

HF, Scintillation and TEC Measurements using CASSIOPE/ePOP Overpasses above HAARP

Carl L. Siefring, Paul A. Bernhardt, Stanley J. Briczinski, And Michael McCarrick Plasma Physics Division, Naval Research Laboratory carl.siefring@nrl.navy.mil

> H. Gordon James and Andrew W. Yau University of Calgary

DISTRIBUTION STATEMENT: Distribution Unlimited

Ionospheric Effects Symposium, Alexandria, VA, 10 May 2017

Ionospheric Modification with High Power Radio Waves

U.S.NAVAL

RESEARCH

Launched 29 September 2013 325 km x 1500 km Orbit 80° Inclination

Instrument	Description	PI	Scientific Output	HAARP Application
<u>CER</u>	Coherent EM Radio Tomography	Bernhardt	Electron content	VHF, UHF, L-Band Radio Scintillation and TEC
<u>FAI</u>	Fast Auroral Imager	Cogger	Infrared and visible images	Artificial Aurora and Glow Plasma Layers
<u>GAP</u>	GPS Attitude and Profiling Experiment	Langley	Spacecraft position and attitude	L-Band Radio Scintillation
<u>IRM</u>	Imaging and Rapid- Scanning Ion Mass Spectrometer	Yau	Low energy ion detection	Thermal and Supra- Thermal lons
MGF	Fluxgate Magnetometer	Wallis	3-D magnetic field and currents	ELF Waves
<u>NMS</u>	Neutral Mass Spectrometer	Hayakawa	0.1-2km/s neutral particles	Neutral Composition
<u>RRI</u>	Radio Receiver Instrument	James	Radio wave propagation	Direct Capture of Pump and SEE
<u>SEI</u>	Suprathermal Electron Imager	Knudsen	Low energy electron detection	Energetic Electron Detection

ePOP Instruments Support Ionospheric Irregularity and Propagation Studies

ePOP Orbit and Groundtrack

- 325 km x 1500 km
- 80° Inclination

U.S. NAVAL RESEARCH LABORATORY

- Nearby Ascending and Descending Passes Each Day
- Ground Track Pattern Shift Slightly Each Day
- In 2014 Different Experiments were Planned Depending on Elevation of Angle to Magnetic Zenith (MZ)
 - 0° to ~14° Different Heating Targeting SEE
 - <19° VLF Generation</p>
 - >19° HF Scatter

• Three HF Heating Passes with RRI Data

- O-mode, F-Region Heating
 - April 16, 2014
 - April 17, 2014
 - April 18, 2014
- VHF/UHF Scintillation an TEC Measurements
- VLF Generation with Modulated HF
 - Broadened Beam Mode -- Robb Moore
- HF Scattering
 - O-Mode Pump + Probe Wave
- New Data from HAARP Re-Opening Feb 2017

April 16, 2014 04:40:00 TO 05:01:00 UT

• MZ Closet Approach 04:51:22.6

-11.68° of Magnetic Zenith -10.57° of Vertical

U.S.NAVAL

RESEARCH LABORATORY

Used Twisted Beam with ~14° Conical Beam Width

e-POP RRI April 16, 2014 Orbit #2734

Inputs: Channel 1 - I1, Channel 2 - Q1, Channel 3 - I3, Channel 4 - Q3 Dipole Mode, GAIN1 High, GAIN2 High, GAIN3 Medium, GAIN4 Medium

April 16, 2014 04:40:00 TO 05:01:00 UT

U.S. Naval Research Laboratory

U.S.NAVAL RESEARCH LABORATORY

April 17, 2014 04:40:00 TO 04:59:30 UT

North

- MZ Closet Approach 04:49:21.0
 - 6.33° of Magnetic Zenith
 - 5.49° of Vertical
- Used Pencil Beam at MZ - 5.66 MHz

South Transit Azimuth-Elevation

April 17, 2014 04:40:00 TO 04:59:30 UT

U.S.NAVAI

RESEAR

e-POP RRI April 17, 2014

Inputs: Channel 1 - I1, Channel 2 - Q1, Channel 3 - I3, Channel 4 - Q3 Dipole Mode, GAIN1 High, GAIN2 High, GAIN3 Medium, GAIN4 Medium

