

Ionospheric Effects on a Wide Bandwidth Chirp Signal

Ionospheric Effects Symposium

May 2017

Dennis L. Knepp

NorthWest Research Associates Monterey, California

- Examples of wideband channel behavior
 - Collected downlink data from MUOS UHF SATCOM in Sept. 2014 (Synchronous satellite)
 - Characterization of wide bandwidth ionospheric channels
- Brief description of the paper, calculation of wide bandwidth radar signal response to small-scale ionospheric structure
- Examples of disturbed chirp waveforms after propagation through ionospheric structure
- Conclusions

- S₄ scintillation index
 - Quantifies channel amplitude variation with time
- Decorrelation time (τ_0)
 - Specifies time duration over which the channel is unchanging
- Coherence bandwidth (f_{coh})
 - Specifies the bandwidth over which the channel spectral components are roughly equal

Mitigation of ionospheric effects requires knowledge of these channel parameters

MUOS Periodogram Observed with Little or No Scintillation

- MUOS PSD, smoothed in time and frequency. MUOS Pacific satellite, receiver at Kwajalein, Marshall Islands
- MUOS downlink has 4 carriers, each with about 5 MHz bandwidth, centered at 370 MHz
- Large narrow-band tones are most likely local interferers
- MUOS wideband data samples provided by Ron Caton, AFRL (8 hrs of data collected in Sept 2014)

FFTMovieCase201.avi

Collected data with little scintillation Sept 16, 2014

Wideband MUOS signal observed at Kwajalein, Sept 2014

- MUOS PSD, smoothed in time and frequency.
 MUOS Pacific satellite
- Large narrow-band tones are most likely local interferers
- MUOS downlink data shows frequency selectivity (decorrelation) across the 20-MHz downlink bandwidth
- But detailed analysis of the impulse response function indicates that the individual 5-Mhz channels are roughly frequency-flat

FFTMovieCase602.avi

Frequency-selective scintillation across the entire 20-MHZ downlink band, Sept 16, 2014

• Consider scalar Helmholtz wave equation for combined mean and random propagating fields

Since 1984

- Write solution in terms of impulse response function for two-way radar propagation
 - Transmitted chirp, moving target, chirp-slope mismatch,etc., all effects on signal processing
- New result: Useful expressions for output of radar signal processor at three important points in the processing chain: (1) after down conversion, (2) after match processing, (3) after stretch processing
- Use multiple-phase screen propagation code to generate realizations of impulse response function
- Generate realizations of matched filter output (compressed pulse) to view propagation effects

Two Alternatives for Processing of Received Chirp Signal

Matched filter or two-pass processing

Stretch or one-pass processing

Example of a Compressed Chirp With No Ionospheric Disturbance

- Tc = Time duration = 0.04 sec
- BW = Bandwidth = 40 MHz
- Range resolution = 3.75 meters

Amplitude (dB) of Ionospheric Transfer Function Calculated by MPS Code

0

-5

-20

-25

-30

-35

-40

Scintillation severity is similar to that of the earlier MUOS videos

MPS calculation

- 420 km thick ionosphere
- 10 phase screens
- Length = 100 km, 131072
 points
 - K⁻³ PSD of phase
 - Outer scale = 10 km
 - Inner scale = 10 m
 - 300 MHz carrier
 - 128 spectral components over 40 MHz bandwidth
 - $S_4 = 1.1, f_{coh} = 3.5 \text{ MHz}$
 - Decorrelation distance = 63 meters
 - Use velocity = 100m/s to convert distance to time

Ionospheric Transfer Function at the Center Frequency (300 MHz)

Example of Flat Fading

Chirp pulse: Tc = 0.04 sec BW = 40 MHz

 $\begin{array}{ll} \text{lonosphere:} \\ \tau_0 &= 0.6 \; \text{sec} \\ f_{\text{coh}} &= \text{infinity} \end{array}$

Small Tc / τ_0 Small BW / f_{coh}

- Set all spectral components of transfer function equal to that of the center frequency (300 MHz);
- Waveform fades but pulse shape is otherwise undisturbed

Example of Frequency-selective Fading

Chirp pulse: Tc = 0.04 sec BW = 40 MHz

Ionosphere: $\tau_0 = 0.6 \text{ sec}$ $f_{coh} = 3.5 \text{ MHz}$

Small Tc / τ_0 Large BW / f_{coh}

- Radar chirping bandwidth is large with respect to the coherence bandwidth
- On-time signal plus interference from delayed versions

Chirp pulse: Tc = 5 sec BW = 40 MHz

 $\begin{array}{ll} \text{Ionosphere:} \\ \tau_0 &= 0.6 \text{ sec} \\ f_{\text{coh}} &= \text{infinity} \end{array}$

