Ionosphere-thermosphere response to geomagnetic storms

Denny Oliveira (GSFC/UMBC), Eftyhia Zesta (GSFC), Peter Schuck (GSFC), Hyunju Connor (GSFC/now at UFA), Eric Sutton (AFRL)

GRACE satellite orbit decay during the 20 Nov 2003 storm

Krauss et al [2015]

Density dynamics not captured in models cause satellite orbit prediction errors

IMPACTS:

- within 72 hrs:
 - satellite maintenance operations
 - collision avoidance
 - re-entry predictions.

within months-yrs

- reduce satellite lifetimes
- on-board fuel usage

Storm of 24 Aug 2005 drag effects

PREDICTION ERRORS

JB08 error after 12 hrs

JB08 error after 72 hrs

New generation of LEO spacecraft

CHAMP (2001-2010)

H = 456 km GOCE (2009-2013)

H = 255 km

GRACE (2002-present) Accelerometers

slide

5

H = 500 km

High-level density data

SWARM (2013-present)

H = 450-530 km

SOHO/LASCO C2 CME images

Superposed epoch analysis with 168 storms caused by CMEs from 2001-2011

TADs - traveling atmospheric disturbances [Prolss, 1997]

Highly correlated with solar activity

Responsible for the global transport of perturbations from auroral to equatorial regions

Dayside TADs are quickly dissipated through ion drag; lightside TADs propagate farther away from high latitude regions Richmond and Matsushita, 1975] [Bruinsma and Forbes, 2007]

CHAMP observations of TADs

Daytime wave structures with speeds o

730 m/s (NH, summer)

460 m/s (SH, winter)

Inter-hemisphere TAD propagation

ide 12

Conclusions

 Thermosphere density variations are the major contributor to satellite orbit prediction errors

- Density enhancements are immediate (within minutes), strong and localized at high latitudes in the first hrs during geomagnetic storms.
- Globalization of the thermosphere response occurs in ~3 hours after storm main phase onset

We are creating new storm epoch empirical models that will ultimately provide the global density structure through storms in high time cadence.

Energized plasma convects from magnetotail to the ionosphere high latitude regions

What causes the *aurora*?

This convection pattern creates the flow of electric currents that dissipate energy through ion/neutral collisions that heats the atmosphere

fb.com/ScienceNaturePage

MLAT: 3- degree bins, Epoch time: 90-minute bins

MLAT bin size: 90 minutes (~ SAT orbital period)

