The USU-GAIM Data Assimilation Models for Ionospheric Specifications and Forecasts

L. Scherliess, R. W. Schunk, L. C. Gardner, L. Zhu, J.V. Eccles and J.J Sojka

Center for Atmospheric and Space Sciences
Utah State University

IES Meeting Alexandria, VA May 2015

Brief Overview of USU Data Assimilation Models

GAIM-GM

Mid & Low Latitudes

GAIM-FP

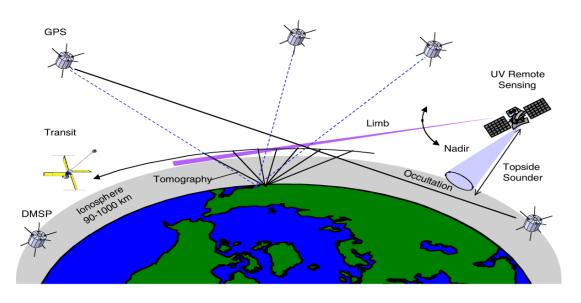
Mid & Low Latitudes, with Drivers

Mid-Low Electro-DA → Ionosphere with Drivers

GAIM-High Lat

High Latitudes with Drivers

GTM-DA → Global Thermosphere


TWAM-DA → Thermosphere Wind

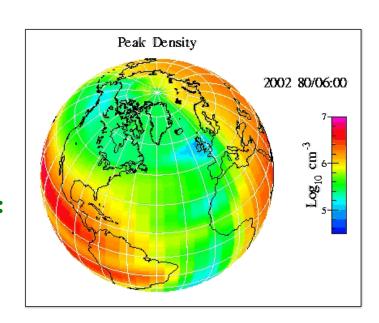
- All Data Assimilation Models are Physics-Based
- Spatial and Temporal Resolutions are arbitrary

GAIM Data Sources

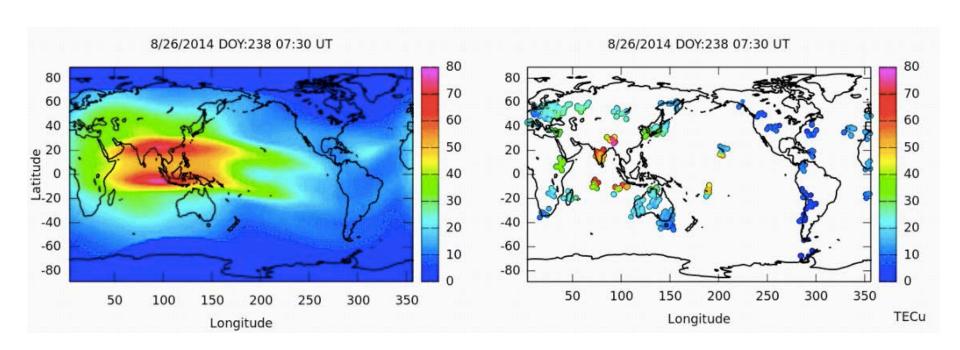
Ionosphere	Electrodynamics	Thermosphere
Ground-Based GPS-TEC	Ground magnetometers	Satellite UV emissions
Satellite-Based GPS	DMSP cross-track	In situ neutral winds
Occultation	velocities	
Ionosonde and Digisonde	SuperDARN line-of-sight	Satellite accelerometer and
	velocities	drag
In situ N _e	Iridium magnetometers	FPI winds
911Å, 1356Å, limb, disk	ACE IMF, Dst	ISR Neutral parameters
(UV)		
Solar UV, EUV	Solar UV, EUV	Solar UV, EUV

Black: Data sources already being assimilated; Red: New data sources to be assimilated

