

COSMIC GPS Radio Occultation Observations: Algorithm Improvements and Science Applications

Nick Pedatella^{1,2} and Bill Schreiner¹ ¹COSMIC Program Office, UCAR, Boulder CO ²High Altitude Observatory, NCAR, Boulder CO www.cosmic.ucar.edu

- COSMIC-1 Update
- Ionosphere data processing
 - Improved Abel Inversion
 - Monthly Mean Reanalysis
- COSMIC-2 Overview & Status

FORMOSAT-3/COSMIC GPS Radio Occultation

FORMOSAT-3/COSMIC

- COSMIC celebrated its 10th anniversary in April 2016.
- Still providing useful atmosphere and ionosphere data well beyond the 5 year design life.

> 4.3 Million COSMIC Profiles

OSMIC

Processed data for cosmic: 2006.111-2016.171

Total ionospheric occultations: 4,319,866

Current Status

	2016.174:		2016.175:
	FM 1: 392 atm / 273 ion FM 2: 141 atm / 230 ion FM 6: 147 atm / 164 ion		FM 1: 314 atm / 240 ion FM 2: 203 atm / 194 ion FM 6: 133 atm / 154 ion
	Total: 680 atm / 667 ion		Total: 650 atm / 588 ion
2016.176:		2016.177:	
	FM 1: 345 atm / 251 ion FM 2: 177 atm / 171 ion FM 6: 99 atm / 119 ion		FM 1: 289 atm / 216 ion FM 2: 211 atm / 205 ion FM 6: 188 atm / 238 ion
	Total: 621 atm / 541 ion		Total: 688 atm / 659 ion

COSMIC still providing ~500-800 occultations per day

Three (FM #1, #2, and #6) of six currently operating ~10 years after launch

- FM#3 inoperable since August 2010
- FM#4 inoperable since July 2015 due to battery degradation
- FM#5 lost contact in April 2016. Expected to return

• COSMIC-1 Update

Ionosphere data processing

– Improved Abel Inversion

- Monthly Mean Reanalysis

COSMIC-2 Overview & Status

- Abel inversion spherical symmetry assumption introduces large errors in the equatorial E-region

- We have developed a new inversion that uses monthly mean maps of NmF2 to obtain information on the horizontal gradients
- New inversion reduces error in the E-region and results in more distinct equatorial ionization anomalies
- Electron density profiles obtained using the new inversion are available via CDAAC

data type: igaPrf

Pedatella, N. M., X. Yue, and W. S. Schreiner (2015), An improved inversion for FORMOSAT-3/COSMIC ionosphere electron density profiles, *J. Geophys. Res.*, 120, doi:10.1002/2015JA021704.

Improved Abel Inversion

OSMIC

Improved Abel Inversion

September 2013, Zonal Mean

Improved Abel Inversion

- Comparison of COSMIC electron density profiles with collocated Arecibo ISR observations
- Tangent point within $\pm\,5^\circ$ latitude, $\pm\,10^\circ$ longitude, and $\pm\,10$ minutes
- Similar statistics obtained for both Abel inversion (ionPrf) and improved inversion (igaPrf)

(Courtesy of F. Rodrigues, UTD)

- COSMIC-1 Update
- Ionosphere data processing
 Improved Abel Inversion
 - Monthly Mean Reanalysis
- COSMIC-2 Overview & Status

- CDAAC has developed an ionosphere reanalysis product
- Method based on *Yue et al.* [2012], and uses a Kalman filter to assimilate ground and space based GNSS TEC
- IRI is used as the background model
- Grid dimensions are 1 h UT, 10-20 km altitude, 5° latitude, and 15° longitude
- Result is a 4-dimensional monthly mean electron density reanalysis based on the 14 quietest days of the month.
- Monthly mean gridded electron densities will be available to the community via CDAAC (http://cdaac-www.cosmic.ucar.edu/cdaac/) within the next several months.

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, A09325, doi:10.1029/2012JA017968, 2012

Global 3-D ionospheric electron density reanalysis based on multisource data assimilation

Xinan Yue,¹ William S. Schreiner,¹ Ying-Hwa Kuo,¹ Douglas C. Hunt,¹ Wenbin Wang,² Stanley C. Solomon,² Alan G. Burns,² Dieter Bilitza,³ Jann-Yenq Liu,⁴ Weixing Wan,⁵ and Jens Wickert⁶

UCAR Reanalysis Ground Stations

OSMIC

Reanalysis Results

Reanalysis Results

Reanalysis Results

March 2009, Zonal Mean

UCAR Comparison with Ionosonde Observations

OSMIC

UCAR Comparison with Ionosonde Observations

Month

-2

- COSMIC-1 Update
- Ionosphere data processing
 - Improved Abel Inversion
 - Monthly Mean Reanalysis
- COSMIC-2 Overview & Status

COSMIC-2 Mission Overview

- U.S./Taiwan partnership
- 12 low Earth orbiting satellites, tracking GPS, GLONASS and possibly GALILEO
 - First Launch: 6 in low inclination (24°) at 520km carries
 Space Weather Payloads
 - Second Launch: 6 in high inclination (72°) at 800km Not fully funded
- Will produce up to 10,000 occultations per day
- 30-min average data latency
- Expected first launch in March 2017, second in 2020
- Additional first launch space weather payloads:
 - Ion velocity meter
 - RF Beacon Transmitter
- UCAR COSMIC funded by NOAA/USAF to provide COSMIC-2 Data Processing Center for GNSS RO and IVM
- Data processed in near-real time

- COSMIC-I Space Weather Data:
 - Absolute line of sight total electron content (GPS)
 - Retrieved electron density profiles
 - Scintillation (S4)
 - UV Radiances from Tiny Ionosphere Photometer (TIP)
- COSMIC-II Equatorial Space Weather Data:
 - Absolute line of sight total electron content (GPS+GLONASS)
 - Retrieved electron density profiles
 - Scintillation (S4 and σ_{ϕ}).
 - S4 will be included with TEC data files perhaps useful for QC.
 - In-situ plasma drift velocities, and ion density, composition, and temperature

http://cdaac-www.cosmic.ucar.edu/cdaac/products.html

- First spacecraft fully integrated and tested at Surrey (UK) in May 2015
- All payloads have been delivered to Taiwan, and the remaining five spacecraft are nearing completion of integration and testing
- Software development for RO and IVM data processing is on schedule
 - All RO and IVM data will be available through UCAR CDAAC

cdaac-www.cosmic.ucar.edu

- COSMIC-2 Polar status:
 - Dependent on U.S. funding
 - Anticipated launch in ~2020

- NSF
- Taiwan's NSPO
- NASA/JPL, NOAA, USAF, ONR, NRL

NASA

• Broad Reach Engineering

UCAR

NSF

USAF

NOAA

NSPO

ONR