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Abstract

This work describes numerical techniques to generate realizations or sample functions
of the received, demodulated wide bandwidth signal after two-way propagation through ionized
turbulence. These signal realizations include the effect of a structured ionosphere that separates
the radar and target. The underlying basis for these realizations of the received radar signal is
the solution of the scalar Helmholtz equation for the ionospheric transfer function through the
use of a multiple phase screen (MPS) propagation code. The formalism here includes both mean
(non-structured) and structured ionization and considers a moving radar target that produces
additional Doppler, pulse dilation and contraction, and conditions of filter mismatch.

In the case of ionospheric structure, the MPS code solves the parabolic wave equa-
tion and allows for direct computation of realizations of the impulse response function of the
ionosphere. The MPS simulation is quite general, and may be applied to problems involving
numerous, separated, layers of ionization characterized either statistically by spatially varying
electron density power spectra or by deterministic specification of the actual electron density.
MPS techniques can handle all levels of ionospheric disturbances from the least severe, where
only small phase fluctuations occur, to the most severe case of frequency selective scintillation.
For wide bandwidth signals, the MPS code is exercised for many frequencies over the bandwidth
of the propagating radar signal to calculate the complete ionospheric transfer function.

In addition to dependence on the propagation channel, the receiver output also de-
pends on the transmitted signal and the receiver characteristics. Here the transmitted signals
are assumed to be chirps (linear frequency-modulated pulses). Explicit equations are given to
generate realizations of the disturbed signal at several locations in the radar signal processing
train. For matched filter processing we give expressions for the received signal immediately after
downconversion to baseband (i.e., prior to pulse compression) and at the output of the matched
filter. For the case of stretch processing an expression is given for the signal after downconver-
sion and deramping. These analytic expressions include the effects of propagation disturbances
on a pulse-by-pulse basis and are easily implemented in software. They provide a mechanism
to use MPS calculations of the impulse response function to generate realizations of the radar
signal at important places in the receiver processing chain.

Such realizations are useful for numerical simulation and hardware testing of radars
that must operate under disturbed propagation conditions, for example HF through UHF radar
in the natural equatorial or polar region. Several useful examples are presented that illustrate
the effects of time- and frequency-selective ionospheric fading on demodulated chirps.

Channel Description

This section describes the ionospheric channel for propagation in both the mean and
the disturbed ionosphere. The two-way radar channel model here is partially described in Knepp
and Brown [1997]. First consider a propagation channel with a non-time-varying ionosphere and
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fixed range to the radar target. The scalar Helmholtz equation for a propagating wave can be
written as follows [Yeh and Liu, 1977].

∇2ψ + k2n2(1 + γε)ψ = 0 (1)

where

n2 = 1− f 2
p

f 2
; γ =

f 2
p

f 2
p − f 2

; ε =
ΔNe

〈Ne〉 (2)

and f is the transmission frequency in units of Hertz, f 2
p = c2re〈Ne〉/π, where fp is the plasma

frequency, re is the classical electron radius, 〈Ne〉 is the mean electron density, and ΔNe is the
deviation in electron density due to small scale structure. Here the time dependence exp (iωt)
is suppressed, where ω = 2πf . The symbol k is the wavenumber and c is the speed of light in a
vacuum, k = 2πf/c.

The solution to (1) can be expressed as the product of two components where one is
the solution for ε = 0 and the other is the solution of the parabolic wave equation [Yeh and Liu,
1977]. Let the index of refraction, n, be a function only of z and assume that there is no small
scale ionospheric structure, so that ε = 0. The plane wave solution for one-way propagation
from 0 to z is easily found as

Tmean(f, z) = exp

{
−ik

∫ z

0

n(z′) dz′
}

(3)

provided that the derivative of n with respect to z is small. Reconsider the full equation (1)
and write the solution as the product T1(x, y, z, f) = Tmean(f, z)Tstruct(f, x, y, z). Inserting this
expression into (1) gives the parabolic wave equation for Tstruct with the usual provision that
the structure scale size is much larger than the wavelength,

∂2Tstruct
∂x2

− 2ik
∂Tstruct
∂z

+ 2k2Δn(x, z, ω)Tstruct = 0 (4)

For ionization irregularities Δn = −reλ2ΔNe/2π. In writing (4) it is assumed that the irregu-
larities are infinite in length and aligned along the y-direction. This geometry is a good model
of transionospheric propagation near the equator.

