

Quantifying the Effects of of Geomagnetic Storms on foF2 and TEC

Ja Soon Shim^{1*}, Ioanna Tsagouri², Larisa Goncharenko³ Lutz Rastaetter⁴, Maria M Kuznetsova⁴ Modelers: Ionosphere/Thermosphere Models hosted at Community Coordinated Modeling Center

- 1. CUA/NASA GSFC, Greenbelt, MD, USA,
- 2. National Observatory of Athens, Greece
- 3. MIT Haystack Observatory, Westford, MA. USA
 - 4. NASA/GSFC, Greenbelt, MD, USA,

NASA Goddard Space Flight Center http://ccmc.gsfc.nasa.gov

Outline

- Quiet-time background references
- Quiet-time foF2 and TEC variations
- foF2 and TEC changes
- Model/data comparison
- Summary
- International Forum for Space Weather Modeling Capabilities Assessment

TEC and foF2 at 10 lonosonde Stations

- 4 stations from US, 4 from Europe and 2 from South America to investigate:
 - latitude and local time dependence
 - o hemispheric asymmetry
- Observations:
 - o foF2 data from the Global
 Ionosphere Radio Observatory
 (GIRO)
 - O GPS vertical TEC data from MIT Haystack Observatory (error < 4TECU)

2013 March Storm Event: GEM-CEDAR Event

Quiet-time References:

- one day before the storm onset (doy 075)
- mean of five consecutive days before the storm onset (doy 060-070)
- mean of five quietest days within 30 days prior to the storm (based on daily Kp, Dst, and AE)
- median of 30 days prior to the storm

TEC: Comparison of Four Backgrounds

Chilton (359.4E, 51.5N)

- The backgrounds are repeated across
 3 days of the storm event.
- TEC of one day prior to the storm (red line) is larger than other references.
- 30-day median (green) and the mean of the 5 quietest days (blue) are more suitable.
- Ionosphere-thermosphere model simulations also show similar features (not shown here).

Quiet-time TEC variations

• Relative STandard Deviation:

RSTD = (STD_TEC_x /TEC_x)*100

x: median; average over the 5 quietest days

• RSTD is estimated over each time of the day

Chilton (359.4E, 51.5N)

- At Chilton (UT=LT), mean of RSTD of
 - 30 day median: 30%
 - o 5 quietest days: 18%

Region	Mean RSTD (%) Median	Mean RSTD (%) 5 quietest days			
Europe	28	18			
N/S America	22	18			
Jicamarca	27	26			
Average	25	18			

- Local time dependency of the variations:
 - relatively larger in dawn and dusk sectors in most cases
- TEC variations of about **20-30%** w.r.t. quiet conditions may be ignored on average.

Quiet-time foF2 variations at Chilton

- Mean of RSTD of
 - o monthly medians: 8%
 - o 5 quiet days in the month: 6%
 - o running medians: 9%
 - 5 quiet days before the event: 8%

- Local time dependency of the variations: e.g., for the case under study here the uncertainties are significantly larger in dawn sector in all terms (for Chilton UT=LT)
- Monthly medians are comparable to the average of 5 quiet days within the month, while running medians are comparable to the average of 5 quiet days prior to the storm event.
- On average, all approaches may be considered comparable
- On average, ionospheric variations of about
 10% w.r.t. quiet conditions may be ignored.

courtesy of Ioanna Tsagouri

Storm Impacts on foF2 and TEC

- dfoF2 = (foF2 foF2_med)/foF2_med *100
- dTEC = (TEC TEC_med)/TEC_med *100
- |dfoF2| > 20%
- |dTEC| > 50%
- Start time at which foF2 (TEC) change starts to exceed 20% (50%)
- Duration when foF2 (TEC) change are larger than 20% (50%)
- Time_max at which the maximum change occurs

foF2 changes during the main phase

	dfoF2 > 20%							dfoF2 < -20%					
Station	Start	Time	Max (9/)	t_max		Duration	Start	time	Min (9/)	t_m		Duration	
	UT	LT	IVIAX (70)	UT	LT	(hrs)	UT	LT	IVIIII (<i>7</i> 0)	UT	LT	(hrs)	
Europe													
Chilton	18.2	18.2	24%	18.2	18.2	0.3							
Pruhonice	11.0	12.0	46%	11.8	12.8	3.3							
Ebre	11.75	12.75	97%	23.0	0.0	8.3	6.75	7.75	-31%	7.7	8.7	2.7	
Athens	11.5	13.5	83%	22.8	0.8	7.3							
North America													
Idaho Nat. Lab							7.5	0.5	-45%	9.5	2.5	11	
Boulder							9.5	2.5	-45%	16.0	9.0	16	
Millstone Hill							7.8	2.8	-48%	9.3	4.3	6.7	
Eglin AFB							15.4	9.4	-31%	15.8	9.75	1	
South America													
Jicamarca													
Port Stanley	19.5	15.5	58%	19.5	15.5	4.5							

dfoF2 = (foF2 –foF2_med)/foF2_med *100

- A few hours after storm onset:
 - European sector in the daytime: positive effects due to increases in ionization (e.g., caused by TAD)
 - North America in the post-midnight sector: negative storm effects caused by the neutral composition disturbance (*Prölss*, 1993)

