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Abstract 
The aim of this study was to explore how the Coding as Another Language (CAL) curriculum, developed 
by Boston College’s DevTech Research Group and utilizing the ScratchJr app, impacted students’ 
computational thinking, coding skills, and reading comprehension. To accomplish this, the research team 
randomly assigned thirteen schools in a northeastern state of the United States to teach the Coding as 
Another Language curriculum or to a “business as usual” control condition. These thirteen schools were 
randomly assigned to either the treatment group (CAL condition) or control group, with six schools 
designated to the CAL condition and seven schools designated to the control group. Participants in the 
study, referred to as Impact Study A, initially included 37 kindergarten, first-, and second-grade teachers, 
including supporting teachers, and 464 kindergarten, first- and second-grade students from 28 classrooms 
in the treatment group and 44 teachers including supporting teachers and 488 Kindergarten, first, and 
second-grade students from 36 classrooms in the control group. Hierarchical linear modeling was used to 
determine the impact of the CAL curriculum on first and second grade students’ computational thinking, 
coding skills, and reading comprehension. Results showed that the CAL curriculum intervention had a 
significantly positive impact on students’ coding performance while no notable difference was found on 
students’ computational thinking. Additionally, an examination of students’ standardized literacy 
achievement across the two conditions found no notable difference on students’ standardized literacy 
achievement. This implied that even though the treatment group students allocated regular class time for 
the CAL curriculum, the students in the treatment group showed comparable growth on the standardized 
assessments with the students in the control group. 
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Background 
 
In the automated economy, computer programming is essential across diverse disciplines. Occupations 
that value programming skills provide as much as 20% of “career-track” job openings (Burning Glass 
Technologies, 2016), and the number of jobs in information technology will grow 12.5% from 2014 to 
2024 (Fayer, Lacey, & Watson, 2017). To meet this growing need, there has been an increase in new 
educational policies and frameworks at the federal and state level to prepare K-12 students for CS related 
professions.  
 
However, while most of the educational implementation and research is happening at the late elementary, 
middle school, high school, and college (Guzdial, 2008; Wilson, Sudol, Stephenson & Stehlik, 2010), the 
frameworks, standards, and best practices mandate to start in kindergarten (Barron et al., 2011; 
International Society for Technology in Education, 2007; NAEYC and Fred Rogers Center for Early 
Learning and Children’s Media, 2012; U.S. Department of Education, 2010; White House, 2016; U.S. 
Department of Education & U.S. Department of Health and Human Services, 2016; Paciga & Donohue, 
2017).  
 
There are both economic and developmental reasons for the choice to start early. Research shows that 
educational interventions that begin in early childhood are associated with lower costs and more durable 
effects than interventions that begin later on (e.g., Cunha & Heckman, 2007; Heckman & Masterov, 
2007). Two National Research Council reports—Eager to Learn (2001) and From Neurons to 
Neighborhoods (2002)—detail the importance of early experiences for later school achievement. 
Furthermore, research shows how children who are exposed to STEM curriculum at an early age 
demonstrate fewer gender-based stereotypes regarding STEM careers, increased interest in engineering 
and computer science (Sullivan & Bers, 2018; Metz, 2007; Steele, 1997), and fewer obstacles entering 
these fields later in life (Madill et al., 2007; Markert, 1996). Research also suggests that addressing the 
under-representation of women in computer science is critical to improve early education experiences 
(Varma, 2009).  
 
However, if computer science education is to start in the early years, when children are just starting to 
develop literacy and numeracy skills as well as learn “schooling,” there is a need for pedagogical 
approaches, curriculum, and programming languages that are developmentally appropriate for young 
children (Bers, 2018; Bers et al, 2022). The need to fulfill the work pipeline is not enough of a rationale 
for the introduction of computer science in early childhood education and thus it must be integrated with 
foundational content areas such as math and literacy. If we are going to start computer science education 
in kindergarten, the rationale shouldn’t be the creation of the future workforce, but the future citizenry 
(Bers, 2022).  
 
The work conducted in this study is grounded on Bers’ previous work that understands “Coding as a 
Another Language (CAL)” (Bers, 2018, 2019). Within this framework, those who learn how to code from 
a young age will not only be able to participate in the automated economy but will also have a civic voice. 
As children learn how to code, they also develop their creativity to grow a society of innovators (Resnick, 
2018). A literate person knows that reading and writing are tools for meaning making and, ultimately, 
tools of power because they support new ways of thinking (Papert, 1980). The same is true for computer 
programming and computational thinking. 
 
Researchers have coined the term “computational thinking” to refer to an analytical process rooted in the 
discipline of computer science. It involves thinking recursively, applying abstraction, breaking up a 
complex problem in smaller tasks, and using heuristic reasoning to discover a solution (Wing, 2006; 
2011). There is debate whether computational thinking can be classified as a unique category of thought 
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(Gadanidis, 2017; Pei, Weintrop, & Wilensky, 2018). However, the term has grown popular at a time 
when schools are incorporating computer science in massive ways and developing frameworks (K–12 
Computer Science Framework Steering Committee, 2016).  While computational thinking is not the same 
as coding, the act of coding can facilitate the spread of computational thinking (Bers, 2021; Relkin et al, 
2021). CAL addresses the teaching of computational thinking through both unplugged activities and on-
screen coding with ScratchJr, integrated with other content areas, in particular math and literacy, in the K-
2 segment. 
 
ScratchJr is the first programming language explicitly designed for young children, 5 to 7 years, which 
meets their developmental needs. ScratchJr is the result of a long-lasting collaboration between the 
DevTech Research Group, now at Boston College, and the MIT Lifelong Kindergarten Group funded by 
the National Science Foundation and the Scratch Foundation (Bers & Resnick, 2015). ScratchJr enables 
children to create interactive stories and games by snapping together graphical programming blocks to 
make characters move, jump, dance, and sing. Through ScratchJr young children learn how to code and 
how to engage in computational thinking while creating personally meaningful projects. Since its launch 
in 2014, there have been 40 million users with an average of 2.4 million users per month over the past 6 
months and has actively been used in every country in the world (except North Korea). The app can be 
freely downloaded to iPads, Android tablets, iPhones and Android phones, Amazon Kindle tablets, and 
Chromebook devices, and it has been translated to Spanish as well as a dozen other languages.  
 