Now separate the ionized region into a number of thin layers, each of which is modeled
as a central phase changing screen (phase screen) surrounded by free space. Consider a layer of
thickness Δz centered at zero z. For small Δz the equation for propagation through this layer
is obtained from (4) with the first (diffraction) term neglected. The solution is

Tstruct

(
x,

Δz

2
, ω

)
= Tstruct

(
x,−Δz

2
, ω

)
exp

{
−ik

∫ Δz
2

−Δz
2

Δn(x, z′, ω)dz′
}

(5)

The exponential term is simply the geometric optics phase change after straight line propagation.
Equation (5) handles propagation through the phase screen.

Equation (4) is valid for free-space propagation between the phase screens if the last
term is neglected. The resulting equation is solved by Fourier transform, giving

Tstruct(x, z2, ω) =

∫ ∞

−∞
T̂struct(q, z1, ω) exp

[
i2π2q2(z2 − z1)/k + i2πqx

]
dq (6)
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where

T̂struct(q, z, ω) =

∫ ∞

−∞
Tstruct(x, z, ω) exp(−i2πqx)dx (7)

The solution for the electric field is then obtained using (5) and (6), propagating from screen to
screen and finally to the receiver plane. The numerical solution to the parabolic wave equation
using multiple phase screens is discussed in Knepp, [1983] for plane waves and in Knepp, [2015]
for spherical waves.

The multiple phase screen code calculates realizations of the function Tstruct(x, f),
which is transformed to Tstruct(t, f) through the assumption of some velocity at which the phase
screen moves past the receiver.

For two-way radar propagation, the channel impulse response function is the Fourier
transform of the transfer function as specified through the expression

T (t, f) =

∫
h(t, τ)e−i2πfτ dτ–trans-func (8)

The results here also require the function G(ν, τ) that Bello [1963] calls the Doppler-delay-spread
function

G(ν, τ)
�
=

∫
h(t, τ)e−i2πνt dt–Htrans-1 (9)

In the following, multiple integrals are generally written with a single integral sign and the
(unwritten) limits are from negative to positive infinity.

Received waveform

Now suppose that the transmitted signal is a pulse train, modulated on a carrier f0,
of the form

x(t) =
∑
n

s(t− nTp)e
i2πf0t–train (10)

where n is the pulse number, Tp is the time between pulses, and s(t) is referred to as the baseband
pulse. The received signal after two-way propagation is found to be

z(t) = ei(2λ0reNt−2k0r)
∑
n

∫
h(t, τ)s(β(t− t0)− τ − nTp − 2τI)e

−i2πf0τdτ

× ei2π(f0+fdop)(t−t0)−i2πf0(2τI )–rec-sig (11)

In (11) λ0 = c/f0, Nt is the total electron content along the two-way propagation path, β =
(c−ṙ)/(c+ṙ), ṙ is the range rate of the radar target, t0 is the time-delay due to two-way free space
propagation, τI is the one-way time delay due to mean ionization, and fdop = −2ṙf0/(c+ ṙ) is
the target Doppler shift. For the case of constant range, a mean ionosphere with no dispersion,
and no random structure so that Tstruct(f) = 1, (11) becomes the familiar

z(t) = ei(2λ0reNt−2k0r)s(t− t0 − 2τI)e
i2πf0t–rec-sig (12)

