10],
and [dlBBP12]. In all known examples the exceptional set is not Zariski dense. This coheres
with the following result:

Theorem 9.1. Let X be a geometrically integral smooth del Pezzo surface over a number
field and let L = −KX . If X has degree 1 then suppose furthermore that either ρ(X) ≥ 2 or
that X is general in moduli. Then ∪3

i=0Zi is contained in a proper closed subset of X. More
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precisely, it consists of the rational points on the finite set of irreducible curves C that are
defined over the ground field and satisfy either

• L · C = 1, or
• L · C = 2 and C is singular.

In this section we will let X denote a smooth geometrically integral geometrically uniruled
projective surface defined over a number field and let L denote a big and nef divisor on X.
We divide into two cases based on the Iitaka dimension of KX + a(X,L)L.

9.1. Iitaka dimension 1. The easier case is when κ(KX + a(X,L)L) = 1. In this case X
admits a morphism π : X → Z whose fibers are rational curves with the same a-values as
X. The only subvarieties with a(Y, L) ≥ a(X,L) will be components of the fibers of π or
rational curves satisfying L ·C = 0. To construct the thin set Z we will just need to remove
the rational points on B+(L) and in the locus where π is not smooth.

9.2. Iitaka dimension 0. Suppose that (X,L) is adjoint rigid. The first subsection below
discusses the behavior of the a-invariant for subvarieties and covers. The second subsection
carries out Steps (0)-(9) of Section 6 using the techniques of [LT17b]. Since the behavior of
a and b invariants for surfaces over an algebraically closed field is completely understood,
the challenge is to understand what happens over a number field.

9.2.1. Classifying thin maps. When (X,L) is adjoint rigid, we can run the minimal model
program for KX + a(X,L)L by sequentially contracting a sequence of Galois orbits of geo-
metric (−1)-curves which are disjoint. This yields a morphism φ : X → X ′ to a weak del
Pezzo surface X ′ whose Picard rank is the b-value of X. Most of the important features of
the a and b invariants on X are best computed by referring to this surface X ′.

We start by discussing the set of thin maps f : Y → X where the a-invariants for Y are
at least as large as those of X. The only possible adjoint rigid subvarieties of X satisfying
this condition on a-invariants are rational curves C with L ·C ≤ 2/a(X,L). There will be a
finite set of such curves C which do not deform. There will also be a finite set of dominant
families, which are characterized by:

Lemma 9.2. Any dominant family of rational curves whose general member C satisfies
a(C,L) = a(X,L) will lie in one of the following categories.

(1) The curves C are the fibers of a morphism f : X → T .
(2) The minimal model of KX + a(X,L)L is a weak del Pezzo surface X ′ of degree 2 and

C is the strict transform of a rational curve in | −KX′|.
(3) The minimal model of KX + a(X,L)L is a weak del Pezzo surface X ′ of degree 1 and

C is the strict transform of a rational curve in | − 2KX′|.
(4) The minimal model of KX + a(X,L)L is a weak del Pezzo surface X ′ of degree 1

and C is the strict transform of a rational curve C ′ on X ′ satisfying (C ′)2 = 2,
−KX′ .C

′ = 2.

Note that any rational curve in (4) is a member of the linear system of the pullback of the
anticanonical divisor of a weak del Pezzo surface of degree 2.

Proof. By [LT17b, Proposition 4.14] such curves must form a 1-dimensional family. Using
the deformation theory of rational curves we see that −KX ·C = 2. Since a(X,L)L ·C = 2,
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we see that (KX + a(X,L)L) ·C = 0. Let φ : X → X ′ be the result of the (KX + a(X,L)L)-
MMP. Then we see that the class of C is pulled back from the weak del Pezzo surface X ′.
Letting C ′ denote the image of the curves C on X ′, we still have −KX′ · C ′ = 2.

Since −KX′ · C ′ = 2, by adjunction C ′2 must be even and non-negative. By the Hodge
index theorem we must have (−KX′)

2(C ′)2− 4 ≤ 0. This gives four possibilities for K2
X and

C ′2. Three of them match the conditions (2)-(4) in the statement above, and all we need
to show is that if C ′2 = 0 then C ′ (and hence C) is a fiber of a morphism. But this follows
from the Basepoint Free Theorem for the surface X ′. �

