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Abstract. We present several analogies between convex geometry and the theory of holomorphic line
bundles on smooth projective varieties or Kähler manifolds. We study the relation between positive
products and mixed volumes. We define and study a Blaschke addition for divisor classes and mixed
divisor classes, and prove new geometric inequalities for divisor classes. We also reinterpret several
classical convex geometry results in the context of algebraic geometry: the Alexandrov body construc-
tion is the convex geometry version of divisorial Zariski decomposition; Minkowski’s existence theorem
is the convex geometry version of the duality between the pseudo-effective cone of divisors and the
movable cone of curves.
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1. Introduction

Many deep results concerning holomorphic line bundles in complex geometry are inspired by results
in convex geometry. For example, the Khovanskii-Teissier inequalities for (1, 1)-classes are inspired
by the Alexandrov-Fenchel inequalities for convex bodies. Such results were first explored in [Tei82]
and [Kho89]; [Gro90] also contains many nice discussions on these relations.

In this paper we extend the dictionary between the geometry of line bundles in complex geometry
and the theory of convex bodies. First, we prove new results about divisors motivated by results in
convex geometry. These results strengthen and clarify existing geometric inequalities in the literature.
A key role is played by the refined structure of the movable cone of curves we obtained in our previous
work [LX16b]. Second, we reinterpret several classical convex geometry results in the context of
algebraic geometry. Although these convex geometry results are well understood, we feel that complex
geometers could benefit from this discussion.

The outline of this correspondence is as follows. On the complex geometry side, let X be a smooth
projective variety (or compact Kähler manifold) of dimension n. We have the vector space H1,1(X,R)
whose integral points parameterize Chern classes of holomorphic line bundles. Inside of this space, we

have cones Eff
1
(X), Mov1(X) which represent (1, 1)-classes satisfying various positivity conditions.

On the convex geometry side, we consider

V := C0(Sn−1)/L(Sn−1)

where Sn−1 is the (n − 1)-dimensional sphere, C0(Sn−1) is the space of continuous functions and
L(Sn−1) is the space of linear functions. We consider two positive cones in V : Cp is the cone generated
by positive continuous functions and C is the cone generated by positive convex and homogeneous of
degree one functions. We then study the following correspondences:
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In this dictionary, convex bodies with non-empty interior correspond to big movable classes. We
can phrase several classical convex geometry results due to Minkowski and Alexandrov in terms of
algebraic geometry; for example, the divisorial Zariski decomposition is a variant of the Alexandrov
body construction.

We highlight a couple particular results. The following proposition corresponds to the linearity of
the (n− 1)st mixed volume of polytopes.

Proposition 1.1. 1 Let X be a smooth projective variety of dimension n. Assume that L is pseudo-
effective and M is movable, then

〈Ln−1〉 ·M = 〈Ln−1 ·M〉.
However, there exist projective manifolds such that that 〈L1 ·L2 · ... ·Ln−1〉 ·M 6= 〈L1 ·L2 · ... ·Ln−1 ·M〉
if the pseudo-effective classes Li are different.

We also discuss Brascamp-Lieb type inequalities on smooth projective varieties; for example, we
prove the following Loomis-Whitney inequality for (1, 1) classes.

Theorem 1.2 (Theorem 8.1). Let X be a smooth projective variety of dimension n. Suppose that
{fi : X 99K Ci}ni=1 is a collection of dominant rational maps onto curves, and assume that the induced
map X 99K

∏n
i=1Ci is birational. Then for any big (1, 1) class L, we have

(vol(L)/n!)n−1 ≤
n∏
i=1

(volfi(L)/(n− 1)!) ,

where volfi(L) is the restricted volume on a general fiber of fi (up to a resolution). Moreover, if
all the fi are morphisms, then we obtain equality if and only if the positive part of L is numerically
proportional to a sum of fibers of the fi.

While our discussion of the fields of complex and convex geometry will be purely by analogy, one
can sometimes make the relationship between line bundles and polytopes quite explicit. There is a
well-understood way to construct a polytope (up to translation) to a line bundle in the toric setting.
More generally, one has an analogous construction for arbitrary varieties known as the Okounkov
or Newton-Okounkov body (see e.g. [LM09], [KK12]). Unfortunately, certain geometric features of
Okounkov bodies rely heavily on the choice of flag. Thus it is not clear whether the dictionary we
present here can be enriched to the polytope setting while still capturing the full strength of our
results. In particular, it is interesting to ask the following question:

Question 1.3. Let X be a compact Kähler manifold (or smooth projective variety) of dimension n.
After possibly fixing some data on X, is there a “canonical” injective linear map

i : H1,1(X,R)→ V := C0(Sn−1)/L(Sn−1),

or equivalently, surjective linear map

i∗ : V ∗ → Hn−1,n−1(X,R),

1The first part of this proposition has been implicitly contained in [FL13] and [LX16b], and was also mentioned to
the second author by S. Boucksom.
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such that the positive cones of (1, 1) classes are canonically embedded in the positive cones of functions,
the map i preserves positivity and the pairing between H1,1(X,R) and Hn−1,n−1(X,R) is induced by
the pairing between V and V ∗ via the maps i, i∗?

Acknowledgement. We would like to thank J. P. Demailly, M. Jonsson and V. Tosatti for several
comments and suggestions on this work, and R. Lazarsfeld, M. Mustaţă, and B. Totaro for pointing
out an error in an earlier version. The first author was supported by an NSA Young Investigator
Grant. The second author would like to thank China Scholarship Council for the support.

2. Preliminaries

2.1. Positive classes. Let X be a compact Kähler manifold of dimension n. We will let H1,1(X,R)
denote the real Bott-Chern cohomology group of bidegree (1, 1). A Bott-Chern class is called pseudo-
effective if it contains a d-closed positive current. A pseudo-effective class L is called movable if for
any irreducible divisor Y the Lelong number ν(L, y) (or minimal multiplicity as in [Bou04]) vanishes
at a very general point y ∈ Y . We will be interested in the following cones in H1,1(X,R):

• Eff
1
(X): the cone of pseudo-effective (1, 1)-classes;

• Mov1(X): the cone of movable (1, 1)-classes.

Classes in the interior of Eff
1
(X) are known as big classes; these are exactly the classes admitting a

Kähler current (i.e. strictly positive current), or equivalently, having strictly positive volumes. As a
consequence of Demailly’s regularization theorem [Dem92], any big class contains a Kähler current
with analytic singularities. Let Hn−1,n−1(X,R) denote the real Bott-Chern cohomology group of
bidegree (n− 1, n− 1). We will be interested in the following cone in Hn−1,n−1(X,R):

• Mov1(X): the cone of movable (n− 1, n− 1)-classes.

Recall that Mov1(X) is the closed cone generated by classes of the form µ∗(Ã1 ∩ ... ∩ Ãn−1), where µ

is a modification and the Ãi are Kähler classes upstairs. An irreducible curve C is called movable if
it is a member of an algebraic family that covers X.

The most important conjecture concerning these cones is Demailly’s conjecture on the (weak) tran-
scendental Morse inequality. This conjecture was recently proved for projective manifolds in [WN16].
When working with positive cones, it will at times be useful to restrict ourselves to this setting. In
particular, by [BDPP13,WN16], for projective manifolds we have

Eff
1
(X)∗ = Mov1(X).

Remark 2.1. It is also possible to work in the purely algebraic setting (i.e. with smooth algebraic
varieties over an arbitrary algebraically closed field). In this case one should replace H1,1(X,R) by
the space N1(X) of R-Cartier divisors up to numerical equivalence. All our results hold equally well
with this change.

Remark 2.2. As already noted in our previous works [LX16a,LX16b], the main results of these papers
extend to the transcendental situation whenever we have the (weak) transcendental Morse inequality.
In particular, the transcendental versions hold on projective manifolds.

2.2. Positive functions on the sphere. Let Kn denote the set of convex bodies (compact convex
subsets) with non-empty interior in Rn. For two convex bodies K,L, we have the Minkowski sum
K + L := {x + y| x ∈ K, y ∈ L}, then it is clear K + L ∈ Kn. In this way, (Kn,+) is a commutative
semi-group. For λ ≥ 0, the scaling operation is λK := {λx| x ∈ K}. In particular, Kn is a convex
cone.

Associated with a convex body K is its support function, h(K, ·), defined on Rn by

h(K,x) := max{x · y|y ∈ K}.

We shall write hK(·), rather than h(K, ·), for the support function of K, and we will usually consider
only the restriction of the support function to Sn−1. So hK is a continuous function on Sn−1. Let
C0(Sn−1) denote the real valued continuous function space on the sphere. Then the support functions
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induce a map:

Φ :Kn → C0(Sn−1)
K 7→ hK(·).

