

Status of NeQuick G after the Solar Maximum of Cycle 24

R.Orus, J. Parro International Beacon Satellite Symposium 2016

Trieste, 30 / 06 / 2016

esa

European Space Agency

Navigation solutions powered by Europe

Overview

- Background
 - NeQuick model
 - Galileo ionospheric correction algorithm
- Performance results
 - IOV Results
 - FOC Results
- Position Error compared to EGNOS Iono
- Galileo Single frequency position on March 2016
- Summary

NeQuick Model

- ★ Climatological (monthly mean) model of electron density
 - ★ 3D (as opposed to single-layer ionospheric models SBAS, Klobuchar)
 - Driven by monthly-mean Solar Flux F10.7
- Recommended by ITU-R for propagation prediction
- Based on profiles of ionospheric layers
- Adapted in Galileo for nowcasting based on recent observations

Hochegger, G., B. Nava, S.M. Radicella and R. Leitinger (2000): A family of ionospheric models for different uses, Phys. Chem. Earth, 25 (4), 307-310. Radicella, S.M. and R. Leitinger, "The evolution of the DGR approach to model electron density profiles", Adv. *Space Res.*, Vol. 27, Issue 1, pp. 35-40, 2001.

Galileo Ionospheric Algorithm for Single-Frequency Users

★ Navigation message broadcast:

- ★ 3 Az (Effective ionisation level) coefficients.
- ★ Based on an adaptation of the 3D empirical climatological electron density model NeQuick → NeQuick G
 - ★ From monthly-mean climatological modelling to real-time corrections.
 - ★ Including a number of evolutions from NeQuick 1.
 - ★ Galileo specific version of geomagnetic field model (modip file)
 - ★ Adaptations due to software engineering process.

Parameter	Definition	Bits	Scale factor	Unit
a_{io}	Effective Ionisation Level 1st order parameter	11	2-2	sfu**
a_{ii}	Effective Ionisation Level 2 nd order parameter	11*	2-8	sfu**/degree
a_{i2}	Effective Ionisation Level 3rd order parameter	14*	2 ⁻¹⁵	sfu**/degree2
SF_1	Ionospheric Disturbance Flag for region 1	1	N/A	dimensionless
SF_2	Ionospheric Disturbance Flag for region 2	1	N/A	dimensionless
SF_3	Ionospheric Disturbance Flag for region 3	1	N/A	dimensionless
SF_4	Ionospheric Disturbance Flag for region 4	1	N/A	dimensionless
SF_5	Ionospheric Disturbance Flag for region 5	1	N/A	dimensionless
]	Fotal Ionospheric Correction Size	41		

Correction Algorithm: End-to-End Overview

Performance Objectives

Actual IONO Slant delay

During solar maximum – but a mild one!

IOV Results

Galileo broadcast

White to green >= 70% correction level >100 stations, reference ionosphere based on dual-freq IONEX-levelled

Doy 2013_127, Sample in specification 96.4%

Doy 2013_125, Sample in specification 90.2%

IOV Results: % inside target

GALILEC

MODIP = Modified DIP. MODIP is related with geomagnetic field

% inside FOC

IOV Results: Iono. Corr. Capability (%)

Galileo broadcast

Doy 127/2013

Doy 080 in 2014; mean correction capability 81.6%

Doy 080/2014

EGN**∯**S

GPS broadcast

FOC Results: Iono. Corr. Capability (%)

Galileo broadcast

Dop 2015_80, Mean_Correction 82.9%

Doy 76/2015 (1st day St. Patrick's storm)

Doy 2015_76, Mean_Correction 76.2%

GPS broadcast

Doy 2015 80, Mean Correction 80.3%

Doy 080/2015

FOC Results: Iono. Corr. Capability (%)

Galileo broadcast

Doy 047/2016 (high kp)

GPS broadcast

 $\mathsf{Doy 2016}_{47}, \mathsf{Mean}_{0} \mathsf{Correction 79.0\%}$

Doy 2015 80, Mean Correction 85.3%

 Broadcast NeQuick G performance very good despite the low number of satellites used to drive the model

 Broadcast NeQuick G performance very good despite the low number of satellites used to drive the model

Percentage inside target performance

- Study done with MGEX receivers to simulate Ground segment of Galileo
- % inside target in bins of 100 minutes
- Showing full years in Solar Maximum 2014 2015 and MODIP zones

Percentage inside target for 2014

GN∲S

Percentage inside target for 2015

SPEC(%)Modip_5

GN∲S

- The baseline is to use GPS satellites changing the ionospheric model and using precise orbits and clocks.
- **Examples** of *disturbed* days on 2014 and 2015, showing both *good and bad* NeQuick G performances.
- EMS data for EGNOS calculation presents problems of availability for all GEO in some storms
- The periods are:
 - 100 104 of 2014 (Europe)
 - 155 162 of 2014 (Europe)
 - 71 85 2015 (St. Patrick storm, Global
 - 83 89 2015 (post St. Patrick storm, Europe)

30.

