

International Beacon Satellite Symposium BSS-2016 June 27 – July 1, 2016 Trieste, Italy

Regional short-term forecasting of ionospheric TEC and scintillation

Luca Spogli^{*1,2}, Marcin Grzesiak³, Claudio Cesaroni¹, Giorgiana De Franceschi¹ and Vincenzo Romano^{1,2}

luca.spogli@spacearth.net

¹ Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, Rome, ITALY.

² SpacEarth Technology, Via di Vigna Murata 605, Rome, ITALY

³ Space Research Centre of the Polish Academy of Sciences, Bartycka 18A, Warszawa, POLAND

Summary

Model for a Regional short-term forecasting of ionospheric TEC and scintillation

- Basic features
- History of the model
- Model insights
- Model performance
- Concluding remarks

Model basic features

Regional

• to support the modeling of the ionospheric behavior with high spatial accuracy

Empirical

• because model relies on GNSS data from local network

Short-term

• from seconds to minutes

Forecasting of scintillation and TEC

• basic quantities describing ionospheric conditions both in terms of electron content and scintillation parameters (σ_{Φ} ,S4, p and T)

History of the model

- The first versions were realised by INGV and CBK-PAN in the frame of the CALIBRA project
 - Funded under FP7 (lead: Nottingham University)
 - Start: Nov. 2012 end: Feb. 2015
 - CALIBRA developed algorithms for GNSS based applications to tackle the effects of ionospheric disturbances over Brazil.
 - Legacy of the CIGALA project
 - The forecasting model were developed to supported positioning and navigation applications and services for which real time modelling and forecasting of ionospheric variability and scintillation is required
- The forecasting model were patented
 - Italian and International patent n° 102015000015809
 - SpacEarth Technology, the INGV Spin-off company
- Ready to be integrated in firmware to support NRTK applications
 - Precision agriculture, navigation, railways management, etc.

Forecasted TEC map over São Paulo

Model insights

- The model is based on the transport theory for a scalar field.
- Equation of continuity for a scalar f provided known velocity field v.

$$\frac{\partial}{\partial t} \int_{V} dV f = -\int_{\partial V} d\mathbf{s}(f\mathbf{v}) + \int_{V} dV(p-l)$$

Scalar field Velocity of the field Source term

Equation of continuity

V is the total volume with boundary ∂V

- The idea of the modeling is **to reconstruct the velocity field v of the given parameter** (integrated along the line of sight) from the measurement of the given parameter.
- The velocity field **v** is reconstructed by fitting it to the time changes of scalar field considered and then used to evolve the scalar field itself.
- Source term is necessary for scintillation parameters but not for TEC

Model insights

The solution of the continuity equation relies on:

- discretizing the space with Delaunay triangulation
- approximating TEC and scintillation parameters piecewise linearly
- considering the velocity field constant over each triangle

Model performance

Model test TEC and scintillation parameters (S₄, σ_{ϕ} , p, T) data for five days under strong scintillation regime

Station ID	Location	Lat (°N)	Lon (°E)
PRU1	Presidente Prudente	-22.12	-51.41
PRU2	Presidente Prudente	-22.12	-51.40
PRU3	Presidente Prudente	-22.12	-51.41
GALH	Presidente Prudente	-22.12	-51.42
SJCU	San Jose dos Campos	-23.21	-45.96
SJCE	San Jose dos Campos	-23.21	-45.86
MAC2	Macaé	-22.38	-41.79

DAV	Input from:					
DAT	PRU1	PRU2	PRU3	SJCU	SJCE	MAC2
269/2013	S	S	S			
271/2013	S	S	S		S	
338/2013		S	S	S		
340/2013		S	S	S	S	S
021/2014	S	S	S		S	
	_					

full data
about half data
few data
no data

BSS2016 @ ICTP - June 27 - July 1

S: strong scintillation (S4>0.7)

Model performance: comparison between different forecasting horizons Day 11 November 2011

Comparison between **forecasted vTEC** and **actual vTEC** data vs. time for selected internal points.