Indeed, by the embedding theorem for spaces of convex sets (see e.g. [Hör55], [Sch14, Chapter 1]),
Φ is an isometrical isomorphism onto its image if we endow the spaces Kn and C0(Sn−1) with suitable
metrics. Let dH denote the Hausdorff metric on Kn, that is,

dH(K,L) = min{ε > 0|K ⊆ L+ εB & L ⊆ K + εB},

where B is the unit n-ball. We endow C0(Sn−1) with maximal norm | · |∞, then

dH(K,L) = |hK − hL|∞.

Thus Φ : (Kn, dH) → (Φ(Kn), | · |∞) is an isometrical isomorphism. More importantly, by the above
embedding Φ, we can identify Kn with its image Φ(Kn) ⊂ C0(Sn−1). Thus we will freely pass back
and forth between convex bodies and their support functions on the sphere.

2.2.1. Quotient space. By the embedding theorem for convex bodies, Kn can be seen as a convex
cone in an infinite dimensional Banach space. Let a ∈ Rn, then it is clear that hK+a = hK + la
where la(x) = a · x is a linear function. Comparing the equality characterization of Brunn-Minkowski
inequalities in convex geometry with the one in algebraic geometry (see Section 2.3), it is convenient to
identify two convex bodies if they differ by a translation. This leads to the quotient space of C0(Sn−1)
by linear functions. We denote L(Sn−1) to be the vector space whose elements are the restriction of
linear functions to Sn−1. It is obvious that dimL(Sn−1) = n. We consider the quotient space

V := C0(Sn−1)/L(Sn−1).

We endow V with the quotient norm, that is, for f ∈ V we define

||f || = inf
l∈L(Sn−1)

|f − l|∞,

then it is a standard fact in functional analysis that (V, || · ||) is also an infinite dimensional Banach
space.

Remark 2.3. Unlike the finite dimensional situation, the Banach space V is not reflexive. If we
identify V with its canonical image in V ∗∗, then V ( V ∗∗. This means that not every continuous
linear functional on V ∗ is given by a continuous function.

2.2.2. Positive cones on V . We will denote by C the image of Kn in V , so that C is a convex cone in
V . We will also let Cp ⊂ V denote the convex cone generated by positive continuous functions. Note
that C ⊂ Cp. Motivated by the toric case, we are guided by the following analogies:

Eff
1
(X)! Cp, Mov1(X)! C.

2.3. Volume and Brunn-Minkowski inequalities. In convex geometry, we have the following
fundamental geometric inequality (see e.g. [Sch14, Chapter 6]).

Theorem 2.4. Let K,L ⊆ Rn be two convex bodies with non-empty interior, then

vol(K + L)1/n ≥ vol(K)1/n + vol(L)1/n

with equality if and only if K,L are homothetic.

In the complex geometry setting, the volume of a class L ∈ Eff
1
(X) is defined to be

vol(L) = sup
T

∫
X
Tnac

for T ranging over the closed positive (1, 1)-currents in L, where Tac denotes the absolutely continuous
part. In particular, for divisor classes, this analytic definition coincides with the usual one.

By extending a previous result of [BFJ09] from big nef classes to big movable classes, we proved in
our previous work [LX16b]:
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Theorem 2.5. Let X be a smooth projective variety of dimension n. Assume that L,M are two big
and movable (1, 1)-classes, then

vol(L+M)1/n ≥ vol(L)1/n + vol(M)1/n

with equality if and if L,M are proportional.

Remark 2.6. For non-projective Kähler manifolds, by [FX14] we also have a Brunn-Minkowski in-
equality and its equality characterization for big and nef (1, 1) classes.

3. Positive products and mixed volumes

For toric varieties, a big movable divisor corresponds to a convex polytope (up to translation). The
most important structure on the set of polytopes is the mixed volume. [BFJ09] shows how, in the
toric setting, the mixed volume corresponds to the positive product construction defined below (up to
a constant factor).

In the convex geometry setting, let K1, ...,Kr ∈ Kn be convex bodies. Then there is a polynomial
relation

vol(t1K1 + ...+ trKr) =
∑

i1+...+ir=n

n!

i1!i2!...ir!
V (Ki1

1 , ...,K
ir
r )ti11 . . . t

ir
r ,

where ti ∈ R+ and the V (Ki1
1 , ...,K

ir
r ) are coefficients defining the mixed volumes. In particular, if

K1 = K2 = ... = Kr = K (up to translations), then the mixed volume is just vol(K).
Let X be a compact Kähler manifold of dimension n. Assume that L1, ..., Lr ∈ H1,1(X,R) are big

classes, i.e. every class Li contains a Kähler current. By the theory developed in [BEGZ10], we can
associate to L1, ..., Lr a positive class in Hr,r(X,R), denoted by 〈L1 · ... ·Lr〉. It is defined as the class
of the non-pluripolar product of positive current with minimal singularities, that is,

〈L1 · ... · Lr〉 := {〈T1,min ∧ ... ∧ Tr,min〉}
where 〈T1,min ∧ ...∧ Tr,min〉 is the non-pluripolar product. Note that such a current Ti,min ∈ Li always
exists: let θ ∈ Li be a smooth (1, 1) form and let

Vθ := sup{ϕ ∈ PSH(X, θ)| ϕ ≤ 0},
then θ + ddcVθ is a positive current with minimal singularities. There may be many positive currents
with minimal singularities in a class, but it is proved in [BEGZ10] that the positive product 〈L1 ·...·Lr〉
does not depend on the choices. Moreover, if the Li are nef, then 〈L1 · ... ·Lr〉 = L1 · ... ·Lr is the usual
intersection.

Remark 3.1. As proved in [Pri13, Proposition 1.10], it is also not hard to see that the construction
in [BDPP13, Theorem 3.5] and the construction in [BEGZ10] are the same. This follows directly from
the maximal integration property of 〈L1, ..., Lr〉 against smooth positive closed (n − r, n − r)-forms
(see [BEGZ10, Proposition 1.18 and Proposition 1.20]).

Remark 3.2. Let X be a smooth projective variety of dimension n, and assume that L1, ..., Lr are
real big divisor classes. Then we can also define 〈L1, ..., Lr〉 by the algebraic construction in [BFJ09].
Since the positive product constructions in [BFJ09] are defined by taking limits in the space Nn−r(X)
of R-cycles up to numerical equivalence (not in Hr,r(X,R)), it might be different from the analytic
construction, depending on the validity of the Hodge Conjectures. However, the resulting positive
products are the same for r = 1 and r = n − 1 because of the Lefschetz theorem on (1, 1) and
(n− 1, n− 1) classes. And the equality is obvious for r = n.

In this section, we discuss the analogue between mixed volume (with Minkowski addition) and
positive products (with addition of divisors). We show that in some ways this correspondence works
wells, but it fails in others. The next proposition corresponds to the fact that the function V (Kn−1,−)
is linear on Kn.

Proposition 3.3. Let X be a smooth projective variety of dimension n. Assume that L is pseudo-
effective and M is movable, then

〈Ln−1〉 ·M = 〈Ln−1 ·M〉.
In particular, for movable divisors M,N we have 〈Ln−1 · (M +N)〉 = 〈Ln−1 ·M〉+ 〈Ln−1 ·N〉.
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Proof. This is an application of [FL13, Lemma 6.21]. For completeness, we include some arguments
here. Firstly, by [WN16] the results in [BFJ09] can extend to transcendental classes.

By taking limits, we can assume that M = π∗A for some modification π and Kähler class A
upstairs. We claim that π∗〈Ln−1〉 = 〈(π∗L)n−1〉. Note that π∗〈(π∗L)n−1〉 = 〈Ln−1〉, so we need to
check that 〈(π∗L)n−1〉·E = 0 for any irreducible π-exceptional divisor E. For any c > 0, the restriction
π∗L+ cE|E can not be pseudo-effective, thus π∗L can not be E-big. By [BFJ09, Lemma 4.10], we get
that 〈(π∗L)n−1〉 ·E = 0, concluding the proof of our claim. Since π∗(π∗A) � A, by basic properties of
positive products, we have

〈Ln−1 · π∗A〉 = 〈(π∗L)n−1 · π∗(π∗A)〉
≥ 〈(π∗L)n−1 ·A〉 = 〈(π∗L)n−1〉 ·A
= π∗〈Ln−1〉 ·A = 〈Ln−1〉 · π∗A

On the other hand, we always have 〈Ln−1〉·M ≥ 〈Ln−1 ·M〉. Thus we have the equality 〈Ln−1〉·M =
〈Ln−1 ·M〉. �

Remark 3.4. In the above proof, the key ingredient is the equality π∗〈Ln−1〉 = 〈(π∗L)n−1〉. An
alternative way to see this is to use the function M studied in [Xia15a,LX16b]. For any big class N ,
we have

π∗〈Ln−1〉 ·N
vol(N)1/n

≥ 〈L
n−1〉 · π∗N

vol(π∗N)1/n
.

