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ABSTRACT 

We extend the phase screen power law theory for ionospheric scintillation to account for the case 
where the refractive index irregularities follow a two-component power law spectrum. The two-
component model includes, as special cases, an unmodified power law and a modified power law with an 
outer scale or inner scale. As such, it provides a useful framework for investigating the effects of a 
spectral break on the scintillation statistics. Using this spectral model, we solve the 4th moment equation 
governing the intensity fluctuations for the case of two-dimensional field-aligned ionospheric 
irregularities. A specific normalization is invoked to exploit the self-similar properties of the problem and 
achieve a universal scaling, such that different combinations of perturbation strength, propagation 
distance, and frequency produce exactly the same results. The numerical algorithm is novel in that it 
employs specialized quadrature algorithms and a Python library for arbitrary-precision floating-point 
arithmetic (mpmath). These advancements enable simulation of significantly stronger scattering 
conditions than previously possible, enabling us to validate new theoretical predictions for the behavior of 
the scintillation index and intensity correlation length under strong scatter conditions. 

 

1. STRONG SCATTER THEORY 

We begin by assuming the effects of the disturbed ionosphere with statistically homogeneous 
refractive index fluctuations can be adequately represented by a thin phase changing screen characterized 
by the phase spectral density function ( )qδφΦ . We further assume the fluctuations are formally two-
dimensional, i.e. infinitely elongated field-aligned structure typical of the disturbed low-latitude 
ionosphere. The corresponding phase structure function is  

 [ ]( ) 2 1 cos( ) ( ) / (2 )D r qr q dqdφ dφ π
∞

−∞
= − Φ∫  (1) 

where r is the spatial separation and q is the angular wavenumber in the direction of phase variation in the 
screen. Under the paraxial approximation the equation governing the 4th moment of intensity fluctuations 
assumes parabolic form [Ishimaru, 1997; Yeh and Liu, 1982]. For the case of a normally incident plane 
wave, the solution for the intensity spectral density function (SDF) following traversal of the screen can 
be expressed as [Gochelashvily and Shishov, 1971; Rino, 1979]: 

 ( ) ( ) ( )2exp , expI Fq r q iqr drγ r
∞

−∞
 F = − − ∫   (2) 

where /F z kρ =  is the Fresnel scale, z is the propagation distance past the screen and k is the free-
space wavenumber of the radio wave. The structure interaction term that appears in (2) is given by 
 ( ) ( ) ( ) ( ) ( )1 1

1 2 1 2 1 2 1 22 2,r r D r D r D r r D r rδφ δφ δφ δφγ = + − + − −   (3) 

Using the half-angle angle identity, the structure interaction function can be written equivalently as [Rino 
1979, equation 4]: 
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The scintillation index, S4, is obtained by integrating the intensity SDF over all wavenumbers: 
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The unity term in (5) effectively removes the mean wave intensity. The intensity correlation function is 
the inverse Fourier transform of the intensity spectrum: 
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which is commonly presented in normalized form as 

 ( ) ( ) 2
41 /r R r Sr  −  = . (7)  

The correlation length rc is defined as the spatial separation for which the intensity correlation decreases 
to 50%, i.e.   1 /) 2( crr = . 

Two-Component Structure Model 

Rino and Carrano [2013] proposed the following 2-component model for the phase SDF 
corresponding to a 2D irregularity model: 
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The parameter pC′  is the strength of the phase SDF evaluated at 1 rad/m, and the prime is used to 
distinguish this from the phase spectral strength for a 3D irregularity model. The model (8) has a spectral 
break at the wavenumber q0. The break wavenumber appears in the lower branch to force continuity of 
the spectrum at q0. With this form p1=p2 gives an unmodified power law, and p1=0 gives an outer scale. In 
addition, the case p1<3, p2>3 can be made to resemble an inner scale. Henceforth, we consider only cases 
of practical interest with 1<p1≤p2<5. 

Self-Similar Form and Universal Scaling 

The Fresnel scale arises naturally in diffraction calculations, even in a power-law environment 
which lacks a dominant scale. We use the Fresnel scale to define a normalized spatial separation variable 

/ Frη r=  and a normalized wavenumber Fqµ ρ= . This approach differs from that taken by previous 
authors who normalize by the outer scale [Uscinsci et al., 1981; Bhattacharyya et al., 1992]. Since the 
outer scale may or may not have a strong influence on the intensity field, depending on the spectral shape 
and strength of scatter, we argue the outer scale is not ideal for normalization. In a power-law 
environment the Fresnel scale is more fundamental and it preserves the self-similar scaling of the 
problem.  