We next discuss adjoint rigid covers of X. Let X ′ denote the weak del Pezzo surface
obtained by running the MMP on KX + a(X,L)L. By further passing to the anticanonical

model of X ′, we find a morphism φ : X → X̃ where X̃ is a Fano surface with canonical

singularities. Such a surface X̃ is known as a Gorenstein log del Pezzo surface.
To classify dominant maps with the same a-value, it suffices to first work over an alge-

braically closed field and then to see which ones descend to the ground field. The first step
is accomplished by:

Theorem 9.3 ([LT17b] Corollary 6.9). Suppose that F is algebraically closed. Let X̃ be
the Gorenstein log del Pezzo surface constructed above and fix a smooth point x. There is a

bijection between finite index subgroups of πét
1 (X̃sm, x) and birational equivalence classes of

thin maps f : Y → X such that a(Y, f ∗L) = a(X,L) and (Y, f ∗L) is adjoint rigid.

The bijection associates to a finite index subgroup a projective closure of the corresponding

étale cover of X̃sm. We note for emphasis that the divisor L is not necessarily pulled back

from X̃, so that the relationship between the a-value of L and covers of X̃ is a bit surprising.

Remark 9.4. In fact we can say a little bit more. Suppose again that F is algebraically

closed. In this situation [MZ93, Lemma 2] shows there is a morphism g : X̃ → W where W is

a relatively minimal Gorenstein log del Pezzo surface and we have πét
1 (X̃sm, x) = πét

1 (W sm, w).
The singularity types and quasi-universal covers of the relatively minimal Gorenstein log del
Pezzo surfaces W have been classified in [MZ88], [MZ93], [Ye02].

9.2.2. Constructing a thin set. We next carry out Steps (0)-(9) of Section 6 for an adjoint
rigid surface pair (X,L). In step (0), we set V to be the set of rational curves satisfying
L · C = 0. Step (1) was carried out over F above, and we just need to take those curves
which are defined over F . It is helpful to note the following lemma:

Lemma 9.5. If X is adjoint rigid and admits a covering family of curves satisfying a(C,L) =
a(X,L) then one of the following conditions holds:

(1) b(X,L) > 1.
(2) The minimal model of KX +a(X,L)L is a del Pezzo surface X ′ of Picard rank 1 and

degree 2 and C is the strict transform of a rational curve in | −KX′ |. Such curves
are parametrized by an irreducible curve of geometric genus 3.

(3) The minimal model of KX +a(X,L)L is a del Pezzo surface X ′ of Picard rank 1 and
degree 1 and C is the strict transform of a rational curve in | − 2KX′ |. When X ′ is
general in moduli such curves are parametrized by an irreducible curve of geometric
genus ≥ 2.
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Proof. The classification into three types follows immediately from the argument of Lemma
9.2 and the fact that any weak del Pezzo surface of Picard rank 1 is an honest del Pezzo
surface. In case (2) X ′ is the double cover of P2 ramified over a smooth quartic, and the
rational curves in | − KX′| are parametrized by the curve dual to the quartic which has
genus 3. In case (3) the linear system | − 2KX′| realizes X ′ as the double cover of a quadric
cone. The ramification locus is the union of the vertex and a smooth genus 4 curve T cut
out by a cubic. The rational curves in | − 2KX′ | correspond to the hyperplanes in P3 that
are bitangent to T . Let M denote the curve parametrizing these rational curves. Since
X ′ is general [Lub14, Theorem 21 Claim 11] shows that M is irreducible. Note that M is
naturally a subvariety of Sym2(T ). Since T is canonically embedded, it is not hyperelliptic,
thus Sym2(T ) embeds into the Jacobian Jac(T ). In particular M is not rational, and it can
only be elliptic if it is smooth. But an intersection calculation on T × T ([Lub14]) shows
that M has high arithmetic genus, so it can not be an elliptic curve. �

In Step (2) any family of curves which is not geometrically irreducible will only have
finitely many members defined over the ground field, and we remove the points on this finite
set of curves. (Note that if such a family of curves comes from a fibration X → T then no
smooth fiber can carry any points. In particular, if X is a del Pezzo surface then the curves
whose points we remove must satisfy one of the conditions of Theorem 9.1.) In Step (3)
we enlarge V to include any curves with a(C,L) ≥ a(X,L) which do not deform. Step (4)
applies only in cases (2) and (3) of Lemma 9.5. However, in each case the family of curves
is parametrized by a curve of genus > 1 and so these rational point contributions are not
Zariski dense.

In Step (5), we start with a finite set of fibrations pi : X → Ti whose fibers are ratio-
nal curves. We shrink each to the smooth locus and add the complement to V . Since a
Hirzebruch surface admits a section, no further changes are necessary.

