

Assessment of the predictive capability of IT models at the Community Coordinated Modeling Center

Ja Soon Shim^{1*}, Lutz Rastäetter², Maria M. Kuznetsova², Emine C Kalafatoglu³, Yihua Zheng²

> ¹CUA/NASA GSFC, Greenbelt, MD, USA, ²NASA/GSFC, Greenbelt, MD, USA, ³Istanbul Technical University, Turkey

http://ccmc.gsfc.nasa.gov

NASA Goddard Space Flight Center

- Bridge the gap between science and space weather operations
- Make modern space science models available to the research community
- Evaluate scientific research models for transition from research to operations
- Develop real-time systems
- Develop Space Weather tools
- Support NASA space weather situational awareness

- Ne, NmF2, hmF2, and vertical drift study since 2009
 - Nine events (quiet/moderate/strong storms)
- Neutral density/Satellite drag study
 - at CHAMP orbits
 - Higher altitudes (> 600 km)
- Poynting Flux study
 - at DMSP tracks
 - Six storm events
- Global TEC study since 2011
 - Eight longitude sectors
 - 2006 AGU storm, 2013 March storm

Global TEC

• Time interval: E.2006.347-349 (2006/12/13 - 12/16)

- Eight longitude sectors: 25-30, 90-95, 140-145, 175-180°E, 200-205, 250-255, 285-290, 345-350°E
- Observations :
 - GPS vertical TEC (provided by MIT and JPL)
 - data bin : 5° lat × 5° lon × 15 min
 - IGS (International GNSS service) vertical TEC
 - data bin : 2.5° lat × 5° lon × 2 hrs
- More than 10 model simulations

Observed/Modeled TEC and dTEC in 140°E

- dTEC_q= TEC_today –TEC (quiet day:12/13)
- dTEC_p= TEC_today –TEC (previous day)
- None of empirical and ionospheric physics based models predict well TEC increase in northern low latitudes.
- Two physics based ionosphere models relatively well predict TEC increase in southern middle latitudes.

Observed/Modeled TEC and dTEC in 140°E

- Data assimilation model simulation shows the best performance.
- Data assimilation and coupled models show TEC increase in northern hemisphere better compared to empirical and ionosphere models.
- 3_Phys_C shows high TEC increase in higher latitudes compared to other simulations.
- 1, 2 and 5_Phys_C do not produce equatorial anomaly.

 Physics-based coupled models (blue and green lines) produce dTEC_q and dTEC_p peak values better than TEC peak in higher latitudes, even though the location of the peak does not agree with the GPS TEC peak latitude.

RMS and Ratio (Max_{model}/Max_{obs}) for all 8 longitude sectors

- x and y axes correspond to the skill scores for TEC and dTEC_q predictions.
- RMS errors are smaller for dTEC_q than for TEC in southern middle and high latitudes, especially for physicsbased coupled models.
- In terms of ratio, the physics based coupled (squares) and data assimilation models have better scores than the empirical models.

- Along CHAMP satellite trajectories:
 - orbit averaged density
- 2006/12/13-12/16
- Models used for the study
 - two empirical model simulations
 - three physics-based coupled IT model simulations
- To assess the models' capability to capture storm effects several shifting approaches were performed: e.g.,
 - shifting to zero by subtraction of the quiet time neutral density
 : Nden_current Nden (quiet day:12/13)
 - shifting to CHAMP data by subtracting the quiet time mean difference between the observation and modeled values

Orbit averaged neutral density (12/13-12/16)

- Noticeable difference in baselines of the models
- Quantities for storm impact quantification:
 - maximum density
 - storm time neutral density average
 - time of peak

RMS, Ratio (Max_{model}/Max_{obs}) and Timing Error

- Model-data comparison of TEC, Neutral density along the CHAMP, and DMSP Poynting Flux for 2006 Dec. storm
- More than 10 model simulations of the Ionosphere-Thermosphere (IT), including 3-dimensional IT models and 2-dimensional ionospheric electrodynamics modules of global magnetosphere MHD models
- Eliminating quiet time climatology gives a better way to determine the actual storm-time response and to remove baselines of both the modeled and the observed data.
- Model performance depends on metrics, parameters, latitudes, and data preparation approaches (e.g., shifting, averaging and etc.).
- Ensemble of model simulations will allow for the models to supplement each other's shortcomings.
 - Determine quiet (current) time values using data assimilation/empirical models and forecast the values using physics-based models.

Poynting Flux/Joule Heating

- Poynting Flux along DMSP satellite track
- Joule Heating: calculated by using height-integrated currents and Pedersen conductance
- 2006/12/14-12/16
- Models used for the study
 - Five physics-based model simulations from
 - coupled IT models
 - 2-dim ionospheric electrodynamics modules of global magnetosphere MHD models
 - Four empirical model simulations

- Three passes through the auroral zone at the onset of the storm (adjacent traces in the stack plots are by -20 mW/m²)
- Model results were interpolated onto the DMSP tracks.
- analyzed in each pass of the auroral zone (i.e., satellite orbit segments within 45 degrees of the northern and southern magnetic poles)
- Joule heating derived from the ionospheric electrodynamics of magnetosphere MHD models > the observations: MHD models tend to overestimate electric potentials.

Ratio (Max_{model}/Max_{obs}) and Timing Error

- PF (black lines) and JH (colors) integrated along the DMSP-F15 satellite track during polar region crossing
- Model Yields: maximum Joule Heat value/maximum Poynting Flux observed
- Time difference in the occurrence of maximum value: T_model_max T_obs_max (cross: inbound toward magnetic pole, diamonds: outbound away from pole).

Model Simulations used for the study

Model Setting ID	
1_IRI*	IRI-2007, empirical ionospheric model
2_IRI*	IRI-2012 using IRI-corr for topside Ne and CCIR F-peak
1_SAMI3_HWM93*	SAMI3 with the neutral wind model HWM93
1_USU-IFM*	IFM driven by F10.7, Kp and empirical inputs for the thermosphere parameters
1_CTIPE*	CTIPe driven by Weimer electric potential model, 2°×18°, 15 levels in logarithm of pressure
2_CTIPE	CTIPe runs at NOAA/SWPC with Weimer 2005 using 1-minute solar wind and IMF from ACE; (f10.7+f81)/2
4_GITM*	GITM 2.0 driven by Weimer electric potential model
1_TIE-GCM*	TIE-GCM1.93 driven by Heelis electric potential model with constant critical co-latitudes
2_TIE-GCM	TIE-GCM1.94 driven by Weimer electric potential model with dynamic critical co-latitudes
3_TIE-GCM	TIE-GCM1.94 driven by Weimer electric potential model with dynamic critical co-latitudes and with double resolution
4_TIE-GCM	TIE-GCM1.94 with Weimer 2005 and SABER/TIDI lower boundary conditions in double resolution
5_TIE-GCM	TIE-GCM1.94 driven by AMIE with constant critical cross-over latitudes (fixed at 55 and 70 mlat)
1_UAM	Upper Atmosphere Model (UAM), A.A. Namgaladze et al., FAC as external driver
2_UAM	UAM with AMIE electric potentials as external drivers
3_UAM	UAM with Weimer-2005 (and/or Weimer-96) electric potentials
1_USU-GAIM*	USU-GAIM23 with GPS TEC observations from up to 400 ground stations

*Runs performed at the CCMC Models in blue: for the study of "Role of drivers"