In terms of the normalized variables, the phase SDF can be written 
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where the scattering strength parameters are given by 

 1 2 1 21 1
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Note that (8) implies the turbulent strength parameters are related as 2 1
2 1 0

p pU U µ −= . Using (2) and (9) the 
intensity spectrum can be written in dimensionless form as 
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and the structure interaction term becomes 
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In (12) the variable of integration Fqχ ρ=  is a normalized wavenumber (like µ ) and the integration is 
partitioned at the spectral break, which occurs at the dimensionless wavenumber µ0=q0rF.  
 The normalized phase and intensity spectra are related to their dimensioned counterparts as: 
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Once the intensity spectrum (11) has been evaluated, the dimensional form of the spectrum can be 
recovered using (13). Lastly, we define the scattering strength U* as the normalized phase spectral power 
at the Fresnel scale  
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In other words, U* ≡ P(µ=1). For an unmodified power law, U1=U2=U* so we sometimes write just U 
(i.e. we omit the asterisk). When U*<1 the scatter is weak and when U*>1 the scatter is strong. The four 
parameters p1, p2, µ0, and U* specify all solutions for 2-component spectra, in that different combinations 
of perturbation strength, propagation distance, and frequency produce exactly the same results.  
 

2. ASYMPTOTIC RESULTS  

Given the two-component structure model in (9), we derived analytic expressions for the structure 
function ( )Dδφ ξ and the structure interaction function ( , )γ η µ . Asymptotic techniques similar to those 
described in [Rino, 1979; Rino and Owen, 1984] were then applied to determine the asymptotic behavior 
of the S4 index and intensity correlation length, cξ , as U* grows large. This analysis is lengthy and 
omitted here for brevity (the details will be published elsewhere). 

S4 index 

For the two component power law model we can show, using asymptotic methods, that for 
1<p1<3 the limiting value of S4 is unity (although a local maximum exceeding unity may be achieved for 
intermediate values of the scattering strength), whereas for 3<p1<5 it is  
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The quasi-saturation state whereby S4 approaches a value exceeding unity in the strong scatter limit occurs 
only when p1>3, and when it occurs the value of p2 is immaterial (i.e. the large scale phase structure 
dominates the development via strong focusing). Rino and Owen [1984] derived a similar result for the 
case of an unmodified power law spectrum which is less than the limiting value in (15) because the low 
frequency contribution was neglected in their analysis. In fact, the low frequency contribution becomes 
increasingly significant as p exceeds 3 due to strong focusing and should be taken into account. 

Correlation length 

  If p1<3 then 4 1S →  and { }2
4( ) [ ( ) 1] / S exp ( )R Dδφρxxx   = − → −  in the limit of asymptotically 

strong scatter (the proof will be presented elsewhere). Under these conditions the asymptotic intensity 
correlation length can be determined by solving (either analytically or numerically) the following for cξ : 
 { }exp ( ) 1 / 2cDδφ x− = .  (16) 
The limiting cξ  exhibits a power law dependence on the scattering strength of the form * cn

c Uξ −∝ , 
where we define nc as the “spectral index” of the limiting correlation length. 

When p1<p2<3 the limiting correlation length takes the following form: 
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where A1 = 1 if µ0≤1 and A1 = 2 1
0
p pµ −  if µ0>1.  In this case, the correlation length spectral index is 

nc=1/(p2-1) which tends to 1/2 as p2 approaches 3 (the case p2 = 3 is special, however). If p1=p2 we 
recover the result for an unmodified power spectrum. It is clear from (17) that limiting correlation length 
is dictated by the high frequency portion of the phase spectrum, as might be expected. In fact, if µ0≤1 the 
limiting correlation length is the same as for an unmodified power law with p=p2.  

When p1<3, p2>3 the limiting correlation length is 
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where A2= 23
0

pµ −  if µ0≤1 and A2= 13
0

pµ −  if µ0>1. In this case the correlation length spectral index is nc =1/2 
regardless of the values of p1 and p2 (so long as p1<3, and p2>3). This dependence on U* is due to the 
leading term in the Taylor series expansion of the structure function, which depends quadratically on the 
spatial separation under these conditions. We note that the rate of decrease in cξ with increasing scattering 
strength is slower when a spectral break is present than for an unmodified power law with any slope. This 
is true whether the break acts as an outer scale or an inner scale. In nature we expect to encounter the 
behavior described by (18) rather than (17) since all real turbulent plasmas have outer and inner scales. 

If p1≥3 the structure function does not exist, and alternative methods are required to obtain the 
limiting form of the correlation function. The result of this analysis (not shown here) is that the 
correlation length spectral index is nc=1/(5-p1), which depends only on the low-frequency phase structure. 
 