TEC changes during the main phase

			dTEC	> 50%		dTEC < -50 %						
Station	start	time		t_max		duration	Start	Start time	N 41 - [0/]	t_min		duration
	UT	LT	wax[%]	UT	LT	(hrs)	UT	LT	IVIIN[%]	UT	LT	(hrs)
Europe												
Chilton	10.6	10.5	91.6%	11.5	11.5	2.8	20.2	20.1	-59.1%	11.5	11.5	1.6
Pruhonice	8.8	9.7	123.4%	11.4	12.4	5.8						
Ebre	9.6	9.6	144.5%	19.9	20.0	10.7						
Athens	8.3	9.8	148.9%	17.3	18.8	13.7						
North America												
Idaho Nat. Lab.	9.1	1.6	209.3%	11.8	4.3	5.2						
Boulder	9.5	2.5	89.4%	10.3	3.3	3.0						
Millstone Hill	10.5	5.7	75.1%	19.5	14.7	3.2						
Eglin AFB	11.0	5.2	89.6%	19.0	13.2	2.6						
South America												
Jicamarca	8.7	3.5	232.2%	8.9	3.8	5.1						
Port Stanley	17.0	13.1	270.7%	20.3	16.4	2.8						

• Same color depicts similar latitudes and it shows similar responses to the storm.

- Both foF2 and TEC responses to the storm are positive phase in European sector.
- Noticeable difference between the foF2 and TEC response in North America sector:
 - o TEC shows mainly positive effects, while foF2 shows negative effects.
- TEC enhancement at Port Stanley (41S MLAT) is about three times larger than that at Eglin (40N MLAT).
- At Jicamarca, foF2 change < |20%|, while TEC change goes up to 230%.

foF2 and TEC Changes at Ebre and Boulder

- Ebre:
 - o Both foF2 and TEC increase
- Boulder:
 - o TEC increases, while foF2 decreases
 - Possible cause:

- TEC increase due to the transport by the ExB drift caused by penetration eastward electric fields in low latitudes

 foF2 decrease due to molecular-rich air (small O/N2) from high latitudes

dfoF2 = (foF2 – foF2_med)/foF2_med *100 dTEC = (TEC – TEC_med)/TEC_med *100

Assessment of Model Prediction

Model	Model Setting Description/Modelers	Lower and Upper boundary for TEC calculation (km)					
Empirical Model							
IRI 2012	IRI-2012 using IRI-corr model for topside Ne and using CCIR (International Radio Consultative Committee) for F-peak plasma frequency foF2, Dieter Bilitza (GMU, NASA/GSFC)	~60	~2,000				
Physics Based Ionosphere M	lodel						
IFM	IFM driven by F10.7 and Kp, Robert W. Schunk et al. (USU)	~90	~1,400				
SAMI3	SAMI3 with the neutral wind model HWM93, Joseph Huba et al. (NRL)	~90	~2,000				
Physics-based Coupled Ionosphere-Thermosphere Model							
СТІРЕ	CTIPe3.2 driven by Weimer [2005], Timothy Fuller-Rowell et al. (NOAA SWPC)	~140	~2000				
GITM	GITM 2.3 driven by Weimer 2005, Aaron Ridley et al. (UM)	~90	~600				
TIE-GCM	TIE-GCM2.0 driven by Weimer [2005], R. G. Roble et al. (HAO, NCAR)	~90	~600				
Physics-based Data Assimilation Model							
USU-GAIM	USU-GAIM2.4.3 with GPS TEC observations from up to 400 ground stations (-60° < lat < 60°), Robert W. Schunk et al. (USU)	~90	~1,400				

RMSE

- Average RMSE for 10 and 6 stations for TEC and foF2, respectively
- Scaled TEC = TEC*(Obs_med/TEC_med)
- Shifted TEC = TEC -min(TEC_med)
- Degree of Improvement of predicting performance by scaling depends on models.
- Averaged GPS TEC error < 2 TECU
- 3 TECU <TEC RMSE < 12 TECU
- 1.6 MHz < foF2 RMSE < 3.6 MHz