Thus the infimum of LHS is obtained by some big class N satisfying π∗N = L, which implies that the
infimum of LHS is obtained by the positive part of π∗L. By [LX16b] we get that

π∗〈Ln−1〉 = 〈P (π∗L)n−1〉 = 〈(π∗L)n−1〉.

Corollary 3.5. Let X be a smooth projective variety of dimension n. Assume that L is pseudo-
effective and M1,M2 are movable, then

〈Ln−1 · (M1 +M2)〉 = 〈Ln−1 ·M1〉+ 〈Ln−1 ·M2〉.

However, the more general statement 〈L1 · L2 · ... · Ln−1〉 ·M = 〈L1 · L2 · ... · Ln−1 ·M〉 is false.
Equivalently, it is not true that φ∗〈L1 ·L2 · ... ·Ln−1〉 = 〈φ∗L1 ·φ∗L2 · ... ·φ∗Ln−1〉 for a birational map
φ. If this property were true, it would easily imply that the volume function is polynomial (and not
just locally polynomial) everywhere in the interior of the movable cone. But this property fails in the
following examples.

Example 3.6 (A flop). LetX be the projective bundle (of quotients) over P1 defined byO⊕O⊕O(−1).
There are two natural divisor classes on X: the class f of the fibers of the projective bundle and the
class ξ of the sheaf OX/P1(1). Using for example [Ful11] and [FL13], one sees that f and ξ generate

the algebraic cohomology classes with the relations f2 = 0, ξ2f = −ξ3 = 1 and

Eff
1
(X) = Mov1(X) = 〈f, ξ〉 Nef1(X) = 〈f, ξ + f〉

and

Eff1(X) = 〈ξf, ξ2〉 Nef1(X) = 〈ξf, ξ2 + ξf〉.
We can calculate volume by pushing forward. We have if b ≥ a,

H0(X, aξ + bf) = H0(P1,Syma(O ⊕O ⊕O(−1))⊗O(b))

= (b+ 1)(a+ 1) + ba+ (b− 1)(a− 1) + . . .+ (b− a)(a− a)

= ba2/2− a3/6 + 3ab/2 + b+ 7a/6 + 1

and if b ≤ a,

H0(X, aξ + bf) = (b+ 1)(a+ 1) + ba+ (b− 1)(a− 1) + . . .+ (b− b)(a− b)
= ab2/2− b3/6 + 3ba/2 + a+ 7b/6 + 1

So for b ≥ a the volume is 3ba2 − a3, and for a ≥ b it is 3ab2 − b3. Note that in a neighborhood of
a = b the volume is not locally polynomial.
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Example 3.7 (Projective bundle over an abelian surface). In fact, the volume function can even be
transcendental on certain regions of the big movable cone. [KLM13] gives an example of a P2-bundle
over an abelian twofold whose volume function is transcendental on a region of the big cone of divisors.
While this region only contains non-movable divisors, their computation also extends into the movable
cone as follows.

As in [KLM13, Section 3] let A be the self-product of an elliptic curve without CM and let f1, f2,
and ∆ denote the fibers of the two projection maps and the diagonal. Consider the projective bundle
π : X → A defined as

X = PA(O(f1 + f2 + ∆)⊕O(−f1)⊕O(−f2))
and let L be a divisor representing OX/A(1).

For positive real numbers c1, c2, c3 [KLM13, Section 3] computes the volume of L+π∗(c1f1 + c2f2 +
c3∆) as an explicit integral over a region in the plane. This divisor is movable but not nef when
c1 = 1

2 + ε, c2 = 1
2 + ε, c3 = 1 for ε sufficiently small (for example, ε = 1/10 will work). Following

the lengthy computation of [KLM13], we find that for rational values of the ci in a neighborhood of
the divisor L+ 6

10π
∗f1 + 6

10π
∗f2 + π∗∆ the volume can be written as a (non-zero) quadratic irrational

multiple of ln of a (non-constant) quadratic irrational, plus an algebraic number.

Remark 3.8. In the algebraic setting, for any big and movable classes L1, . . . , Ln−1 the difference
φ∗〈L1 · L2 · ... · Ln−1〉 − 〈φ∗L1 · φ∗L2 · ... · φ∗Ln−1〉 is a pseudo-effective φ-contracted curve class. This
follows from the argument establishing negativity of contraction.

4. Alexandrov body and Zariski decompositions

In this section, we interpret a classical construction due to Alexandrov [Ale38] (an English transla-
tion is available in his selected works [Ale96]) as a Zariski decomposition structure in convex geometry.
This is the convex geometry version of the σ-decomposition (or divisorial Zariski decomposition) of
divisors in algebraic geometry.

4.1. Zariski decomposition. First we recall the notion of a σ-decomposition. Let X be a smooth

projective variety of dimension n, and let L ∈ Eff
1
(X) be a big divisor class. As in the theories

developed in [Bou04,Nak04,BFJ09,BDPP13], there exists a decomposition

L = P (L) +N(L)

where P (L) = 〈L〉 and N(L) = L − P (L). This decomposition is known as the σ-decomposition; it
should be interpreted as replacing a pseudo-effective class L with a movable class P (L) ≤ L with no
“loss” of positivity. The key properties of this decomposition are the following:

(1) P (L) ∈ Mov1(X) and N(L) is a rigidly embedding effective divisor class.
(2) vol(L) = vol(P (L)).
(3) The orthogonality property: 〈P (L)n−1〉 ·N(L) = 0.

The first two properties characterize the σ-decomposition: if L = P + N is any decomposition such

that P ∈ Mov1(X), N ∈ Eff
1
(X) and vol(L) = vol(P ), then it is shown in [FL13, Section 5] that we

must have P = P (L), N = N(L).
In fact, [LX16b] shows a stronger property: the σ-decomposition exactly captures the failure of the

volume function to be strictly log concave.

Theorem 4.1 (see [LX16b] Theorem 1.6). Let X be a smooth projective variety of dimension n. Let
L and D be big divisor classes on X. Then we have

vol(L+D)1/n = vol(L)1/n + vol(D)1/n

if and only if P (L), P (D) are proportional.

4.2. Alexandrov body. Let us recall the construction of the Alexandrov body (see e.g. [Sch14,
Section 6.5]). Let Kn0 ⊆ Kn be the space of convex bodies with 0 as an interior point. Let f be a
strictly positive continuous function. The Alexandrov body associated with f is defined as the unique
maximal element (denoted by K), with respect to set inclusion, of the set

{Q ∈ Kn0 | hQ ≤ f}.
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Indeed, the convex body K can be characterized as following:

K =
⋂

y∈Sn−1

{x ∈ Rn| x · y ≤ f(y)}.

If we denote P (f) := hK , then we have

(1) P (f) = f, a.e. with respect to µK ,

where µK := S(Kn−1; ·) is the area measure of K. Or equivalently,

(2) (f − P (f)) · µK = 0.

Then the volume of f is defined to be

(3) vol(f) := vol(K).

For L ∈ Kn0 , it is clear that P (hL) = hL, vol(hL) = vol(L).

4.2.1. Decomposition theory. As an immediate consequence of the characterization of Alexandrov
body, we have

Lemma 4.2. Let f, g be two strictly positive continuous functions such that f = g+ la for some linear
function la, then we have P (f) = P (g) + la.

This implies the decomposition of Cp:

Theorem 4.3 (Decomposition of (Cp, vol) [Ale38]). Assume that f ∈ Cp is represented by a strictly
positive continuous function. Then there exists a decomposition

f = P (f) +N(f)

satisfying:

• P (f) ∈ C and N(f) = f − P (f) ∈ Cp;
• vol(f) = vol(P (f));
• if we assume P (f) is represented by a convex body K and denote 〈P (f)n−1〉 := S(Kn−1; ·),

then the orthogonality estimate holds in the sense that 〈P (f)n−1〉 ·N(f) = 0.

We can rephrase this result to look exactly analogous to the characterization of the σ-decomposition
described above; by the Brunn-Minkowski theorem we obtain

Proposition 4.4. Suppose that f, g ∈ Cp are represented by strictly positive continuous functions.
Then we have

vol(f + g)1/n = vol(f)1/n + vol(g)1/n

if and only if P (f), P (g) are proportional. In particular, if f = P + N is a decomposition such that
P ∈ C, N ∈ Cp and vol(P ) = vol(f), then we must have P = P (f), N = N(f).

Remark 4.5. Theorem 4.3 can also be seen as some kind of infinite dimensional extension of the
theory developed in [LX16a] when applied to this particular setting.

