High-latitude & Equatorial Ionospheric Scintillation Based on An Event-Driven Multi-GNSS Data Collection System

Jade Morton, Yu Jiao, Steve Taylor Electrical and Computer Engineering Department Colorado State University

1. Why Event-Driven Multi-GNSS?

1. Sample High-Lat & Equatorial Results

Amplitude Fading: Receiver Processing Artifacts

GPS Carrier Phase During Deep Fading: An Example

1. Accuracy

(Iono + other) (X)h(t) = Observed EffectsIono effects $\neq Observed Effects$

2. Availability

Receivers cease to function during strong space weather events \rightarrow Data are not available when needed most!

3. Repeatability

Receiver processing is irreversible \rightarrow Ionosphere effects are wiped out during processing

High quality, raw GNSS signals are needed for space weather studies and robust GNSS receiver development

Event Driven Raw Data Collection System

Lab

Event-Driven Multi-Constellation GNSS Network

Equatorial Scintillation Spatial Distribution

Diurnal Patterns

Solar Cycle Dependence: High vs. Low Lat

Colorado State University CPS Lob

2015 IES

Slide 10

Geomagnetic Disturbance Impact on High Latitude

Frequency Diversity: Selective Fading

Multi-Frequency Deep Fading

Adaptive Joint Time-Frequency Analysis

Irregularity Dynamics Sensing Using GNSS Array

Array Processing: HAARP (Gakona, Alaska)

Lat: 62.39°, Lon: 145.15°W

2015 IES

Slide 16

Colorado

S Lab

New Alaska Deployment

Plasma Structure Dynamics Monitoring

Comparison with SuperDARN

- Adaptive Filtering
- Adaptive Inter-Channel Frequency Aiding
- Multi-Constellation Vector Processing
- Fixed Position Feedback
- Adaptive Drift Velocity Feedback

Conclusions

- High quality GNSS data is needed for
 - Continuous, accurate interpretation of ionosphere processes
 - Robust GNSS receivers development
- Successful data collection system yielding both known results as well as new observations
 - Adaptive processing is needed
 - Computation cost need to be improved

Acknowledgements

- Funding support from:
 - AFOSR, AFRL, NSF, DAGSI, Miami Univ., Colorado State Univ.
 - Industrial support: Rockwell Collins, Honeywell, Northrop Grumman, Mitre Co., Lockheed Martin, Topcon, Symmetricom, Septentrio, Novatel, John Deere.
- Collaborators:
 - Ohio University, AFIT, University of Alaska Fairbanks, Singapore Nanyang Technical University, Hong Kong Polytechnic University, Boston College, Stanford University, University of Colorado Boulder, University of Hawaii
 - Arecibo Observatory, Jicamarca Radio Observatory, Poker Flat Rocket Range and HAARP, Sondrestrom Observatory.
- Students/Post-docs:
 - Harrison Bourne, Steve Taylor, Jun Wang, Joy Jiao, Dongyang Xu, Brian Breitsch, Jack Hall, Brian Jamieson, Mark Carroll, Robert Cole, Hang Yin, Richard Marcus, Mellissa Simms, Fan Zhang, Kyle Wyan, Kyle Kauffman, Xiaolei Mao, Ruihui Di, Fei Niu, Ryan Wolfarth, Praveen Vikram, Dan Charney, Greg Distler, Greg Newstadt, Adam Hill, Matt Cosgrove, Nick Matteo, Aaron Pittenger, Priyanka Chandrasekaran, Cheng Wang, Xiaoli Liu, Senlin Peng, Nazalie Kassanbian, Lei Zhang, Xin Chen, Hu Wang, Hong Wu, Yanhong Kou.

Common Volume LEO and Ground Observations

Colorado State University SPS LOB

Multi-Frequency Fading Analysis

Fading Overlap: Ascension Island

Threshold of detrended signal intensity: -15dB

Fading band	L1	L2C	L5
L1 only	95.3%	/	/
L2C only	/	82.9%	/
L5 only	/	/	80.7%
Concurrent L1 and L2C	3.0%	1.3%	/
Concurrent L1 and L5	1.4%	/	0.7%
Concurrent L2C and L5	/	15.7%	18.5%
Concurrent L1, L2C and L5	0.2%	0.1%	0.1%

	Fading Number
L1	1,791
L2C	4,591
L5	1,584
Total	7,966

More on Hong Kong, Singapore, and Brazil

Very small percentage