- Moderate activity kp<5 during the whole 5 days, peak on doy 102.
- NeQuick G affected on the day after the storm, but low performance on the rest.
- Coincides with low % inside specification for this period on MODIP 2.

D'

- Moderate activity kp<6 during the wh 5 days, peak on doy 159.
- NeQuick G not significantly affected, being the solution better than dual frequency.

0'

- NeQuick G is affected on the position domain during St. Patrick storm due to that the coefficients are frozen for the whole storm.
- Out of the storm the global positioning error is very good for this period.

- Post St. Patrick storm period
- NeQuick G performs in a very good level for this week. Keeping the global trend
- EGNOS exhibit problems on the EMS data repository

٥°

Galileo Single frequency position on March 2016

- Example of the capability with Galileo stand-alone on March 2016, single and dual frequency.
- 52 MGEX stations with Galileo and GPS broadcast messages.

Galileo Single frequency position on March 2016

		Horizontal	Vertical	Horizontal	Vertical	
		68% perc	centile	95% percentile		
	GPS L1	1.3	1.9	3.6	5.4	
	GPS L2	1.8	2.6	5.8	7.7	
	GPS Iono Free	2.4	3.9	4.9	9.3	
INAV	GAL E1	1.9	2.8	6.0	10.4	
	GAL E5b	2.9	3.9	9.6	15.0	
	GAL Iono Free	2.0	2.5	4.7	7.0	
FNAV	GAL E1	2.0	2.8	6.0	10.7	
	GAL E5a	2.8	4.4	9.3	15.1	
	GAL Iono Free	2.1	3.0	5.4	8.5	

- GPS used with full constellation but with NeQuick G ionosphere.
- Galileo stand alone average 6% of FNAV solutions (with Max around 16%) with respect GPS, with very good performance despite using only 4 5 satellites for the solutions.
- INAV in MGEX is not so well tracked. Usually receivers are tracking E1, E5a and not E5b.

Galileo Single frequency position on March 2016

Summary

- The Galileo ionospheric single frequency correction algorithm with the current reduced Galileo infrastructure shows great performance for all stations around the globe.
 - Globally, above 85% within specification (FOC requirement is >68% inside specification).
- It shows a correction capability over 70% rms (with a lower bound of 20 TECU).
- The Galileo Single Frequency Correction Algorithm together with the Nequick G model are available since April 2015.
 - Feedback/validation by the user community important
- Performance on position domain of using NeQuick G on several active days shows a non-consistent behavior. It is expected to improve over time as the Galileo system is deployed.
- Results of Single frequency user using Galileo shows good performance despite the low number of satellites used.

Thank you

European Space Agency

Navigation solutions powered by Europe

IOV Results: UERE

	Elevation angle (degrees)								
	5	10	15	20	30	40	50	60	90/85
Spec	737.0	660.0	591.0	530.0	430.0	357.0	325.0	325.0	325.0
SF1	235.8	207.5	178.0	154.6	120.1	102.2	91.7	84.4	74-5
SF2	343.0	324.5	293.1	253.7	196.4	161.9	141.0	128.7	121.3
SF3	449.5	421.8	391.6	361.5	312.2	268.5	240.1	222.9	217.4
SF4	391.6	339.9	288.2	245.1	189.7	160.7	141.6	128.1	109.0
SF5	216.7	192.7	170.6	152.1	126.2	109.0l	97.9	92.4	86.8
						FOC	SF1		
		0	10 20	30 4 Elev	0 50 ation (degrees)	60 70	80 90	GALILEO	EGN

Specification document - Contents

- ★ Full step-by-step methodology and description
- ★ Complementary files
- ★ Input / Output validation files
- ★ Appendix with pseudo-code implementation

http://www.gsc-europa.eu/educationcommunication/communication/programmereference-documents European GNSS (Galileo) **Open Service Ionospheric Correction Algorithm for Galileo** Single Frequency Users

Navigation solutions powered by Europe