Remark 4.6. One should compare the Alexandrov body construction with the Berman-Boucksom
orthogonality estimate in complex pluripotential theory (see [BB10]), where the authors also apply
complex envelope construction analogue to the construction of P (f). This complex envelope construc-
tion implies similar orthogonality as in Zariski decomposition structure, and has played an important
role in the variational approach to solve complex Monge-Ampère equations (see [BBGZ13]). Indeed,
by the theory developed in [BFJ15] on non-Archimedean Monge-Ampère equations, the orthogonal-
ity in the divisorial Zariski decomposition is closely related to non-Archimedean Berman-Boucksom
orthogonality.
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5. Morse type inequalities

Let X be a compact Kähler manifold of dimension n, and let A,B ∈ H1,1(X,R) be nef classes.
Demailly’s conjecture on the (weak) transcendental Morse inequality says that

vol(A−B) ≥ An − nAn−1 ·B.
This important conjecture was recently proved for projective manifolds in [WN16]. For non-projective
Kähler manifolds, it is proved in [Pop16] that An−nAn−1 ·B > 0 implies A−B is big (see also [Xia15b]
for a weaker result).

As an easy corollary of the main result of [WN16], we have

Proposition 5.1. Let X be a smooth projective variety of dimension n. Assume that L,M ∈
H1,1(X,R) are movable classes, then

vol(L−M) ≥ vol(L)− n〈Ln−1〉 ·M.

Proof. For reader’s convenience, we repeat some arguments from [Xia14]. Without loss of generality,
we can assume that M = µ∗ω̂ for some Kähler class ω̂ upstairs and L is big. Take a suitable sequence
of Fujita approximations, π∗m(µ∗L) = ωm + [Em], such that

vol(µ∗L) = lim
m→∞

ωnm, 〈(µ∗L)n−1〉 · ω̂ = lim
m→∞

ωn−1m · π∗mω̂.

By [WN16], we always have vol(ωm − π∗mω̂) ≥ ωnm − nωn−1m · π∗mω̂, which implies that

vol(µ∗L− ω̂) = vol(π∗m(µ∗L− ω̂))

≥ vol(ωm − π∗mω̂)

≥ ωnm − nωn−1m · π∗mω̂.

Let m tend to infinity, we get vol(µ∗L − ω̂) ≥ vol(L) − n〈(µ∗L)n−1〉 · ω̂. This implies the desired
inequality

vol(L− µ∗ω̂) ≥ vol(L)− n〈Ln−1〉 · µ∗ω̂.
�

5.1. Convex geometry analogue. Due to the importance of the Morse inequality in complex ge-
ometry, it is interesting to ask for an analogue for convex bodies. More precisely, let K,L ∈ Kn and
let hK , hL ∈ C be their support functions, one may wonder if

vol(hK − hL) ≥ vol(K)− nV (Kn−1, L)

holds.
We first verify that when vol(hK − hL) > 0, the function hK − hL can be represented by a strictly

positive continuous function. This can be accomplished by applying the Diskant inequality (see [Sch14,
Section 6.2]). Recall that the inradius of K relative to L is defined by:

r(K,L) := max{λ > 0|λL+ t ⊂ K for some t ∈ Rn}.
Applying the Diskant inequality to K,L, we get

r(K,L) ≥
V (Kn−1, L)1/n−1 −

(
V (Kn−1, L)n/n−1 − vol(K) vol(L)1/n−1

)1/n
vol(L)1/n−1

≥ vol(K)

nV (Kn−1, L)

Now the assumption vol(K) − nV (Kn−1, L) > 0 implies that, up to a translation, K ⊃ (1 + δ)L
for some δ > 0. In particular, up to a linear function, we have hK − hL ≥ δhL. This implies that
hK − hL ∈ Cp can be represented by a strictly positive continuous function.

Remark 5.2. It is of course not true in general that hK−hL can be represented by a strictly positive
convex continuous function. For example, this necessarily fails when K is indecomposable as discussed
in Section 5.1.1.

Now the Morse inequality for convex bodies follows from the following result due to [Ale38] (see
also [Sch14, Section 6.5]).
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Lemma 5.3. Let f ∈ Cp be a strictly positive continuous function with its Alexandrov body given by
P (f) = hQ, then for any continuous function g ∈ V we have

d

dt

∣∣∣∣
t=0

vol(f + tg) = n〈P (f)n−1〉 · g.

Applying this result to our original set-up, we see that for t ∈ [0, 1]

vol(hK − hL)− vol(K) =

∫ 1

0

d

dt
vol(hK − thL)dt

=

∫ 1

0
−n〈P (hK − thL)n〉 · hLdt

≥ −nV (Kn−1, L).

Summarizing the discussions above, we get

Theorem 5.4 (Morse inequality for convex bodies). Let hK , hL ∈ C, then vol(K)−nV (Kn−1, L) > 0
implies that hK − hL ∈ C◦p which means that it can be represented by some strictly positive continuous

function. Moreover, we have vol(hK − hL) ≥ vol(K)− nV (Kn−1, L).

For convex bodies, we also have the “reverse” Khovanskii-Teissier inequality.

Proposition 5.5. Fix three convex bodies K,L,M ∈ Kn, then

nV (K,Ln−1)V (L,Mn−1) ≥ vol(L)V (K,Mn−1).

Proof. After scaling, we can assume V (L,Mn−1) = V (K,Mn−1). Under this assumption, we need to
show nV (K,Ln−1) ≥ vol(L), otherwise we have∫

(hL − hK)dS(Mn−1) = V (L,Mn−1)− V (K,Mn−1) > 0.

This is a contradiction. �

5.1.1. Indecomposability. It is interesting to ask when a big movable (1, 1)-class lies on the boundary
(or extremal ray) of the movable cone. The analogue in the convex geometry setting is the notion of
indecomposability. Recall that K is decomposable if there exist convex bodies M,D not homothetic to
K such that K = M +D. Otherwise, we call that K is indecomposable. In particular, the existence of
indecomposable convex bodies implies that, in the above Morse type inequality for convex bodies, in
general hK−hL cannot be represented by a support function. We refer the readers to [Sch14, Chapter
3] for decomposable and indecomposable convex bodies.

Example 5.6. Suppose that X is a toric variety defined by a fan Σ. Suppose that P is an indecom-
posable polytope whose normal fan is refined by Σ. Then P induces a big movable divisor on the
boundary of the movable cone. The converse is false – however, if one focuses only on integer multiples
of lattice polytopes, there is a good converse statement as in [CLS11, Proposition 6.2.13].

For example, the only two-dimensional indecomposable convex bodies are triangles. In the toric
setting, a triangle represents the pullback under a birational contraction of an ample generator of
a (Q-factorial) toric surface of Picard rank 1. Such a divisor is necessarily on the boundary of the
movable cone.

5.2. Reverse Khovanskii-Teissier inequality. In the algebraic setting, an important step in the
analysis of the Morse type bigness criterion is the “reverse” Khovanskii-Teissier inequality for big and
nef divisors A, B, and a movable curve class β:

n(A ·Bn−1)(B · β) ≥ Bn(A · β).

We prove a more general statement on “reverse” Khovanskii-Teissier inequalities in the analytic set-
ting2.

2Indeed, this kind of generalization has already been noted in [Xia15b, Remark 3.1], and it was also noted that the
constant k!(n− k)!/4n! there could be improved by combining with the technique of [Pop16]. Some related work has
also appeared independently in the recent preprint [Pop15].
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Theorem 5.7. Let X be a compact Kähler manifold of dimension n. Let ω, β, γ be three nef (1, 1)
classes on X. Then we have

(βk · αn−k) · (αk · γn−k) ≥ k!(n− k)!

n!
αn · (βk · γn−k).

Proof. The proof depends on solving Monge-Ampère equations and the method of [Pop16]. Without
loss of generality, we can assume that γ is normalised such that βk · γn−k = 1. Then we need to show

(βk · αn−k) · (αk · γn−k) ≥ k!(n− k)!

n!
αn.(4)

We first assume α, β, γ are all Kähler classes. We will use the same symbols to denote the Kähler
metrics in corresponding Kähler classes. By the Calabi-Yau theorem [Yau78], we can solve the following
Monge-Ampère equation:

(α+ i∂∂̄ψ)n =

(∫
αn
)
βk ∧ γn−k.(5)

Denote by αψ the Kähler metric α+ i∂∂̄ψ. Then we have

(βk · αn−k) · (αk · γn−k) =

∫
βk ∧ αn−kψ ·

∫
αkψ ∧ γn−k

=

∫
βk ∧ αn−kψ

αnψ
αnψ ·

∫
αkψ ∧ γn−k

αnψ
αnψ

≥

∫ (βk ∧ αn−kψ

αnψ
·
αkψ ∧ γn−k

αnψ

)1/2

αnψ

2

.