For the remaining steps, there are two kinds of families to consider. First, there are the
families of rational curves constructed in Step (5). In Step (6) we must compute all non-
trivial a-covers of the rational curves, but as we have already seen there are no such covers.
In Steps (7) and (8) we do not make any changes to these families. The other type of map
to consider is the finite set of adjoint rigid dominant covers f : Y → X. These are classified
in some sense by Theorem 9.3 accomplishing Step (6). In Step (7) we must find which ones
descend to the ground field and admit a rational point, and in Step (8) we do not make any
change to the cover.

Finally, in Step (9) we must calculate which of these families to discount. First, consider
the families of rational curves which are fibers of a morphism. Here the b-value of the curves
is 1 but by Lemma 9.5 the b-value of X is greater than 1. Thus we do not need to remove any
point contributions. Second, consider the adjoint rigid covers of X. Over an algebraically
closed field the b-value of a cover will always be smaller than the b-value of X. However, we
do not know whether this is true over a number field. Thus, we can only complete this step
in the situation when X is a smooth del Pezzo surface and L = −KX by using the following
result.

Proposition 9.6 ([LT17b] Theorem 6.2). Let X be a smooth del Pezzo surface and L =
−KX . Then there is no dominant generically finite map f : Y → X from a smooth variety
Y satisfying a(Y, f ∗L) = a(X,L) and (Y, f ∗L) is adjoint rigid.
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Combining all these steps, we see that in the special case when X is a del Pezzo surface
and L = −KX , the proposed exceptional set of [LST18] is exactly described by Theorem
9.1. It seems worthwhile to finish the classification for surfaces by answering the following
questions:

Question 9.7. Let X be a geometrically integral smooth del Pezzo surface of degree 1 over
a number field. Let M denote the curve parametrizing rational curves in | − 2KX |. Does
every component of M have genus ≥ 2?

Question 9.8. Let X be a geometrically integral smooth weak del Pezzo surface over a
number field and let L = −KX . Suppose that f : Y → X is a dominant generically finite
map such that a(Y, f ∗L) = a(X,L) and (Y, f ∗L) is adjoint rigid. Then is b(F, Y, f ∗L) <
b(F,X,L)?

If these questions are answered affirmatively, then we expect the exceptional set for a
surface to always be contained in a Zariski closed proper subset.

10. Fano threefolds of Picard rank 1

We next discuss the a and b invariants for Fano threefolds of Picard rank 1. Here we will
always let L be a generator of the Picard group so that a(X,L) is the same as the index of
X and b(F,X,L) = 1.

10.1. Index 2 Fano threefolds.

Theorem 10.1 ([LT17a] Section 7.2). Let X be a Fano threefold of Picard rank 1 and index
2 satisfying L3 ≥ 2. Then:

(1) There is no subvariety Y ⊂ X satisfying a(Y, L) > a(X,L).
(2) There is no dominant generically finite map f : Y → X such that a(Y, L) = a(X,L)

and (Y, f ∗L) is adjoint rigid.
(3) The only family of adjoint rigid subvarieties with a(Y, L) = a(X,L) is the family of

lines.

Together, these imply the following. Suppose that f : Y → X is any thin map satisfying
a(Y, L) = a(X,L). Then f must factor through the universal family of lines. Let π : U → W
be the universal family of lines. Then the proposed exceptional set of [LST18] coincides with
U(F ) ∪B(F ) where B is the branch locus of s : U → X.

Over an algebraically closed field, the variety of lines W is of general type for a cubic
threefold, an abelian surface for a complete intersection of two quadrics, and P2 for L3 = 5.
Thus depending on X the Zariski density of rational points on U varies. Note that for a
cubic threefold, the variety W admits an embedding into the intermediate Jacobian of X,
in particular it follows from Faltings’ theorem that the set of rational points on W is not
Zariski dense. On the other hand, in the cases of L3 = 4, 5, W satisfies the potential density.

Example 10.2. Let X be a smooth complete intersection of two quadric hypersurfaces in
P5 and let L denote the hyperplane class on X. Since a(X,L) = 2 it is easy to see that the
only curves with the same a-value must be lines, and no curve can have larger a-value.

Suppose now that S is a surface in X satisfying a(S, L) ≥ a(X,L). Since (2L)2 · S ≥ 16,
Theorem 3.25 shows that S can not be adjoint rigid. This means that S must be covered
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by curves with the same a-value as S. In particular, we see that S must be fibered by lines
and that a(S, L) = a(X,L).

