Extending Measured Bottomside EDPs to the Topside Ionosphere and Plasmasphere

Mohamed Osman, Bodo Reinisch, Ivan Galkin, Patrick Nsumei University of Massachusetts Lowell

Dieter Bilitza, George Mason University

15th International Ionospheric Effects Symposium

May 9-11, 2017

Objective

- Develop an empirical model of the topside profile from hmF2 through the plasmasphere using sounding data from ISIS and IMAGE satellites
- This talk will focus on the construction of the Vary-Chap model of the topside profile for use in IRI

ISIS mission

- ISIS mission has provided a global coverage of the topside ionosphere over more than an entire solar cycle.
- These data extend from the launch of Alouette 1 in September, 1962 to March, 1983.
- Not all of the data during this time period were processed into electron density profiles.

ISIS mission

- In addition, most of the data extending from March, 1983 up to the turn-off of ISIS 1& 2 in January, 1990 exist only in the original analog telemetry tapes stored in Canada.
- Most of these tapes have now been destroyed due to problems with media deterioration and the cost of tape storage.
- NASA has rated the rescue and transformation of these data as one of its highest priority projects.

Profile Database

- Topside 1.
 - ~85,000 automatic-scaled ISIS-2 profiles.
 - ~250,000 manually-scaled Alouette1,2 and ISIS1,2 profiles. β α

ht

- Bottomside 2.
 - Large database of ground-based ionogram profiles (IRI model)
 - (NmF2) and (hmF2) from bottomside profile are used to construct the topside profile.
- **IMAGE/RPI** plasmasphere profiles 3.

Modeling ISIS data

The Vary-Chap with shape function S(h) is represented by the following equation

$$\frac{N(h)}{N_m} = [S(h)]^{-1/2} exp \left\{ \frac{1}{2} \left[1 - Y - exp(Y) \right] \right\}; \ Y = \frac{1}{h_m} \int_{h_m}^n \frac{dh}{S(h)}.$$

 The parameterized Shape function is represented by three parameters: Alpha, Beta, and HT. Parameter HT (transition Height) determines the transition point between regions dominated by H+ ions and regions dominated by O4 ions. Parameter Alpha determines the steepness of S*(h) for h>HT, and parameter Beta determines the topside thickness of the F2 layer.

$$\frac{1}{S^{*}(h)} = \frac{1}{c_{1}} \left[\operatorname{sech}^{2} \left(\frac{z-1}{\beta/h_{m}} \right) \right] + \frac{1}{c_{2}} \frac{z}{(1+z^{2})^{\alpha}} \quad (2)$$

$$1 = \frac{1}{c_{1}} + \frac{1}{c_{2}(2)^{\alpha}} \quad (3) \quad \frac{1}{c_{1}} \left[\operatorname{sech}^{2} \left(\frac{z_{T}-1}{\beta/h_{m}} \right) \right] = \frac{1}{c_{2}} \frac{z_{T}}{(1+z_{T}^{2})^{\alpha}}; \quad z_{T} = \frac{h_{T}}{h_{m}}. \quad (4)$$

Modeling ISIS data Cont.

Figure 1. Vary-Chap construction for a high latitude profile (GLAT = 77°), 22 June 1976. (left) Parameterized shape function $S_j^*(h)$ (solid line) and its component functions S_{j1} and S_{j2} derived by fitting to $S_j(h)$ (dots). (right) Parameterized Vary-Chap profile $N_j^*(h)$ (solid line) superposed on the measured profile $N_j(h)$ (dots).

α parameter seasonal variations

Steepness parameter α versus geographic latitude for (a) winter, (b) spring, (c) summer, and (d) autumn.

β parameter seasonal variations

Thickness parameter β versus geographic latitude for (a) winter, (b) spring, (c) summer, and (d) autumn.

ht parameter seasonal variations

Transition height parameter h_T versus geographic latitude plots for (a) winter, (b) spring, (c) summer, and (d) autumn, averaged over all local times.

α parameter diurnal variations

Diurnal variations for summer of the mean values and standard deviations of α .

β parameter diurnal variations

Diurnal variations for summer of the mean values and standard deviations of β .

ht parameter diurnal variations

13

Thickness parameter β versus F2-layer peak height hm. The mean value of β and its standard deviation decrease with increasing hmF2.

The h_T values for PF10.7 < 90 and PF10.7 > 160, averaged over all local times.

The α values for PF10.7 < 90 and PF10.7 > 160, averaged over all local times.

Vary-Chap profile representation for the topside profile (left) compared to Modeled IRI topside profile (right). The Vary-Chap representation shows significant increase in TEC comparing to IRI model. Millstone Hill on 10 February 2017

				_	
Layers					
				:	GAMBIT V0.9.02
			Settings	Show Console	
GAMBIT Explorer	r Control and Disj	blay			
IRTAM time of va	alidity (TOV):	2011/09/01	00:00	<< < > >>	
IRTAM v0.2A 🔻	GIRO data	Coefficients		Get Data	
	Re-analysis:	Rerun IRTAM		Resubmit	
DISPLAY CONTR	OLS				
✓ Surface	CUSTOM 👻	INTERPOL_DC	-	10	
Circles					AL AND
Charts		Export all chart data			1900
Ext. maps	TEC_GPS		•	Get ext data	
Quiet Time Refe	rence	2011 / 09 / 01	00.00		
Color Scale				0	
Report:	STATISTICS		-	Generate	
Animate	24 hours 🔻	Make Animated GIF		0	
World		O Flat			
Round					
Projection:		Modified S	Sin.		
	INTERNATIONAL	-			
	12		ambi	t	
		RTAM 🗂			Altitudo 15.000 km
					Adduce 13,000 All

A IRI Real-Time Assimilative Model

Conclusion

- The new Vary-Chap profile model for the topside ionosphere describes the profile from hmF2 to 1400 km as function of local time, month and location.
- The IRI model provides monthly median maps of foF2 and hmF2 that are based on CCIR or URSI coefficients, as well as the bottomside and topside N(h) profiles.
- The Vary-Chap topside profile can be implemented as an option into the IRI electron density model. Also, the Vary-Chap profile can replace the Chapman topside profile with constant scale height currently produced by the GIRO Digisondes.