Model performance: vTEC Day 269/2013 (26 September 2013)

- Differences between actual and forecasted TEC values
- Forecasting horizon: <u>15 seconds</u>
- The bulk of the distribution is between -1 and 1 TECu
- Prediction is harder during local post-sunset (red boxes)

Model performance: Scintillation parameters Day 269/2013 (26 September 2013)

- Differences between actual and forecasted S4 (top panel) and σ_{ϕ} (bottom panel)
- Forecasting horizon: <u>1 minute</u>
- Differences range between -0.1 and 0.1 for both the parameters
- Prediction is harder during local post-sunset (red boxes)

Model performance: Scintillation parameters Day 269/2013 (26 September 2013)

- Differences between actual and forecasted p (top panel) and T (bottom panel)
- Forecasting horizon: <u>1 minute</u>
- Differences range between -0.4 and 0.4 for p and between -0.05 and 0.05
- Errors on P seems to be indipendent from the scintillation regime

Model performance: overall resolution

- Resolution is provided in terms of values of the tails at which the X% of the of distribution is included
- Various percentage have been evaluated
- Performance are suitable to support precision positioning algorithms
 - Example: TEC resultion is of the order of 1 TECu at 99%

0.13

1.06

0.42

8.30E-04

BSS2016 @ ICTP - June 27 - July 1

99%

0.12

Model performance: overall resolution

Model performance: mitigation on RTK

Positioning error analysis by applying external ionospheric information from GIM (left panel) and forecasted TEC maps (rigth). Plots refer to a long baseline (about 120 km) between São José de Rio Preto and Araçatuba during 19 March 2015.

The AR success rate for the GIM and forecasted TEC map are 0.4% and 15.9% respectively, while the 3D positioning RMSs including both float and fixed solutions are 1.341 m and 0.608 m.

Concluding remarks

- A empirical regional short-term forecasting model has been recently developed and patented.
- The model relies on suitable networks of GNSS receivers
- The model is able to provide TEC and scintillation parameters (if provided by the receivers) from seconds to minutes in advance
- Model tests have been conducted in the frame of CALIBRA project over Brazil and under strong scintillation conditions
- The overall forecasting performance are good, based on the errors associated to the forecasted values of TEC and scintillation parameters
- Model is ready to be tuned and included in firmware to support NRTK applications

International Beacon Satellite Symposium BSS-2016 June 27 – July 1, 2016 Trieste, Italy

Regional short-term forecasting of ionospheric TEC and scintillation

Luca Spogli^{*1,2}, Marcin Grzesiak³, Claudio Cesaroni¹, Giorgiana De Franceschi¹ and Vincenzo Romano^{1,2}

luca.spogli@spacearth.net

¹ Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, Rome, ITALY.

² SpacEarth Technology, Via di Vigna Murata 605, Rome, ITALY

³ Space Research Centre of the Polish Academy of Sciences, Bartycka 18A, Warszawa, POLAND

Bacup slides

BSS2016 @ ICTP - June 27 - July 1

Model results: Summary

DAY	(actual - predicted) standard deviation					
	S4	SigmaPhi	TEC	р	Т	
269/2013	0.033	0.020	0.13	0.10	2.87E-04	
271/2013	0.031	0.032	0.81	0.11	4.84E-04	
338/2013	0.036	0.037	0.40	0.34	4.57E-04	
340/2013	0.033	0.042	0.34	0.12	6.28E-04	
021/2014	0.030	0.059	0.64	0.11	3.70E-04	

Р	σ _{s4}	σ _{σφ} (rads)	σ _{τεC} (TECu)	σ _p	σ _τ
68%	0.02	0.01	0.05	0.07	1.31E-05
80%	0.03	0.02	0.09	0.10	2.16E-05
90%	0.04	0.03	0.19	0.15	4.60E-05
95%	0.06	0.04	0.38	0.22	1.06E-04
99%	0.12	0.13	1.06	0.42	8.30E-04

The empirical reason why scintillation parameters need the source term

Blue line represents initial condition at T0, green line the actual values at T0+1 min, and the red one 1min forecasted values at T0+1min.