

The influence of the ionospheric dynamo on the shape of the Plasmasphere

Ionospheric Effects Symposium, May 9-11, 2017

Jonathan Krall and Joseph D. Huba Plasma Physics Division, Naval Research Laboratory

Supported by the NRL base program

Geomagnetic storms shape the plasmasphere

Magnetospheric convection can "carve away" the plasmasphere

[Huba et al., JGR, 2000; Huba and Joyce, GRL, 2010; Huba and Krall, GRL, 2013]

TIMFGCM

NRL SAMI3 Ionosphere/Plasmasphere Model

- Magnetic field: HGRF-like Non-tilted dipole
- Interhemispheric
- Nonorthogonal, nonuniform fixed grid
- Seven (7) ion species (all ions are equal): H⁺, He⁺, N⁺, O⁺, N⁺₂, NO⁺, and O⁺₂
 - Solve continuity and momentum for all 7 species
 - Solve temperature for H^+ , He^+ , O^+ , and e^-
- Plasma motion
 - $\mathbf{E}\times\mathbf{B}$ drift perpendicular to \boldsymbol{B}
 - Ion inertia included parallel to **B**
- Neutral species: NRLMSISE00 and HWM93
- Chemistry: 21 reactions + recombination
- Photoionization: Daytime (EUVAC) and nighttime
- SAMI3 is coupled to a magnetosphere potential model and a thermosphere model.

SAMI3: Ion dynamics and winds

Direct force:

$$\frac{\partial \mathbf{V}_i}{\partial t} + \mathbf{V}_i \cdot \nabla \mathbf{V}_i = -\frac{1}{\rho_i} \nabla \mathbf{P}_i + \frac{e}{m_i} \mathbf{E} + \frac{e}{m_i c} \mathbf{V}_i \times \mathbf{B} + \mathbf{g}$$
$$-\nu_{in} (\mathbf{V}_i - \mathbf{V}_n) - \sum_j \nu_{ij} (\mathbf{V}_i - \mathbf{V}_j)$$

Wind-driven dynamo:

$$\nabla \cdot \Sigma \nabla \Phi = S(g, \underline{V_n}, J_{\parallel})$$

$$\mathbf{E} = -\nabla \Phi$$

2001 Day 32-36: post-storm quiet period

TIMEGCM Thermosphere

Data from CDAWeb/OMNI

SAMI3: no winds vs. TIMEGCM winds

2001 Day 32-36: SAMI3/TIMEGCM

SAMI3 and IMAGE RPI electron density

Electron density vs. time at fixed L, MLT, MLAT

Results shown for the no wind case and for SAMI3/TIMEGCM.

Points come from RPI (passive mode) on the IMAGE spacecraft.

No winds \rightarrow no oscillations

We also find that winds inhibit refilling

Direct force:

$$\frac{\partial \mathbf{V}_i}{\partial t} + \mathbf{V}_i \cdot \nabla \mathbf{V}_i = -\frac{1}{\rho_i} \nabla \mathbf{P}_i + \frac{e}{m_i} \mathbf{E} + \frac{e}{m_i c} \mathbf{V}_i \times \mathbf{B} + \mathbf{g}$$
$$-\nu_{in} (\mathbf{V}_i - \mathbf{V}_n) - \sum_j \nu_{ij} (\mathbf{V}_i - \mathbf{V}_j)$$

Wind-driven dynamo:

$$\nabla \cdot \Sigma \nabla \Phi = S(g, \underline{V_n}, J_{\parallel})$$

$$\mathbf{E} = -\nabla \Phi$$

IMAGE/RPI densities are at MLT 03:50

1. SAMI3 with HWM93

2. Without ion-neutral forces, the oscillations persist.

3. Oscillations are gone in the "No Dynamo" case.

TEC maps and winds

0600 UT Day 36 2001

TEC (SAMI3/No Wind)

TEC (SAMI3/HWM07)

TEC (SAMI3/TIMEGCM)

0. 60. 120. TEC (TECU)

TEC (SAMI3/HWM93)

TEC (SAMI3/HWM93, Fin=0)

TEC (SAMI3/HWM93, No Dynamo)

Winds shape the ionosphere as well as the plasmasphere.

Outflow to 3<L<7 is steadier without winds.

Electrostatic potential contours

Winds shape the quiet plasmasphere out to about L=5.

Winds inhibit post-storm refilling of the plasmasphere.

The mechanism seems to be zonal $\mathbf{E} \times \mathbf{B}$ drifts (shape) and vertical $\mathbf{E} \times \mathbf{B}$ drifts (refilling).

Assuming all wind models used are valid, use of multiple wind models (HWM93, HWM07, TIMEGCM) is a proxy for day-to-day variability in the winds.

Winds may cause day-to-day variability in the quiet plasmasphere.

[Krall, Huba, Denton, Crowley, Wu, JGR, 2014]