Since X does not admit any subvarieties with higher a-value, Theorem 6.7 shows that
there is no dominant generically finite map f : Y → X such that a(Y, L) = a(X,L) and
(Y, f ∗L) is adjoint rigid.

10.2. Index 1 Fano threefolds.

Theorem 10.3 ([LT17b] Theorem 1.9 and [LT18] Theorem 5.1). Let X be a general Fano
threefold of Picard rank 1 and index 1 such that −KX is very ample. Then:

(1) Let D denote the divisor in X swept out by the family of lines. Then D contains
every subvariety Y satisfying a(Y, L) > a(X,L).

(2) There is no dominant generically finite map f : Y → X such that a(Y, L) = a(X,L)
and (Y, f ∗L) is adjoint rigid.

(3) The only family of adjoint rigid subvarieties with a(Y, L) = a(X,L) is the family of
conics.

This result implies that if f : Y → X is any thin map satisfying a(Y, L) ≥ a(X,L) then
f must factor through D or through the universal family of conics. Let π : U → W be the
universal family of conics. Then the proposed exceptional set of [LST18] is

U(F ) ∪D(F ) ∪B(F )

where B is the branch locus of s : U → X. When H3 = 22, 18, the variety W satisfies the
potential density. When H3 = 16, 14, 12, the set of rational points on W is not Zariski dense.
See [KPS18] for more details.

Example 10.4. Let X denote a general quartic hypersurface in P4 and let L denote the
hyperplane class. The only curves with a(C,L) ≥ 1 will be the lines and conics on X. Let
D denote the surface swept out by lines.

Suppose now that S is a surface in X satisfying a(S, L) ≥ a(X,L). Our goal is to show
that S cannot be adjoint rigid. We know that S will be linearly equivalent to some multiple
of L. If S ∼ kL for k ≥ 3 then L2 ·S > 9 and Theorem 3.25 shows that S can not be adjoint
rigid. The cases where S ∼ L or S ∼ 2L must be addressed by hand. [LT18] shows that
when X is general any element of |L| is normal and that any element of |2L| is normal after
perhaps blowing up a line contained in the surface. One can then appeal to Lemma 3.26.

Theorem 6.7 states that any dominant generically finite map f : Y → X such that
a(Y, L) = a(X,L) and (Y, f ∗L) is adjoint rigid must be ramified over the divisor D. It is
not immediately clear that no such map exists. However, [LT17b, Theorem 1.9] proves there
can be no such cover using a different approach based on Question 13.3.

11. Del Pezzo varieties

A smooth Del Pezzo variety is a projective Fano variety X of dimension n admitting an
ample divisor L such that KX = −(n−1)L. The Del Pezzo varieties are classified in [Fuj80],
[Fuj81]. In dimension ≥ 4 the possible degrees of a Del Pezzo variety are 1 ≤ LdimX ≤ 5,
and we will only consider the case when the degree is ≥ 2.

Theorem 11.1. Let X be a general smooth del Pezzo variety of degree 2, 3 and dimension
≥ 4, of degree 4 and dimension ≥ 5, or of degree 5 and dimension 6. Then there are no thin
maps f : Y → X such that a(Y, f ∗L) ≥ a(X,L).
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Proof. Suppose first of all that X is a general smooth del Pezzo variety of degree 2 ≤ d ≤ 5
and dimension ≥ 4. We would like to classify all adjoint rigid subvarieties Y ⊂ X satisfying
a(Y, L) ≥ a(X,L). It is clear that there are no such curves Y since a(X,L) ≥ 3. Suppose we
cut down X by a general hyperplane H. Applying Theorem 3.15, we see that a(Y ∩H,L) ≥
a(H,L). Applying this construction inductively, we will eventually obtain a threefold X ′

which is a general smooth Fano threefold of Picard rank 1, index 2, and degree ≥ 2. As
discussed in Theorem 10.1, the only subvarieties of X ′ with ≥ a-value are the covering family
of lines. Thus we see that any subvariety Y ⊂ X with ≥ a-value must have codimension 2
and must be linear in the ambient projective space.

We now give a case-by-case analysis showing that a general X in our dimension range does
not contain a codimension 2 linear space. In fact, using the same argument cutting down
by hypersurfaces, it suffices to prove this when X has the minimal possible dimension for its
degree.

