

Equatorial Plasma Bubble Effects on GBAS and Its Mitigation Techniques

Jiyun Lee, Moonseok Yoon and Dongwoo Kim Korea Advanced Inst. of Science and Technology (KAIST)

Sam Pullen Stanford University

BSS 2016 Session 6 #1 Trieste, Italy 30 June 2016

Global Implementation Systems (GBAS) and Global Implementation Status

Ionosphere Anomaly Front Model: Potential Impact on a GBAS User

Stationary Ionosphere Front Scenario: Ionosphere front and IPP of ground station IPP move with same velocity. Maximum Range Error at DH: 425 mm/km × 20 km = 8.5 meters

Abnormal Gradients: *Mid-Latitudes vs. Low-Latitudes*

EPB Effects on GBAS and Mitigation Techniques

- Project conducted as an international, interagency effort
 - Teams involved: DECEA, ICEA, INPE, FAA Technical Center, Stanford, Boston College, NAVTAC, Mirus, and KAIST
- 120+ active ionosphere days were identified during the peak of the current solar cycle (March 2011 – April 2014)
 - Data collection from multiple Brazilian GNSS station networks
 - 85 scintillating, 8 non-scintillating, and 33 stormy days
- Threat points generated from LTIAM processing and verified by manual inspection
 - 30 points > 500 mm/km; 5 points > 600 mm/km
 - Maximum gradient \cong 850 mm/km
 - Significantly exceeds the maximum gradient of the CONUS threat model (375~425 mm/km)

Large Brazilian Gradients Observed (Phase 1 of Brazil Ionospheric Study)

Threat points shown with (•) validated via multi-dimensional approach (see ION Pacific PNT 2015 paper) to confirm these are actual ionospheric events.

SJCU-SSJC, PRN 03

Regional Ionospheric Map (01:00:00 UT)

Session 6 #1

w **U 1**

domain) impacts the IPPs (SJCU-SSJC to PRN 03)

7

SJCU-SSJC, PRN 03 Delay and Gradient Estimates

1 abs[-1016.0 - (-165.3)] = 850.7 mm/km

% measured with L1-CMC

KAIST

Regional Ionospheric Delay Map (Video)

Mitigation Approach I: Worst-Case Gradient Simulation and Position Domain Geometry Screening (PDGS)

Position Domain Geometry Screening (Worst-Case Ionospheric Mitigation)

- Identify undetected ionosphere-induced errors using user geometry and ionospheric wave front simulations.
 - Safety assessment is based on the parameter combination causing the largest GBAS vertical position error ("MIEV").
 - No probabilistic "averaging" among the many parameter combinations inside the threat model bounds.
- If needed, inflate broadcast integrity parameters to exclude geometries with potentially unsafe errors (i.e., max. MIEV > TEL).
 - This is a direct extension of the approach used in CONUS.
 - Resulting inflation is very conservative, as in CONUS → many good geometries are removed as well (availability loss)

Assessment Approach II: Monte Carlo Simulation and Real-time Threat Mitigation

- Assess the overall (ensemble) user impact by running many anomalous ionospheric trials through the use of randomly generated threat parameters.
- For each time epoch and subset geometry:
 - Randomly-sampled EPB parameters, including tilt angle, width, velocity, and gradients (SV-specific), are selected.
 - One SV is assumed to be affected by the worst-case EPB with the maximum gradient of 860 mm/km.
- After simulating all possible geometries at each epoch, we examine the probability of distribution of ionospheric induced vertical errors and TEL bounding.
 - "Worst-case impact" should be approximated by inclusion in distribution of simulation results.

TEL Bounding Results: CDF of Iono-induced Vertical Errors at 4-km DH

 $P_{loss of integrity}$ 10^{-8} $= P_{unsafe \ error} \times P_{a-prior}$ $10^{-2} \qquad 10^{-6}$

Prob(Error >TEL) \cong 0.0037

Real-Time Threat Mitigation Concept using Monte Carlo Simulation

Inflated VPL_{H0} (all-in-view): 4-km DH, $P_{a-prior} = 10^{-3}$

Inflated VPL_{H0} (all-in-view): 4-km DH, $P_{a-prior} = 10^{-5}$

- The behavior of plasma bubbles in low-latitude regions is different from that of ionospheric storms in mid-latitudes.
 - Maximum spatial gradients in Brazil are considerably higher than that in CONUS.
- The potential impacts of the EPB-induced ionospheric gradients are significant for CAT-I GBAS users.
- Real time threat mitigation concept using "Monte-Carlo" simulation was developed
 - Additional monitoring/screening applied to GAST-D GBAS should make this threat less significant.

Thank you for your attention!

jiyunlee@kaist.ac.kr

• Backup slides follow...

MIST Protection Level and Alert Limit

- GBAS Provides Protection Level that Bound Residual User Errors out to Integrity Requirement
- If PL > AL, the system is unavailable

EPB Effects on GBAS and Mitigation Techniques

Simultaneous Impacts of a Single EPB

Summary of Brazil Threat Model (Preliminary) Comparison with CONUS TM

Parameter	CONUS TM	Brazil TM
Ionospheric gradient	425 mm/km max.	860 mm/km max.
Max. depletion (delay)	50 m	20 m (primary); 35 m (total)
Speed	0 ~ 750 m/s	40 ~ 246 m/s
Transition zone length	25 ~ 200 km	11 ~ 186 km (primary); 22 ~ 454 km (total)
Anomaly time of day	Any time	Local night-time only ^(◊)
Anomaly approach direction	Any direction	Within tilt angle of magnetic equator (W-E)
Multiple-satellite impacts	Worst pair of 2 SVs	Multiple SVs depending on EPB and IPP locations

(*) mid-latitude iono. storm model used during local day-time tighter constraints compared to CONUS TM

Monte-Carlo Simulation: Dist. of Non-Worst-Case Iono. Gradients

- Over 30 days from the *Phase 1 data subset of "scintillating days"* were selected to estimate distribution of non-worst-case gradients during local night-time.
 - Using the station-pair method, no gradient larger than 400 mm/km was observed on the selected days.
 - *Time-step* method used here; thus larger gradient estimates result.

