Ionospheric Effects Symposium Alexandria, VA, May 11, 2017

Selection of an atmospheric reference model and branching ratios for numerical modeling of gravity wave-airglow interactions

Yolián Amaro-Rivera, Tai-Yin Huang, and Julio Urbina Electrical Engineering Department, Penn State - University Park Physics Department, Penn State - Lehigh Valley

Image Source: http://eol.jsc.nasa.gov/

Outline

Gravity Waves and Airglow

Chemistry Dynamics Model Description

Reference Model in Gravity-Wave Airglow Modeling

Determination of Branching Ratios

Conclusions

Gravity Wave-Airglow Interactions

- Airglow is very sensitive to the atmospheric conditions so understanding the variations helps us better understand our atmosphere.
- Gravity waves can induce variations in atmospheric species and temperature, leading to variations in airglow intensity & temperature.
- Studying gravity wave-airglow interactions helps us gain a better understanding of the dynamical and chemical processes, and the energetics in that region.

Airglow Emissions of Interest

Green line O(¹S) (97 km), λ =557.7 nm

 $O_2(0-0)$ atmospheric bands (95 km), λ =762 nm

O₂(0-1), λ=864 nm

OH Meinel bands (87 – 92 km), λ =600-2000 nm

2D Airglow Chemistry Dynamics Model

Boundary and Initial Conditions

Upper Boundary:	130 km	
Lower Boundary:	70 km	
Horizontal Grid Spacing:	1 km	
Vertical Grid Spacing:	0.1 km	
Lateral Boundary:	periodic	
Time Step:	3 secs	
Wave Forcing:	set at 10 km	
Reference Model:	GS data, MSIS-90, MSIS-00	

Multiple Airglow Chemistry Dynamics (MACD)

- 2-D, nonlinear, time dependent
- 5 minor species are considered:
 0, 02C, 02B0, 02B1, and 01S

Three versions of the MACD model:

- MACD: uses O from Garcia and Solomon (1985) model and MSIS-90
- 2. MACD-90: uses MSIS-90
- 3. MACD-00: uses NRLMSIS-00

Initial profiles of O2C, O2BO, and O2B1 are obtained from the chemical balance

OH Airglow Chemistry Dynamics (OHCD)

- 2-D, nonlinear, time dependent
- 6 minor species are considered:
 0, 03, H, HO2, OH, and OH*

Three versions of the OHCD model:

- OHCD: uses O and H from Garcia and Solomon (1985) model and MSIS-90
- **2. OHCD-90**: uses MSIS-90
- 3. OHCD-00: uses NRLMSIS-00

Initial profiles of O3, OH, OH*, and HO2 are obtained from the chemical balance

Recent Work using MACD and OHCD Models

- Gravity wave effects in O(1S), O₂(0,0), and OH(8,3) airglow emissions [Huang and George, 2014].
- Airglow temperature variations, phase relationships, and Krassovsky ratios [Huang, 2015].
- Effect of CO₂ increase and 11-year solar cycle in airglow emissions [Huang 2016, 2017].
- Reference model in gravity wave- airglow numerical models [Amaro-Rivera et al. 2017].

A reference model that provides initial profiles of atmospheric species and temperature is needed for numerical modeling of gravity wave-airglow interactions.

The Continuity Equation & Initial Tendency

In our models, we remove the initial tendency from the continuity equation to isolate the wave-induced effects. The continuity equation after removing the initial tendency is

$$\frac{\partial n}{\partial t} = P - nL - \nabla \cdot (n\vec{V}) - (\frac{\partial n}{\partial t})_{t=0}$$

Secular variations are obtained by performing a running average, with the window size equal to one forcing wave period, to separate the total variation into two parts:

Total variation = secular part + fluctuating part

The fluctuating part oscillates at the forcing wave period while the secular part is the quantity that remains after the running average.

Rate coefficients are important!

Reference α ε Huang and George [2014] 0.04 7 x 10⁻⁵ Snively et al. [2010] 0.03 Hickey et al. [1993] 0.8 0.11

Branching Ratios Used in Literature

In order to understand the wave dynamics or energetics, we first need to better understand airglow chemistry or rather an accurate set of airglow chemical reactions!

