

19th International Beacon Satellite Symposium, ICTP, Trieste, Italy, 27 June – 1 July, 2016 Session 4A : Polar (high-latitude) Effects on GNSS

Empirical statistical model relating scintillation indices with solar and geomagnetic activity for L band GNSS receivers at high latitudes

X. BOULANGER, J. LEMORTON, V. FABBRO (ONERA/DEMR) S. ROUGERIE (CNES)

THE FRENCH AEROSPACE LAB

retour sur innovation

Introduction

Context of the activity :

• French-Norwegian collaboration agreement :

- French Space Agency (CNES), French Aerospace Lab (ONERA)
- Norwegian Space Centre (NSC) + Norwegian Mapping Authority (NMA)
- Goal : develop a forecast model of ionosphere-caused GNSS signal disturbances at high latitude, especially scintillation
- PolaRxS Ionospheric Scintillation Monitors installed in Norway since 2012
- Access to standard GNSS receivers long term database (SATREF)

Outline of the presentation :

- Models relating ROTI to geomagnetic indices
- Empirical model relating σ_{ϕ} to ROTI
- Conclusion and perspectives

First attempt for a ROTI prediction model from geomagnetic activity [Boscher & al, EUCAP 2014]

Step 1 : Ionosphere disturbances have been tracked from processing of ROTI for a data set from 2001 to 2011 Step 2 : Link between ROTI and particles energy fluxes (concurrently measured by NOAA POES for a large range of energy values)

Step 3 : Matrices of particles energy fluxes as a function of magnetic activity parameter Kp

Improved ROTI prediction model

Step 4 : Looking for a better magnetic activity parameter, use of new alpha parameter (from International Service of Geomagnetic Indices). Alpha is a global magnetic activity index with up to 15 mn resolution.

- Time resolution of the model has been improved (60 mn)
- Good representation of ROTI behavior for low/medium magnetic activity levels, but does not provide an accurate ROTI amplitude
- Preliminary study to define ROTI flag levels, but needs to be improved
- Alpha indices are not currently provided by ISGI, and is not yet IAGA endorsed

Still the model is not as efficient as we need for a forecast model in every situation, especially for high magnetic activity !

19th International Beacon Satellite Symposium, ICTP, Trieste, Italy, 27 June – 1 July, 2016 Session 4A : Polar (high-latitude) Effects on GNSS

ONERA

Prediction model of σ_{ϕ} from ROTI

• Objective :

- Develop a prediction model to have directly access to ionospheric scintillation characteristics:
 - S₄ related to amplitude scintillation (not relevant at high latitude)
 - $_{o}$ σ_{ϕ} related to phase scintillation (strongly relevant at high latitude)
 - Turbulence spectrum

Scintillation monitors installed in Norway

Site	Receiver ID	Latitude	Longitude
Tromso	TRO2	69.539917	18.938883
Vega	VEG2	65.531298	11.964081
Ny-Alesund	NYA2	78.860408	11.858982
Bjornoya	BJO2	74.406795	19.001955
Bodo	BOD2	67.153025	14.434391

3 steps for Data processing and sensitivity analysis

- Detrending of Signal Intensity and Carrier Phase
- Computation of high temporal resolution ionospheric indices (S4, σ_{ω})
 - Influence of filtering
 - Comparisons with pre-computed low resolution indices
- Computation of STEC, ROT and ROTI time series

→ Empirical model of σ_{ϕ} knowing ROTI

Prediction model of σ_{ϕ} from ROTI Data processing

• <u>Step 1</u>: Detrending Signal Intensity and Carrier Phase measurements

19th International Beacon Satellite Symposium, ICTP, Trieste, Italy, 27 June – 1 July, 2016 Session 4A : Polar (high-latitude) Effects on GNSS

cnes

Prediction model of σ_{ϕ} from ROTI Data processing

• <u>Step 2</u>: Computation of high resolution ionospheric indices

Influence of filtering

Influence of sampling rate

ONERA

Prediction model of σ_{ϕ} from ROTI Data processing

• Step 3: Computation of high temporal resolution STEC, ROT and ROTI

Fast fluctuations of STEC

19th International Beacon Satellite Symposium, ICTP, Trieste, Italy, 27 June – 1 July, 2016 Session 4A : Polar (high-latitude) Effects on GNSS

