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Introduction 

• Electron Density Gradients from MSTIDs  
– Modify the path of HF rays in the atmosphere 
– Create multipathing  

• Model a 3D MSTID (SAMI3/ESF) 
• Simulate HF rays using a 3D raytrace 

code (MoJo) 
• How do MSTIDs affect Quasi Vertical 

Ionograms (QVIs)? 
* Other than multipath effects 
 

 



MoJo 

• Evolved from classic Jones-Stephenson raytrace 
code 
– Jones, R. M. and Stephenson, J. J. A versatile three-

dimensional ray tracing computer program for radio 
waves in the ionosphere, U. S. Department of 
Commerce, OT Report 75-76, 1975.  

• Made significant improvements/upgrades 
– Upgraded to Fortran 90 
– Fixed bugs 
– Efficiency improvements 
– Automation infrastructure and graphics 
– Updated the physics (absorption equation, collision 

frequency)  
 



SAMI3/ESF 

• 3D model, but limited in longitude to 4◦ 

• magnetic field: non-tilted dipole magnetic field for simplicity 
   (geographic and magnetic latitude are the same) 
• interhemispheric / global (±89◦)  
• nonorthogonal, nonuniform fixed grid 
• seven (7) ion species (all ions are equal): H+, He+, N+, O+, N+2 , 

NO+, and O+2 
– solve continuity and momentum for all 7 species  
– solve temperature for H+, He+, O+, and e− 

• plasma motion  
– E × B drift perpendicular to B 
     (vertical and longitudinal in SAMI3)  
– ion inertia included parallel to B 

• neutral species: NRLMSISE00/HWM93/HWM07 and TIMEGCM 
• chemistry: 21 reactions + recombination  
• photoionization: daytime and nighttime 



Ionospheric Parameters 

• Simulation time: 
19:30-20:30 LT  

• Day of year: 80 
(equinox) 

• F10.7 = F10.7a = 150 
(moderate solar 
conditions) 

• Ap = 4 (quiet time) 
• Critical frequency 

~ 14 MHz Electron density profiles at  
10° latitude, 0° longitude 



SAMI3/ESF MSTID 

• Traveling-wave electric field is added to 
the ExB drift: 
 
 

 

(ETID × B)[ p,h ] = −UTID

k[x,y ]

k
sin(kx x + ky y −ωt)

 
• p: vertical direction 
• h: horizontal direction 
• x: longitude direction (=> vertical drift) 
• y: latitude direction (=> horizontal drift) 
• Limited to: 

• 200-400 km altitude (frequency range: .5 MHz – 11 MHz) 
• -1.5° – 1.5° longitude 
• 8° – 12° latitude  

 



 
• k = 2π/λ (wave number) 

 
• λ = 250 km 
• ω = 2π/T (frequency) 
• T = 1 hour (period) 
• θTID = 20° (propagation angle) 
• UTID = 50 m/s (drift velocity)  

SAMI3/ESF MSTID 

• Traveling-wave electric field is added to 
the ExB drift: 
 
 

 

(ETID × B)[ p,h ] = −UTID

k[x,y ]

k
sin(kx x + ky y −ωt)

 

kx = k cosθTID

 

ky = k sinθTID

N 

Magnetic Equator 

θTID 



Log Electron Density at 300 km 



Snapback Effect 

Receiver: 10° Lat, 0° Lon 

Transmitter: 9.1° Lat, .1° Lon 

Frequency: 3.125 MHz, O-Mode 



Snapback Effect (20 deg TID) 

Receiver: 10° Lat, 0° Lon 

Transmitter: 9.1° Lat, .1° Lon 

Frequency: 3.125 MHz 






Snapback Effect (20 deg TID) 
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Change in Virtual Height (20 deg TID) 

Receiver: 10° Lat, 0° Lon 

Transmitter: 9.1° Lat, .1° Lon 
Frequency: 3.125 MHz 

Background 
MSTID 



Simulated QVI (O-mode) 

Background Ionosphere 



Simulated QVI (O-mode) 

20 Degree MSTID 



Conclusions 

• Cross range electron density gradients 
significantly alter the path of HF rays 
through the ionosphere 

• These changes should be visible in QVI 
time series 

• Next Steps: 
• Look at data 
• Multipath effects 
• Calculate Doppler 
• Extracting MSTID parameters from HF 

propagation observables 
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Names 