Transmitted chirp waveform and matched filter

Here we consider the effects of structured ionization on a received chirp pulse. Many
modern long-range radars transmit linear frequency modulated signals (chirps) because of sim-
plicity of pulse generation and the desire for high range resolution together with high received
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signal-to-noise ratio (SNR) [Klauder, et al., 1960]. In this case the transmitted signal at base-
band is

s(t) = uT (t)s
′(t)–eq:unitimpulseandsoft (13)

= uT (t)e
+iπαt2–eq:ChirpSignalTwo (14)

where uT is a unit rectangle of duration T , uT (t) = 1,−T/2 ≤ t ≤ T/2, and α = ±B/T is the
chirp slope. B is the chirp bandwidth and T is the uncompressed pulse duration. For α > 0 the
instantaneous frequency of the transmitted baseband pulse ranges from −B/2 to B/2 during the
pulse duration. High SNR is obtained at the output of the matched filter through the process
of pulse compression wherein a delay-equalizing filter is applied to properly delay the earlier
portions of the arriving signal so that they coherently add to the later portions of the signal.

Upon reception, downconversion to baseband is accomplished by multiplication of the
received signal, zb(t) = z(t) exp(−i2πf0t). Pulse compression may then be accomplished by
multiplication of the downconverted waveform by a matched filter. The output of the matched
filter is given by

o(t) =

∫
zb(t

′)m(t− t′) dt′–mf6 (15)

where m(t) = s∗(−β ′t)w(t). The function w(t) represents a time-domain weighting function
commonly applied to reduce range sidelobes. The factor β ′ is the receiver estimate of β, based
on the current estimate of target range rate.

After much algebra, the compressed chirp produced from matched filter processing
can be written as

o(t) = eiπf
2
dop/α

∫
Ebb(τ

′)Q(t′ − τ ′)e−iπfdop(t
′−τ ′) dτ ′

× ei2πfdopte−i2π(f0+fdop)t0–o-convol2 (16)

where

t′ = t− t0 − nT ′
p + fdop/α (17)

Ebb(τ)
�
= β

∫
Gbb(ν, β(τ + ν/α))ei2πν(t0+nT ′

p) dν–Hbbp-def1 (18)

and Gbb is a simply a frequency-shifted version of G given by (9), i.e., Gbb(ν, τ) = e−i2πf0τG(ν, τ).
The function Q is related to the ambiguity function and is defined by

Q(t + f/α) = u2T (t)
sin πT (f + αt)

π(f + αt)
–X-sin (19)

This important result states that if we have a realization of the two-way radar channel
impulse response function hbb(t, τ), or equivalently its transform Gbb(ν, τ), we can generate
realizations of the received, compressed signal o(t) through a single convolution. The two terms
that are convolved are the matched filter response in the absence of multipath, Q(t), and the
term Ebb(τ). The term Ebb(t) is the Fourier transform of the Doppler-delay-spread function that
describes the two-way radar channel and is obtained by sampling Gbb(ν, τ) along a straight line
in ν − τ space.
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Scattering from a homogeneous ionosphere

In the following examples, we use a homogeneous multiple phase screen calculation to
provide the propagation environment. Here ten phase screens are used to model a 420-km thick
ionosphere. Each phase screen has a q−3 power-law power spectral density with outer scale of 10
km and inner scale of 10 m. The phase standard deviation of each screen is chosen as 15.8 radians.
The transmission center frequency is 300 MHz and the 40-MHz bandwidth has 128 frequency
components ranging discreetly from -280 to 319.7 MHz. The one-way propagation geometry
corresponds to a plane wave incident on the 420-km thick ionosphere and then propagating an
additional 420 km to the receive plane on the ground. The phase screen consists of 217 = 131, 072
points with a 100 km grid length. This length corresponds to a total wall-clock time duration
of 1000 seconds using 100 m/sec as the assumed line-of-sight velocity. Figure 1 shows one of the
phase screens as a function of wall-clock time along the entire MPS grid.

