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Overview 

• We introduce a data assimilation system called the Regional Optimum Assimilative 
Model (ROAM) to specify the ionospheric bottomside for geolocation applications.  

• The ionospheric model consists of a parameterized background with superimposed 
gradient (tilt) to represent the effects of traveling ionospheric disturbances (TIDs).  

• All or a subset of the model parameters are estimated via nonlinear least-squares 
using “in-the-loop” 3D magneto-ionic ray tracing (Cervera and Harris, JGR, 2014). 

• ROAM can assimilate density profiles or profile parameters from sounders,  
AoAs from sounders ( Paznukhov, et al.) or known HF emitters, and TID velocity from  
a sounder or passive GNSS receivers (Groves, et al.). 

• TID dynamics are accounted for during the assimilation and prediction stages. Provides 
benefit if the distance between midpoints of assimilated and geolocated links is less 
than distance over which the TID structure is coherent. 

• We demonstrate the approach using HF AoA data collected by the IARPA HFGeo 
Program Government team at White Sands Missile Range.  
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Model Parameterization 

– Tilts are “propagated” to reflection point of TOI by time-shifting the ionospheric state  
– Time shift δt is the distance between assimilation and reflection points (R) projected onto 

direction of TID motion, divided by the TID speed (V) 
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Parameterized Background ionosphere 

TID Dynamics 

Modified IRI convention: 

– Layer plasma frequencies, F2 height, bottomside thickness and shape 
– F1 height inferred from bottomside shape and FoF1; E region height ≈ 110 km 
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Parameterized Tilt model [ , ]lat lonβ β=G

– Gradient factors in latitude and longitude, with modulation in altitude 
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Assimilating and Predicting Angle of Arrival 
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ROAM assimilates AoA (sounder or CxT) and estimates local density gradients due to TIDs. 
Gradients are ‘propagated’ to midpoint location when responding to iono-model queries.  
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Example 1 – Assimilated AoAs from Oblique HF Links 
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Assimilate AoAs from several (5) oblique HF links; Validate with additional HF link 

Data collected by HFGeo government team at WSMR 



Example 1 – Estimated Profile Parameters 
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This problem has non-unique solutions (metric has several local minima) 



Example 1 – Predicted AoAs and Geolocation Error 
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Captures variations 
in elevation but not 
azimuth since we 
have neglected tilt 



Example 2 – Assimilated Digisonde AoA (skymap tilt) 
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Assimilate data from a single Digisonde close to midpoints of validation links 

Data collected by HFGeo government team at WSMR 



Example 2 – Assimilated Digisonde Tilt and TID Velocity 
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Example 2 – Predicted AoAs and Geolocation Error 
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Benefits of Dynamic TID Modeling 
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Conclusions 

 
• ROAM’s parametric model with 8 parameters (6 background, 2 gradient)  

has proven useful given limited data to constrain the bottomside ionosphere. 

• Nonlinear least squares provides accurate ionospheric parameter estimates, 
provided they can be constrained by the data assimilated (e.g. an HF link 
provides no information at altitudes greater than its reflection point). 

• Using a Digisonde to constrain background and either Digisonde or CxT to 
constrain tilt associated with TIDs appears to be a robust mode of operation 
for geolocation applications. 

• To be effective, distance between assimilation and prediction link midpoints 
must be less than distance over which the TID structure is correlated. 

• Dynamically accounting for TID propagation during data assimilation and 
prediction steps helps to mitigate phase errors.  
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