The ScratchJr team began collecting analytics data in 2016. Since then, as of February 2023, over 167 
million projects have been created, and existing projects have been edited over 275 million times, 
indicating that users are improving and debugging their projects over time. The DevTech Research Group 
has developed curricula and teaching materials to integrate ScratchJr with other content areas in early 
childhood in both formal and informal learning settings. Three twenty-hour curriculum units have been 
developed to accompany the ScratchJr app: Animated Genres, Playground Games, and Reinforcing 
Common Core. In addition, several activities were developed in the form of coding cards (Bers & 
Sullivan, 2018) as well as the Coding as Another Language curriculum to support literacy integration. 
The CAL curriculum builds on previous work by also incorporating math, low-tech materials, and 
unplugged games to address powerful computational ideas, skills, and habits of mind that promote 
computational thinking. 
  
Pilot studies found that children in K-2 can master ScratchJr, which in turn supports learning of problem 
solving, foundational programming, and discipline-specific content in math and literacy (Flannery et al., 
2013). Combined pilot work representing a total sample of N = 333 children (aged 5-7 years) revealed 
that children used ScratchJr to make creative projects, which supported literacy practices of exploring and 
utilizing narrative structures, decoding symbols, and reading and writing digital media. (Flannery et al., 
2013; Portelance & Bers, 2015). Further, pilot work demonstrated that ScratchJr can support learning 
outcomes when educators have diverse teaching approaches, although positive learning outcomes are 
more pronounced when the learning is child-directed and open-ended (Strawhacker, Lee, & Bers, 2017). 
 
Despite programming becoming popular and ScratchJr and its resources being widely utilized, there is a 
lack of well-researched, evidence-based integrated early childhood computer science curriculum and 
professional development strategies. Technology and pedagogy are not the same thing. As new 
programming languages that are developmentally appropriate emerge and are widely used, such as 
ScratchJr, there is a need to conceptualize pedagogical approaches for teaching computer science in the 
early years. These approaches must be consistent with developmentally appropriate practice (Bredekamp, 
S, 1987) and must embrace the maturational stages of children by inviting play and discovery, 
socialization and creativity (Bers, 2018a). 
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Study Description 
Research Questions for the study 
Research Question 1: What is the impact of three months of CAL curriculum on kindergarten, first, and 
second grade student’s computational thinking compared to the business-as-usual condition? 
 
Research Question 2: What is the impact of three months of CAL curriculum on kindergarten, first, and 
second grade student’s coding skills compared to the business-as-usual condition? 
 
Research Question 3: What is the impact of three months of CAL curriculum on first and second grade 
students’ standardized literacy performance compared to the business-as-usual condition? 
 
Intervention Condition 
The CAL curriculum builds on DevTech’s previously developed pilot units (Bers, 2018) and is aligned 
with the K-12 Computer Science Framework (K-12 Computer Science Framework Steering Committee, 
2016) and the Standards for Technological Literacy (International Technology and Engineering Education 
Association, 2007), as well as the Common Core Frameworks for Math and Literacy (National Governors 
Association Center for Best Practices & Council of Chief State School Officers, 2010), and Virginia 
Department of Education’s Standards of Learning for English and Standards of Learning for Computer 
Science (Virginia Department of Education, 2017). 
 
The CAL curriculum is organized around powerful ideas that are fundamental to computational thinking 
and, at the same time, are developmentally appropriate for young children. The curriculum introduces 
coding and computational thinking in a playful, developmentally appropriate way by integrating powerful 
ideas of computer science with literacy skills. 
 
Students were intended to receive a total of 24 lessons of 45 minutes each.  
 
The CAL curriculum was implemented using a delayed treatment design. Following a pilot study during 
winter 2021 at selected schools in the U.S., thirteen schools were randomly assigned to either the 
treatment condition (CAL curriculum) or the control condition. In the six treatment schools, teachers were 
trained during summer 2021 in the delivery of the CAL curriculum and provided resources and support to 
implement the curriculum during a 12-week period (Fall 2021). In the seven control schools, teachers 
delivered business-as-usual during School Year (SY) 2021-2022 and delayed implementation of the 
intervention until SY 2022-2023; Teachers in control schools did not have access to training or the 
curriculum during SY 2021-2022.  
  
For Impact Study A held during SY 2021-2022, the DevTech Research Group trained the teachers 
delivering the curriculum in CAL schools. The impact of the intervention is measured by comparing 
student outcomes in the treatment and the control group. Student outcomes are measured before and after 
the implementation of the curriculum/business-as-usual. 
 
Program Intervention 
Before implementation of the CAL curriculum, 24 kindergarten, first-, and second- grade teachers in 7 
CAL schools received professional development (PD) training on the implementation of ScratchJr in the 
classroom and the CAL curriculum. This included attending two 2-hour PD workshops (total of 4 hours) 
and completing their own ScratchJr project.  
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Students were intended to receive a total of 24 CAL curriculum lessons of 45 minutes each. Teachers 
implemented the CAL curriculum lessons during regular school hours in between regular curricula. For 
Impact Study A, primary teachers, as well as specialists, implemented the curriculum to the whole class, 
in-person.  
 
In Impact Study A, 24 kindergarten, first-, and second- grade teachers (100% female; average number of 
years teaching = 21 years) delivered the CAL curriculum to 564 students; among these students, 464 
consented to participate in the study.  These students were enrolled in the treatment schools as of 
September 2021. The average number of CAL lessons completed by the end of implementation was 20.2. 
The total number of CAL lessons to complete was 24 lessons. Teachers were able to begin implementing 
the lessons in their classroom after pre-testing and continued until the end of the school year.  
 
Fidelity of implementation to the program was assessed using a fidelity of implementation measure and 
thresholds. This study was assessed for fidelity along three different key components (CAL curriculum, 
DevTech Research Group teacher training, and coaching), with seven different indicators (curriculum 
dissemination, group training participation, group training content, embedded onsite coaching–
availability, embedded onsite coaching–satisfaction, virtual coaching–availability, and virtual coaching– 
satisfaction) nested across those three components (see table 10). 
 