Degree 2: X is a double cover of P4 ramified along a quartic B. The image of
any plane contained in X will be a plane P in P4 such that P ∩ B is everywhere
non-reduced. A general quartic will not contain any planes. Consider the incidence
correspondence consisting of pairs (Q,P ) of a quartic hypersurface Q whose restric-
tion to a plane P is a double conic. This has dimension 66, showing that the general
quartic in P4 does not restrict to a double conic along any plane.
Degree 3: X is a cubic fourfold, and a general cubic fourfold does not contain a
plane.
Degree 4: X is a complete intersection of two quadrics in P7. Such a variety can
never contain a P3 by [Rei72, Corollary 2.4].
Degree 5: X is G(2, 5), so X does not contain any linear spaces of dimension 4.

�

We note in passing that the dimension ranges in Theorem 11.1 are optimal. If X is a del
Pezzo variety of dimension 4 and degree 4, then X is a complete intersection of two quadrics
in P6 and such varieties always contain planes by [Rei72, Corollary 3.3]. If X is a del Pezzo
variety of dimension 5 and degree 5, then X is a hyperplane section of G(2, 5) and such
varieties always contain a P3 by [AC12, Theorem 1.2].

For many of these varieties Manin’s Conjecture is known (with empty exceptional set). As
we discussed earlier, Manin’s Conjecture is known for cubic hypersurfaces of dimension ≥ 7
by [Hoo94] and there are partial results in dimension 6 by [Vau86]. Birch’s circle method
([Bir62]) can handle a complete intersection of two quadrics when the dimension is > 9.
Manin’s Conjecture is also verified for G(2, 5) by the general results of [FMT89].

12. Hypersurfaces in biprojective space

We work over the ground field Q. Let X be the smooth hypersurface of degree (1, 2) in
the product of projective spaces P3

x×P3
y defined by the equation

∑
xiy

2
i = 0. In this section

we compute the exceptional set defined in [LST18] for this example. Manin’s Conjecture
has been confirmed in [BHB18] after removing a thin exceptional set and we prove that the
exceptional set proposed by [LST18] coincides with this exceptional set.
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We let π1 and π2 denote the two projection maps from X to P3. Let h1 be the pullback
of the hyperplane class via the first projection π1 and h2 be the pullback of the hyperplane
class via the second projection π2. The lattice N1(X)Z is generated by h1 and h2.

We set L = −KX = 3h1 + 2h2. Note that a(X,L) = 1 and b(Q, X, L) = 2. We start by
working over Q and computing the a-invariants and b-invariants of subvarieties with respect
to L. The first step is to understand the singularities of some hyperplane sections of X.

Definition 12.1. In this section we will let S denote the union of the singular fibers of π1.
Note that S is the union of the π1-preimages of the coordinate hyperplanes in P3.

Lemma 12.2. Let ` ⊂ P3 be a line and let Y denote the π1-preimage of ` in X. Suppose
that Y 6⊂ S. Then Y is normal with canonical singularities.

Proof. We first prove that Y is normal. It suffices to show that the singular locus of Y has
codimension ≥ 2. Suppose that y is a singular point of Y . After an appropriate coordinate
change, we may suppose that in a local A1

s × A3
y1,y2,y3

the equation for Y is

s+
3∑
i=1

(ais+ bi)y
2
i

where y lies in the locus s = 0 and the ai, bi are constants satisfying:

• For any i at most one of ai, bi is zero.
• Not all the bi vanish simultaneously.

The singularities will occur where

(ais+ bi)yi = 0 ∀i and 1 +
∑

aiy
2
i = 0.

We show that a component of Sing(Y ) containing y has dimension ≤ 1. Note that it is
impossible for none or all of the bi to vanish. If WLOG only b1 vanishes, then the component
of Sing(Y ) containing y is defined by s = y2 = y3 = 0 and 1 +a1y

2
1 = 0. If WLOG only b1, b2

vanish then the singularities are defined by s = y3 = 0 and 1 + y2
1 + y2

2 = 0. This verifies
that Y is normal.

Note that locally Y will be defined by a cubic equation in A4. Furthermore the equation
will always involve a term of degree ≤ 2 no matter which coordinate system we use, so
that it does not describe a cone. Using the classification of normal cubic surfaces ([Sch64])
we see that a general hyperplane section of Y through any fixed point has only canonical
singularities. Thus Y also has only canonical singularities by [KM98, Theorem 5.34]. �

By essentially the same argument we have:

Lemma 12.3. Let ` ⊂ P3 be a plane and let Y denote the π1-preimage of ` in X. Suppose
that Y 6⊂ S. Then Y is normal with canonical singularities.