3. NUMERICAL RESULTS 

Since the integral appearing in (11) is oscillatory over the semi-infinite domain, specialized 
quadrature methods are required for its efficient numerical evaluation. Having experimented with many 
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techniques, we found the most effective to be the double exponential quadrature scheme developed by 
Ooura and Mori [1991]. To prevent precision loss when evaluating the integrand in (11) when the scatter 
is strong, and because round-off errors become increasingly important to control for small and large 
frequencies, we used the mpmath Python library for arbitrary-precision floating-point arithmetic to 
perform the numerical quadrature. Even still we found it necessary to expand the structure interaction 
function in a Taylor series (summing terms until convergence was reached), when evaluating this function 
for large arguments, in order to minimize round-off errors due to the subtraction of nearly equal terms. 

Intensity Spectrum for an Unmodified Power Law 

Figure 1 shows the computed intensity spectra for a few different scattering strengths. Results are 
compared for phase spectra following an unmodified power law with shallow (p=2.5) and steep (p=4) 
slope. Note that significant departures from power law behavior develop as the scattering becomes strong 
(U 1). In particular, the shallow slope case develops a prominent low frequency enhancement, while the 
steeply sloped case develops significant spectral broadening at high frequencies. This spectral broadening 
can result in quasi-saturation states with S4 exceeding 1. For asymptotically small and large µ the intensity 
spectrum behaves like 4( ) ~ pI µ µ − and ( ) ~ 2 pI µ µ− , respectively. These asymptotes are shown as gray 
dashed lines in Figure 1. The return to power law behavior at large frequencies is gradual for shallow 
spectra (p<3) and abrupt for steep spectra (p>3). 

 

   
Figure 1. Normalized intensity spectra for an unmodified power law with spectral index 2.5 (left) and 4.0 
(right). The different curves correspond to the scattering strength values U=1, 10, 100, and 1000.  
 
Effect of an Outer or Inner Scale 

Next we repeated the simulations shown in Figure 1, for the case with U*=1000, but this time we 
imposed a spectral break at µ0=0.1 to illustrate the effect an outer scale. The results for several values of 
p1 are shown in Figure 2. When a spectral break is present, the intensity spectrum for asymptotically 
small and large µ behaves like 14( ) ~ pI µ µ − and 2( ) ~ 2 pI µ µ− , respectively. The spectral break 
increasingly erodes large scale irregularity structure as p1 is decreased. Eroding large scale structure 
suppresses development of the low frequency enhancement for the shallow spectrum case. For the steep 
spectrum case, it suppresses both low frequency fluctuations and also spectral broadening at high 
frequencies. From this we infer that strong focusing by large scale irregularity structure is responsible for 
this spectral broadening via the generation of small scale fluctuations in the intensity field.  

Low frequency 
enhancement Spectral 

broadening 
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Figure 2. Intensity spectrum as a function of low frequency spectral index p1 when the high frequency 
spectral index is p2=2.5 (left) and p2=4.0 (right). The scattering strength is U*=1000. Dashed lines show 
theoretical low and high frequency asymptotes. The vertical dotted line indicates the break wavenumber.  

 
Again we repeated the simulations shown in Figure 1, for the case with U*=1000, but this time 

we imposed a spectral break at µ0=10 to illustrate the effect of an inner scale. The results for several 
values of p2 are shown in Figure 3. The spectral break increasingly erodes small scale irregularity 
structure as p1 is decreased. For shallow spectra (p<3) this reduces the width of the intensity spectrum and 
increases the correlation length compared to that for an unmodified power law spectrum. Furthermore, it 
promotes focusing by the larger scale structure that remains. Note that this focusing increases the 
fluctuation power in the intensity field at all scales between the low frequency return to power law and the 
spectral break. A number of researchers (Bhattacharyya, et al., 1992) have observed that the presence of 
small scale structure associated with fully developed plasma turbulence at low-latitudes in the early post-
sunset hours tends to suppress strong focusing and inhibit S4 values exceeding unity. Later in the evening, 
diffusive processes erode the small scale structure, which encourages strong focusing and can result in S4 
values well above unity. Figure 3 (right) shows that for steep spectra (p>3) the addition of an inner scale 
has essentially no effect, except at frequencies exceeding the spectral break. 
 