We analyzed the output of the MPS calculation to obtain several statistical quantities
that characterize propagating waveforms, namely the scintillation index and the signal decorre-
lation time. Both of these quantities are obtained from the spectral component of the transfer
function at the carrier frequency, 300 MHz. The scintillation index is the standard deviation
of the power normalized by the mean power and is 1.15 for the realization generated for this
example. The signal decorrelation time (τ0) is defined at the 1/e point on the magnitude of the
autocorrelation function of the complex received signal and is here 0.629 seconds. The coherence
bandwidth refers to the bandwidth within which the spectral components are correlated. For
this MPS calculation, the theoretical coherence bandwidth is 22.3 MHz. We did not measure
this quantity in the calculation. For chirp pulses whose duration exceeds the decorrelation time,
the matched filter output will experience degradation including loss of peak power and multi-
ple sidelobes in the range (or fast-time) dimension. For radar chirps with bandwidth greater
than the coherence bandwidth, somewhat similar effects will occur. Knepp and Brown, [1997]
describe these effects in terms of the average received pulse shape, but not to the level of detail
considered here.
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Figure 1: One of the ten phase screens used to model a thick homogeneous ionosphere.
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Frequency-flat fading

Frequency flat fading occurs when all the frequency components across the signal
bandwidth experience the same propagation disturbance. Figure 2 (top-left) shows the ampli-
tude and phase of the ionospheric channel at the center frequency of 300 MHz. Only a short
portion, of duration 10 seconds, of the entire MPS calculation grid is shown for this example
of flat fading. Figure 2 (top-right) shows the magnitude of the channel transfer function over
the 10-second period. To create an example of frequency flat fading, we set all the frequency
components of the transfer function to their values at the center frequency. In the next example,
we utilize the calculated transfer function without modification.

Figure 2 (bottom-left) shows 100 realizations of the received chirp waveform for the
case of a transmitted signal with a time duration, T of 0.04 seconds and a chirping bandwidth of
40 MHz. The duration of the chirp pulse here is much smaller than τ0, so there is no possibility
for time selective fading. The received signal amplitude is shown as a series of pulses plotted
one behind the other in the figure, over a small portion of the MPS calculation. The pulses
are spaced by about 0.1 seconds in wall-clock time. For this case of flat fading, all the received
pulses retain the same shape but their amplitude is affected by the amplitude of the ionospheric
transfer function.

Frequency-selective scintillation

Figure 2 (bottom-right) shows an example of the effects of frequency selective iono-
spheric fading on 100 received pulses over the time interval from 10 to 20 seconds in the MPS
calculation. The transmitted chirp pulse duration is 0.04 seconds and the bandwidth is the
entire frequency extent of the MPS calculation, 40 MHz. For this calculation, the amplitude of
the ionospheric transfer function as a function of frequency and distance is shown in Figure 2
(top-right). The primary difference between the calculations underlying Figures 2 (bottom-left)
and 2 (bottom-right) is that the latter calculation uses all the frequency components of the
transfer function shown in Figure 2 (top-right).

In Figure 2 (bottom-right) the received pulses are distorted in their trailing edges only,
in the direction of increasing range delay, to the right in the figure. The leading edges (to the
left in the figure) experience a little time-delay jitter and amplitude fading, but the shape of the
leading edge of the pulse is not affected. This behavior is similar to that shown above in the
examples describing scattering from a structured barium cloud. This behavior occurs because
ionospheric scattering always delays (never advances) various components of the propagating
wave. The delayed components arrive at the receiver at later times (depending on the amount
of the delay) and interfere with other delayed components. The amount of the delay depends
on the angle over which the wave is scattered, which is a function of the frequency within the
signal bandwidth.
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Figure 2: Top left: Amplitude and phase of channel at f0. Top right: Amplitude in dB of the
ionospheric transfer function. Bottom left: Example of flat fading. Bottom right: Frequency-
selective fading.
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