April 17, 2014 04:40:00 TO 04:59:30 UT

- ePOP at 875 km to 1074 km
- Pump Seen After Closest Approach in Low Density Region
- VLF Seen Near Lower Hybrid Frequency Simultaneous with Insitu Pump Wave

Produced by irm_summary v1.0

April 17, 2014 04:40:00 TO 04:59:30 UT Pencil Beam, CERTO Signals

U.S. NAVAL RESEARCH

LABORATORY

April 18, 2014 04:35:00 TO 04:55:00 UT

U.S.NAVAL

RESEARCH LABORATORY

North

Transit Azimuth-Elevation

- MZ Closet Approach 04:47:16.73

 –1.26° of Magnetic Zenith
 - -0.65° of Vertical
- Used Pencil Beam at MZ -5.73 MHz

April 18, 2014 04:35:00 TO 04:55:00 UT

-60

-90

U.S.NAVAL

RESEARCH LABORATORY

U.S.NAVAL RESEARCH LABORATORY

April 22, 2014 **VLF Experiments**

East

Geographic

55°N

690

50°N

240°E

Longitude, deg

ASN N

- VLF Mode Chosen with Pre-Pass Test
 - 3.25 MHz
 - X-mode,
 - **Full Power**
 - **Vertical Broad Beam**
 - Broadend E/W and N/S
 - **Modulation**
 - Square Wave AM 1-11 kHz Ramp in 10 sec

ePOP RRI and Riverview HF Receiver

U.S. NAVAL RESEARCH

HF Probe of Modified Ionosphere

- HF Scintillation and Scatter Experiment
 - 9.5 MHz Probe Wave with 2.2kW
 - HF Modification with High Power
 - ePOP RRI Records Probe and Pump
- Objectives

U.S. NAVAL RESEARCH

- Scattering by Field Aligned Irregularities
- Scattering by Artificial Ionization
- Try to Separate Direct Propagation from Scattered Signals by Doppler Shift
- RRI Saturated in High Gain Mode
 - Worked well during a High Absorption Day

U.S. Naval Research Laboratory

. 5

HF Scattering Experiment

- Main array (174 dipoles) :
 - 5.66 MHz,
 - O-mode,
 - CW, full power
 - 10 deg off-zenith, 180 deg azimuth
 - 2x3 sub array centered in main array (6 dipoles) :
 - 9.5 MHz,
 - O-mode,
 - CW, full power
 - Vertical beam

e-POP RRI

U.S. Naval Research Laboratory

U.S. NAVAL RESEARCH LABORATORY

Can Doppler Explain Spreading

- Doppler Shifts Calculated using Vacuum Propagation
 - 9.5MHz at >1000 Km, so Local Refractive Index is very Close to 1
 - Refraction near F-Region Peak may Contribute but we do not Have Ionogram to Model
 - **U.S. Naval Research Laboratory**

U.S. NAVAI

Interesting HAARP Observations From February 2017 "Re-Start" Campaign

• HAARP Limited to

U.S. NAVA

- ~2.2 MW (full array ~3.6 MW)
- 9x12 Antenna Array
- Frequency Modulated Continuous Wave (FMCW) vs CW Heating
- Monitored all Gyro Harmonics 1 through 6 during GyroHarmanic Heating
 - Wayne Scales From Virginia Tech
 - Some Indication of Generation of 4th Harmonic during 2nd Harmonic Heating
- Ocean Scatter using ePOP

- FMCW induces significant SEE
- De-chirping may allow determination of altitude of SEE sources

U.S. Naval Research Laboratory

- The April and May/June 2014 Campaigns Were the First Attempts to Measure
 - HAARP HF Signals In-situ with a Satellite
- Several Types of Experiments Were Performed
 - O-Mode Heating
 - HAARP ELF/VLF Generation by Several Processes
 - LH/Whistler Coupling
 - HF Beat Frequency
 - HF Scattering
 - UHF/VHF Propagation Effects
- Large TEC Increase and VHF/UHF Scintillations
- Many Lessons Learned
 - Refined Gain Settings for RRI
 - Refined Sensitivities for Particle Detectors
 - On-Off Cycles are Important to Differentiate from Natural Phenomena
- ePOP and HAARP are both Operational
 - Very Valuable to Get More ePOP Measurements with HAARP
 - ePOP has been used with Arecibo
 - 2017 HAARP Campaign

U.S. Naval Research Laboratory