Setting 
This multi-site study took place at 13 different schools within different districts in a northeastern state in 
the United States. Each school district was considered to be public, high-poverty, and in an urban 
environment. The CAL curriculum was deployed to child participants within the classroom context by 
teachers (who had been trained with the CAL curriculum) at variable rates across the length of the 
intervention. Methods for randomization at each site were standardized. 
 
Comparison Condition 
The CAL curriculum was implemented using a delayed treatment design. Following a pilot study in SY 
2020-2021 at other U.S. schools, Group 1 (treatment group) was trained during summer 2021 in the 
delivery of the CAL curriculum and provided resources and support to implement the curriculum during a 
12-week period beginning in Fall 2021. During SY 2021-2022, Group 2 schools (control group) delivered 
treatment-as-usual and delayed implementation of the intervention until SY 2022-2023; Group 2 teachers 
did not have access to training or the curriculum during SY 2021-2022. 
 
Study Participants 
In Impact Study A during spring 2021, public schools were invited by the state department of education 
to submit applications to participate in the CAL curriculum study. Title I schools were particularly 
encouraged to apply. Participation was voluntary. All schools that applied for participation were accepted 
except for one school; lack of funding resources from the state department of education was the reason 
the one school was not accepted for participation. However, two other schools in that same school district 
were selected to participate. School principals or district supervisors from the schools where these 
participating teachers taught were asked to send letters of support along with the original applications. 
Following school recruitment, random assignment of schools was done in May 2021 before any outcome 
testing. At the beginning of Fall 2021 students’ parental consents to participate in the research study were 
then sent to be collected and coordinated by a site coordinator. All parental consents were voluntary. 
Students who joined the schools after the parental consent process was completed are not included in the 
sample.  
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Inclusion criteria for the study are schools at least serving one of the targeted grade levels of 
Kindergarten, first grade, and second grade. No specific exclusion criteria were applied. The schools were 
randomized with blocks. Blocks were formed using two criteria: poverty quartile and number of estimated 
participating students in order to ensure comparable demographics and comparable sample sizes across 
the treatment and the control group: 1) schools in the lowest and second-to-lowest poverty quartile that 
expect fewer than 100 students to participate; 2) schools in the lowest and second-to-lowest poverty 
quartile that expect more than 100 students to participate; and 3) schools in the highest and second-to-
highest poverty quartile. As a result of the random assignment, six schools were assigned in the 
intervention group and seven in the comparison group. Figure 1 and 2 shows the CONSORT flow of 
participants in Study A. 
 
Figure 1. CONSORT Flow of K-2nd Grade Participants for the CSA and TechCheck Outcomes 

 
 
Figure 2. CONSORT Flow of 1st and 2nd Grade Participants for the Literacy (LA) Outcome 
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Sample Alignment with Those Served by the Program 
The evaluation sample for the creative coding proficiency as measured by CSA and computational 
thinking as measured by TechCheck includes all consented students who were offered the intervention 
over the duration of the evaluation and for whom each outcome measure was not missing. 
 
The evaluation sample for literacy assessment included first and second grades only because the majority 
of schools in Study A did not administer literacy assessment for Kindergartens. Additionally, among the 
13 participating schools, one school in the treatment condition was excluded for the evaluation of literacy 
assessment due to the type of assessment administered by the school district. The literacy assessment in 
the excluded school used ordinal categories whereas the literacy assessments in the included schools were 
continuous and standardized as a z-score. Also, there is no corresponding type of literacy assessment used 
in the control group as it is in the treatment group.  
 
As a result of this exclusion, 37 students were excluded from the literacy assessment analysis, 36 of 
which had consented for research participation. The excluded 36 consented students account for 11.8% of 
all first and second grade consented students in the treatment evaluation sample and 5.2% of consented 
students across treatment and control conditions. 
 

Design and Measures 
Independence of the Impact Evaluation 
The evaluation was conducted by Shaffer Evaluation Group (SEG). Shaffer Evaluation Group worked 
closely with the Research and Evaluation team of the DevTech Research Group, which worked 
independently from the intervention development and implementation team. A firewall was implemented 
between the DevTech Research and Evaluation team and the intervention development and 
implementation team. All decisions regarding assignment, data collection, data analysis, and final 
reporting were made by the Shaffer Evaluation Group. 
 
While impact analyses were conducted by the DevTech Research and Evaluation team, the Shaffer 
Evaluation Group conducted verification of the impact models for each research question of the study. 
During this verification process, SEG ensured that all data at the student level that was collected was 
included in the analysis. If student-level data was dropped from analysis, SEG verified that the reason for 
dropping the case was objective in nature. In addition to verifying the data cleaning process, SEG also 
verified the analysis. During this verification process, SEG verified that the code DevTech used included 
all appropriate variables in each unconditional and conditional model, verified the correct number of 
observations and schools in each unconditional and conditional model, verified each beta was in bounds, 
and finally ran RMarkdown to spot-check that the same results were found. 
 
Pre-Registration of the Study Design 
This study was originally registered in the Registry of Efficacy and Effectiveness Studies (REES) on 
August 22, 2022. The original registry ID number is 13200.1v1. The original study design was restricted 
to the second grade. The original research questions as well as findings that address the pre-specified 
research analyses are identified in this report by a ‘+’ symbol. The study design registration was updated 
on Friday February 24, 2023 to reflect the decision to expand the study to include kindergarten and first 
grade.  
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Design 
The CAL curriculum was implemented using a delayed treatment design. During Impact Study A, the 
DevTech Research Group trained the teachers who delivered the curriculum in the schools. The impact of 
the intervention was measured by comparing student outcomes in the treatment group (Group 1) and the 
control group (Group 2). Student outcomes were measured before and after the implementation of the 
curriculum/business-as-usual.  
 
The impact study used a randomized control trial design that assigned schools to either the treatment or to 
a control condition. Teachers in treatment schools were trained to teach the curriculum, so that the 
intervention is delivered at the classroom level. Group 1 implemented the CAL curriculum supported by 
training from the DevTech Research Group during the first year of implementation. Group 1 students 
were compared using three-level hierarchical linear modeling (HLM), controlling for covariates at the 
student, teacher, and school levels, to test for differences in the outcomes of computational thinking, 
coding skills, and literacy comprehension skills. 
 