The last line follows because of the Cauchy-Schwarz inequality. We claim that the following point-
wise inequality holds:

βk ∧ αn−kψ

αnψ
·
αkψ ∧ γn−k

βk ∧ γn−k
≥ k!(n− k)!

n!
.(6)

Then by (5) it is clear that the above pointwise inequality implies the desired inequality (4). Now we
prove the claim. For any fixed point p ∈ X, we can choose some coordinates such that at the point p:

αψ = i
n∑
j=1

dzj ∧ dz̄j , β = i
n∑
j=1

µjdz
j ∧ dz̄j ,

and

γn−k = in−k
∑

|I|=|J |=n−k

ΓIJdzI ∧ dz̄J .

Denote by µJ the product µj1 ...µjk with index J = (j1 < ... < jk) and denote by Jc the complement
index of J . Then it is easy to see at the point p we have

βk ∧ αn−kψ

αnψ
·
αkψ ∧ γn−k

βk ∧ γn−k
=
k!(n− k)!

n!

(
∑

J µJ)(
∑

K ΓKK)∑
J µJΓJcJc

≥ k!(n− k)!

n!
.

This then finishes the proof of the case when α, β, γ are all Kähler classes. If they are just nef classes,
by taking limits, then we get the desired inequality. �

By taking suitable Fujita approximations, we immediately get

Corollary 5.8. Let X be a compact Kähler manifold of dimension n. Let ω, β, γ be three pseudo-
effective (1, 1) classes on X. Then we have

〈βk · αn−k〉 · 〈αk · γn−k〉 ≥ k!(n− k)!

n!
vol(α)〈βk · γn−k〉.

In the convex geometry setting, it is natural to ask whether an analogue holds for convex bodies.
As the generalization of Proposition 5.5, we get the following result.
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Theorem 5.9. Assume that K,L,M are three convex bodies in Rn with non-empty interior, then

V (Kk, Ln−k)V (Lk,Mn−k) ≥ k!(n− k)!

n!
vol(K)V (Lk,Mn−k).

Since we did not find a similar statement in the literature, we provide a brief proof below. The
proof is inspired by [ADM99], where the authors reproved some of the Alexandov-Fenchel inequalities
by using mass transport (or Brenier maps). In our setting, instead of using complex Monge-Ampère
equations for (1, 1) classes as in Theorem 5.7, we apply mass transport (real Monge-Ampère equations)
to convex bodies. Then we reduce the inequality to an inequality for mixed discriminants, which is
easy to prove.

Proof. In the above inequality, we can assume that the convex bodies are open. For simplicity, we
also assume vol(L) = 1.

By [Gro90], for K,L, we can take two C2 strictly convex functions fK , fM : Rn → R such that

Image(∇fK) = K, Image(∇fM ) = M

where ∇ is the gradient operator. In the following, we denote the Hessian operator by ∇2.
For n× n positive matrices M1, ...,Mr, the discriminant D(Mk1

1 , ...,Mkr
r ) is given by the following

expansion:

det(
r∑

k=1

tkMk) =
∑

k1+...+kr=n

tk11 ...t
kr
r D(Mk1

1 , ...,Mkr
r ).

Let

c =

∫
Rn

D((∇2fK)k, (∇2fM )n−k)dx,

then the measure ρdx = c−1D((∇2fK)k, (∇2fM )n−k)dx is a probability measure on Rn. Note that by
the argument in [ADM99] we have

V (Kk,Mn−k) = c.

By [Bre91] or [McC95], we can take a convex function FL satisfying Image(∇FL) = L and det(∇2FL) =
ρ. As the argument in [ADM99] again, we have

V (Kk, Ln−k) =

∫
Rn

D((∇2fK)k, (∇2FL)n−k)dx,

V (Lk,Mn−k) =

∫
Rn

D((∇2FL)k, (∇2fM )n−k)dx.

As in the proof of Theorem 5.7, by Cauchy-Schwarz inequality we get

V (Kk, Ln−k)V (Lk,Mn−k) =

∫
Rn

D((∇2fK)k, (∇2FL)n−k)dx

∫
Rn

D((∇2FL)k, (∇2fM )n−k)dx

≥
(∫

Rn

(D((∇2fK)k, (∇2FL)n−k)D((∇2FL)k, (∇2fM )n−k))1/2dx

)2

Similar to the pointwise inequality (6), for the mixed discriminants we have

D((∇2fK)k, (∇2FL)n−k)D((∇2FL)k, (∇2fM )n−k) ≥k!(n− k)!

n!
det(∇2FL)D((∇2fK)k, (∇2fM )n−k).

This implies that

V (Kk, Ln−k)V (Lk,Mn−k) ≥
(∫

Rn

(
k!(n− k)!

n!
c−1D((∇2fK)k, (∇2fM )n−k)2)1/2dx

)2

=
k!(n− k)!

n!
vol(K)V (Lk,Mn−k),

finishing the proof of the desired inequality. �

6. Cone dualities and Minkowski’s existence theorem

In this section, we discuss the convex geometry analogue of the duality of positive cones in [BDPP13].
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6.1. The dual cone C∗p . For a projective manifold X, the movable cone Mov1(X) has the following
characterization:

Theorem 6.1 (see [LX16b]). Let X be a smooth projective variety of dimension n, then Mov1(X) is
the closure of the set S = {〈Ln−1〉| L big and movable class}. Moreover, the set S is convex.

In summary, by [BDPP13] and [LX16b]:

Mov1(X) = the closed cone genererated by {〈L1 · ... · Ln−1〉| Li big (1,1)-class〉} by [BDPP13,WN16]

= the closure of the set {〈Ln−1〉| L big and movable class} by [LX16b].

Motivated by the correspondence Cp! Eff
1
(X), we will consider the dual C∗p by analogue with the

duality of cones Eff
1
(X)∗ = Mov1(X).

The dual space of C0(Sn−1) is the space of Borel measures on Sn−1. Thus a continuous linear
functional on V is a Borel measure that vanishes on L(Sn−1). Indeed, we have

Lemma 6.2. A continuous linear functional ν belongs to V ∗ if and only if ν is a Borel measure that
has the origin as its center of mass, that is,∫

Sn−1

xdν(x) = 0.

Remark 6.3. Note that a Borel measure on Sn−1 is positive if and only if it takes non-negative values
on positive continuous functions. A function is a support function for some convex body if and only if
it is convex and homogeneous of degree one (see [Sch14, Section 1.7]). Just taking non-negative values
on C is not enough to get the positivity of the measure.

The characterization of C∗p follows directly from Minkowski’s existence theorem due to Alexandrov.
To get a feeling of this theorem, let us first recall the original result for polytopes due to Minkowski:
let u1, ..., uN be pairwise distinct unit vectors linearly spanning Rn, and let f1, ..., fN be positive real
numbers, then there exists a polytope P (unique up to translation) having precisely u1, ..., uN as its
outer normal vectors and having f1, ..., fN as its corresponded face areas if and only if

N∑
i=1

fiui = 0.

In particular, if we consider ui as the Dirac measure δui on the sphere, then
∑N

i=1 fiδui is a Borel
measure on the sphere with the origin as its center of mass and does not concentrate on any great
subsphere. In the general case, we have the following result due to Alexandrov [Ale38] (see also [Ale96,
Chapter V], [Sch14, Chapter 7]).

Theorem 6.4 (Minkowski’s existence theorem). Assume µ is a positive Borel measure on Sn−1, which
is not concentrated on any great subsphere and satisfies∫

Sn−1

xdµ(x) = 0.

Then there exists a convex body K ∈ Kn, unique up to translation, such that µ = S(K, ...,K; ·).

Roughly speaking, the area measure S(K, ...,K; ·) of a convex body K is the pushforward of the
(n−1) dimensional Hausdorff measure on ∂K by its Gauss map (see [Sch14, Chapter 4] for the precise
definition). Alternatively, the (mixed) area measures can be defined through mixed volumes and Riesz
representation theorem in a very simple way. We follow the elegant discussion in [Lut88]. Suppose
that K1, ...,Kn−1 are fixed convex bodies with non empty interior. Via the embedding map Φ, the
function

l(hL) := V (K1, ...,Kn−1, L)

can be extended in a unique way to a continuous functional on V = C0(Sn−1). Thus there exists a
Borel measure, denoted by S(K1, ...,Kn−1; ·), such that

l(hL) = V (K1, ...,Kn−1, L) =

∫
Sn−1

hL(x)dS(K1, ...,Kn−1;x).
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The mixed area measure S(K1, ...,Kn−1; ·) has the origin as its centroid and does not concentrate on
any great subsphere.