  
Figure 3. Intensity spectrum as a function of high frequency spectral index p2 when the high frequency 
spectral index is p1=2.5 (left) and p1=4.0 (right). The scattering strength is U*=1000. Dashed lines show 
theoretical low and high frequency asymptotes. The vertical dotted line indicates the break wavenumber. 
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S4 as a Function of Scattering Strength 

Figure 4 shows the dependence of S4 on the scattering strength for an unmodified power law with 
different values of the spectral index p. When p<3 the S4 index saturates at unity (with overshoot if p>2). 
Power law spectra with p>3 admit sustained quasi-saturation states with S4>1. The circles indicate the 
theoretical limiting values given in (15). The agreement with theory is excellent, except for the case p=3. 
The reason for the apparent discrepancy is that when p=3 the S4 decreases to unity from above extremely 
slowly (we confirmed this by increasing the scattering strength in increasing steps to U*=1012). 

 

     
Figure 4. S4 versus turbulence strength U for an unmodified power law with spectral index varying from 
1.5 to 3.0 (left) and from 3.0 to 4.5 (right). Open circles shown along the right axis indicate theoretical 
limiting S4 values. 
 

Next, we repeated the simulations shown in Figure 4 but with an outer scale (p1=0) introduced at 
µ0=0.1. The results are shown in Figure 5. For shallow spectra (p<3), the outer scale has only the minor 
effect of causing the saturation state S4=1 to be approached more quickly as the scattering strength 
increases.  For steep spectra (p>3) the effect of the outer scale is more dramatic. The suppression of large 
scale irregularity structure mitigates the quasi-saturation state and causes S4 to saturate at unity. From this 
we infer that strong focusing by large scale structure is responsible for quasi-saturation states with S4>1. 

 

     
Figure 5. S4 versus turbulence strength U for a modified power law with outer scale wavenumber µ0=0.1 
and spectral index varying from 1.5 to 3.0 (left) and from 3.0 to 4.5 (right). Open circles shown along the 
right axis indicate theoretical limiting S4 values. The dashed curves show the S4 for the corresponding 
unmodified power law (e.g. Figure 4) for comparison. 
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Correlation Length as a Function of Scattering Strength 

 Figure 6 shows the dependence of the normalized intensity correlation length on the scattering 
strength for an unmodified power law. The dashed lines show the theoretical limiting correlation length. 
For the cases with p<3, the theoretical correlation length is that gievn in (17); for the cases with p≥3 it is 
for the result (not given here) that holds when the structure function does not exist. In both cases, the 
agreement with the theoretical results is excellent when U* is large. 
 

 
Figure 6. Normalized correlation length versus turbulence strength U for an unmodified power law with 
spectral index varying from 1.5 to 3.0 (left) and from 3.0 to 4.5 (right). 
 

Figure 7 shows the dependence of the normalized intensity correlation length on the scattering 
strength when an outer scale is present. For shallow spectra (p<3), the correlation length is practically 
unaffected by presence of the outer scale. For steep spectra (p>3), the outer scale mitigates the production 
of small scale intensity fluctuations via strong focusing which significantly increases the correlation 
length (compared to the case of an unmodified power law). The theoretical result (18) is in excellent 
agreement with the simulation results for large U*. Although the results are not shown here, when we 
impose an inner scale, rather than an outer scale, we find the correlation length is affected for shallow 
spectra (p<3) but not for steep spectra (p>3). For the case p=3 the correlation length is relatively 
insensitive to either an outer scale or inner scale. 

 

   
Figure 7. S4 versus turbulence strength U* for a modified power law with outer scale wavenumber µ0=0.1 
and spectral index varying from 1.5 to 3.0 (left) and from 3.0 to 4.5 (right). 
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Figure 8 shows the variation of the limiting correlation length spectral index as a function of 
phase spectral index for the case of an unmodified power law (left) and when a spectral break is present 
with p1<3, p2>3 (right). The spectral break in the latter case (right) may represent either a steep spectrum 
with an outer scale or a shallow spectrum with an inner scale. In this case, we measured the slopes of the 
curves shown in Figures 6 and 7. These simulation results are compared with the theoretical results for an 
unmodified power law which predict that nc=1/(p-1) when p<3 and nc=1/(5-p) when p>3. The variation of 
nc as a function of p is symmetric about the result for p=3. When a spectral break with p1<3, p2>3 is 
present this symmetry is broken. In this case the intensity correlation length decreases with increasing 
scattering strength such that nc=1/2. As can be seen in the figure, the agreement between the simulations 
(dots) and the theoretical results (dashed curves) is excellent. 
 

      
Figure 8. Spectral index of the power law (nc) representing the limiting intensity correlation length. The 
left plot is for an unmodified power law, the right plot for the case when a spectral break with p1<3, p2>3 
is present. The dots show simulation results, whereas the dashed lines are theoretical curves. 
 
