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Qutline

Introduction

— Background

— Previous observation of SBS at HAARP

— Required power for SBS generation at HAARP
— Comparison of HAARP and EISCAT HF heater

Experimental observations at EISCAT (2012 July campaign)
— Attempt to reproduce SBS at EISCAT

— Observation of SBS/DP near the third electron gyro-harmonic;

— SEE correlation with Electron Temperature and Field aligned irregularities as
well as ion line;

Experimental observations at HAARP (2012 August campaign)
— Attempt to correlate narrowband SBS with wideband SEE near 3fce;

Summary and conclusions



Background

Stimulated Electromagnetic Emission (SEE)

— Secondary electromagnetic (EM) radiation generated
during ionospheric pumping;

— Measured sideband spectral features of the reflected
signal on ground;

— Studied in unmagnetized laser plasma interaction;
SEE as a new diagnostic tool for nonlinear
processes associated with heating

SEE provides diagnostics of ionospheric
parameters;

— Enhanced optical rings and artificial layer formation
tuned to electron cyclotron harmonics;

SEE first predicted by Stenflo and Trulsen
[1978];

SEE first observed experimentally by Thide
et al. [1982] at EISCAT,

SEE studied extensively at HAARP after
2007;
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I: Previous observations of SBS at HAARP
(Near the third electron gyro-harmonic 3fce)

Time 04:57-04:60UT,07/22/2010

Simulated Brillouin Scatter (SBS)

IA1 B\ 0,

EM1

EM2
SBS-1

U Norin et al., [2009 ] observed the IA emission lines
f, and f,;

O Bernhardt et al., [2009] observed IA lines f, for
electron temperature and Bernhardt [2010] observed
|IA line f; and EIC lines f;~ 47 Hz for ion species;

4 Fu et al. [2013] observed the f;~ 52 Hz and f,
~78 Hz emissions and proposed that these
emissions are generated due to ion acoustic
wave cascading at the upper hybrid level ;
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I Variation of SBS with Beam Angles at HAARP

(Near the second electron gyro-harmonic 2fce)
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B The amplitude of SBS depends on the beam angle and pump frequency;
(f, — (8 ~ 12) Hz, f, = (25 ~ 27) Hz, f; = (48 ~ 54) Hz, and f,=— (96 ~108) Hz);

B For pumping near electron gyroharmonic, more SBS features occur as the heater
beam is tilted from the magnetic field,;

B The frequency offset of SBS (f, f;) depends on the pump frequency relative to

electron gyroharmonic; [Fu etal., 2013]; 5



I Variation of SBS with Pump Frequency at HAARP

(Near the second electron gyro-harmonic 2fce)
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I Variation of SBS with Pump Frequency at HAARP

(Near the electron gyro-harmonic)

O Mahmoudian et al. [2014] also verified enhanced IA (f,) when pumping above 2fce and strong EIC(f5)
when pumping above 3fce using HAARP.
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I: Comparison of HAARP and EISCAT HF Heater

« Power Level and Frequency LN

: . 1993 g <5 gass 1973 7
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Auroral Research Program) directs a £ HAARP P25 v 0 Q& r_{"i_:_';__]_;'"1'981SURA
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Arecibo

e EISCAT HF Transmitter | *Conjugate

*Array 1 (Superheater): 5.5-8.0 MHz; 12x12 crossed dipoles, 384m square; 1020
KW total power

sArray 2: 4.0-5.5 MHz; 6x6 crossed dipoles, 270 m square; 1020 kW total power
*Array 3: 5.5-8.0 MHz; 6x6 crossed dipoles, 192 m square; 1020 kW total power
*HAARP can only match Superheater size in 1 dimension (317 m x 390 m)

—Other arrays matched by partial arrays at HAARP [Bernhardt, 2011: Pedersen,
 In general, EISCAT ERP ~ 1/3 that of HAARP 2012]