Measures 
 
To address each of the research questions, this study used multiple instruments to assess the various 
outcomes (Table 1). Each instrument is described in more detail below. 
 
 

Table 1. List of Instruments Used by Outcome Measures 
Domain Name of 

Instrument 
Subtest(s) of 
instrument 
used, if any 

Timing of 
measurements 

Baseline 
measure 

Variable 
construction 

Computational 
Thinking 

TechCheck n/a Right after 
completion of 
curriculum 
(Group 1, 2) 

Score before 
start of 
curriculum 
(fall/winter) 

Raw score 

Creative 
Coding 
Knowledge 

Coding 
Stages 
Assessment 

n/a Right after 
completion of 
curriculum 
(Group 1, 2) 

Score before 
start of 
curriculum 
(fall/winter) 

Raw score 

Comprehension STAR 
Reading 

Literary text Spring/summer 
after 
curriculum 
(Group 1, 2) 

Score before 
start of 
curriculum 
(fall/winter) 

Raw domain 
score 

Comprehension iReady Comprehension: 
literature 

Spring/summer 
after 
curriculum 
(Group 1, 2) 

Score before 
start of 
curriculum 
(fall/winter) 

Domain scale 
score 

Comprehension AimsWeb 
Plus 

Reading 
Comprehension 

Spring/summer 
after 
curriculum 
(Group 1, 2) 

Score before 
start of 
curriculum 
(fall/winter) 

Raw domain 
score 

Reading Developmen
tal Reading 
Assessment 

n/a Spring/summer 
after 

Score before 
start of 

Scale score 
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curriculum 
(Group 1, 2) 

curriculum 
(fall/winter) 

Reading Fastbridge 
Reading 
Screener  

n/a Spring/summer 
after 
curriculum 
(Group 1, 2) 

Score before 
start of 
curriculum 
(fall/winter) 

Scale score 

 
TechCheck (Relkin et al., 2020) - TechCheck assesses students’ computational thinking. This measure 
was developed by the intervention developer and validated with 769 five-to-nine-year-old students. In 
previous studies, it had a reliability of α = 0.68. TechCheck was correlated with TACTIC-KIBO (r = .53). 
This measure has 15 questions that are in a multiple-choice format. Data for the current study was 
collected November 2021 - June 2022. Example items include: “What comes next” after showing a series 
of shapes. 
 
Coding Stages Assessment (CSA; de Ruiter & Bers, 2021 – CSA assesses students coding knowledge and 
programming language. This measure was developed by the intervention developer and validated with 
118 five-to-eight-year-olds. This assessment has 27 items presented in three stages. Data for the current 
study was collected November 2021 - June 2022. Example items include: “Can you show me where you 
tap on the screen to make the program go?”. In previous studies, internal consistency was λ6 = .94.  
 
Comprehension - literacy assessment included standard assessments of: 

Fastbridge - This assessment includes three universal screening tests to capture students who may 
need more support throughout the school year. Fastbridge assesses five reading components: 
phonemic awareness, phonics, fluency, vocabulary, and comprehension. The internal consistency 
across K through eighth grade ranged from 0.91 (K) to 0.96 (2nd, 7th, and 8th).  
 
STAR - The STAR assessment encompasses five components: word knowledge and skills, 
comprehension strategies and construction meaning, understanding author’s craft, analyzing 
literary text, and analyzing argument and evaluating text. This assessment had an overall 
reliability of 0.98. 
 
DRA - The Developmental Reading Assessment provides benchmark assessment, word analysis, 
and progress monitoring. The DRA assesses oral reading fluency and comprehension. Oral 
reading fluency had a median internal consistency of 0.88. Comprehension had a median internal 
consistency of 0.82. 
 
Aimsweb - The Aimsweb reading assessment captures letter naming fluency, oral reading 
fluency, phoneme segmentation, print concepts, auditory vocabulary, initial sounds, letter word 
sounds fluency, and word reading fluency. The internal reliability across K - eighth grade for 
Aimsweb ranges from 0.87 - 0.95.  
 
iReady - The iReady Diagnostic Reading assessment covers phonological awareness, phonics, 
high-frequency words, vocabulary, comprehension of informational text, and comprehension of 
literature.   

 
Sample Sizes and Attrition 
Study A sample size information is reported in Table 2, both for clusters and individuals, by condition 
and for each outcome. Outcomes for coding skill are labeled as Post-CSA, computational thinking as 
Post-TechCheck, and standardized literacy comprehension performance as Post-LA. Although specified 
in the registered evaluation study plan, teacher attrition was not incorporated into the analysis since 
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during actual implementation a decision by an individual teacher to not participate in the study often did 
not equate to loss of students from the study.  
 
Table 3 summarizes the observed overall attrition and differential attrition and assigns an attrition level by 
outcome level according to WWC boundaries for defining high versus low attrition for randomized 
control trials (What Works Clearinghouse, 2022). Attrition at the cluster level may be defined as low with 
the exception of the post literacy assessment outcome. As discussed earlier in the Alignment of the 
Sample section, this exception was due to the exclusion of one treatment school from the sample because 
the school’s literacy assessment used ordinal categories that were incompatible with the planned z-score 
analysis. Student-level attrition may be defined as high for the post-CSA and post-Tech Check outcomes, 
due primarily to the parent consent rate (82.27%) and student absences during testing. The student-level 
attrition for the post literacy assessment may be defined as low.  
 

Data Analysis and Findings 
Baseline Equivalence 
The baseline mean difference between the treatment and control groups was calculated using a statistical 
model that adjusts for clustering. Multilevel modeling, with student-level being the first-level and school-
level being the second level, was used. Specifically, the baseline measures of outcomes at the student 
level were used as the predicted variable, and the condition variable (e.g., intervention or comparison) 
was used as the predictor while allowing the school intercept to vary. The participants differed from those 
included in each analytic sample slightly because only students who completed both pre and post-
assessments were included in the impact analyses.  
 
