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High Frequency Geolocation (HFGeo) Program RESEACH

» HFGeo Problem: Locate RF transmitters communicating over long ranges via low-cost HF
transmissions

e Standard single-site geolocation approach: Ray trace from received angles of arrival
(AoA) through precise ionospheric model to estimate HF transmitter position

* Challenge: Precise models require active ionospheric probing at midpoint of link (which is
unknown) and are sensitive to complex propagation modes, Traveling lonospheric
Disturbances (TIDS), and noise sources

* STR Approach: Jointly estimate ionospheric and transmitter states leveraging received
skywave angle of arrival (AoA) measurements
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Data Assimilation Sources

I 1]

Theater lonospheric

HF Antenna Array Characte(r_:z;l)?kn System

lono QueriesT llono State IRay Tracing

Transmitter
Geolocation

l HF Array Signal Joint lonospheric Geolocation
Y Processing AoAs ' State Estimation (JIGSE) »

e TICS includes the Regional Optimum Assimilation Model (ROAM),
see Carrano et al paper

e Joint estimation of transmitter location and ionospheric state using received
skywave signals enables high-accuracy transmitter geolocation

- lonospheric model provides state information from background model and (when
available) data assimilation sources (sounders, check targets, GNSS)

- High accuracy all-passive HF geolocation achievable through joint estimation

* Key innovation is the exploitation of the fact that transmitter skywaves reveal
information about the Tx location and the propagation channel
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e Joint lonosphere-Geolocation State Estimator (JIGSE): use non-linear
estimation and tracking techniques to exploit skywave combined
measurement of the transmitter location and ionospheric state
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Step 1 — Sample Transmitter and lonosphere
State Space
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Steps 2 and 3 - Predict Measurement and Update Str;fi’éifﬁém
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HFGeo Results from White Sands Missile Range 5”73}’35%‘51@
(WSMR) Data Collects

Transmitter/Receiver locations
-!'.'__,_.:{.E-'r_: 3 1.., 5 T

Data collected over multiple days on Jan. 2014 and
March 2016 at WSMR

— Government antenna array composed of bow-tie
antennas at G10 site

— Angle of Arrivals (AoAs) computed by Government team

Results shown next correspond to two transmitters
located ~ 100 — 150 km from receiver site (Jan 19
2014 - POL Tx and June 20 2016 - M1RCF Tx data sets)

We compared our passive-only ionospheric state
estimates (plasma frequency plus tilt) with

those provided by ROAM using measurements
from a digisonde co-located with one of the Tx

* JIGSE-estimated ionospheric state demonstrates
“passive-only” ionosphere estimation capability at
received transmitter frequency
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Passive lonospheric Tilt Coefficient Estimate sﬂﬁzrzmm
Example 1 - Jan 19 2014, POL Tx /

* Linear tilt parametric model given by a North/South gradient and an
East/West gradient
1, (hlat,lon) = {*(h,lat,,lon,) A(h) 1 +ar,, (lat — lat,) | 1+ e, (lon—on,)
* Good overall match of tilt coefficients — note that the East/West ROAM tilt

coefficient is zero during the second part of the collect due to an issue with
the processing of the skymaps produced by the Digisonde

North/South tilt coefficient vs time East/West tilt coefficient vs time
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Passive Plasma Frequency Profile Estimate 5”73}’35%‘51@
Example 1 -Jan 19 2014, POL Tx

* JIGSE estimated only a subset of the IRl parameters
IRI Reduced model =| foF 2, foF1, fokE, hmF?2, B0, Bl]

 We compared JIGSE passively estimated profile with the one provided by
ROAM (using POL Digisonde measurements)
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Plasma Frequency Profile Comparison Strfﬂﬁifﬁém
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January 19 2014, POL Tx /
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Passive lonospheric Tilt Coefficient Estimates 5”1555553?;”
Jun 20 2016, M1RCF Tx /

* Good overall matching of tilt coefficients (JIGSE vs ROAM/digisonde),
particularly for North/South during first part of the data collect

 There is some divergence towards the final part of the collect, particularly
for the north/south tilt

North/South tilt coefficient vs time East/ West tilt coefficient vs time
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Plasma Frequency Profile Estimate Eﬂjﬁﬁm
June 20, 2016, 04:45
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Plasma Frequency Profile Comparison StId;;’Eﬁfﬁém
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June 20, 2016, 04:45 /
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Developed Joint lonospheric Geolocation State Estimation (JIGSE) system to achieve
accurate HF Transmitter geolocation

— Leveraging the fact that HF skywaves reveal information both of the Tx location and the
propagation channel

— Enables accurate state estimation when assimilation sources available, and also when
operating in all-passive mode

Capability developed and demonstrated using data from HFGeo tests at WSMR
— JIGSE inputs include AoA’s produced by Government team

— Data collected during multi-week campaigns in January 2014 and June 2016

— JIGSE geolocation results achieved HFGeo program metrics

JIGSE ionospheric state estimates computed for cases with no assimilation sources
demonstrate passive ionosonde

— Tilt coefficient estimates match well to those measured by Digisonde and estimated in
ROAM

— Plasma frequency estimates converge to sounder measurements and show predictive
capability
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All-passive JIGSE TIDS Estimation Provides méﬁﬁiiﬁétaay
Pinpoint Geolocation Accuracy

Phase 1B data: Jan 2014 POL transmitter under average TIDS conditions

Reverse ray traced AoA through nominal ionosphere
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All-passive JIGSE TIDS estimation achieved a 1.5 km rms error, considerable smaller than

the 8.1 km rms error obtained with reverse ray tracing using only a climatological model
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Simultaneous Exploitation of All Propagation méﬁﬁiiﬁétaay

Modes Significantly Reduces Geolocation Errors

RESEARLCH

Phase 2A data: June 20, 2016 ORCN transmitter in the presence of sporadic E
layer
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. Modeled E layer X-
mode ray path

Incorporating a sporadic E layer propagation mode resulted in a 9km RMS

error (all passive) for a near range Tx
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Simultaneous Exploitation of 3 Propagation STECHNOLOGY
RESEARCH
Modes

Phase 2A data: June 15, 2016 Blanding (UT) transmitter in the presence of E, F
and 2F propagation paths

o s %

0 \’k\” il e R
40

© Meas. AoA, O Mode x
60 x Meas. AoA, X Mode r
16:12:17 16:28:57 16:45:37 17:02:17 17:18:5] ° Coumated Aofh, @ Hode

Time [UTC] ’ \
g Hw e AV ——————

fa) | 1 1 1 1 1 1 ]

Time [UTEL Double hop F layer

Correct propagation mode characterization resulted in a 43.9 km rms error

(all passive) for a far range Tx
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