Ratio of Changes

Model	dfoF2	>20%	dfoF2<-20%		dTEC > 50 %			dTEC < -50 %			
	ratio_max	dt_max	ratio_min	dt_min	ratio_max	dt_max	# of event/10	ratio_min	dt_min	# of event/1	
IFM	0.99	8.25	0.71	2.95	1.5	4.6	8				
SAMI3	0.92	4.50	1.84	2.38	2.0	6.3	4				
CTIPE	2.54	0.00	0.78	2.67	0.5	3.6	4	1.3	1.2	1	
GITM	2.42	1.00	0.60	2.12	3.7	3.9	10				
TIE-GCM	0.97	3.5	1.24	2.92	0.8	4.6	9				
USU-GAIM	0.84	0.88			0.9	3.1	7				

where,

- ratio_max =max_model/max_obs
- dt_max=|t_max_obs t_max_mod|
- Average ratio for 10 and 6 stations for TEC and foF2, respectively
- red: better ratio
- blue: better time prediction
- green: better probability of change prediction
- No one model outperforms the others in all cases.

Summary

- Quantified storm impacts on foF2 and TEC at 10 selected ionosonde locations.
- Compared four different quiet-time references:
 - o 30-day median and mean of five quietest days are comparable.
 - $\circ~$ one day before the storm may not be suitable.
- Quiet-time foF2 and TEC variations
 - Local time dependency of the uncertainties: e.g., relatively larger in dawn and dusk sectors
 - About 10% of foF2 and 20-30% of TEC variations were found.
- During main phase,
 - European sector: both foF2 and TEC response to the storm are positive phase
 - North America sector: foF2 shows negative effects, while TEC shows positive response.
 - TEC enhancement at Port Stanley (41S MLAT) is about three times larger than that at Eglin (40N MLAT).

Summary

- Evaluated how well lonosphere-thermosphere models reproduce the TEC and foF2 changes during the main phase.
 - RMS errors for TEC prediction are larger at Jicamarca and Port Stanley than other locations for most models.
 - Performance depends on the metrics selected and the quantities considered.
 - No one model outperforms the others in all cases.

International Forum for Space Weather Modeling Capabilities Assessment

- Goals:
 - Define metrics to assess the current state of space weather modeling capabilities from the perspective of end-users and science for space weather
 - Develop a process to capture science progress in first principles models that feed into operations
- To address the goals of the forum, six physical domains were identified, with multiple working teams within each domain.

SUPERTOPIC: QUANTIFYING SCIENTIFIC PROGRESS CCMC facilitator(s): B.Thompson

Assessment of Understanding and Quantifying Progress Toward Science Understanding and Operational Readiness (Leads: A. Halford, S. Morley, A. Kellerman, B. Thompson) TEAM AGENDA