Table 4 presents descriptive statistics by condition for each analytic sample in the study: baseline 
measures of coding skills as measured by CSA, computational thinking as measured by TechCheck, and 
literacy comprehension as measured by standardized assessments in Impact Study A. The standardized 
difference (Hedges’ g) between control and treatment groups on all outcome assessments is lower than 
0.05 and therefore satisfies the WWC standard for baseline equivalence (What Works Clearinghouse, 
2022.). 
  
Background characteristics not required for assessing baseline equivalence are also presented in Table 5 
by each condition, including gender (Female or Male), Individualized Education Plan status (Yes or No), 
Limited English Language Proficiency status (Yes or No), and free/reduced lunch program status (Yes or 
No). 
 
Program Effects 
Approach to estimating program effects: 
The method used to estimate the impacts of CAL-ScratchJr Curriculum implementation is multilevel 
modeling at two levels. See the statistical models below:    

o Level-1: Student Level 

𝑌!" = 𝛽#" + 𝛽$"%𝑌!"∗& + '
&

'($

𝛽).'"𝑋'!" + 𝜀!" 	

o Level-2: Cluster (School) Level  
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𝛽#" = 𝛾## + 𝛾#$%𝑇"& +'
+

,($

𝛾#).,𝑊," + 𝜇#" 	

𝛽$" = 𝛾$#	
𝛽).'" = 𝛾).'#	

Where,  

▪ 𝑌!"   = the outcome score for the ith student in the jth school. 

▪ 𝛽#" = the intercept for school j. 

▪ 𝛽$" = the effect of pretest in school j. 

▪ 𝑌!"∗  = a pre-test measure for the ith student in the jth school.  

▪ 𝛽).'" = the effects of student covariates in school j. 

▪ 𝑋'!" = the mth of additional covariates for student i in school j. 

▪ 𝜀!" = a residual error term for student i in school j. 

▪ 𝛾## = the mean intercept 

▪ 𝛾#$ = estimated treatment impact 

▪ 𝑇"  = 1 if school j is assigned to treatment (CAL), and = 0 if school j is assigned to 
comparison.  

▪ 𝛾#).,= the effect of school-level covariate (percent of students receiving free/reduced-
price lunch); 

▪ 𝑊,"= the qth of Q covariates for school j. 

▪ 𝜇#" = random intercept term – deviation of cluster j’s mean from the grand mean, 
conditional on covariates; assumed to be normally distributed with mean 0 and 
variance 𝜏##) . 

▪ 𝛾$# = mean effect of pretest 

▪ 𝛾).'#= mean effect of student covariate m. 

All outcome measures were collected at the student level and the treatment indicator was at the school 
level. Clustering was addressed by allowing random intercept among schools. 
 
As presented in the statistical model, all student’s pre-test scores were included as a control variable. In 
addition, grade level, demographics including gender, IEP status, LEP status, Free/Reduced Lunch 
Program status, school-level pretest score, and school level free/reduced lunch percentage were included 
as control variables. 
 
No participants or units were excluded from the analysis except for the ones that are missing data or had 
data incompatible for analysis (see Alignment of the Sample section).  
 
Approach to handling missing data: 
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Only students with data present at both the pre-test and the post-test were included in the analytical 
sample. Baseline equivalence from all outcome measures was established based on the analytical sample, 
which list-wise deleted those students who had missing data at either the pre or the post time points.  
 
Table 6 presents the extent of missing data by outcome and condition. One should note that the numbers 
used in this table include all possible roster students. The number of consented students for research is 
smaller than the number of students from the roster, thus, the actual missing rate from the consented 
students is smaller than the ones in the table.   
 
Findings 
Regarding research question 1, which inquired about the impact of three months of the CAL curriculum 
on kindergarten, first, and second grade student development of computational thinking, the treatment 
group showed no notable difference compared to the business-as-usual control group (Hedge’s g = 0.04). 
Table 7 presents descriptive statistics (means, standard deviations) and sample sizes by condition for each 
outcome measure at each time point (pre and post assessments). 
 
Regarding research question 2, which inquired about the impact of three months of CAL curriculum on 
the Kindergarten to second grade student participants’ development of coding skills, the treatment group 
showed a significantly higher increase of coding skills compared to the business-as-usual control group 
(Hedge’s g = 0.47). This Hedge’s g indicated a large effect of the impact of the curriculum. The CAL-
ScratchJr curriculum was successful in terms of improving students’ coding performance. 
 
Regarding research question 3, which inquired about the impact of three months of CAL curriculum on 
the first and second grade student participants’ literacy performance compared to the business-as-usual 
condition, the treatment group showed no notable difference compared to the business-as-usual 
comparison group (Hedge’s g = -0.01). Table 8 presents sample sizes, means, standard deviations, and the 
beta coefficients for the grouping variable (treatment or control) by condition for each outcome measure. 
 
Table 9.1 to Table 9.3 report the sample sizes, means, and standard deviations in both conditions for 
samples with and without missing data.  
 
Discussion 
Considering the time taken away from regular classes in the treatment group compared to the control 
group, the comparable growth in the standardized literacy assessment in the treatment group is a success. 
The results implied that even with some class time reserved for the CAL curriculum, the treatment group 
students’ standardized literacy performance is comparable with their peers in the control group. The 
results also provide empirical evidence that future CAL curriculum implementation may not negatively 
impact students’ performance on standardized literacy assessments.  
 
Compared to the control group, the treatment group did not show a notable difference in students’ 
computational thinking. Few research studies have examined the effect of early childhood computer 
science curriculum interventions on students’ computational thinking. Among the few we found, research 
reported mixed findings regarding the impact of a computer science intervention on students’ 
computational thinking. For example, Grillo-Hill, Mahoney, Chow, and Li (2019) examined the effect of 
codeSpark Academy on one domain of computational thinking and found no significant effect. Oluk and 
Cakir (2021) examined the effect of code.org on sixth grade students and reported a significant increase 
on students’ algorithm development and computational thinking skills in the intervention group. 
However, the grade level and limited details regarding the number of schools or the number of classrooms 
investigated left little generalizability of the study. Additionally, code.org activities include the unplugged 
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computational thinking activities, which made the curricula not comparable with other curricula that do 
not explicitly teach computational thinking such as codeSpark Academy or the CAL curricula. Our 
research team, Relkin et al. (2021) also conducted a quasi-experimental study and found a significant 
effect of the CAL-KIBO curriculum on first graders’ computational thinking but not on second graders. 
However, the significant effect among the first graders was associated with a significantly higher baseline 
in the intervention group, which made it difficult to attribute the effect to the intervention. 
 