I: SBS Power Threshold at HAARP

(Near the third electron gyro-harmonic 3fce)

Successfully observed ion acoustic SBS1(f,) at 8Hz using 1.15

MW (slightly less than 1/3 of HAARP power) and SBS2 (f,) at
26Hz using 0.5 MW,

o Attempted to reproduce ion acoustic SBS1 and SBS2 using 1.2
MW EISCAT HF heater;

« Also examined potential to reproduce SIBS using EISCAT HF
heater;
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Il: First experimental observation of SBS at EISCAT
(Near the third electron gyro-harmonic 3fce)
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[Fu et al, 2015 under review]



Il: Experimental observation of DP at EISCAT
(Near the third electron gyro-harmonic 3fce)

The downshifted peak DP at
approximately ~ 2kHz develops for pump
frequencies close to 4:04MHz;

The DP frequency offset drops
approximately from -2.5 kHz to —1.5 kHz
as the pump frequency approaches 3fce,
consistent with previous experimental
observations (Stubbe, 1994).

If the pump frequency increases further
above electron gyro-harmonic, the
downshifted maximum DM spectral line
(Leyser et al., 2001) at approximately 8 -
8.5kHz below the pump frequency appears
in the lower sideband spectrum.
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II: SBS correlation with electron temperature

and field aligned |rregular|t|es

Frequency stepping near 3fce;

Electron temperature is minimized
and field aligned irregularities FAIs
echoes are suppressed while the
lon acoustic SBS is observed
mostly due to less absorption;

HF pump induced Doppler velocity

can reach a value —-50 m/s, which
corresponds to a frequency
approximately 5Hz. The negative
Doppler shifts are likely due to the
plasma expulsion associated with
the heating.

The spectral width of HF signals
mostly locate below 5m/s;
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II: Temporal evolution of SBS, FAIs and lon lines

FAIs evolution in a 1min on, 1min off duty cycle
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II: Can SBS induced by HF heater cause
asymmetry in the lon Line Spectra?

Fejer et al. (1978) predicted the stimulated
Brillouin scattering by Jicamarca and Arecibo
incoherent radars can cause an asymmetry in
the double humped spectra of incoherent
backscatter by enhancing the downshifted ion
line and weakening the upshifted ion line;

Experimental observation of SBS using the
Jicamarca 50MHz incoherent scatter radar can
cause 25 percent asymmetry, resulting in errors
of 10 ~ 15 m/s in the measured velocity.;

3r — linear theory
- —non-hnear theory

LA Te=2T,

Retative spectral power density

[Fejer et al. ,1978]
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II: Summary comparison of SBS at HAARP and EISCAT
(Near the third electron gyro-harmonic 3fce)

EISCAT

0
o f 12Hz f, _3 o8 MHZ o
T -25¢ . T
o =
% -50 % i
& 75t . g
100 -80 80 40 20 20 40 60 80 100 .00 -80 -60 -40 -20 O 20 40 60 80 100
0 ~ 0 1, ~ 8HZ A -l P
g 25| £ BHz- f- 12Hzf—402 MHz 9 sl - Bz e i Za=14° |
[(b]
"g'50 g _50_
£ -75t - Ao ™ N
100 80 60 40 20 20 40 60 80 100 “Joo -80 -0 -40 -20 0 20 40 60 80 100
O T T T T T T T T —_ O T _f "‘"I8HZ T T T T T
o= -f- 8Hz f~ 12Hz _ @ 1 —», f, ~ 12Hz _h40
| f,=4.04 MHz | 2 05| 1 Za=21° |
5 o
2 -50r g 50+
2 o
o '75W.WW\ 1 1 1 1 I 1 1 '75 ! ! ! ! ! ! ! ! .
-100 -80 -60 -40 20 O 20 40 60 80 100 -100 -80 -60 -40 -20 O 20 40 60 80 100
0 . . . . :
) f1 -8z f, ~ 12Hz Za=28°
0 . . : : T -257 1 _
. f-1oHz f=4.06 MHz ] ¥
© -257 0 7 Z -50;
% 50t o .75 . . . . . . . ! '
o
751 ) -100 -80 -60 -40 -20 O 20 40 60 80 100
100 -80 -60 40 20 0 20 40 60 80 100 .
Frequency Shift (Hz) Frequency Shift (Hz) from 4.2 MHz
Fig. Measured frequency spectra of radio emissions from Fig. Measured frequency spectra of radio emissions from
the EISCAT transmitter near 3f,, for the magnetic zenith the HAARP at 4.2 MHz relatively close to 3f, for
pumping during 19:20 -19:32 UT on July 3, 2012 different heater beam angles 14° (for the magnetic zenith)