General Two-Component Spectra 

Next we investigated the effect of an arbitrarily located spectral break (i.e. not necessarily 
restricted to an outer scale or inner scale) on the development of S4 and cξ  as a function of scattering 
strength. Figure 9 shows the results for the case p1=2, p2=4 with µ0 ranging logarithmically from 0.01 to 
100. The curves corresponding to the results for unmodified power spectra with p=2 and p=4 are also 
shown for comparison. Since a spectral break is present with p1<3 we observe that S4 saturates at unity, in 
accord with theory. The theoretical correlation length predicted by (17) is shown in Figure 9 using dashed 
lines, and they follow the simulation results closely for large U*. For a general two-component spectrum, 
the location of the spectral break relative to the Fresnel scale dictates the development of the intensity 
field. The simulations with µ0<1 behave like a power law with p=4 and an outer scale, whereas the 
simulations with µ0>1 behave as a power law with p=2 and an inner scale. We observe that an inner scale 
has a minimal effect on S4 when p<3, whereas an outer scale has a dramatic effect on S4 when p>3 (in that 
the quasi-saturation state is mitigated). We also observe that introducing an inner scale to a power law 
with p=p1<3 increases the correlation length when the scatter is strong. Similarly, introducing an outer 
scale to a power law with p=p2>3 increases the correlation length when the scatter is strong. 
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Figure 9. S4 (left) and correlation length (right) for a modified spectrum with p1=2, p2=4 and break 
wavenumber µ0 ranging from 0.01 to 100. Also shown for comparison are results for unmodified power 
law spectra with p=2 and p=4. Open circles along the right axis indicate theoretical limiting S4 values. 
 

Finally, we investigated the effect of the break wavenumber for the case p1=3.5, p2=4, with µ0 
ranging logarithmically from 0.01 to 100. Note that the limiting S4 in Figure 10 is not unity for the two-
component case, but instead the value predicted by (15) which is (5/3)1/2. Furthermore, note for the cases 
with µ0>1 that the correlation length follows the curve corresponding to an unmodified power law with 
p=3.5, in accord with the theory. The slight change in slope between p1 and p2 is not sufficient to mitigate 
the development of small scale structure via strong focusing in this case. 

 

     
Figure 10. S4 (left) and correlation length (right) for a modified spectrum with p1=3.5, p2=4 and break 
wavenumber µ0 ranging from 0.01 to 100. Also shown for comparison are results for unmodified power 
law spectra with p=3.5 and p=4. Open circles along the right axis indicate theoretical limiting S4 values. 
 

4. CONCLUSIONS 

We have extended the phase screen power law theory for ionospheric scintillation to account for 
the case where the refractive index irregularities follow a two-component power law spectrum. Using this 
spectral model, we solved the 4th moment equation governing the intensity fluctuations for the case of 
two-dimensional field-aligned ionospheric irregularities. A specific normalization was invoked to exploit 
the self-similar properties of the problem to achieve a universal scaling, such that different combinations 
of perturbation strength, propagation distance, and frequency produce exactly the same results. The 
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numerical algorithm was used to validate new theoretical predictions for the behavior of the scintillation 
index and intensity correlation length under strong scatter conditions. 

We make the following observations which are valid in the asymptotic strong scatter limit. For 
steeply sloped spectra with p2>p1>3 the scintillation index approaches a quasi-saturation state exceeding 
unity, S4→((p1-1)/(5-p1))1/2, as the strength of scatter increases.  The presence of a spectral break with 
p1<3 causes the S4 index to recede from its maximum with increasing scattering strength to ultimately 
saturate at unity. When a spectral break is present the rate of decrease in cξ with increasing scattering 
strength is slower than for an unmodified power law with any slope. We expect this slower rate of 
decrease to be observed in nature, since all real turbulent plasmas have outer and inner scales. 

In general, when p1<p2<3 the limiting behavior of the intensity statistics is dictated by the high 
frequency portion of the irregularity spectrum (i.e. the influence of scales sizes larger than the Fresnel 
scale becomes insignificant), whereas when p2>p1>3 it is dictated by the low frequency portion of the 
irregularity spectrum (i.e. the influence of scales sizes smaller than the Fresnel scale becomes 
insignificant). As a consequence, shallow power-law spectra (p<3) are insensitive to an outer scale but are 
sensitive to an inner scale. Steep power-law spectra (p>3) are insensitive to an inner scale but are 
sensitive to an outer scale. Power law spectra with p≈3 are relatively insensitive to both outer and inner 
scales. For the general case with p1<3, p2>3, irregularity scales sizes both smaller and larger than the 
Fresnel scale can contribute to the intensity statistics. In this case, the location of the spectral break 
relative to the Fresnel scale dictates the development of the intensity field. 
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