In summary, the CAL-ScratchJr showed a positive impact on students’ coding performance. While no 
significant impact was found on students’ computational thinking, recent research does not offer valid 
evidence that similar computer science curricula affect computational thinking either. The results also 
provided empirical evidence that the CAL curriculum can be implemented in authentic classroom settings 
without negatively impacting students’ performance on standardized literacy assessments even though 
some class time was allocated to the CAL curriculum.  
 
The study was conducted during the COVID-19 pandemic when many schools, teachers, and students 
were challenged with absences and quarantines. As a result, the CAL curriculum was implemented at 
various levels of fidelity. Teachers do report that time was one of their main challenges during the 
pandemic. Nevertheless, teachers shared how excited their students were to engage with the CAL 
curriculum.  
 
The DevTech Research Group plans to expand the program to more schools, including engaging 
additional schools in CAL professional development training and providing support for implementation 
of the CAL curriculum. Planning is underway to make automated interactive assessments to reduce cost 
and improve efficiency in research, since the current assessment of coding skills and computational 
thinking were administered one-on-one by trained research assistants, which is labor- intensive. 
 

Fidelity of Implementation Study 
 
Fidelity Measurement 
The fidelity of CAL curriculum implementation was assessed by examining three key components: (1) 
revised CAL curriculum, (2) DevTech Research Group teacher training, and (3) teacher coaching. In 
Impact Study A, the revised CAL curriculum component encompassed one indicator: curriculum 
dissemination. The DevTech training component encompassed two indicators: group training 
participation and group training content. The coaching component encompassed four indicators: onsite 
coaching availability, onsite coaching satisfaction, virtual coaching availability, and virtual coaching 
satisfaction. The scoring model for assessing fidelity of implementation is presented in Table 10. 
 
Fidelity Findings 
Overall, Impact Study A achieved fidelity for some of the three components. In key component one, 
curriculum dissemination, 18 teachers (out of 24 total) accessed the curriculum, and therefore earned a 
score of ‘1’ at the teacher-level. At the school-level, four schools had 90% or more teachers earn a score 
of ‘1’, while there were two schools that had 51-75% of teachers earn a score of ‘1’ and one school had 
26-50% of teachers earn a score of ‘1’. This resulted in an overall sample-level score of ‘2’, with 57% of 
schools earning a score of ‘1’ or inadequate implementation. However, there may have been stronger 
implementation of curriculum dissemination, as all teachers received copies of the curriculum multiple 
times. There were low rates of responses for lesson log entries by teachers, potentially impacting the 
fidelity score.  
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In key component two, DevTech Research Group teacher training, 24 teachers (out of 24 total) 
participated in the provided group training. This included attending training in synchronous or 
asynchronous format. Further, eleven out of twelve indicators were observed during the first part of the 
group training and seven out of seven indicators were observed during part 2. Overall, across indicators in 
component two, there was a score of ‘4’ indicating adequate implementation. 
 
For coaching, the third key component, seven teachers out of the 24 requested either an onsite or virtual 
coach. Of the two teachers who requested a virtual coach, two received a response to the request. There 
was an average satisfaction of 4.0 (on a rating scale of 1 = needs a lot of improvement - 5 = couldn’t be 
better) with virtual coaching. Of the seven teachers who requested an onsite coach, all seven received a 
response to their request. There was an average satisfaction of 4.3 with onsite coaching. Overall, this 
component earned a sum score of ‘9’ indicating adequate implementation. 
 
Details of fidelity of implementation scores are provided in Table 11.  
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Appendix A: Tables 
 
 

Table 2. Sample Sizes at Randomization and in Analytic Sample Needed to Assess Attrition for an RCT with Cluster-Level Assignment  

Outcome 
Measure 

Control Group Treatment Group 
Clustersa Studentsb Clustersa Studentsb 
# 
Randomized 

# Analytic 
Sample 

# 
Randomized 

# Analytic 
Sample 

# 
Randomized 

# Analytic 
Sample 

# 
Randomized 

# Analytic 
Sample 

Post-CSA 7 7 700 453 6 6 564 430 
Post-
TechCheck 7 7 700 450 6 6 564 422 

Post-LA 7 7 539 333 6 5 368 238 
a Reported only for cluster-assignment evaluations. Not applicable for individual-assignment evaluations. 
b Report the number of students in non-attrited clusters only, for cluster-assignment evaluations. 
 
 

Table 3. Attrition Assessment for Impact Study A  

Outcome 
Measure 

Clusters  Students 

Overall 
Attrition 

Differential 
Attrition 

Optimistic 
Threshold 

Overall 
Attrition 

Differential 
Attrition 

Optimistic 
Threshold 

Post-CSA 0.00% 0.00% Low 30.14% -11.53% High 

Post-
TechChec
k 

0.00% 0.00% Low 31.01% -10.54% High 

Post-LA 7.69% 16.67% High 37.05% -2.89% Low 
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Table 4. Results from Baseline Equivalence Assessment 

Measure 

Control Group Treatment Group   

Sample 
Size Mean 

Standard 
Deviation 

Sample 
Size Mean 

Standard 
Deviation 

Treatment 
– Control 
Difference 

Standardized 
Difference 

Pre-CSA 453 3.38 5.17 430 3.21 7.40 -0.16 -0.02 
Pre-
TechCheck 450 7.33 4.63 422 7.09 6.59 -0.24 -0.04 

Pre-LA 333 0.37 4.92 238 0.21 3.63 -0.16 -0.04 
 
 

Table 5. Background characteristics 
Background 
Characteristics Sample Size % in Control group Sample Size 

% in Treatment 
group 

Female 488 51.4% 464 50.2% 
Limited English 
Proficiency 488 6.8% 464 11.6% 

Individualized 
Education Plan 488 12.3% 464 11.6% 

Free/reduced- 
price lunch 488 17.8% 464 17.9% 
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Table 6. Missing Data by Outcome and Condition 