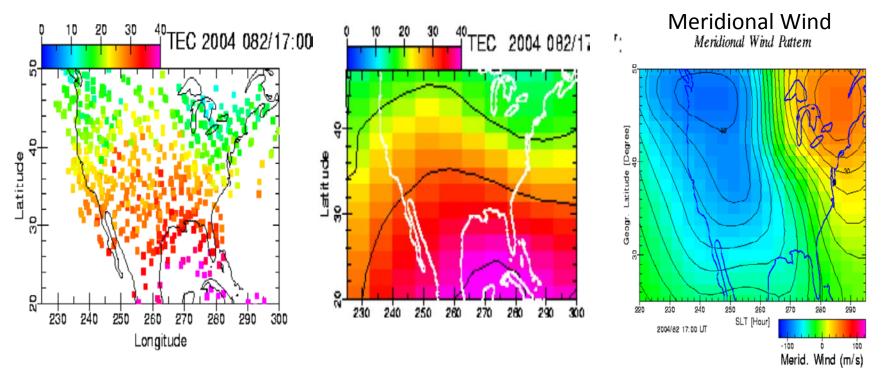
GAIM-Full Physics

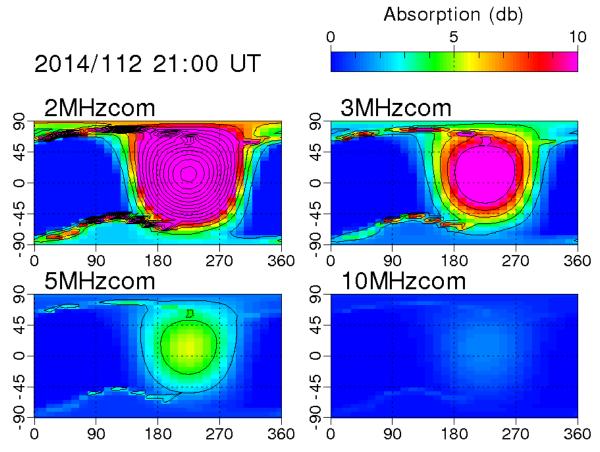

- Ensemble Kalman Filter (24-30 members)
- Physics-based Ionosphere-Plasmasphere Model (IPM)
- 5 Data Sources as shown on previous slide
 Additional Data Types that could be assimilated in GAIM-FP:
 - → Electric Field
 - → Neutral Wind
 - → Thermospheric Temperature and Composition
 - \rightarrow Etc.

GAIM-FP uses the full physics that is included in the physics-based model (IPM) in the data assimilation scheme


- 90-30,000 km
- Altitude, Latitude, Longitude Grids Set by User
- Six Ion Species (NO⁺, O₂⁺, N₂⁺, O⁺, H⁺, He⁺)
- Realistic Magnetic Field (IGRF)
- Some of the Physical Processes included in IPM:
 - Field-Aligned Diffusion
 - Cross-Field Electrodynamic Drifts
 - Thermospheric Winds
 - Neutral Composition Changes
 - Energy-Dependent Chemical Reactions
 - Ion Production due to:
 - Solar UV/EUV Radiation
 - Auroral Precipitation
 - Star Light

GAIM-FP Global Run

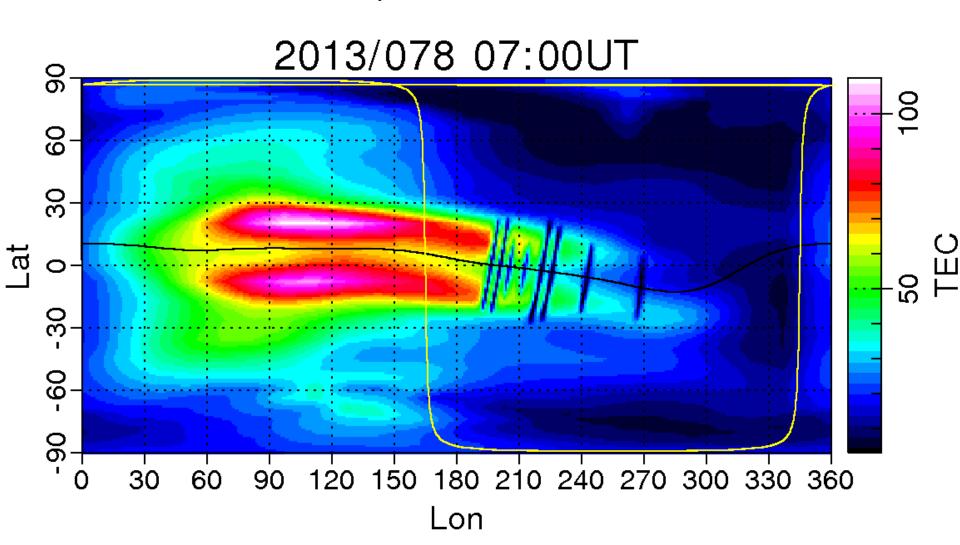

- 400 global TEC stations (IGS network) used in real-time at USU Space Weather Center
- Up to 10,000 measurements assimilated every 15- min
- 40-50 Ionosondes/Digisondes


Reconstructions With Self-Consistent Drivers GAIM-FP → Regional Run

- Snapshots of TEC measurements (left)
- GAIM-FP reconstruction (middle)
- GAIM-FP neutral wind at 300 km (right)
- 17:00 UT, day 82, 2004

GAIM Data-Driven D-Region Extension

- > Electron density extension down to 40 km altitude
- Uses GOES X-rays and Particles Observations
- Calculates HF Absorption



Incorporation of Low-Latitude Bubbles into GAIM

SSUSI bubble observations are incorporated into high-resolution GAIM specifications.

GAIM-FP Output

- Continuous Reconstruction of Global N_e Distribution
 - o lonosphere-Plasmasphere
 - o D, E, F Regions, Topside and Plasmasphere
 - o **40-30,000 km**
- Quantitative Estimates of the Accuracy of Reconstruction
- Model Drivers
 - o Electric Fields
 - o Global Neutral Winds
 - o Global Neutral Composition

GAIM-High Latitude

Ensemble Kalman Filter for High-Latitude Ionosphere Dynamics and ElectroDynamics

High-Resolution Specification of Convection, Precipitation, Currents & Ionosphere

Physics-Based Model Behind GAIM-High Latitude Model

Time-Dependent Ionosphere Model

- 0 3-D Density Distributions (NO⁺,O₂⁺,N₂⁺,O⁺,H⁺,He⁺)
- 0 3-D T_e and T_i Distributions
- o Ion Drifts Parallel & Perpendicular to B
- 0 Hall & Pedersen Conductances

