Hemispheric and Annual asymmetry observed from Formosat-3/COSMIC Radio Occultation observations

V. Sai Gowtam and S. Tulasi Ram

International Beacon Satellite Symposium (IBSS) – 2016 June 27 – July 1, 2016, Trieste , Italy.

Annual anomaly/asymmetry

120

100

80

60

40

20

Being one of the top scientific targets of the ionospheric community [H. Rishbeth, 2007], explanation for the Annual asymmetry is still a long-standing puzzle.

The ionospheric annual anomaly or annual asymmetry is characterized by substantially larger ionization in December solstice than in June solstice.

Why is there more ionosphere in December - January than in June - July?

Mendillo et al., 2005

Formosat-3/COSMIC GPS RO – NmF2:

F10.7 solar flux

Year	F10.7 Jun	F10.7 Dec	F10.7 Dec-Jun
2008	67.9610	67.0250	-0.963
2009	70.9415	74.5732	3.6317
2010	75.5951	82.2400	6.6449

Previous studies:

Annual asymmetry has been studied using the NmF2 data from paired ionosonde stations, the total electron content (TEC) data from a worldwide network of GPS stations.

Annual Asymmetry Index

NmF2_{NS}
$$(\theta, \lambda) = \frac{1}{2} [NmF2(\theta_N, \lambda) + NmF2(\theta_S, \lambda)]$$

$$AI = \frac{\text{NmF2}_{\text{NS}} (\text{Dec}) - \text{NmF2}_{\text{NS}} (\text{Jun})}{\text{NmF2}_{\text{NS}} (\text{Dec}) + \text{NmF2}_{\text{NS}} (\text{Jun})}$$

-- Rishbeth and Muller-Wodarg [2006]

Annual Asymmetry Index

NmF2_{NS} $(\theta, \lambda) = \frac{1}{2} [NmF2(\theta_N, \lambda) + NmF2(\theta_S, \lambda)]$

$$AI = \frac{\text{NmF2}_{\text{NS}} (\text{Dec}) - \text{NmF2}_{\text{NS}} (\text{Jun})}{\text{NmF2}_{\text{NS}} (\text{Dec}) + \text{NmF2}_{\text{NS}} (\text{Jun})}$$

Global Mean Al				
Year	Noon	Mid-night	Total	
2008	0.14	0.18	0.16	
2009	0.20	0.22	0.21	
2010	0.24	0.25	0.24	

e.g., AI = 0.2 means 50% higher in December 0.3 means 66% higher in December

Longitudinal Variability

Longitudinal variability of $\Delta NmF2$ (NmF2_{DEC} – NmF2_{JUN}):

Possible mechanisms:

- Quite complex due to several responsible factors
 - 1. Varying Sun-Earth distance (0.983 AU in December, 1.017 AU in June)
 - 2. Transequatorial neutral winds
 - 3. Geomagnetic field configurations
 - 4. Proximity between sub-solar point and geomagnetic equator
 - 5. Tidal forcing from lower atmosphere

December

June

Latitude

Effective Neutral Wind

Noon Time

 W_{eff} = (V cos D ± U sin D) cos I sin I

- V Meridional wind (equatorward positive)U Zonal wind (eastward positive)
- I Inclination angle
- D Declication angle

Effective Neutral Wind

Conclusions

- > The Annual Asymmetry is caused by several influencing factors.
- The varying Sun-Earth distance and the Tidal forcing from lower atmosphere contribute only to a smaller extent

The major part of the Annual Asymmetry caused by,

- The offset between the sub-solar point and the geomagnetic equator and transequatorial neutral winds during day time
- > The effective thermospheric neutral winds plays a major role during night times.

<u>Acknowledgement</u>

- The work of Tulasi Ram is supported by Department of Science and Technology (DST) through India-Taiwan Science and Technology cooperation project (GITA/DST/TWN/P-47/2013).
- The Formosat-3/COSMIC RO data is obtained from UCAR-CDAAC (<u>http://cosmic-io.cosmic.ucar.edu/cdaac/index.html</u>).

Thank you...!