Now we can give the description of C∗p , which corresponds exactly to the structure of the movable
cone Mov1(X).

Theorem 6.5. The dual cone C∗p ⊆ V ∗ can be characterized as follows:

C∗p = the closed cone generated by {S(K1, ...,Kn−1; ·)|Ki ∈ Kn}
= the closure of the set {S(Kn−1; ·)|K ∈ Kn}.

Alternatively, by the embedding Φ, if we consider the mixed volume V (K1, ...,Kn−1, ·) as a continuous
linear functional on V , then

C∗p = the closed cone generated by {V (K1, ...,Kn−1; ·)|Ki ∈ Kn}
= the closure of the set {V (Kn−1; ·)|K ∈ Kn}.

If we introduce the notation 〈hn−1K 〉 := S(Kn−1; ·), then we have

C∗p = the closure of the set {〈P (f)n−1〉|f ∈ Cp}.

Proof. It is obvious that the Borel measures on the right hand side are positive and are in the dual
cone C∗p . We only need to verify that any element in C∗p can be written as a limit of a sequence of area
measures S(K, ...,K; ·) with K ∈ Kn.

We claim: let ν ∈ C∗p , then for any ε > 0 and L ∈ Kn there exists a convex body Lε such that

ν + εS(Ln−1; ·) = S(Ln−1ε ; ·).
To this end, by Lemma 6.2 we know that ν has the origin as its centroid:∫

Sn−1

xdν(x) = 0.

As ν is a positive measure, for any L ∈ Kn and any ε > 0, ν + εS(Ln−1; ·) does not concentrate
on any great subsphere. Now the existence of Lε follows immediately from Minkowski’s existence
theorem. �

By Minkowski’s existence theorem, we have:

Proposition 6.6. Assume K1, ...,Kn−1 ∈ Kn are fixed convex bodies, then there exists a convex body
K ∈ Kn, unique up to translation, such that V (K1, ...,Kn−1, ·) = V (Kn−1, ·).

Proof. We only need to consider the uniqueness, which is an direct corollary of Brunn-Minkowski
theory. �

Remark 6.7. Let X be a smooth projective variety of dimension n, and let Eff
1
(X) be its pseudo-

effective cone of divisor classes. Thanks to the Newton-Okounkov body construction, if we fix a
flag

F = (X = H0 ⊃ H1 ⊃ ... ⊃ Hn−1 ⊃ Hn = {p})

where Hi is an irreducible smooth subvariety of codim = i, then we have a map ∆ : Eff
1
(X)◦ → Kn.

The map ∆ associates to every big divisor class L a convex body ∆(L) with non-empty interior
satisfying vol(L) = vol(∆(L)). In particular, by the embedding theorem of convex sets, we get a map

F : Eff
1
(X)◦ → C.

Thus the big cone Eff
1
(X)◦ can be realized as a finite dimensional convex subcone of C. But F is only

concave. In general, for two big divisor classes L1, L2, we have ∆(L1 + L2) ⊇ ∆(L1) + ∆(L2), which
implies

F (L1 + L2) � F (L1) + F (L2).

By relating mixed volumes and positive products of big divisors, it would be interesting to see
whether Minkowski’s existence theorem could provide a new convex geometry proof of the cone duality

Eff
1
(X)∗ = Mov1(X).
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6.2. Legendre-Fenchel type transforms. Now that we have the characterization of C∗p , we can
define a volume function for all strictly positive continuous functions using a Legendre-Fenchel type
transform as in [LX16a] (see also [Xia15a] for similar volume characterization of divisors.). Assume
that f ∈ Cp is represented by a strictly positive continuous function. Define:

ṽol(f) := inf
K∈Kn

(
f · S(Kn−1; ·)
vol(K)n−1/n

)n
.

where f · S(Kn−1; ·) is the paring of two dual vector spaces. This is a homogenous version of the
classical polar transform in convex geometry. Note that by the Brunn-Minkowski inequality, if f = hL
for some L ∈ Kn then ṽol(hL) = vol(L).

We claim that this definition coincides with the definition using the Alexandrov decomposition
described in Section 4. Indeed, let f = P (f) + N(f) be the decomposition of a strictly positive
continuous function. It is clear that

ṽol(f) ≥ ṽol(P (f)) = vol(P (f)).

Using the orthogonality of the decomposition, we also have

ṽol(f) ≤
(
f · 〈P (f)n−1〉

vol(P (f))n−1/n

)n
= vol(P (f)).

This establishes the equality.

7. Blaschke addition for (1,1)-classes and its applications

In this section, inspired by Blaschke addition for convex bodies, we introduce Blaschke addition for
(1,1)-classes and give some applications. Throughout we work with projective varieties.

We start with the convex geometry setting (see [Sch14, Chapter 7]). For convex bodies K,L ∈ Kn,
Minkowski’s existence theorem yields a convex body M ∈ Kn, unique up to translation, such that

S(Mn−1; ·) = S(Kn−1; ·) + S(Ln−1; ·).
By the discussions in the previous sections, movable curve classes correspond to mixed area mea-

sures. Let X be a smooth projective variety of dimension n. Assume that L,M are two big (1,1)-
classes. As proved in [LX16b], there exists a unique big and movable (1,1)-class N such that

〈Ln−1〉+ 〈Mn−1〉 = 〈Nn−1〉.
Now we give the following definition.

Definition 7.1 (Blaschke addition). Let L,M be two big (1,1)-classes, the Blaschke addition of L,M ,
denoted by L#M , is defined to be the unique big and movable (1,1)-class satisfying

〈(L#M)n−1〉 = 〈Ln−1〉+ 〈Mn−1〉.

Remark 7.2. As pointed out to us by M. Jonsson, the Blaschke addition can also defined on Riemann-
Zariski spaces. More precisely, we can define the Blaschke addition of two Cartier big b-divisor classes
as a Weil movable b-divisor class. Let X be a smooth projective variety of dimension n and let
X be the Riemann-Zariski space containing all the smooth birational models of X. Assume that
L = {Lα},M = {Mα} are big Cartier b-divisor classes on X. Let ϕαβ : Xα → Xβ be the birational
morphism, then we claim that ϕαβ∗(Lα#Mα) = Lβ#Mβ, thus L#M is a Weil movable b-divisor
class. To this end, note that by the proof of Proposition 3.3 and the definition of Cartier divisor class
we have

ϕ∗αβ(〈Ln−1β 〉+ 〈Mn−1
β 〉) = 〈ϕ∗αβLn−1β 〉+ 〈ϕ∗αβMn−1

β 〉

= 〈Ln−1α 〉+ 〈Mn−1
α 〉

= 〈(Lα#Mα)n−1〉,

which implies that 〈(Lα#Mα)n−1〉 = 〈ϕ∗αβ(Lβ#Mβ)n−1〉. Then we get Lα#Mα = 〈ϕ∗αβ(Lβ#Mβ)〉,
taking ϕαβ∗ at both sides yields ϕαβ∗(Lα#Mα) = 〈Lβ#Mβ〉 = Lβ#Mβ (as Lβ#Mβ is movable).

Following [Fir67,Lut86], we can define the mixed divisor class associated to (n−1) big (1, 1)-classes.
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Definition 7.3 (mixed divisor class). Let L1, ..., Ln−1 be big (1,1)-classes on X. The mixed (1,1)-class,
denoted by [L1, ..., Ln−1], is defined to be the unique big and movable (1,1)-class satisfying

〈[L1, ..., Ln−1]
n−1〉 = 〈L1 · ... · Ln−1〉.

Before going on, we first give the following generalized Teissier proportionality theorem for big and
movable (1, 1)-classes.

Theorem 7.4. Let X be a smooth projective variety of dimension n. Assume L1, ..., Ln are big and
movable (1, 1)-classes on X, then

〈L1 · ... · Ln〉 ≥ vol(L1)
1/n... vol(Ln)1/n

where the equality holds if and only if all the Li are proportional.

Proof. Firstly, by taking suitable Fujita approximations, it is easy to see that the inequality follows
easily from the usual Khovanski-Teissier inequality for nef classes, hence we only need to characterize
the equality situation. Without loss of generality, we can assume that vol(Li) = 1 for all Li, then we
need to show that

〈L1 · ... · Ln〉 = 1(7)

if and only if L1 = L2 = ... = Ln. To this end, we claim that the equality (7) implies 〈L2
1 ·L3...·Ln〉 = 1.

Then by induction, we get that

〈Ln−11 · Ln〉 = 1.