 SOLAR DOMAIN AGENDA CCMC facilitator(s): P. Macneice Solar Flare Prediction (Leads: S. Murray, M. Georgoulis, S. Bloomfield, K.D. Leka Scoreboard Leads: S. Murray, M.L Mays) SSA-0,SSA-6 TEAM AGENDA Coronal & Solar Wind Structure Coronal & SW Structure; Ambient SW; Coronal Hole Boundaries (Leads: P. Macneice, L. Jian) SSA-7 TEAM AGENDA 3D CME kinematics and topology (Leads: B.Thompson, C.Moestl, D.Barnes) TEAM AGENDA Solar Indices and Irradiance (Leads: J. Klenzing, C. Henney, K. Muglach) SSA-0 TEAM AGENDA 	GEOSPACE: Geomagnetic Environment DOMAIN AGENDA CCMC facilitator(s): L.Rastaetter • Ground Magnetic Perturbations: dBdt, delta-B, GICs, FACs (Leads: D. Welling, H. Opgenoorth, C. Ngwira) SSA-1 TEAM AGENDA • Geomagnetic Indices (Leads: M. Liemohn) SSA-1 TEAM AGENDA • Magnetopause location and geosync. orbit crossing (Leads: Y. Collado-Vega, S. Merkin) SSA-1 TEAM AGENDA
HELIOSPHERE DOMAIN AGENDA CCMC facilitator(s): M.L. Mays, A. Taktakishvili, P. Macneice • CME Arrival Time (Leads: C. Verbeke, M.L. Mays, A. Taktakishvili) SSA-1 TEAM AGENDA • IMF Bz at L1 (Leads: N. Savani, P. Riley) SSA-1 TEAM AGENDA • SEPs (Leads: I.G. Richardson. P. Quinn, M. Marsh, M.L. Mays Scoreboard Leads: M. Dierckxsens, M. Marsh) SSA-3,SSA-6 TEAM AGENDA	GEOSPACE: Auroral Region DOMAIN AGENDA CCMC facilitator(s): M.Kuznetsova • Auroral precipitation and high latitude ionosphere electrodynamics (Leads: R. Robinson, Y. Zhang, B. Kosar) TEAM AGENDA
 RADIATION and PLASMA EFFECTS DOMAIN AGENDA CCMC facilitator(s): Y. Zheng, M. Kuznetsova Surface Charging few eV - keV electrons, plasma density (Leads: J. Minow, D. Pitchford, N. Ganushkina) SSA-6 TEAM AGENDA Internal Charging keV-MeV electrons (Leads: P. O'Brien, Y. Shprits) SSA-6 TEAM AGENDA Single Event Effects MeV-GeV-TeV protons, ions (Leads: M. Xapsos, J. Mazur, P. Jiggens) SSA-6 TEAM AGENDA Total Ionizing Dose keV-MeV electrons, keV-GeV protons, ions (Leads: I. Jun, T. Guild, M. Xapsos) SSA-6 TEAM AGENDA Radiation effects for aviation (Leads: K. Tobiska, M. Meier) SSA-6 TEAM AGENDA 	 IONOSPHERE DOMAIN AGENDA CCMC facilitator(s): J. Shim, M. Kuznetsova Neutral Density and Orbit Determination at LEO (Leads: S. Solomon, T. Fuller-Rowell, S. Bruinsma, E. Sutton) SSA-2 TEAM AGENDA Global & Regional TEC (Leads: L. Scherliess, R. Calfas) SSA-4 TEAM AGENDA Ionosphere Plasma Density: NmF2/foF2, hmF2, TEC (Leads: I. Tsagouri, M. Angling, J. Shim) SSA-5 TEAM AGENDA Ionosphere Scintillation (Leads: E. Yizengaw) SSA-5 TEAM AGENDA

INFORMATION ARCHITECTURE

CCMC facilitator(s): C. Wiegand

 Information Architecture for Interactive Archives (IAIA) (Leads: C. Wiegand, D. Heynderickx, D. De Zeeuw, T. King) TEAM AGENDA

International Forum for Space Weather Modeling Capabilities Assessment

IONOSPHERE

CCMC facilitator(s): J. Shim, M. Kuznetsova

- Neutral Density and Orbit Determination at LEO (Leads: S. Solomon, T. Fuller-Rowell, S. Bruinsma, E. Sutton) SSA-2
- Global & Regional TEC (Leads: L. Scherliess, R. Calfas) SSA-4
- Ionosphere Plasma Density: NmF2/foF2, hmF2, TEC (Leads: I. Tsagouri, M. Angling, J. Shim) SSA-5
- Ionosphere Scintillation (Leads: E. Yizengaw) SSA-5

International Forum for Space Weather Modeling Capabilities Assessment

- Goals:
 - Define metrics to assess the current state of space weather modeling capabilities from the perspective of end-users and science for space weather
 - Develop a process to capture science progress in first principles models that feed into operations
- To address the goals of the forum, six physical domains were identified, with multiple working teams within each domain.
- The CCMC organized the "International CCMC-LWS working meeting: Assessing Space Weather Understanding and Applications", held on April 3-7, 2017 in Cape Canaveral (120 participants).
- Long-term activity: regular telecons and mini-meetings at community conferences (e.g., 2017 CEDAR Workshop: Jun. 19, from 4-6pm)
- JOIN this community-wide International Forum
- <u>https://ccmc.gsfc.nasa.gov/assessment/index.php</u>

foF2 and TEC Changes at Ebre and Boulder

- ____ dfoF2 = (foF2 foF2_med)/foF2_med *100
- dTEC = (TEC TEC_med)/TEC_med *100
- Models show the same trend in dfoF2 and dTEC.
- None of the models catch the opposite changes in foF2 and TEC at Boulder.

foF2 and TEC Changes at Ebre and Boulder

- Ebre:
 - o Both foF2 and TEC increase
- Boulder:
 - TEC increases while foF2 decreases
 - Possible cause:

- TEC increase due to ExB drift caused by penetration eastward electric fields during the storm main phase

- foF2 decrease due to molecular-rich air (small O/N2)

dfoF2 = (foF2 – foF2_med)/foF2_med *100 dTEC = (TEC – TEC_med)/TEC_med *100

Quiet-time TEC variations (RSTD)

