

Assimilative Real-time Models of HF Absorption at High Latitudes

Neil Rogers, Farideh Honary, Jonathan Hallam, Alan Stocker, Mike Warrington, Dave Siddle, Donald Danskin and Bryn Jones

Ionospheric Effects Symposium, Alexandria, VA, USA 12-14 May 2015

Overview

- A large array of riometers measure 30 MHz radio absorption
 - Data available in near-real time
- Polar cap absorption (PCA) models have been adapted to assimilate riometer measurements
- Model parameters are optimised in real-time
 - Age-weighted regressions to riometer measurements
 - Rigidity cut-off latitude also varied
- Ionospheric response at twilight is asymmetric
 - Optimise dawn/dusk parameters independently
- Also assimilate proton flux spectra from polarorbiting satellites (POES)

Map of predicted 30 MHz absorption during a polar cap absorption event, with riometer measurements (•)

NRCan

NORSTAR

Riometer measurements

- Riometers measure ionospheric absorption of cosmic background radiation at ~30 MHz
 - NORSTAR array
 - University of Calgary / Canadian Space Agency
 - 13 riometers
 - Natural Resources Canada
 - 18 riometers since 2006
 - Sodankylä Geophysical
 Observatory
 - 7 riometers
 - IRIS Kilpisjärvi
 - University of Lancaster, UK
- 94 Solar Proton Events in 1995-2010 period

Polar Cap Absorption model

- Model Type 1: (Energy Threshold model)
 - E.g. DRAP model (Sauer & Wilkinson, 2008)
- Absorption, $A = m\sqrt{J(> \max(E_t, E_{cutoff}))}$ (dB)

J(>E) is the flux of solar protons with energy > E (measured at GOES satellite) m, E_t are fixed parameters (specified for night and day ionospheres) E_{cutoff} is the rigidity cutoff (due to geomagnetic field deflection)

Rigidity Cut-off Latitude Models

- Applied in DRAP
- No magnetic local time (MLT) dependence

Dmitriev et al. 2010

E=10.0 MeV, Dst = 0 nT, N hemisphere

- Boundary ellipses fit to NASA POES proton flux measurements
- Low energy protons have magnetic local time (MLT) dependence

Dmitriev vs Smart Rigidity Cut-off

- The Dmitriev cut-off model improves on Smart model but predicts a regular midday recovery that isn't always observed on riometers
- The Smart cut-off is improved by a 1-3° equatorward shift

Dmitriev vs Smart Rigidity Cut-off

- The Dmitriev cut-off model improves on Smart model but predicts a regular midday recovery that isn't always observed on riometers
- The Smart cut-off is improved by a 1-2° equatorward shift

Dmitriev vs Smart Rigidity Cut-off

- The Dmitriev cut-off model improves on Smart model but predicts a regular midday recovery that isn't always observed on riometers
- The Smart cut-off is improved by a 1-2° equatorward shift

- DRAP model vs. riometer measurements
- (All SPEs 1995-2010, 14 riometers)

Optimising *m* only (day and night)

$$A = \boldsymbol{m} \sqrt{J(>\boldsymbol{E}_t)}$$

14 riometers, 94 SPEs

Optimising *m* and *E_t* (day and night)

 $A = \boldsymbol{m} \sqrt{J(>\boldsymbol{E}_t)}$

14 riometers, 94 SPEs

- Optimising *m* and *E*_t (day and night)
- Also optimising rigidity cut-off latitude, $\Delta\lambda$

Correlation coef.

Mean abs. error (dB)

Correlation coef.

14 riometers, 94 SPEs

Model Optimisation

- Day/night zenith angle thresholds
- Exponent *n* in $A = m J^n (> E_t)$. (*n* \approx 0.5)
- Additional functions of MLT and season

Optimising the Dawn/Dusk Response

SPE commencing 21 April 2002. Fort Churchill riometer

- Approx. linear dependence on solar-zenith angle, χ , in the twilight zone
- Need to optimise χ thresholds separately for dawn and dusk
- Note *m* varies from day to day

Age-weighting the optimisation

- Weight regression based on age of measurements
 - Exponential weighting with appropriate time constant, τ
 - 6 or 24 hours
- Update parameters every hour

talo riometer (30MHz)

Single riometer optimisation (1-hourly updates)

0.8

0.6 0.4

0.2

-0.2

DRAP

m_n, m_d

(Based on 13 large SPEs)

 m_n, m_d, E_{tn}, E_{td}

- Optimising at an individual riometer (Taloyoak) produces close fit to measurements
 - up to 1-hour ahead

Optimised parameters: $\tau = 6h$

Optimised parameters: $\tau = 24h$

14-riometer optimisation: $\tau = 24h$

(1-hourly updates)

Type 2 PCA model (Full Profile model)

- Ionisation N_e determined from the ionisation rate and the effective recombination rate
- Effective recombination rate

$$= \alpha_{eff} N_e^2$$

- Large day/night variation in D region
- Model incorporates NRL MSISE-00 profiles of neutral density and electron temperatures

Specific absorption profiles, April 1998

Type 2 PCA model: Optimisation

- Optimise the scale heights of the effective recombination coefficient, $\alpha_{eff}(z)$
 - Separately for day and night
 - Levenberg-Marquart non-linear least squares method

	h_{Dd} , $h_{Dn}\;$ from (Gledhill 1986)	Optimised h_{Dd} , h_{Dn}
<i>h_{Dn}</i> (km)	4.27	3.18
<i>h_{Dd}</i> (km)	6.06	4.04
RMSE (dB)	2.17	0.75
Reduction in RMSE (%)	-	65.7
Bias (dB)	0.89	-0.22
Mean abs. error (dB)	0.92	0.42
Correlation coefficient	0.77	0.75

Initial and optimised parameters for Taloyoak (all 94 SPEs)

Incorporating POES measurements

 POES (MEPED instrument) provides independent measurement of proton flux spectrum J(>E) and rigidity cut-offs

POES vs GOES PCA prediction

- POES absorption prediction at foot of field line (NOAA 15 satellite) closely matches that using GOES satellite except in first 6 hours of SPE
 - P6 instrument (>6.9 MeV protons) contaminated by relativistic electrons

Conclusions

- Real-time optimisation of PCA models
 - Non-linear age-weighted regression to riometer measurements
 - Reduces RMSE to < 1 dB, and bias to within +/-0.2 dB
 - Type 1 model:
 - Optimise linear scaling factors, energy thresholds, rigidity cutoff latitude
 - Optimise χ boundaries of twilight region separately for dawn and dusk
 - Type 2 model:
 - Optimise scale height of α_{eff} in D region (day and night)
- Assimilating POES measurements
 - Directly measure rigidity cut-off boundaries
 - Proton flux measurements contaminated by relativistic electrons on P6 channel

Any Questions?