By the Teissier proportionality theorem proved in [LX16b], we conclude that L1 = Ln.
The proof of our claim follows from the Hodge-Riemann bilinear relations. Consider the following

quadratic form Q on H1,1(X,R):

Q(λ, µ) := λ · µ ·A1 · ... ·An−2,
where the Ai are Kähler classes. According to the Hodge-Riemann bilinear relations (see e.g. [DN06,
Theorem A and Theorem C]), Q is of signature (1,dimH1,1(X,R) − 1). From the signature of Q, it
is easy to see that, for any two nef classes α, β we have

(α · β ·A1 · ... ·An−2)2 ≥ (α2 ·A1 · ... ·An−2) · (β2 ·A1 · ... ·An−2).(8)

Since α, β,A1, ..., An−2 are arbitrary, we find by taking suitable Fujita approximations that

〈L1 · ... · Ln〉2 ≥ 〈L2
1 · L3... · Ln〉 · 〈L2

2 · L3... · Ln〉.

Note that, in the above inequality, 〈L1 · ... · Ln〉 = 1 and 〈L2
j · L3... · Ln〉 ≥ 1 for j = 1, 2. Hence

we must have equality everywhere, in particular, we must have 〈L2
1 ·L3... ·Ln〉 = 1. This then finishes

the proof of our claim. �

Remark 7.5. The above proof provides an alternative proof of a related result in [LX16a], where we
applied complex Monge-Ampère equations in big classes and pointwise Brunn-Minkowski inequalities
for positive (1, 1)-forms.

For Blaschke addition of big (1,1)-classes and mixed (1,1)-classes we obtain geometric inequalities
similar to [Lut86].

Proposition 7.6. Let X be a smooth projective variety of dimension n. Assume L1, ..., Ln−1 are big
and movable (1, 1)-classes on X. Then the volume of the mixed (1,1)-class [L1, ..., Ln−1] satisfies

vol([L1, ..., Ln−1])
n−1 ≥ vol(L1) · ... · vol(Ln−1)

where the equality holds if and only if L1, . . . , Ln−1 are proportional.

Proof. This is a direct consequence of the Brunn-Minkowski inequality for (1,1)-classes. Note that we
have vol([L1, ..., Ln−1]) = 〈[L1, ..., Ln−1]

n−1〉 · [L1, ..., Ln−1], then

vol([L1, ..., Ln−1]) = 〈L1 · ... · Ln−1〉 · [L1, ..., Ln−1]

≥ 〈L1 · ... · Ln−1 · [L1, ..., Ln−1]〉

≥ vol(L1)
1/n · ... · vol(Ln−1)

1/n · vol([L1, ..., Ln−1])
1/n,
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which implies the desired inequality. The characterization of the equality follows from Theorem
7.4. �

We use [L,M ]i to denote the mixed (1,1)-class of 〈Ln−1−i ·M i〉. It is clear that [L,M ]0 = L and
[L,M ]n−1 = M .

Proposition 7.7. Let X be a smooth projective variety of dimension n. Assume that L,M are big
and nef (1,1)-classes. Then the sequence {vol([L,M ]i)}i=n−1i=0 is log-concave, that is,

vol([L,M ]k)
2 ≥ vol([L,M ]k−1) vol([L,M ]k+1) for any k = 1, ..., n− 2.

Moreover, the following statements are equivalent:

(1) vol([L,M ]k)
2 = vol([L,M ]k−1) vol([L,M ]k+1) for all k = 1, ..., n− 2;

(2) vol([L,M ]n−2)
n−1 = vol([L,M ]0) vol([L,M ]n−1)

n−2;
(3) L,M are proportional.

Proof. By the Hodge-Riemann bilinear relations as in the proof of Theorem 7.4, for any movable
(1,1)-class N we find that

(L ·M · Ln−2−k ·Mk−1 ·N)2 ≥ (L2 · Ln−2−k ·Mk−1 ·N)(M2 · Ln−2−k ·Mk−1 ·N).

By the definition of mixed class and Brunn-Minkowski inequalities, if we take N = [L,M ]k, then
we get that

vol([L,M ]k)
2 ≥ (〈[L,M ]n−1k−1〉 · [L,M ]k)(〈[L,M ]n−1k+1〉 · [L,M ]k)

≥ vol([L,M ]k−1)
n−1/n vol([L,M ]k+1)

n−1/n vol([L,M ]k)
2/n.

This implies the log concavity: vol([L,M ]k)
2 ≥ vol([L,M ]k−1) vol([L,M ]k+1).

For the equality characterizations, first note that the equivalence of (2) and (3) is a direct conse-
quence of Proposition 7.6. We only need to verify the equivalence of (1) and (2), but this follows
directly from the log concavity of the sequence {vol([L,M ]i)}i=n−1i=0 . �

By the properties of positive product, Blaschke addition is compatible with mixed divisor class
construction in the following sense.

Proposition 7.8. Let X be a projective variety of dimension n. Assume that L,M are big and nef.
For any big (1,1)-classes D2, ..., Dn−1 we have

[L+M,D2, ..., Dn−1] = [L,D2, ..., Dn−1]#[M,D2, ..., Dn−1]

where # is the Blaschke addition.

Proof. Firstly, by the definition of positive products, we always have

〈(L+M) ·D2 · ... ·Dn−1〉 � 〈L ·D2 · ... ·Dn−1〉+ 〈M ·D2 · ... ·Dn−1〉.
On the other hand, since L,M are nef, we claim that the equality holds: for any ample class A, we
have

〈(L+M) ·D2 · ... ·Dn−1〉 ·A = 〈(L+M) ·D2 · ... ·Dn−1 ·A〉
= (L+M) · 〈D2 · ... ·Dn−1 ·A〉
= 〈L ·D2 · ... ·Dn−1〉 ·A+ 〈M ·D2 · ... ·Dn−1〉 ·A.

By the definition of mixed class, we have

〈([L,D2, ..., Dn−1]#[M,D2, ..., Dn−1])
n−1〉 = 〈[L,D2, ..., Dn−1]

n−1〉+ 〈[M,D2, ..., Dn−1]
n−1〉

= 〈L ·D2 · ... ·Dn−1〉+ 〈M ·D2 · ... ·Dn−1〉
= 〈(L+M) ·D2 · ... ·Dn−1〉
= 〈[L+M,D2, ..., Dn−1]

n−1〉.
As a consequence of the Teissier proportionality for big and movable classes proved in [LX16b], we

immediately get the equality [L+M,D2, ..., Dn−1] = [L,D2, ..., Dn−1]#[M,D2, ..., Dn−1]. �

Similar to the convex geometry setting [Lut86], using Blaschke addition and mixed divisor classes,
we get a somewhat improved Khovanskii-Teissier inequality for (1,1)-classes.
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Theorem 7.9. Let X be a smooth projective variety of dimension n. Assume that L,M are big and
nef (1,1)-classes, then

vol(L+M)1/n ≥

(
n−1∑
i=0

(n− 1)!

i!(n− 1− i)!
vol([L,M ]i)

n−1/n

)1/n−1

≥ vol(L)1/n + vol(M)1/n.

The equality in either inequality holds if and only if L,M are proportional.

Proof. By Proposition 7.8 we have

(9) [L+M, ..., L+M ] =
n−1∑
i=0

(n− 1)!

i!(n− 1− i)!
· [L,M ]i,

where the above addition is the Blaschke addition. We claim that

(10) vol(L+M)n−1/n ≥
n−1∑
i=0

(n− 1)!

i!(n− 1− i)!
vol([L,M ]i)

n−1/n

with equality if and only if L,M are proportional. To this end, note that

vol(L+M) = 〈[L+M, ..., L+M ]n−1〉 · (L+M)

= 〈(
n−1∑
i=0

(n− 1)!

i!(n− 1− i)!
· [L,M ]i)

n−1〉 · (L+M)

=

n−1∑
i=0

(n− 1)!

i!(n− 1− i)!
〈[L,M ]n−1i 〉 · (L+M)

where the third line follows from the definition of Blaschke addition. Then by the Brunn-Minkowski
inequality, we immediately get the claimed inequality. If the equality holds, then we must have

〈[L,M ]n−1i 〉 · (L+M) = vol([L,M ]i)
n−1/n vol(L+M)1/n for every i.

In particular, applying Theorem 7.4 to the cases when i = 0, n−1, we get that L,M are proportional.
On the other hand, by Proposition 7.6 we have

vol([L,M ]i)
n−1 ≥ vol(L)n−1−i vol(M)i.

This implies that

(11)

n−1∑
i=0

(n− 1)!

i!(n− 1− i)!
vol([L,M ]i)

n−1/n ≥
(

vol(L)1/n + vol(M)1/n
)n−1

.

For the characterization of the equality, note that the equality implies that, for every i we have

vol([L,M ]i)
n−1 = vol(L)n−1−i vol(M)i.