Proof. In this case it is straightforward to check the claim about normality using a dimension
count. Fix an exceptional divisor E over Y with center T of codimension ≥ 2. Let H ∈ |h1|
be a general element intersecting T . Note that KY + H is Cartier since it is the restriction
of a Cartier divisor from the ambient variety. Furthermore by Lemma 12.2 we know that
H is normal and has canonical singularities. Applying inversion of adjunction ([BCHM10,
Corollary 1.4.5]), we see that the discrepancy of (Y,H) with respect to E is ≥ 0. Thus the
discrepancy of KY with respect to E is also non-negative. �

33



Corollary 12.4. Let ` ⊂ P3 be a linear subspace of dimension 1 ≤ dim(`) ≤ 2 and let Y
denote the π1-preimage of ` in X. Suppose that Y 6⊂ S. Then a(Y, L) = 1 and (Y, L) is not
adjoint rigid.

Proof. Recall that Y is normal, so by adjunction we have KY +L|Y = (3−dim `)h1|Y . Since
Y has only canonical singularities this suffices to conclude the statement. �

Proposition 12.5. If Y ⊂ X is an adjoint rigid subvariety satisfying a(Y, L) ≥ 1, then
either:

(1) Y ⊂ S, or
(2) Y is a smooth fiber of π1, or
(3) Y is a line in a smooth fiber of π1, or
(4) Y is a smooth fiber of π2.

Furthermore, every component S ′ ⊂ S has a(S ′, L) = 1, we have b(Q, Y, L) = 2 in case (2),
and we have b(Q, Y, L) = 1 in cases (3) and (4).

Proof. We split into cases based on the dimension of Y .
Dimension 4: Let Y be the resolution of an irreducible reduced divisor Y ′ in X. There

are essentially three different options for the behavior of Y under the two projection maps:
either it can dominate both P3s, or it can map dominantly in one direction and onto a
surface in the other. We let f1 and f2 denote the composition of the map Y → Y ′ with the
projection maps. (Note that f1 and f2 need not have connected fibers.)

First suppose that f1 : Y → P3 is dominant. We will prove the claim by computing
H0(Y,KY + 3h1 + 2h2). Note that 2h1 + 2h2 is big and nef, so by Kawamata-Viehweg
vanishing we have

H0(Y,KY + 3h1 + 2h2) ≥ H0(Y1, KY1 + 2h1 + 2h2)

where Y1 is a general element of |h1|. Repeating this argument inductively several times, we
see that

H0(Y,KY + 3h1 + 2h2) ≥ H0(Y3, KY3 + h1 + h2)

where Y3 is the curve which is a complete intersection of Y with two elements of |h1| and
one element of |h2|. Since Y3 is not contracted by either projection we have

H0(Y3, KY3 + h1 + h2) ≥ 1.

This shows that a(Y, L) ≤ 1. In fact, this space of sections space will have dimension ≥ 2
unless both h1 and h2 have degree ≤ 1 on Y3. This means that Y ·h3

1 ·h2 ≤ 1 and Y ·h2
1 ·h2

2 ≤ 1,
an impossibility. So if a(Y, L) = 1 then furthermore Y can not be adjoint rigid.

The other case is when Y maps to a surface under f1 so that the class of Y ′ is ch1 for a
positive integer c. In this case we intersect Y with a general member of |h1| and a general
member of |h2| to obtain a smooth surface Y2 satisfying

H0(Y,KY + 3h1 + 2h2) ≥ H0(Y2, KY2 + 2h1 + h2).

Note that h2 is a big and nef divisor on Y2, so we may intersect against |h1| one more time
while maintaining a surjection of sections. This intersection is a (reducible) curve Y3 which
is a union of fibers of f1. Letting Ci denote the fibers, we have

H0(Y,KY + 3h1 + 2h2) ≥
∑
i

H0(Ci, KCi
+ h2).
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The right hand side can only vanish if h2 ·Ci = 1 for every Ci. In this case, if Y2 → Z → P3

denotes the Stein factorization of f1 then every fiber of Y2 → Z is mapped to a line in P3.
This means that for every fiber of the first projection map on Y ′ the intersection against a
general element of h2 must be a union of lines. But this is an impossibility, since the locus of
fibers which are quadrics of corank ≥ 2 are only parametrized by a one-dimensional space.
This shows that a(Y, L) ≤ a(X,L). In particular we see that every component S ′ of S has
a(S ′, L) ≤ 1, and since S ′ is covered by quadric cones it is clear the equality is achieved.