• Start from the observation of the scatterplots of ROTI/ σ_{ϕ}

Strong correlation but not a direct relationship

 $_{0}$ New model based on the conditional Probability Distribution Function (PDF) of σ_{ϕ} knowing the value of ROTI

 $_{\text{o}}$ Assumed to be log-normal with parameters μ and σ

$$p(\sigma_{\varphi}|ROTI) = \frac{1}{\sigma_{\varphi}\sigma\sqrt{2\pi}} \exp\left(-\frac{\left[\ln(\sigma_{\varphi}) - \mu\right]^{2}}{2\sigma^{2}}\right)$$

19th International Beacon Satellite Symposium, ICTP, Trieste, Italy, 27 June – 1 July, 2016 Session 4A : Polar (high-latitude) Effects on GNSS

Parameterization

- Due to the huge database and to avoid prohibitive computation time, it has been chosen to use data:
 - collected at 5 sites (Tromsoe, Vega, Ny-Alesund, Bjornoya, and Bodo)
 - o re-sampled at 1 Hz
 - concurrent to data analyzed in a previous NMA report for which the magnetic activity had been detected as moderate or strong.

• Parameters retrieval

162

 $e^{\mu + \frac{\sigma}{2}} = K \cdot ROTI$

Experimental data
linear regression

 $= 0.0464 \cdot ROTI$

Other results

Site	Receiver ID	σ	K
Tromso	TRO2	0.4944	0.0464
Vega	VEG2	0.4096	0.0482
Ny-Alesund	NYA2	0.4496	0.0402
Bjornoya	BJO2	0.5014	0.0576
Bodo	BOD2	0.5510	0.0766

19th International Beacon Satellite Symposium, ICTP, Trieste, Italy, 27 June – 1 July, 2016 Session 4A : Polar (high-latitude) Effects on GNSS

Risk estimation

• Starting from a given value of ROTI (which can be predicted), the problem is now to estimate the risk, \Re , that the phase scintillation index on L1 exceeds the value σ_{ϕ} . Recalling that the phase scintillation index is log-normally distributed, it follows:

$$\Re = P(\sigma_{\varphi} > \sigma_{\varphi}^{*} | ROTI) = \frac{1}{2} \operatorname{erfc}\left(\frac{\ln(\sigma_{\varphi}) - \ln(K \cdot ROTI) + \frac{\sigma^{2}}{2}}{\sqrt{2}\sigma}\right)$$

$$\int \sqrt{2}\sigma \operatorname{erfc}^{-1}(2\Re) + \ln(K \cdot ROTI) - \frac{\sigma^{2}}{2}\right)$$

or equivalently,

$\sigma = \alpha v n$	$\sqrt{2}\sigma arf e^{-1}(2\Re) + \ln(K \cdot ROTI)$	σ
$O_{\varphi} - \exp$	$\sqrt{20eljc}$ $(25l) + III(K \cdot KOll) - $	2
,		-

19th International Beacon Satellite Symposium, ICTP, Trieste, Italy, 27 June – 1 July, 2016 Session 4A : Polar (high-latitude) Effects on GNSS

Jes

Conclusions and perspectives

- ROTI prediction models based on geomagnetic indices (Kp and Alpha)
 - Statistical approach (fit between ROTI and geomagnetic indices thanks to energy flux maps)
 - + Give a coarse prediction of the scintillation, Very simple to implement and very fast, No similar model in the literature
 - Not enough accurate and efficient for storm prediction and application (civil aviation)
- A statistical link between ROTI and σ_{ϕ}
 - A prediction model of σ_ϕ on L1 has been proposed.
 - The probability distribution function of σ_{o} knowing concurrent values of ROTI has been derived.
 - Parameters have been extracted for raw data sampled at 1 Hz and an integration window of 60 s (common value for estimating σ_{ϕ}) or 10 minutes (common value for estimating ROTI).
 - A methodology to estimate the risk in predicting the phase scintillation index has been proposed. It allows people to be warned (with a probability threshold) when a value of σ_φ could be exceeded.

Perspectives : try to make prediction from space weather indices (during CME event)

- relation between solar wind and energetic particles coming in the ionosphere : coupling functions for assessing additional quantity of injected particles in the ionosphere ΔN_e(φ, λ, h), comparison of satellite in solar wind data (such as ACE) and low orbit satellite data (as POES) ?
- Put together effects of solar wind on ionosphere characteristics and navigation receivers response (in particular PLL and DLL), for instance :