Outcome 
Measure 

Control Group Treatment Group 

Clustersa Studentsb Clustersa Studentsb 

# Analytic 
Sample # Randomized 

# Analytic 
Sample 

Missing% # Analytic 
Sample # Randomized 

# Analytic 
Sample 

Missing% 

Post-CSA 7/7 700 453 35.3% 6/6 564 430 23.8% 

Post-
TechCheck 

7/7 700 450 35.7% 6/6 564 422 25.2% 

Post-LA 7/7 539 333 38.2% 6/6 368 238 35.3% 

 
 
 

Table 7. Descriptive Statistics and Sample Sizes of the Baseline and Outcome Variables by Condition in Study A 
 

Measures Control Treatment 

n Mean SD n Mean SD 
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Pre-CSA 453 3.35 2.05 430 3.14 2.35 

Post-CSA 453 5.36 3.26 430 11.34 6.51 

Pre-TechCheck 450 7.35 2.41 422 7.12 2.47 

Post-TechCheck 450 8.77 2.53 422 8.70 2.65 

Pre-LA 
333 0.10 1.07 238 -0.09 1.21 

Post-LA 
333 0.44 0.99 238 0.26 1.15 

 
 
 

Table 8. Impact Analysis Results (Cluster-Level Assignment Study) 

 Control  Group Treatment Group    

Outcome 
Measure 

Sample Size 

Mean 
Standard 
Deviation 

Sample Size 

Model-adj. 
mean 

(comp+ 
beta) 

Standard 
Deviation 

Treatment – 
Control 

Difference 
Standardized 
Difference 

p-
value # 

clusters 
# 
students 

# 
clusters 

# 
students 

Post-CSA 7 453 5.44 11.06 6 430 11.63 14.46 6.19 0.47 <0.001 



 

24 
 

Post-
TechCheck 7 450 8.67 7.00 6 422 8.92 3.33 0.25 0.04 0.18 

Post-LA 7 333 0.42 4.92 6 238 238 0.49 -0.04 -0.01 0.86 

 
 
 
 
 

Table 9.1. Additional Information for PostCSA and PreCSA with Missing Data in the Analytic 
Sample 

 Control Group Treatment Group 

Sample 
# 

Individuals 

Mean of 
Baseline 
Measure 

Mean of 
Outcome 
Measure 

# 
Individual

s 

Mean of 
Baseline 
Measure 

Mean of 
Outcome 
Measure 

Analytic sample  
(same as Tables 6 or 7) 453 3.35 5.36 430 3.14 11.33 

Subsample of individuals 
with non-missing values 
for post-CSA and pre-
CSA measures 

453 3.35 5.36 430 3.14 11.33 

Subsample of individuals 
with non-missing post-
CSA measure and missing 
pre-CSA measure 

2 Not 
applicable 1.65 0 Not 

applicable  

Subsample of individuals 
with non-missing pre-CSA 
measures and missing 
Post-CSA measure 

27 3.45 Not 
applicable 24 2.98 Not 

applicable 

Correlation between the baseline and outcome measures (calculated using only non-imputed data): _0.38____ 
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Table 9.2. Additional Information for Post-TechCheck and Pre-TechCheck with Missing Data in the 
Analytic Sample 
2nd Grade Control Group Treatment Group 

Sample 
# 

Individuals 

Mean of 
Baseline 
Measure 

Mean of 
Outcome 
Measure 

# 
Individual

s 

Mean of 
Baseline 
Measure 

Mean of 
Outcome 
Measure 

Analytic sample  450 7.35 8.77 422 7.11 8.70 

Subsample of individuals 
with non-missing values 
for post-TechCheck and 
pre-TechCheck measures 

450 7.35 8.77 422 7.11 8.70 

Subsample of individuals 
with non-missing post-
TechCheck measure and 
missing pre-TechCheck 
measure 

4 Not 
applicable 8.5 4 Not 

applicable 7.25 

Subsample of individuals 
with non-missing pre-
TechCheck measures and 
missing Post-TechCheck 
measure 

28 7.43 Not 
applicable 27 6.85 Not 

applicable 

Correlation between the baseline and outcome measures (calculated using only non-imputed data): _0.51_____ 
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Table 9.3. Additional Information for Post-LA and Pre-LA with Missing Data in the Analytic Sample 
 Control Group Treatment Group 

Sample # Individuals 

Mean of 
Baseline 
Measure 

Mean of 
Outcome 
Measure 

# 
Individuals 

Mean of 
Baseline 
Measure 

Mean of 
Outcome 
Measure 

Analytic sample  
(same as Tables 6 
or 7) 

333 0.1 0.44 238 -0.09 0.26 

Subsample of 
individuals with 
non-missing values 
for post-LA and 
pre-LA measures 

333 0.1 0.44 238 -0.09 0.26 

Subsample of 
individuals with 
non-missing post-
LA measure and 
missing pre-LA 
measure 

41 Not 
applicable -0.10 17 Not 

applicable -0.06 

Subsample of 
individuals with 
non-missing pre-
LA measures and 
missing Post-LA 
measure 

5 -0.75 Not 
applicable 3 -0.62 Not 

applicable 

Correlation between the baseline and outcome measures (calculated using only non-imputed data): ___0.81___ 
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Table 10. Table Illustrating the Scoring that Defines Adequate Implementation of Each Key 
Component in a Program Logic Model 
Indicator Unit of 

measurement 
Indicator 
Scoring at  
Unit Level 

Indicator 
Scoring at School 
Level 

Indicator 
Scoring at 
Sample Level 

Key Component 1.  Revised CAL curriculum 
(1) Curriculum 
dissemination 

Teacher 0 (low) = don’t 
have it ever 
1 (high) = have at 
some point in 
curriculum 

School-level: 
0 = < 25% 
teachers with 
score of “1” 
1 = 26 – 50% 
teachers with 
score of “1” 
2 = 51-75% of 
teachers with 
score of “1” 
3 = 76-90% 
teachers with 
score of “1” 
4 > 90% teachers 
with score of “1” 
  
