Monitoring the ionosphere using new GNSS

R. Warnant¹, C. Deprez¹, G. Wautelet², L. Van de Vyvere³

¹University of Liege, Liege, Belgium. ²GRGS, Toulouse, France.

³M₃ System, Wavre, Belgium.

Monitoring TEC for geodetic applications

- For the last 25 years, TEC has been reconstructed from GPS L1/L2 code and phase pseudoranges in order to correct ionospheric effects on positioning applications.
 - Absolute positioning is influenced by absolute TEC and "regular" gradients.
 - Differential and relative positioning are influenced by regular gradients and also local variability in TEC (the latter mainly degrading precise applications).
- GPS-based TEC monitoring data suffers from different shortcomings.

Present shortcomings 1

Absolute TEC accuracy is limited to 2-5 TECU:

- Depends on code and phase pseudoranges precision.
- The use of code levelling to compute phase ambiguities degrades TEC accuracy due to low code precision (main limitation).
- Limited spatial resolution:
 - Depends on the number of satellites in view.
 - In Liege, the number of GPS satellites in view ranges from 8 to 15 (average 11).
 - A proper modeling of local variability in TEC requires increased spatial resolution.

Present shortcomings 2

- Monitoring of local variability in TEC at European mid-latitudes (Belgium):
 - Mainly due Travelling Ionospheric Disturbances.
 - Also detected during geomagnetic storms.
 - Depends on phase pseudorange precision.
 - Requires good spatial resolution.
 - The detection of moving structures (TIDs) is « biased » by the fact that ionospheric points have a velocity wrt the ionosphere due to satellite orbital motion.

- More (than 2) frequencies:
 - Possible to form several frequency pairs to reconstruct TEC
 - Development of improved ambiguity computation (even resolution ?) techniques.
- Improved signals :
 - Better resistance to multipath
 - New modulation techniques allowing to perform more precise code pseudorange measurements.

More satellites:

 The combined use of al the available GNSS provides better redundancy and improved spatial resolution.

Number of GNSS satellites in view (up to 40) in Liege (Belgium)

- Different types of orbits:
 - Medium Earth Orbits (MEO)
 - Geostationary Orbits (GEO)
 - Inclined Geosynchronous Orbits (IGSO)
- GEO orbits have a negligible velocity wrt respect to the ionosphere.
- Therefore, GEO satellites have a particular interest for the study of local variability in TEC.

Multi GNSS/multi-frequency TEC precision

GNSS equipment

- Located in Liege (Belgium).
- 2 Trimble GNSS choke ring antenna's on a short baseline (5,352 m).
- 6 multi-GNSS/multi-frequency receivers :
 - 2 Trimble NetR9 receivers
 - 2 Septentrio PolaRx4 receivers
 - 1 Septentrio PolaRxS scintillation receiver
 - 1 Septentrio PolaRx5 (new model).
- Equipment used to perform zero and short baseline tests for positioning and ionosphere monitoring.

GNSS signals : GPS

GNSS signals : Galileo

GNSS signals : Beidou

For satellite "i" and receiver "p", the code geometry free (GF) combination between frequency f_k and f_l:

$$\alpha_{kl} = 40.3 \left(\frac{1}{f_k^2} - \frac{1}{f_l^2} \right)$$

- Reconstructed TEC precision mainly depends on :
 - Code pseudorange (P_k, P_l) precision.
 - Multipath.
 - IF biases variability (one usually assume that they are stable over short time periods).
 - The "TEC coefficient" : α_{kl}^{-1}

$$STEC_{p,kl}^{i} = \frac{(P_{p,k}^{i} - P_{p,l}^{i}) - (d_{kl}^{i} + d_{p,kl}) - M_{p,kl}^{i} - E_{p,kl}^{i}}{\alpha_{kl}}$$

Same demonstration can be done for phase pseudoranges which contain an additional term: the phase ambiguity.

• Given the same code precision, a larger frequency difference gives a smaller TEC coefficient and therefore a better TEC precision.

TEC coefficients								
Galileo				GPS			Beidou	
E1-E5a	E1-E5b	E1-E5	E1-E6	L1-L2	L1-L5	L2-L5	B1-B2	B1-B3
7,764	8,757	8,24	11,893	9,52	7,764	42,089	8,993	11,754

Code pseudorange precision (large differences between frequencies/receivers !)