Next we show that Y is not adjoint rigid. Indeed, we can only have
∑

iH
0(Ci, KCi

+h2) = 1
if Y3 is irreducible and has exactly degree 2 against h2. In other words, we need Y ·h2

1 ·h2
2 = 2,

showing that c = 1. This case is handled by Corollary 12.4.
Dimension 3: Let Y be the resolution of an irreducible reduced threefold Y ′ in X. Just

as before, we need to understand the possible behavior of Y under the two projection maps.
In particular, we need to rule out the following two cases. First, since both projection maps
are flat on X it is impossible for Y to map to a point under either projection map. Second,
it is impossible for Y to map to a curve C under one projection map and to a surface S
under the other. Indeed, in this case Y ′ must be equal to C × S, but no such subvariety is
contained in X.

Just as in dimension 4, we argue by computing H0(Y,KY + 3h1 + 2h2) by intersecting
against general members of |h1| and |h2|. The only case that requires special discussion is
when Y maps to a curve under the first projection map and to P3 under the second projection
map. In this case Y ′ must have numerical class ch2

1 for some positive integer c. Note that
this is very similar to the second case in dimension 4; by the same argument, we see that
a(Y, L) ≤ 1 unless possibly Y ⊂ S. Furthermore, we see that either a(Y, L) < 1 or Y is not
adjoint rigid unless possibly c = 1. This final case is handled by Corollary 12.4.

Dimension 2: The fibers F2 of the second projection map are isomorphic to P2 and they
each satisfy a(F2, L) = a(X,L) and are adjoint rigid. In this case b(F2, L) = 1. The fibers
F1 of the first projection map are (possibly singular) quadrics. When F1 is smooth we have
a(F1, L) = 1, b(F2, L) = 2 and the fiber is adjoint rigid. When F1 has corank 1, a(F1, L) = 1,
b(F1, L) = 2 and the fiber is adjoint rigid. When F1 has corank 2, it is a union of two planes
P . Each plane satisfies a(P,L) = 3/2 and is adjoint rigid. When F1 has corank 3, it is a
double plane and the underlying reduced plane P satisfies a(P,L) = 3/2 and is adjoint rigid.

Suppose now that Y is the resolution of an irreducible reduced surface Y ′ in X and that
Y is not mapped to a point under either projection map. The volume of L is 9Y · h2

1 + 12Y ·
h1 · h2 + 4Y · h2

2, and this is > 9 under our assumption on Y . So either Y is not adjoint rigid
or a(Y, L) < 1 by Theorem 3.25.

Dimension 1: For any rational curve C on X we have (3h1 +2h2) ·C ≥ 2 with equality if
and only if h1 ·C = 0 and h2 ·C = 1. So we have a(C,L|C) = a(X,L) precisely when C is a
line in a fiber of the first projection map. In this case C is adjoint rigid and b(C,L|C) = 1. �

12.1. Construction of the thin set. We follow Steps (0)-(9) of Section 6. For Step (0),
note that B+(L) is empty.

Step (1) is more-or-less accomplished by Proposition 12.5. Precisely speaking, there is
still a small ambiguity about subvarieties of S. However, we will remove all rational points
contained in S anyways, so this minor issue will be irrelevant for the final computation.

In Step (2) we make no changes. In Step (3) we set V = S, and we will remove the rational
points on V later on. In Step (4) we need to consider the universal family of lines in fibers
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of the first projection. Note that the family of lines has b-value smaller than the b-value of
X. Furthermore, there is no adjoint rigid cover of P1 with the same a-value. Thus there is
no need to remove any points from this family.

For Steps (5)-(8), we must consider the fibers of the two projection maps and adjoint
rigid covers of X. Consider the second projection. Here the fibers are isomorphic to P2; in
particular b(Q, Y, L) is only 1. Furthermore, there are no covers of projective space with the
same a-value. Thus we do not need to remove any points coming from this family.

Now consider the first projection whose fibers are quadrics Q. The first step is to shrink
the family so that it is smooth; thus we increase V by adding all singular fibers of π1. Let
W ◦ ⊂ P3 denote the complement of the coordinate hyperplanes. We then take a base change
via the map P3 → P3 defined in coordinates by (x0 : x1 : x2 : x3) 7→ (x2

0 : −x2
1 : x2

2 : −x2
3).