Hence, by Proposition 7.6, we get that L,M must be proportional. �

7.1. Kneser-Süss inequality for divisors. In the convex geometry setting, let K,L ∈ Kn be convex
bodies, and let M be the convex body satifying

S(Mn−1; ·) = S(Kn−1; ·) + S(Ln−1; ·).
It is proved in [KS32] (see also [Sch14, Chapter 7]) that

vol(M)n−1/n ≥ vol(K)n−1/n + vol(L)n−1/n,

where equality holds if and if K,L are homothetic. This inequality is called Kneser-Süss inequality.
Let X be a smooth projective variety of dimension n, in [Xia15a] we defined the following volume

type function for movable curve classes:

M(α) = inf
B big divisor

(
α ·B

vol(B)1/n

)n/n−1
, α ∈ Mov1(X).
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By its definition, we have

(12) M(α1 + α2)
n−1/n ≥M(α1)

n−1/n + M(α2)
n−1/n.

Later, in [LX16b] (see also [LX16a]), by analyzing “Zariski decomposition structure” of M, we have

Theorem 7.10. Let X be a smooth projective variety of dimension n, and assume that αi ∈ Mov1(X)
satisfies M(αi) > 0 (i = 1, 2), then

(13) M(α1 + α2)
n−1/n ≥M(α1)

n−1/n + M(α2)
n−1/n

with equality if and only if α1, α2 are proportional.

Equivalently, if we translate the above statement to Blaschke addition for (1, 1)-classes, then we get

Theorem 7.11. Let X be a smooth projective variety of dimension n, and assume that L,M are big
movable (1, 1)-classes, then

(14) vol(L#M)n−1/n ≥ vol(L)n−1/n + vol(M)n−1/n

with equality if and only if L,M are proportional.

8. Projection volumes and the Brascamp-Lieb inequality

There are many geometric inequalities relating the volume of a convex body to the volumes of its
images under linear maps. One of the most well-known is the Loomis-Whitney inequality [LW49]: let
K be a measurable subset of Rn, and let πj : Rn → Rn−1, (x1, ..., xn) 7→ x̂j := (x1, ..., xj−1, xj+1, ..., xn)
be projections, then

vol(K)n−1 ≤
n∏
j=1

vol(πj(K)).

More generally, the Loomis-Whitney inequality finds its natural generalisation in the Brascamp-Lieb
inequality for general linear projections (see e.g. [BL76], [BCCT08]), but the inequality needs to be
corrected by a factor determined by the projections.

In this section, we formulate and prove an analogue for (1, 1) classes.

8.1. Projection volumes. Fix a convex body P ⊆ Rn and a unit vector v ∈ Rn. Then the volume
of the orthogonal projection of P onto v⊥ is computed by the mixed volume n〈Pn−1, 0v〉, where 0v is
the segment between 0 and v. The volume of the projection onto the orthogonal of a subspace W can
be computed by a similar procedure.

In the complex geometry setting, the restricted volume is defined in a similar way (up to a constant):
let X be a smooth projective variety of dimension n, let L be a big divisor class, and let H be a prime
divisor, then by [BFJ09] the restricted volume volX|H(L) is just the positive product 〈Ln−1〉 ·H.

The analogous construction in complex geometry is as follows. In place of an orthogonal projection,
we fix a dominant rational map f : X 99K Z whose resolution has connected fibers. (This is motivated
by toric geometry, where a “direction” in the polytope space identifies a map on a blow-up.) Recall
that [BFJ09] shows that for a big divisor L and a prime divisor H the restricted volume volX|H(L)

is just the positive product 〈Ln−1〉 ·H. Given a big class L, the projection volume onto the fiber is
defined to be

volf (L) := 〈φ∗Ln−d〉 · F

where d = dimZ, φ : X ′ → X is a resolution of f and F is a general fiber of the induced map on X ′.
We next need to ask when a collection {fi : X 99K Zi} is “mutually orthogonal”. Guided by the toric
case, we require that the induced rational map X 99K

∏
i Zi is birational.
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8.2. Loomis-Whitney inequality. Inspired by the Loomis-Whitney inequality for convex bodies,
we first prove the following analogue on projective varieties.

Theorem 8.1 (Loomis-Whitney inequality). Let X be a smooth projective variety of dimension n.
Suppose that {fi : X 99K Ci}ni=1 is a collection of dominant rational maps onto curves whose resolution
has connected fibers, and assume that the induced map X 99K

∏n
i=1Ci is birational. Then for any big

(1, 1) class L, we have

(vol(L)/n!)n−1 ≤
n∏
i=1

(volfi(L)/(n− 1)!) .

If all the fi are morphisms, then we obtain equality if and only if the positive part of L is numerically
proportional to a sum of fibers of the fi.

Note that the inclusion of the factorials corrects for the discrepancy between volumes in the complex
geometry and in the convex geometry settings.

The first proof of the Loomis-Whitney inequality in the convex geometry setting was given by
[LW49]. The strategy is to approximate a polytope by hypercubes and to use a counting argument
which inducts on dimension. In our setting, we follow the approach of [SL07], where the authors
mainly applied the method of [Zha99] using mixed volumes.

Proof of Theorem 8.1. After passing to a birational model of X and pulling back L, we may suppose
that each rational map fi is a morphism.

Denote the general fiber of fi by Fi, and assume that a1, ..., an are positive numbers. Note

vol(
n∑
i=1

aiFi) = n!
n∏
i=1

ai.

By the Khovanski-Teissier inequality for big divisors as in [LX16b], we get

〈Ln−1〉 · (
n∑
i=1

aiFi) ≥ vol(L)n−1/n vol(
n∑
i=1

aiFi)
1/n

≥ (n!
n∏
i=1

ai)
1/n vol(L)n−1/n

with equality iff the positive parts of the divisors are numerically proportional. Setting ai = ci/〈Ln−1〉·
Fi for a variable ci, the above inequality implies that

n∏
i=1

〈Ln−1〉 · Fi ≥ n! vol(L)n−1
∏n
i=1 ci

(
∑n

i=1 ci)
n
.

Note that
∏n

i=1 ci
(
∑n

i=1 ci)
n ≤ 1/nn with equality if and only if all the ci are equal. Letting ci = 1, we get

n∏
i=1

〈Ln−1〉 · Fi/(n− 1)! ≥ (vol(L)/n!)n−1.

Furthermore, equality holds here if and only if equality holds in the Khovanskii-Teissier inequality
above, finishing the proof of our theorem. �

8.3. Rank-one Brascamp-Lieb inequality. The following statement can be seen as a special case of
the Brascamp-Lieb inequality. In the convex geometry setting, it corresponds to comparing the volume
of a polytope to its projections onto the coordinate axes (instead of the coordinate hyperplanes).

Proposition 8.2 (Rank-one Brascamp-Lieb inequality). Suppose that X is a smooth projective variety
birational to a product of curves

∏n
i=1Ci. Then for any big class L on X we have

vol(L)/n! ≤
n∏
i=1

〈L〉 · Ti

where Ti is a general fiber of the rational map X 99K
∏
j 6=iCj.
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Proof. The proof is by induction on the dimension n.
By passing to a birational model of X and pulling back L, we may suppose that each rational map

fi is a morphism. Note that the quantities 〈L〉 · Ti do not change upon such pullback, since a very
general fiber Ti avoids the restricted base locus of 〈L〉. We may also replace L by 〈L〉 so that we may
assume L is big and movable.

Let Fi denote a very general fiber of the map X → Ci. Let s denote the largest real number such
that L− sF1 is pseudo-effective. Note that s ≤ L · T1 since F1 · T1 = 1 and (L− sF1) · T1 ≥ 0. Then
we have

vol(L)/n =

∫ s

0
〈(L− tF1)

n−1〉 · F1 dt ≤ (L · T1)(〈Ln−1〉 · F1).

Clearly 〈Ln−1〉 · F1 is at most vol(L|F1). And by induction, we have

vol(L|F1)/(n− 1)! ≤
n∏
i=2

〈L|F1〉 · Ti.

Furthermore, for 2 ≤ i ≤ n we have 〈L|F1〉 · Ti = L · Ti. Indeed, this follows from the fact that L|F1

is movable when F1 is very general, so that the positive product on the left agrees with L|F1 . We
conclude that

vol(L)/n ≤ (n− 1)!
n∏
i=1

L · Ti

giving the statement. �
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[BBGZ13] Robert J. Berman, Sébastien Boucksom, Vincent Guedj, and Ahmed Zeriahi, A variational approach to

complex Monge-Ampère equations., Publ. Math., Inst. Hautes Étud. Sci. 117 (2013), 179–245 (English).
[BCCT08] Jonathan Bennett, Anthony Carbery, Michael Christ, and Terence Tao, The Brascamp–Lieb inequalities:

finiteness, structure and extremals, Geometric and Functional Analysis 17 (2008), no. 5, 1343–1415.
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