

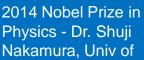
Integrity ★ Service ★ Excellence

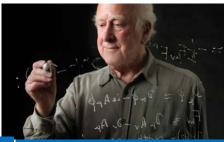
Basic Research in Space Science at AFOSR

12 May 2015

Dr. Kent L. Miller
Air Force Office of Scientific Research
Air Force Research Laboratory
Arlington, Virginia

Why the Air Force Invests in Basic Research


- To probe today's technology limits and ultimately lead to future technologies with DoD relevance
- Attract the most creative minds to fields of critical DoD interest



 Create a knowledgeable workforce in fields of critical DoD interest

2013 Nobel Prize in Physics – Dr. Peter Higgs, Univ of Edinburgh

2 AFRL scientists and 4 AFOSRfunded scientist s received 2013

AFOSR Vision & Mission

Vision

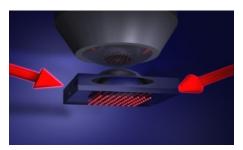

 The U.S. Air Force dominates air, space, and cyber through revolutionary basic research

Mission

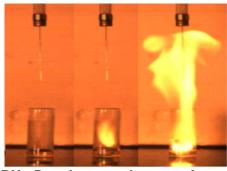
 Discover, shape, and champion basic science that profoundly impacts the future Air Force

Scope

- AF basic research program \$373M in FY14, \$390M in FY15
- AF part of the OSD University Research
 Initiative program \$138M in FY14,
 \$147M in FY15



Basic Research at AFRL's Technical Directorates

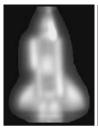

RY - Develop new jam-free navigation


RH - Human performance & complex human-machine interactions

RI - Develop robust cyber command and control system

RX - Develop novel energetic materials

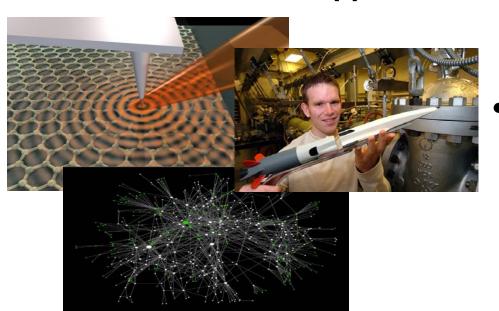
RQ – Development of Hypersonic vehicles

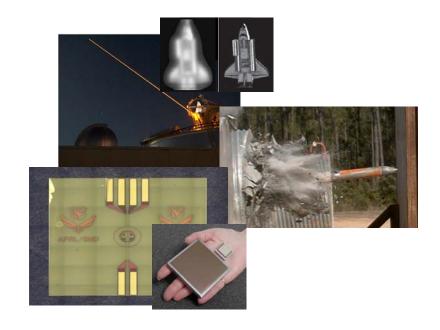


RW - Developing new fuse and sensors technologies

RV – Emphasis on ICME forecasting and modeling

RD - Image restorations & high energy physics





Executing Our Mission

- Intramural (AFRL) program (~30% of discretionary funding)
 - Lab tasks
 - Academic connections
 - International opportunities

- Extramural (university and industry) programs
 - Grants
 - Young Investigators
 - STTR contracts

AFOSR Tech Divisions

Science & Engineering Division Chief, Colonel Kraus Tech Advisor, TBD

Physical and Biological Sciences Branch Chief, Dr. Roach

Engineering and Information Science Branch Chief, TBD

Physical Sciences Team Lead, Dr. Curcic

Team Lead, Dr. **DeLong**

Eng./Complex Systems Team Lead, Dr. Stargel

Information & Networks Team Lead, Dr. Lawton

Atomic and Molecular Physics

Space Sciences

Ultrashort Pulse Laser-Matter Interactions

Remote Sensing and

Imaging Physics

Flow Interactions and

Control

Aerospace Materials for

Extreme Environments

Quantum Electronic

Solids

Electromagnetics

Plasma and Electro-Energetic

Physics

Laser and Optical Physics

Natural Materials and Systems

Mechanics of

Multifunctional Materials

Chem./Bio Sciences

and Microsystems

Robust Decision Making

Biophysics

Human Performance and

Biosystems

Organic Materials

Chemsitry

Molecular Dynamics and

Theoretical Chemistry

Multi-Scale Structural **Mechanics and Prognosis**

Turbulence and Transition

Test and Evaluation

Optoelectronics and

Photonics

Energy Conversion and

Combustion Sciences

Multi-modal Sensing

GHz-THz Electronics

Dvnamic Materials and

Interactions

Low Density Materials

Space Propulsion and Power

Aerothermodynamics

Mathematical and **Computational Cognition**

Computational Intelligence

Information Operations and Security

Trust and Influence

Sensing, Surveillance and Navigation

Computational Mathematics

Systems and Software

Complex Networks

Science of Information. Computation and Fusion

Optimization and Discrete Mathematics

Dynamics and Control

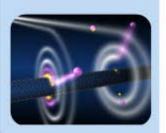
Dynamic Data Driven Applications Systems

60 Years of AFOSR Breakthroughs

1950s	1960s	1970s	1980s	1990s	2000+
Maser/Laser Stealth	The Computer Mouse Code Division Multiple Access System for GPS	Chemical Oxygen lodine Laser (Coil) Superplastics Forming	2000 922 33198 AAL Low-Temperature Gallium Arsenide Laser Diagnostics	Self-healing Plastics Dip-pen Nanolithography	Joint Percision Airdrop System Graphene Material

Viterbi Decoding Algorithm Kalman Filter

Air Fracture Mechanics Methodology



High-Efficiency Compressor Blades

Laser Trapping

Graphene Material

Ultracold Atoms

What is Space Science?