Let W ′ denote the preimage of W ◦. This map is Galois, kills the geometric monodromy
on the Néron-Severi spaces of the fibers, and the family induced by base change admits a
section over the ground field. Note that the map W ′ → W ◦ is étale. In step (6), there are no
non-trivial adjoint rigid covers of Q with the same a-value, so we only need to consider the
identity map. Thus Step (7) yields a unique family, namely the original family p : U ′ → W ′.
In Step (8) there is no need to take a further base-change. Call the closure of the resulting
family q : Y → T with maps f : Y → X and g : T → P3. Now the b-value of Y is 2, so we
must remove f(Y(Q)). This will exactly consist of the points on the fibers over g(T (Q));
note that all of these fibers are split. As we vary over twists of f : Y → X, we remove the
points only from the twists with b-value equal to 2, and their union will consist of the points
on the split fibers of π1. We also must remove contributions from the branch locus, but this
is already contained in V .

Finally, we must show that there are no dominant thin maps f : Y → X such that
a(Y, f ∗L) = a(X,L) and (Y, f ∗L) is adjoint rigid. By Theorem 6.7 it suffices to show that
every divisor D on X has a(D,L) ≤ a(X,L). This was proved in Proposition 12.5.

Note that a diagonal quadric surface
∑
aiy

2
i that carries a rational point will split if and

only if a0a1a2a3 is a square. Altogether we find:

Theorem 12.6. The conjectural exceptional set Z is the union of points on fibers Xp of the
first projection such that p = (a0 : a1 : a2 : a3) ∈ P3 and either a0a1a2a3 is a non-zero square
or some ai = 0.

[BHB18, Theorem 1.1] proves that Manin’s Conjecture holds with Peyre’s constant after
removing precisely this exceptional set.

13. Open questions

We finish with a list of open questions.

13.1. Behavior of a and b invariants.

Question 13.1. Is the a-invariant constant in smooth uniruled families polarized by a big
and nef divisor? (See Theorem 3.14.)

Question 13.2. Suppose our ground field is algebraically closed. Is the b-constant lower
semi-continuous in smooth uniruled families? (See Theorem 4.13.)

Question 13.3. Let f : Y → X be a dominant generically finite map of smooth projective
varieties and let L be a big and nef divisor on X such that a(Y, f ∗L) = a(X,L) and (Y, f ∗L)
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is adjoint rigid. Is it true that f is birationally equivalent to a map of klt varieties that is
étale in codimension 1?

[LT17b] conjectures an affirmative answer to Question 13.3. If the question indeed has an
affirmative answer, then one can identify all such covers Y by computing the étale funda-
mental group of a suitably chosen singular birational model X ′ of X. Using the finiteness of
the étale fundamental group of Q-Fanos proved by [Xu14], one would obtain an alternative
approach to the classification problem of adjoint rigid covers with the same a-value. The ad-
vantage of this viewpoint is that it is somewhat more explicit, allowing one to construct the
covers directly rather than going through the round-about procedure in Step (6) of Section
6.

13.2. Examples. In the text we gave several classes of examples where we could classify all
thin maps f : Y → X with larger a and b invariants. Here are several examples we do not
know how to handle.

Question 13.4. Let X be a smooth hypersurface in Pn of degree ≤ n/2 and let L denote
the hyperplane class. Is it true that there is no thin map f : Y → X such that a(Y, f ∗L) =
a(X,L)?

For surfaces, the following two questions are the key for understanding the thin exceptional
set.

Question 13.5 (= Question 9.7). LetX be a geometrically integral smooth del Pezzo surface
of degree 1 over a number field. Let M denote the curve parametrizing rational curves in
| − 2KX |. Does every component of M have genus ≥ 2?

Question 13.6 (= Question 9.8). Let X be a geometrically integral smooth weak del Pezzo
surface over a number field and let L = −KX . Suppose that f : Y → X is a dominant
generically finite map such that a(Y, f ∗L) = a(X,L) and (Y, f ∗L) is adjoint rigid. Then is
b(F, Y, f ∗L) < b(F,X,L)?

Note that the analogue of Question 9.8 over an algebraically closed field is solved by
[LT17b, Section 6], so the difficulty arises from working over a number field.

Question 13.7. Let X be a toric variety. Give a combinatorial description of all thin maps
f : Y → X such that a(Y, f ∗L) ≥ a(X,L).

See Example 8.3 for more information on the a and b invariants for toric varieties.

Question 13.8. Let X ⊂ Pn × Pm be a hypersurface of bidegree (1, 2) or (1, 3). Can one
give a uniform analysis of the a, b-invariants for some class of such varieties?

These hypersurfaces should provide a rich source of examples where the exceptional set is
Zariski dense (as in [BT96b] and [BHB18]).
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[dlBBD07] R. de la Bretèche, T. D. Browning, and U. Derenthal. On Manin’s conjecture for a certain
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(Paris, 1996).
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