Large Tc / τ_0 Small BW / f_{coh}

- Uncompressed pulse duration is large with respect to ionospheric decorrelation time
- Filtering process is disturbed in time domain. Entire compressed chirp is distorted

Example of Combined Time- and Frequency-selective Fading

Chirp pulse: Tc = 5 sec BW = 40 MHz

 $\begin{array}{ll} \text{lonosphere:} \\ \tau_0 &= 0.6 \; \text{sec} \\ \text{f}_{\text{coh}} &= 3.5 \; \text{MHz} \end{array}$

Large Tc / τ_0 Large BW / f_{coh}

- Large Tc / τ_0 and large BW / f_{coh}
- Received, demodulated waveform exhibits both distortion and interference from delayed waveforms

- MUOS (Mobile User Objective System)
 - UHF SATCOM system that is replacing the US Navy UFO system
 - Uses a 4.7-MHz waveform at transmission frequencies of 310
 MHz (uplink) and 370 MHz (downlink)
 - Ionosphere is known to be frequency selective at this frequency & bandwidth
- ESA BIOMASS SAR
 - Synthetic aperture radar at 435 MHz with 6-MHz bandwidth
 - Launch is planned for 2020
 - Orbit planned to avoid nighttime ionosphere
- VHF/UHF/L-band SAR for foliage penetration
 - Hypothetical future system
 - Low transmission frequency desired for EM penetration
 - High bandwidth required for good range resolution

- Improving hardware technology is leading to the increased development of wide bandwidth communications and radar systems
- New and planned wide bandwidth systems can benefit from research similar to that presented here to
 - Predict ionospheric effects on signals
 - Quickly generate useful digital realizations of ionospherically corrupted waveforms for both design studies and receiver hardware testing

BACKUPS

MUOS data: Peak of the impulse response function, Sept 23, 2014

- Peak power of the time-varying impulse function versus time
- We measured S₄ between 0.9 and 1.2 for the entire 11 minutes of this data segment. Only 30 seconds of data is shown.

Time_delay.eps

Fade duration from 8 hours of AFRL MUOS data taken at Kwajalein

- Channel fade duration is important for the design and operation of COMM links
- Slow, deep fading is a difficult channel phenomenon that is hard to design against

SRI probe: Simulated time-varying transfer function and impulse response function

Channel is intended to be a severe ionospheric disturbance, similar in severity to those measured previously at Ascension Island

NWRA

Since 1984

Channel parameters are consistent with WBMOD. **Keith Groves measurement** of τ_0 ; f_0 from Knepp et al. (1991, 2002) & Cannon et al. (2006)

> Measurement parameters:

M = 8, K = 32T_{Block} = 2 msec **Channel params:** $f_0 = 250 \text{ kHz}$

 $\tau_0 = 25 \text{ msec}$

SNR = -8 dB

wbp M8 SNR -8 K32 f0 250 t0 25.avi 25

Sequence of impulse responses from simulated data

M = 9, K = 8, f_0 = 250 kHz, τ_0 = 25 msec, SNR = -8 dB

PROPMOD prediction of coherence bandwidth at 383 MHz at the 95th percentile

 We choose f₀ values of 0.32 and 0.39 MHz for testing of probe signal processing

Severe scintillation: 22:00 UT, March 15, SSN = 150, most severe day of year7

Multiple Phase Screen Signal Generation

• Parabolic Wave Equation for E-field

Solution Method:

- Collapse ionospheric structure to multiple thin phase-changing screens with free space between
- At phase screen, neglect diffraction term
- Between screens, the parabolic wave equation is source free, so can solve by Fourier Transform method
- MPS technique generates realizations of the spatially-varying transfer function for all levels of scintillation severity

MPS/PROPMOD code legacy

- MPS code and PROPMOD were used by MUOS to successfully predict March 2001 experimental results
- MPS code used to predict received signal from a GPS-like transmitter on a rocket beacon shot behind a barium cloud

decorrelation time at 383 MHz at the 95th percentile

- PROPMOD combines WBMOD with PROP code
- Calculates propagation parameters
- PROPMOD Is consistent with Groves' measurements of τ_I at 250 MHz (30-50 msec)
- Groves has 64-107 msec for τ_0 after converting and scaling to 383 MHz

- The time-varying (t=time) impulse response function h(t,τ) completely describes the propagation channel over the bandwidth of the probe. Its Fourier transform H(t,f) is called the transfer function
- Convolution of the impulse response with any actual transmitted waveform gives the received waveform, including ionospheric effects
- Wideband channel probes are useful to determine the effects of scintillation for systems whose bandwidth exceeds the coherence bandwidth (f_0) of the ionosphere
- Isolated narrow-band beacons (tones) can measure many parameters that describe ionospheric scintillation, but not the coherence bandwidth