The O₂(0,0) Atmospheric Band & O(1S) Greenline Chemistry in the MACD Model

Table 1. Chemical Reactions and the Rate Coefficients of O ₂ (0,1) Atmospheric Band and O(¹ S) Greenline			
R#	Reaction	Rate Constant	Reference
R ₁	$O + O + M \longrightarrow O_2 + M$	$(1-\varepsilon-\alpha)k_1,$	Campbell and Gray [1973]
		$k_1 = 4.7 \times 10^{-33} (300/T)^2$	
R_2	$O + O + M \longrightarrow O_2(b^1 \sum_{g}^+) + M$	$\varepsilon k_1; \varepsilon = 7 \times 10^{-5}$	See text
R_3	$O + O + M \longrightarrow O_2(c^1 \sum_{u}^{-}) + M$	αk_1 ; $\alpha = 0.04$	See text
R ₄	$O_2(c^1\sum_u^-) + O_2 \longrightarrow O_2(b^1\sum_g^+) + O_2$	$k_2 = 5 \times 10^{-13}$	<i>Greer et al.</i> [1981]
R_5	$O_2(c^1\sum_u^-) + N_2 \longrightarrow O_2(b^1\sum_g^+) + N_2$	<i>k</i> = 0	Slanger [1978]
R_6	$O_2(c^1\sum_u^-) + O \longrightarrow O_2(b^1\sum_g^+) + O$	$\gamma k_3; \gamma = 0.0, k_3 = 3 \times 10^{-11}$	Torr et al. [1985], Hickey et al. [1993]
R ₇	$O_2(c^1\sum_u^-) + O \longrightarrow O_2 + O(^1S)$	$\delta k_3; \delta = 0.2$	<i>Greer et al.</i> [1981]
R_8	$O_2(c^1\sum_u^-) + O \longrightarrow O_2 + O$	$(1 - \gamma - \delta)k_3$	<i>Greer et al.</i> [1981]
R ₉	$O_2(c^1\sum_u^-)\longrightarrow O_2+hv$	$A_1 = 0.02$	Slanger [1978]
R ₁₀	$O_2(b^1\sum_g^+) + N_2 \longrightarrow O_2 + N_2$	$k_4 = 5 \times 10^{-13}$	Kalogerakis et al. [2002]
R ₁₁	$O_2(b^1\sum_g^+) + O_2 \longrightarrow 2O_2$	$k_5 = 1.0 \times 10^{-11}$	Kalogerakis et al. [2002]
R ₁₂	$O_2(b^1\sum_g^+) + O \longrightarrow O_2 + O$	$k_6 = 4.5 \times 10^{-12}$	Pejakovic et al. [2005]
R ₁₃	$O_2(b^1 \sum_g^+) \longrightarrow O_2 + hv(total)$	$A_2 = 0.083$	Vallance Jones [1974]
R ₁₄	$O(^{1}S) + O_{2} \longrightarrow O + O_{2}$	$k_7 = 4 \times 10^{-12} e^{-865/T}$	Slanger et al. [1972]
R ₁₅	$O(^{1}S) \longrightarrow O + hv(total)$	A ₃ = 1.35	Nicolaides et al. [1971]
R ₁₆	$O_2(b^1 \sum_g^+) \longrightarrow O_2 + hv(0-1)$	$A_3 = 0.058$	Krupenie [1972]
R ₁₇	$O(1s) \longrightarrow O + hv(5577)$	A ₅ = 1.18	Nicolaides et al. [1971]

Huang and George, 2014

Airglow Measurements

- Consecutive measurements of O1S and O2B0 airglow made with WINDII on Aug 27-28, 1992
- Latitude: 20.8S, Longitude: 162.8W
- Latitude: 21.4S, Longitude: 167.2W

- Simultaneous measurements of O1S and O2B0 airglow made with MULTIFOT rocket on May 31, 1992
- Latitude: 2.3S, 44.4W

Determination of Branching Ratios using the Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

•CMA-ES

- Performs real-valued single-objective optimization
- Widely used algorithm
- Population-based strategy
- Self-adaptive

M. D. Gregory, Z. Bayraktar, and D. H. Werner, "Fast Optimization of Electromagnetic Design Problems Using the Covariance Matrix Adaptation Evolutionary Strategy," *IEEE Transactions on Antennas and Propagation*, Vol. 59, No. 4, pp. 1275-1285, April 2011.

CMA-ES (Best values: α=0.016 ε=0.109) WINDII

CMA-ES (Best values: α =0.018 ϵ = 0.121) MULTIFOT

Conclusions

- We present the results of our 2-D, nonlinear, time-dependent numerical models, Multiple Airglow Chemistry Dynamics (MACD) and OH Chemistry Dynamics (OHCD) when using different atmospheric reference models.
- We show how changes in temperatures and species concentrations indeed have a great impact in the computed airglow intensities.
- Using a numerical optimization approach, we match the simulated O(1S) and O₂(0,0) VERs to the measured VERs from WINDII and MULTIFOT observations to determine optimal branching ratios.
- We found that the optimal values were α =0.02 , ϵ =0.1
- Future work includes expanding the MACD and OHCD models to study other airglow emissions.
- This includes incorporating chemical and dynamical processes that occur in the ionosphere.