during 04:15-04:60 UT on July 22, 2010.



IIl: Wideband SEE results at HAARP
(2012 August Campaign, 08/07/2012 )

 Attempted to investigate narrowband SBS near 3fce and correlate with wideband
SEE features for different heater beam angles using multiple sites SEE receiver at

HAARP;
 However, the frequency sweeping rate is too fast to distinguish narrowband SBS
within 100 Hz.
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II: Wideband SEE Results at HAARP
(2012 August Campaign, 08/07/2012 )

06:10:30-06:14:00 UT,08/07/2012 for ZA=14", AZ=200"
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IIl: Wideband SEE results at HAARP
(2012 August Campaign, 08/07/2012 )

 Attempted to investigate narrowband SBS near 3fce and correlate with wideband
SEE features for different heater beam angles using multiple sites SEE receiver at
HAARP;
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Conclusion and Summary

SBS at EISCAT observed for the first time at 3fce
— The HF facility with ERP ~ 148MW, can generate SBS emissions at 8 ~ 12Hz near 3fce;
— Agrees well with SBS at the reflection resonance region previously observed at HAARP;

Simantenously measurement of SEE features with electron temperature and
field aligned irregularities near electron gyro-harmonic heating;

— SBS/DP strengthens near 3fce while electron temperature from EISCAT/UHF data and field-
aligned irregularities from CUTLASS radar are suppressed,;

Attempted to correlate narrowband SBS with wideband SEE features near
3fce for different transmitter beam angles using multiple sites SEE receiver at
HAARP;

These SEE spectral lines are important consequences of plasma waves near
electron gyroharmonic in the wide band and narrowband SEE spectrum
leading to unique ionospheric diagnostic information;
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The Brillouin scattering effect causes an asymmetry of the
power spectrum of the incoherent backscatter in such a man-
ner that the downshifted ion line is enhanced and the upshifted
ion line is weakened. The total effect depends on the power of
the transmitted radar pulse (the pump) and the height region
along which the interaction of the pump with the downgoing
incoherently backscattered waves takes place. This interaction
is height-dependent because the power density of the pump
and the ionospheric parameters involved, such as electron
density and ion and electron temperature (N,, T}, and T,), are
functions of the height. The effect is weak, and a high-power
radar pulse of reasonably long duration is desirable to allow
both a long interaction time and a large height integral. A long
integration time is also necessary to reduce the statistical error
in the data. The following arrangement was chosen to achieve
this. For detailed descriptions of the Jicamarca Radio Obser-
vatory near Lima, Peru, see Bowles [1967] or Evans [1969].

It — linear theory
——non-lnear theory

DN Te=2T,

P
T

Retative spectral power density

-2 -1 0 1 F -1

Figure 2, The calculated normal incoherent bs
scatter spectrum for Jicamarca is shown by tk
solid line. The interrupted line shows the sg
trum modified by stimulated Brillouin scattex
A peak radiated power of 2 MW is assumed., The
assumed pulse length is 3 msec and the calcul
received spectrum 1.33 msec after the trailir
edge of the pulse is shown.
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