M-I Electrodynamics Model

- o MHD Transport Equations & Ohm's Law
- O Alfven Wave Propagation
- O Active Ionosphere
- 0 10 km & 5 sec Resolutions
- O Potential, E-field, Currents, Joule Heating

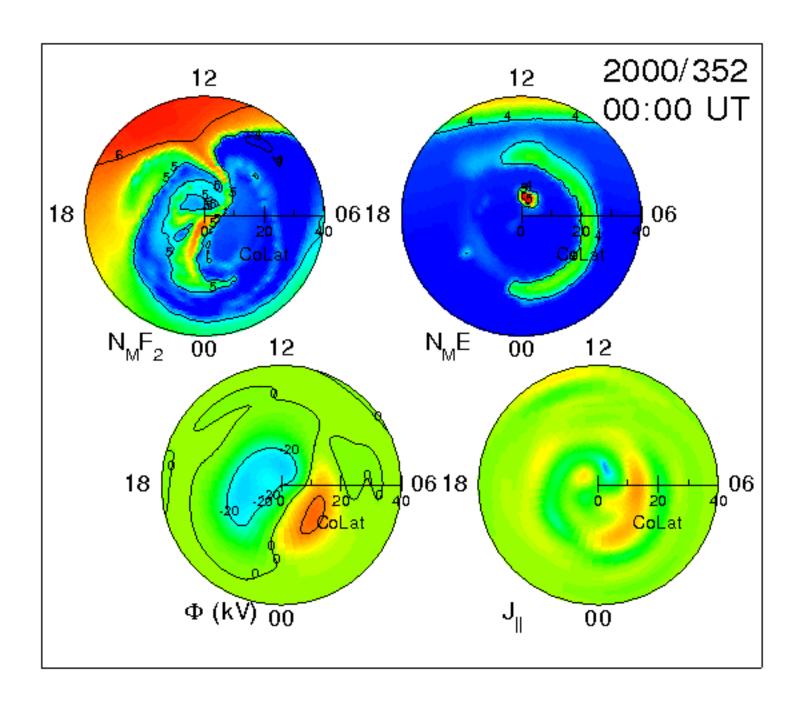
Magnetic Induction Model

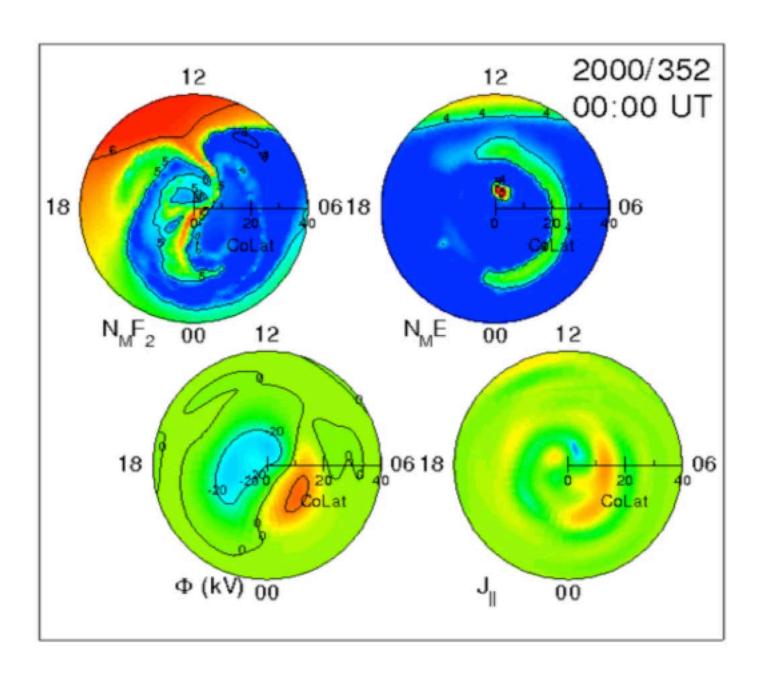
- O Calculates B Perturbations in Space & on Ground
- 0 Includes Earth's Induction Effect

Data Assimilated by GAIM-High Latitude Model

At High Latitudes it is critical to assimilate observations connected with the drivers

- Ground Magnetic Data from 100 Sites
- Cross-Track Velocities from 4 DMSP Satellites
- Line-of-Sight Velocities from 9 SuperDARN Radars
- In-situ ΔB from the 66 IRIDIUM Satellites
- ACE IMF, solar wind velocity, Kp




Output of GAIM-High Latitude Model (High Resolution)

- Electric Potential
- Convection Electric Field
- Energy Flux and Average Energy of Precipitation
- Field-Aligned and Horizontal Currents
- Hall and Pedersen Conductances
- Joule Heating Rates
- 3-D Electron and Ion Densities
- 3-D Electron and Ion Temperatures
- TEC
- Ground and Space Magnetic Disturbances

Operational Models

GAIM-Models are running at

- AFWA
- Northrup Grumman
- AFRL
- NRL
- USU SWC
- CCMC