Threshold for 
fidelity = score of 
3 

All teachers 
completing 
training and 
teaching 
curriculum 

Key Component 2.  DevTech Training 
(1) Group training 
participation 

Teacher 0 (low) = attended 
25% or less of 
training 
1 (low-medium) = 
attended 26% to 
50% of training 

School-level: 
0 = < 25% 
teachers with 
score of “3” or 
more 

Sample level: 
0 =< 25% schools 
with score of “3” 
1 = 26–50% 
schools with score 
of “3” 
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2 (medium) = 
attended 51% to 
75% of training 
3 (high-medium) 
= attended 76% to 
90% of training 
4 (high) > 90% of 
training 

1 = 26 – 50% 
teachers with 
score of “3” or 
more 
2 = 51-75% of 
teachers with 
score of “3” or 
more 
3 = 76-90% 
teachers with 
score of “3” or 
more 
4 > 90% teachers 
with score of “3” 
or more 
Threshold for 
fidelity = score of 
3 

2 = 51-75% 
schools with score 
of “3” 
3 = 76-90% 
schools with score 
of “3” 
4 >90% schools 
with score of “3” 
Threshold for 
fidelity = score of 
3 
 

(2) Group training 
content 

Sample   0 (low) =  covered 
25% or less of 
topics 
1 (low-medium) = 
covered 26% to 
50% of topics 
2 (medium) = 
covered 51% to 
75% of topics 
3 (high-medium) 
= covered 76% to 
90% of topics 
4 (high) > 90% of 
topics 
 Threshold for 
fidelity = 3 

Key Component 
2 Total Score 

 Adequate 
implementation 

School-level: Sample level: 
Range: 0-8 
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DevTech 
Training 

at teacher level = 
score of “3” 

0 = < 25% 
teachers with 
score of “3” or 
more 
1 = 26 – 50% 
teachers with 
score of “3” or 
more 
2 = 51-75% of 
teachers with 
score of “3” or 
more 
3 = 76-90% 
teachers with 
score of “3” or 
more 
4 > 90% teachers 
with score of “3” 
or more 
Threshold for 
fidelity = score of 
3 

Threshold for 
fidelity = score of 
6 
 

Key Component 3.  Coaching 
(1) Embedded 
onsite coaching - 
availability 

Teacher 0 (low) = teacher 
did not receive a 
response to 
request in first or 
in second half of 
the curriculum 
1 (medium) = 
teacher received a 
response to 
request in either 
first or second 
half, but not both 
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2 (high) = teacher 
received a 
response to all 
requests made 
N/A: teacher did 
not request onsite 
coaching 

(2) Embedded 
onsite coaching - 
satisfaction 

Teacher 0 (low) = Likert 
scale 1 or 2 (needs 
improvement) 
1 (medium) = 
Likert scale 3 
(“meets 
expectations”) 
2 (high) = Likert 
scale 4 or 5 
(exceeds 
expectations) 
N/A: teacher did 
not request onsite 
coaching 

  

(3) Virtual 
coaching - 
availability 

Teacher 0 (low) = teacher 
did not receive a 
response to 
request in first or 
in second half of 
the curriculum 
1 (medium) = 
teacher received a 
response to 
request in either 
first or second 
half, but not both 
2 (high) = teacher 
received a 
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response to all 
requests made 
N/A: teacher did 
not request onsite 
coaching 

(4) Virtual 
coaching - 
satisfaction 

Teacher 0 (low) = Likert 
scale 1 or 2 (needs 
improvement) 
1 (medium) = 
Likert scale 3 
(“meets 
expectations”) 
2 (high) = Likert 
scale 4 or 5 
(exceeds 
expectations) 
N/A: teacher did 
not request onsite 
coaching 

  

Key Component 
3 Total Score 

 Teacher level: 
adequate 
implementation 
with score of at 
least 3 (if one of 
the coachings is 
N/A) or 6). If no 
training is 
accessed, the 
threshold is N/A. 

School-level: 
0 = < 25% 
teachers with 
score of “3” (one 
coaching type 
accessed) or “6” 
(two coaching 
types accessed) 
or more 
(excluding N/As) 
1 = 26 – 50% 
teachers with 
score of “3” or 
“6” or more 
(excluding N/As) 
2 = 51-75% of 
teachers with 

Sample level: 
0 =< 25% schools 
with score of “3” 
1 = 26–50% 
schools with 
score of “3” 
2 = 51-75% 
schools with 
score of “3” 
3 = 76-90% 
schools with 
score of “3” 
4 > 90% schools 
with score of “3” 
Threshold for 
fidelity = score of 
3 
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score of “3” or 
“6” or more 
(excluding N/As) 
3 = 76-90% 
teachers with 
score of “3” or 
“6” or more 
(excluding N/As) 
8> 90% teachers 
with score of “3” 
or “6” or more 
(excluding N/As) 
Threshold for 
fidelity = score of 
3 
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Table 11. Findings on Fidelity of Implementation by Component for RI Schools 

Key Components, Number of Indicators, Units, and Threshold Year 1 Results 
(2020-21 School Year) 

Key Component 
Total # of 
Measurable 
Indicators 

Unit of 
Implementation  

Sample-Level 
Threshold for 
Fidelity of 
Implementation 

Number of 
Units in Which 
Component was 
Implemented 

Number of Units 
in Which Fidelity 
of Component 
was Measured 

Achieved Fidelity Score 
and Whether Program 
Met Sample-Level 
Threshold 

1.Revised CAL 
curriculum 

1 Teacher 
Adequate 
implementation at 
teacher level = 
score of “1” 

1 program 
24 teachers 
7 schools 

1 program 
24 teachers 
7 schools 

Score is 2 
 
Program fidelity = No 

2.DevTech Training 2 1 teacher-level 
indicator 
 
1 program-level 
indicator 

Adequate 
implementation at 
teacher level = 
score of “3” 

1 program 
24 teachers 
 

1 program 
24 teachers 
 

Score is 4 
 
Program fidelity = Yes 

3.Coaching 4 Teacher 
Adequate 
implementation at 
teacher level = 
score of “3” 

24 teachers 8 teachers Score is 9 
 
Program fidelity = Yes 
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