- Space Weather
 - Effects of space environment on AF/DoD/Society
- 6.2/6.3 Applied Research
 - Mitigation of adverse space weather effects
 - Forecasting space weather
 - Exploiting geospace to AF advantage
- 6.1 Research
 - What is the science physics, chemistry of space weather?
 - What science enables space weather forecasting?
 - What is the science behind changes in geospace?

Portfolio Organization

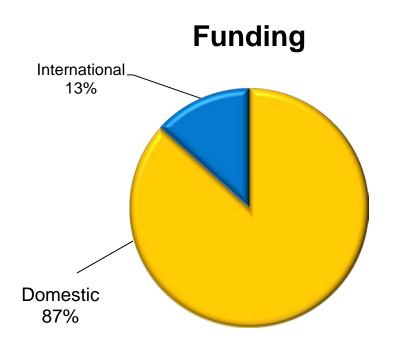
- Research Community (NSF, NASA, etc.) is organized by region.
 - Sun
 - Solar wind
 - Magnetosphere
 - lonosphere
 - Neutral atmosphere
- AFRL, Applied Community is organized by application.
 - Satellite drag, Astrodynamics
 - Communication
 - Precision Navigation and Timing
 - Satellite/astronaut survivability
 - RF Sensing and OTH radar
 - Civilian applications (i.e. power grids, GPS, radiation exposure, climate)

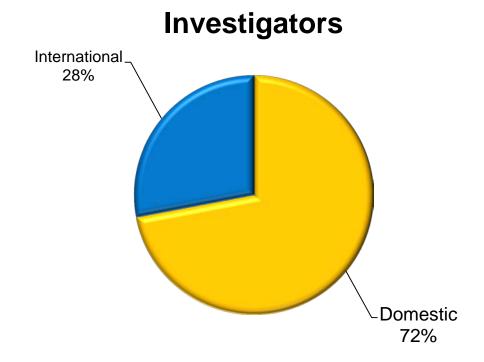
Portfolio Organization

- Emphasis on Forecasting
- Organized by science problem:
 - Solar Disturbances (Satellite survivability, Pilot radiation exposure)
 - Magnetic field evolution in the solar wind (Prediction of geomagnetic storms, Satellite survivability)
 - Solar Disturbances (Satellite survivability, Pilot radiation exposure)
 - lonosphere/neutral atmosphere coupling and energy flow in the polar cap (Satellite drag, OTH Radar)
 - Dynamic structure of the ionosphere (OTH radar, communication, navigation)
 - Physics and chemistry of the neutral atmosphere (Satellite drag, re-entry)
 - Physics of the radiation belts (Satellite survivability)

How to select grants

Select based on:


- Excellence (best proposal, best idea)
- Contribution to the solution of an AF problem
- Leads to ability to <u>forecast</u>
- Basic knowledge in an area not dominated by others
- Funding There are always more good ideas than money to fund them



International Investment

AFOSR Space Group

Develop and Coordinate World-wide Strategy and Investments in Basic Space Science and SSA

Members:

- Dr. Ingrid Wysong, AOARD
- LtCol Kevin Bollino, EOARD
- Dr. Tom Caudill, EOARD
- Mr. Jim Fillerup, SOARD
- Dr. Kent Miller, AFOSR
- Dr. Julie Moses, AFOSR

Share information, Monthly meetings, Documents folder:

- TD interests and research needs
- Awareness by all of existing and planned grants
- Worldwide science state-of-the-art

Develop topics for future research focus areas

International Strategy

- Fulfill mission: awareness, engagement, relationships
 - Awareness of international S&T activity; emerging trends
 - Engage top-notch overseas researchers & build ties to TDs, etc.
- Align with new trends & leverage world-leaders in strategic areas
- Address challenges ID'ed by Nat'l policy, MAJCOM, AFRL, Other
- Targeted investment approach
 - "Complement, supplement, benchmark" AFRL TD investment
- Promote teaming/collaboration:
 - i.e. in UK: MoD (Dstl), DoD (AFRL), Met Office/NOAA/AFWA
 - Teaming to provide new concepts and techniques for space weather analysis and forecasting
- Leverage international investment

Summary

- The Air Force continues to discover, shape, and champion basic science that profoundly impacts the future Air Force
- Air Force basic research:
 - Probes today's technology limits and ultimately leads to future technologies
 - Coordinates with government and industry to ensure that leveraging opportunities are exploited for innovation
 - Creates a knowledgeable workforce in fields of critical interest to the Air Force
 - Prevents technology surprise

Social Media

www.facebook.com/afosr

www.twitter.com/afosr

www.youtube.com/TheAFO SR

