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MPS Signal Generation

e Parabolic Wave Equation for

E-field
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Solution Method:

 Collapse ionospheric structure to multiple thin phase-
changing screens with free space between

At phase screen, neglect diffraction term

 Between screens, the PWE is source free, so can solve by
Fourier Transform method

e Solution U is the single-frequency transfer function. U is
the Fourier transform of the impulse response function.
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 Impulse response function

— Convolve the impulse response function with the transmitted
waveform to obtain the received, disturbed waveform

« Two methods to calculate the impulse response function:
— Statistical techniques:

> Techniques based on the mutual coherence function (MCF)

> Starting point is the analytic solution for the two-frequency, two-
time, two-position MCF (the correlation function of the propagating
electric field)

> Theoretical calculation requires strong scattering, S4 equal to unity,
phase structure function must be quadratic, signal bandwidth is
small, structure is homogeneous.

> Limitations never fully studied

> Previously the choice for most receiver testing because of speed
and relative simplicity. But, still in use now for strategic systems

— Multiple phase screen (MPS) techniques

> Most accurate technique available. Starting point is a realization of
the in-situ electron density. None of the limitations above apply.
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Formulation

Scalar Helmholtz equation
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Substitute the parabolic approximation for a spherical wave

e o Era]

vz, y,2) = X exp {—z’k (z — 2%+

Make the substitutions
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To obtain the final parabolic wave equation (PWE)

7 2
(1) (%9[2] + gqg) = szgU, +k*Bel =0
Propagation through a phase screen: solve PWE with

diffraction term set to zero
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Free-space propagation between phase screens: set source
term to zero and solve remaining equation via FFTs

U0,2) = [ Ulgs,7') exp (12mqe0)dgs
Ulgo,2) = [~ U(0,2") exp (—i2mqq0)do

The solution for free-space propagation is

2nq; (1 1 .
U(h, z}) / / " 2)exp { . (Zi = zé) } exp (127qe(0 — 0"))dqy d6’
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Values of phase shown are separated by 10 radians
Screens extend in altitude from 190 to 210 km
Length of phase screen at 200 km altitude is 200 km

Phase screens are generated to have a K3PSD, outer scale
of 5 km, inner scale of 10 m, and are comprised of 21°
points.
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NWRA Two-way Value of the Scintillation
T swwn Index

Definition of the S4 scintillation index, the normalized
standard deviation of the received power

S2(one-way) =

For monostatic (radar) two-way propagation

2 i
Sf(monostatic) = Sg(one—way) (4 + 655 (one Way))

1 4+ S3{one-way)

For bistatic two-way propagation with independent up and
down paths
S2(bistatic) = S%(up) (2 + Sz(upn
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Theory: solid lines; Simulation: dots
Radar detection performance is a strong function of S,
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Reciprocity is Satisfied

ot Single phase screen ot Five phase screen
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* Reciprocity: Field is same if transmitter and receiver are interchanged.

« The figures show I/Q plots of the complex one-way field comparing upward
(green curve) and downward (red circles) propagation

« Upward propagation from single transmitter to many receive locations.
Downward propagation from original receive locations to the single original
transmitter location
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Field at target plane due to many transmitter elements

Vg gew = 3, VI Gompm, 2um) Goplemir — Tar)

rmir

Field at receiver plane due to scatterers in target plane
V{(x, zrerr) = X V&, 2tar) Gaowntar — revr)

tar
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Following two examples of two-way propagation:
One transmitter at center of MPS grid
Upward propagation through five phase screens
401 target scatterers at z = 600 km, spaced by A/2
Downward propagation back to receiver plane
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Originally developed for application to synthetic
aperture radar

Includes the correlation of signals propagating on
closely-spaced paths

Avoids the small-scene approximation

Code design allows for variation in RCS of the
target scatterers

Additional but straightforward work needed for:
— 3D propagation
— Application to wide bandwidth waveforms
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