• MoJo 
• Modified Jones Code 
• Modernized Jones Code 

• NAUTILIS 
• NAvy Usable radio Transmission for Long-range 

Ionospheric Systems 
• NAvy Utility for radio Transmission in Long-range 

Ionospheric Systems 
• SAILFISH 
• MARLIN 
• SHARK 

• Simulated Hf Absorption and Raytracing Kit 
• NAJ-C 

• Not Another Jones Code 
 



Simulated QVI (O-mode) 

20 Degree MSTID 



MoJo 

Wave 
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MoJo 

Integrator Interpolator Hamiltonian Index of 
refraction 

Ray trace Formulation 



Hamilton’s Equations 

• Numerically integrated to calculate the ray path 
• Lighthill (1965): Equations in 4 dimensions (including time) 
• Haselgrove (1954): Equations in 3 dimensions (spherical coordinates) 

 



Hamilton’s Equations, cont. 

H: Hamiltonian  
kr, kθ, kφ: components of the propagation vector 
r, θ, φ: spherical polar coordinates of a point on the 
ray path 
t: time 
τ: parameter whose value depends on the choice of 
Hamiltonian 
ω = 2πf : angular frequency of the Wave 
 
Note: MoJo uses P`=ct for the independent variable because the 
derivatives with respect to P` are independent of the Hamiltonian choice. 



Hamiltonians 

• Hamiltonian used by Appleton-Hartree and 
Sen Wyller: 

 
 
 

• The Booker-Quartic uses the real part of the 
quadratic equation which has the Appleton-
Hartree formula as its solution: 

 

 

U =1− iZ 

X =
fN

2

f 2

 

Y =
fecf

f



Index of Refraction 

•Appleton-Hartree and Booker-Quartic: 
 
 
 
 
 
 
 

• Sen Wyller: 
 

 

n2 =1− 2X
1 − iZ − X

2(1− iZ − X) −YT
2 ± YT

4 + 4YL
2(1 − iZ − X)2

 

X =
fN

2

f 2

 

Y =
fecf

f

 

Z =
ν

2πf

 

YT = Y sinψ

 

YL = Y cosψ
Ψ = angle between the wave normal and 
the earth’s magnetic field 

 

n2 =1−
2X(U − X) + 2AUX sin2ψ

2U(U − X)(1+ A) + 2AUX sin2ψ −U(1− BC)U + A(U + X))sin2ψ + RAD

 

RAD = ± U 2((1 − BC)U + A(U + X))2 sin4 ψ +U 2(U − X)2(C − B)2 cos2ψ
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F 1
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U =
Z

F(1/Z)  

F(w) =
1

(3 2)!
t 3 2e− tdt
w − it0

∞∫

 

A =
C + B

2



Absorption 

κ: imaginary part of the complex propagation function k 
ds: distance along the path 

• Two types of absorption 
• Non-deviative: Typical D-region absorption 
• Deviative: Occurs when ray path turns in the 

ionosphere (not in Jones-Stephenson) 
• Updated Absorption equation (from Davies, 

1990): 
 
 

• Other factors we don’t include: 
• Source & Receiver functions 
• Geometric spreading 
• Nonlinear effects (multipathing) 

 



• Old Collision Frequency Equation: 
 
 

• New Collision Frequency Equation: 
– From The Earth’s Ionosphere (Kelley, 2009) 
– Use MSIS for neutral densities/temperature 
– Use SAMI3 for electron density/temperature 

Collision Frequency 

H0 = 70 
A  = 0.16 
ν0 = 8e6 



Collision Frequency 



Wave Propagation (anisotropic medium) 

Homogeneous, lossless, 
anisotropic medium 

Reference Axis 

Wave Front Ray Direction S (radial) 

Normal to Wave Front k 

α 

From Davies (1990)  
Figure 1.5 

The energy propagation (S) is 
not in the same direction as the 
phase propagation (k) 

• The level of reflection of the wave normal (k) generally won’t be the same height 
as the ray reflection height (S) 
• The angle α depends on the angle (θ) between k and B0 
• Discontinuity (spitze) at reflection when X=1, θ=0 condition reached before the 
wave normal (k) is horizontal 

 

tanα =
1
µ

dµ
dθ

=
1

2µ2
dµ2

dθ
= ±

(µ2 −1)YTYL

[YT
4 + 4(1− X)2YL

2]1 2

(assuming no 
collisions) 
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