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• At the 2015 IES Meeting, we presented a phase screen solution for the spectrum of 
intensity scintillations when the refractive index irregularities follow a two-component 
power law spectrum: 

Carrano, C., and C. Rino (2016), A theory of scintillation for two-component power law irregularity 
spectra: Overview and numerical results, Radio Sci., 51, 789–813, doi:10.1002/2015RS005903. 

• Here, we consider the inverse problem, whereby phase screen parameters are inferred 
from measured scintillation time series as a means of interpreting them physically.  

• We accomplish this by fitting the spectrum of intensity fluctuations with the theoretical 
model using the Maximum Likelihood (ML) technique.  

• We refer to this as Irregularity Parameter Estimation (IPE) since it provides a statistical 
description of the refractive index irregularities from the scintillations they produce. In  
this sense, IPE may be thought of as stochastic back-propagation. 

Introduction 



• For a piecewise power-law irregularity model, normalizing by the Fresnel scale (ρF)  
casts the problem in dimensionless form. 
 

• Normalized quantities: 

µ – spatial wavenumber 
µb, –break scale 

P(µ) – phase SDF    
I(µ) – intensity SDF 
 

• The universal scattering strength, U, is defined to be P(µ=1).  
For weak scatter, U<<1 and for strong scatter U>>1. 

• Parameters p1, p2, µb, and U fully specify all solutions for 2-component spectra  
(i.e. different combinations of perturbation strength, propagation distance,  
and frequency produce identical results). 

 

Universal Scaling 
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• Temporal frequencies in the observed scintillation spectra are related to spatial 
wavenumbers via the so-called effective scan velocity Veff as 

• Using this we can express the temporal spectrum of intensity fluctuations as a function  
of phase screen parameters p1, p2, µb, and U, and Fresnel frequency fF = Veff/ /ρF: 

 

 

 where γ is the so-called structure interaction function (see Carrano et al., 2016). 

• This theoretical model lacks a direct dependence on the propagation geometry and even 
on Fresnel scale! In particular, data can be fit without knowing distance to the screen.  

• Model is valid in weak and strong scatter conditions for transverse scans to the extent 
that a 1D phase screen model adequately describes the propagation physics. 
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Theoretical Model for Fitting Scintillation Spectra 
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 Consider                                  as a random variable where  

 For a perfect model Ri  will follow a chi-squared distribution of order d 

 

 

 This assumption looks quite good for simulated scintillation data 

2~ / ,i dR dχ

id R

2
dχ

5 

where d is number of periodograms averaged together 

The Spectral Ratio and its Distribution 
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 The probability of measuring one harmonic                       given the model is 

 

 

 The probability of measuring the entire spectrum given the model is  

 

 

 Likelihood of the parameters given the measurements: 

       

 Goal is to find estimate      that maximizes  
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Maximum Likelihood Estimation 
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Fitting Simulated Intensity Spectrum Plus Noise (p=3.0) 
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100 Monte Carlo Simulations (p=3.0) 

90% Confidence Region 

Solid curve is 
covariance ellipse 
of Monte Carlo 
results; dashed is 
ellipse from MLE 

Dashed lines indicate Truth 
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Fitting Simulated Intensity Spectrum Plus Noise  
(p1=2.5, p2=3.5, µb = 5) 
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100 Monte Carlo Simulations 
(p1=2.5, p2=3.5, µb = 5) 

90% Confidence Regions 



Fitting Actual Scintillation Data (Example 1) 

Akaike Information Criterion: AIC = -2 Log(L) + 2k 
 
AIC one-component model:    -663.45 
AIC two-component model :   -660.91 
 
Conclusion: this is likely a one-component spectrum 
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Fitting Actual Scintillation Data (Example 2) 

Akaike Information Criterion: AIC = -2 Log(L) + 2k 
 
AIC one-component model:    -3.61 
AIC two-component model : -187.78 
 
Conclusion: this is likely a two-component spectrum 
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Conclusions 

• We introduce Irregularity Parameter Estimation (IPE) for inferring phase screen 
parameters from scintillation observations using the Maximum Likelihood Method. 

• We have used Monte-Carlo simulation to demonstrate that the method gives nearly 
unbiased results with useful confidence intervals (perhaps a little overly-conservative). 

• The one- and two-component phase screen models are nested; we use the 
Akaike Information Criterion (AIC) for hypothesis testing. 

• Caveat: MLE estimates and confidences are not meaningful if model is invalid 

– A 1D phase screen model is strictly applicable only for cross-field scans 

– Theoretical model should depend uniquely on the parameters over measurement 
range. As scattering strength increases, spectrum becomes flat with Gaussian-like 
high frequency roll off—similar shape for different screen parameters 
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