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Since 1984

The lonospheric Reconstruction
Problem: Tikhonov Method

N(r,t) = N, (r,t)Q(u(r,t)); i.e.Q(u(r,t))=¢"""

U ={u(r,t)}
Y~M[U]

Y Is the set of measured values obtained via various ionospheric
measurements (such as TEC data, HF oblique propagation delay)

The solution must fit the data within
errors of measurements.

> (Y -M[U]D'S(Y -M[U])/dim(Y) <1

There are infinitely many such solutions:

The smoothest solution is selected by
minimizing the stabilizing functional

— U'P U - min

-The pseudo-covariance P matrix is defined in such a way that the
stabilizing functional tends to take on larger values for unreasonably
behaving solutions (“reasonable” < “smooth”).

-The nonlinear optimization problem is solved iteratively (Newton-

Kontorovich).



HF Oblique Propagation Data within
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Since 1984

GPSII

-Simulated values of measured data can be obtained for any ionospheric model U

via numerical ray tracing (RT).

-This defines the non-linear functional of measurements M[U]

Ray Tracing Equations

Hamiltonian Formulation of RT Equations [Haselgrove, 1957, Jones, 1975]

dR  oH /oH
dr ok/ éw
dk_aH/aH_
dr R/ 6w

dX

OoN . R
— = F(X,[N,—]) X — [XltX21X3;X4;X5;X6;X7;X8]
dr ot — -

dg _

dr C - Group path equation
dow oH /oH -
Dby - Doppler equation

dr ot/ ow PP A

0

wave vector Dopp|er

position group path




HF Oblique Propagation Data within
) GPSII
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-The non-linear inverse problem is solved iteratively as a sequence of linear
problems. At the iteration n the non-linear functional M[U] is approximated by a
linear operator L as follows

M[U]=M[U,,]+LU -U,,)+o(u -U,.]) & L=5M/8U
- L is the Ray Path Response (RPR) operator

-The Ray Path Response operator L is estimated using the extended RT
equations — the equations augmented with the linearized ray-tracing equations

Extended RT Equations

dX oN )
2 F(X,IN, =
dr (Xl ot )
8+8x8=82
dA ON > equations in the
“ZoB(X,[N,—]A B, =0F /X, .
dr (X ot ) ’ "X=X(f) extended system

A

0 =0y, I, 6[1:8]
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Evaluation of the Ray Path Response
Operator L

The 3-D
lonospheric
model is
specified by
Un-1

Evaluate linear
response K(t')
of parameters
measured by
the RX

”

<

Perform ray-tracing
(ray-homing) for the

Integrate the
extended RT

Rx-Tx configuration. o> equations at the ray
Determine ray exit exit direction found at
direction ray homing

g
Produce the Green function J Produce impulse

G(t,7") for the boundary-

response

value problem (subject to the - function 6! (z, 7')

constraint that the ray end
points are fixed in space)

of the linearized
RT equations

Evaluate RPR

L° = [deK(z)

oU

U .
L{ .}:Lséu\tn%u\t

o= drK(r')(éF(x’dE\lN’ ND 0w, )+ 5F(X’é£\l'.\" ND (N,Q7(u, u, , + NOQ'(UM)))

d:(x,éll:\ll'\l’ N]) NoQ,(un—l) Where N = No(r;t)Q(un—l(rit))
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Evaluation of RPR within the 3-D ionospheric inversion problem can
be performed with little computational burden because it is reduced
to computation of several one-dimensional integrals

For HF data the main computational burden remains associated with
the classical ray homing task. This task precedes computation of
RPR

Numerical representation of the RPR is a sparse matrix with non-
zero elements occupying only nodes of the spatial grid that are
adjacent to the ray trajectories that connect receiver and transmitter.
Matrix operations with RPR are not a substantial computational
burden as we take advantage of the sparse character of RPR.



_NWRA_ Test with Range-Doppler Data Set
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6.84 MHz

 Florida Collection (August 13, 2013)
Range/Doppler Data

— Receiver at Vero Beach, FL
— Multiple transmitter sites

— Three hour collection of 3 KHz
bandwidth FMCW waveform




Range-Doppler Data of August 13, 2013

JSWER, Employed by GPSII
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Tampa, 13-Aug-2013

Tampa, 13-Aug-2013
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Flasma Frequency (MHz) at 220 km; 13 Aug 2013, 1236 UT
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NWRA Assimilation of Oblique lonograms
T (along with TEC and VI data)

Geography of DSTO data sources employed in this test’
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_NWRA_ Comparison of GPSII results for 2 links

Since 1984

GPSII runs with obliqgue ionogram reproduce observed Ol details
(yellow) for both assimilated (left) and test (right) propagation links

Both links shown at 01:45. All synthetic Ols are extraordinary-ray traces.

Scherger-Alice Springs Lynd River-Wyndham
(North-south; data link) (East-west; test link)



_NWRA_ Impact of Ol data on GPSII Model
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Vertical cut through the model at latitude -18 degrees

Plasma freq. (MHz) at Latitude -18.00; 16 Apr 2008, 02:02 UT
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 The theoretical framework for incorporating HF
channel probe data (propagation delay, angles of
arrival, Doppler shift) into ionospheric inversion
algorithms has been developed

o Capabilities to assimilate data from HF channel

probes and oblique ionograms have been added
to GPSII

 Performance and validation of the algorithm are
addressed in the companion paper by L.J.
Nickish
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Evaluation of the Ray Path Response

NWRA
e Operator L
ince 1984
The3-D Perform ray-tracing Integrate the
lonospheric (ray-homing) for the extended RT
model is = | Rx-Tx configuration. | | equations at the ray
specified by Determine ray exit exit direction found at
Un—1 direction ray homing
: A
Evaluate Ilnea}r Produce the Green function J Produce imoulse
response K(7') G(t,7") for the boundary- P P
of parameters value problem (subject to the
S P
measured by \a constraint that the ray end e el &, v )
the RX : : ) of the linearized
points are fixed in space) :
3 RT equations
Evaluate RPR
e SFOGIN,N]) . | || DETAILS I (IR
= (z‘ ) dr _ . (T’ v ) o 11 '
N T; = propagation delay at A(T)A (T ), T>T

the landing (Rx) point

G(r,7) =G (7,7) +[Ag 46 (*)][Drs1s (T ]; A (T P (n)HGﬁg,xg (7., r')}

[F1:3 (O)]T 10 0 .............. 0

— K(7') = Cug15(7,7') + Fug(7.) Dy 15(7")

D(z') = —{

Assuming that RX measures direction of
arrival, group path, Doppler



_NWRA_ GPSIl Solution with Range-Doppler Data
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Flasma freq. (MHz) at Latitude 28.00; 12 AUG 20132, 1336 UT
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_NWRA_ GPSIl Solution with Range-Doppler Data
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FPlasma freq. (MHZ) at Longitude -82.00; 13 AUG 2013, 1336 UT
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GPSII Solution with Range-Doppler Data

_NWRA_ and the GPS TEC data
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Flasma Frequency (MHz) at 220 km; 13 Aug 2013, 1236 UT
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Reconstruction of a TID from Simulated
—NWR&— OTHR Data
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Flasma Freguency (MHz) at 250 km; 15 dan 2014, 19:00 UT
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