Phase pseudorange precision: small differences between frequencies/receivers

Methodology to asses TEC precision 1

- Compute Slant TEC change from epoch to epoch (30 s interval) without normalization:
 - Removes biases (constant part of IF delays, ambiguities)
 - Still depends on noise and on between epoch variation of TEC and multipath

$$\Delta STEC_{p,kl}^{i}(t_{k}) = STEC_{p,kl}^{i}(t_{k}) - STEC_{p,kl}^{i}(t_{k-1})$$

- Form single (between receiver) differences of ΔSTEC(t_k) on ULg short baseline (5,352 m):
 - Completely removes TEC (same ionosphere).
 - Still contains multipath and noise.

Methodology to asses TEC precision 2

• TEC precision is estimated by computing the standard deviation of single differences of $\Delta STEC(t_k)$ and by dividing them by 2 (error propagation).

Results: code (multipath filter off - mask 10°)

Code TEC precision (TECU)

Septentrio Trimble

Results: Phase (multipath filter off - mask 10°)

Phase TEC precision (TECU)

Septentrio Trimble

Results: code (multipath filter on - mask 20°)

Septentrio Code TEC precision (TECU) 2.5 2 1.5 1 0.5 0 E1-E5b E1-E5 L1-L2 E1-E5a L1-L5 B1-B2 B1-B3 Galileo GPS Beidou MEO

Slant TEC Galileo E1-E5 code versus phase

Multi-GNSS/frequency TEC: Summary 1

- Strong improvement in code TEC precision with Galileo wrt the "standard" GPS L1/L2.
 - Galileo E1/E5 combination has a precision better than 1 TECU above 20° elevation (Septentrio PolaRx4).
 - This will bring improvement in code-phase leveling.
 - → Better TEC accuracy.
 - Depending on application requirement, TEC could directly be obtained from code measurements.
 - → No phase ambiguity to compute
 - → No problem with cycle slips, in particular during disturbed ionosphere conditions.

Multi-GNSS/frequency TEC: Summary 2

- As far as phase TEC accuracy is concerned, for Septentrio receivers, TEC precision has similar accuracy levels of about 0,012 TECU (mask 10°) for the different combinations/GNSS.
- For Trimble receivers, Galileo provides the best accuracy (0,008 TECU).

GEO satellites for ionosphere monitoring

GEO at European mid-latitude (Liège, Belgium)

- Beidou
 - Co2 (1°-2°)
 - Co5 (15°)
- SBAS
 - GAGAN (India)
 - S127 (16°)
 - EGNOS (Europe)
 - S123 (27°)
 - S136 (32°)
- NAVIC
 - lo6 (29°)
 - Only single frequency available yet (with PolaRx5).

Satellites - Skyplot

Beidou GEO : Δ*STEC* Phase

Beidou GEO : Δ*STEC* Code

Beidou GEO: SD of $\Delta STEC$ (Co₅)

Beidou GEO: accuracy

Beidou GEO Code TEC precision (TECU)

Beidou GEO: Slant phase TEC

Beidou GEO: Summary 1

- In Liege (Belgium), Beidou GEO satellites Co5 (15°) and Co2 (1-2°) can be tracked by all Septentrio receivers.
- Co5 data are continuous (in average less than 1 cycle slip a day).

→ Phase ambiguity often remains the same during several days.

- Co2 data are usually continuous during several hours (up to 24 hours).
- Given phase TEC accuracy (Co5: 0,023 TECU) and (Co2: 0,045 TECU), both satellites could be used to monitor TEC or local variability in TEC.

Beidou GEO: Summary 2

- Code leveling could be degraded by code noise but ambiguities are usually computed on much longer time periods.
- Further investigations are necessary to interpret the variability observed in ΔSTEC
 - Multipath, Ionosphere, variability in IF biases.
- Our Trimble NetR9 receivers only track Co5 but data are unusable due to cycle slips.

Thanks for your attention !

EGNOS: Δ*STEC*

EGNOS: SD of $\Delta STEC$

EGNOS S123: multipath?

GAGAN: $\Delta STEC$

SBAS code precision

