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Hybrid model for prediction of the field scintillation on transionospheric paths of propagation was 
developed as the combination of the complex phase method (CPM) and random screen technique. 
V.E.Gherm, N.N.Zernov, and H.J.Strangeways, «Propagation model for transionospheric fluctuating paths of 
propagation: Simulator of the transionospheric channel», Radio Science, 40, RS1003, doi:10.1029/2004RS003097, 
2005. 

Propagation from a satellite to the Earth's surface is calculated in two steps: 

i)   transversal spatial spectra of the field phase and log-amplitude are calculated by the complex phase 
method for the points of observations below the ionosphere. The spectra obtained are employed to 
generate a random realizations of the field composing a random screen below the ionosphere; 

ii)  the propagation problem for a random screen is rigorously solved to obtain the field’s statistical 
moments and time series on the Earth's surface. 

The random screen being introduced in the present method is a physical screen with log-amplitude 
and phase fluctuations relevant to a real field on a plane located below the ionosphere.  

HSPM - Hybrid Scintillation Propagation Model 



Anisotropy of the Ionospheric Turbulence 
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3D spatial spectra of fluctuations of the dielectric permittivity, which also depend on the slow spatial 
variable 𝑧𝑧 along the path of propagation 
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Here 𝑎𝑎 = 𝑙𝑙∥ 𝑙𝑙⊥⁄  is the aspect ratio with 𝑙𝑙∥ and 𝑙𝑙⊥ being the outer scales of turbulence along and across 
the magnetic field respectively, 𝜎𝜎𝑁𝑁2 is the variance of the fractional electron density fluctuation, 𝜀𝜀0 𝑧𝑧  is 
the permittivity of the ionosphere along the reference ray in z-direction, 𝜅𝜅0 = 2𝜋𝜋 𝑙𝑙⊥⁄ , 𝑝𝑝 is the spectral 
index. 
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2D spatial spectra of fluctuations 



The transversal spatial spectrum for log-amplitude fluctuations after passing the ionospheric layer 
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Here 𝐹𝐹𝜀𝜀 𝜿𝜿, 𝜁𝜁, 𝑧𝑧′  is the two-dimensional spectrum of the permittivity fluctuations, 𝜿𝜿 is a two-dimensional 
transversal spectral variable (wave number). The integration limits are         𝑧𝑧𝑚𝑚 𝑧𝑧′ = 𝑧𝑧 − 2𝑧𝑧′ − 𝑧𝑧 .  
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    and may not be negligible if  𝑙𝑙∥
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≫1. 

The effective domain of integration in 𝜁𝜁 is defined by the inequality 𝜿𝜿𝜁𝜁 < 2𝜋𝜋 𝑙𝑙∥
𝑙𝑙⊥

 , since 𝐹𝐹𝜀𝜀 vanishes outside. 

If the values of 𝜿𝜿 satisfy the inequality 𝜿𝜿 𝑧𝑧 ≫ 𝑙𝑙∥ 𝑙𝑙⊥⁄  then 𝜁𝜁  ≪ 𝑧𝑧  and  𝑧𝑧𝑚𝑚 → ∞ 

4 

In the traditional treatment of the representation in equation (1), the second item is neglected. This is 
correct, if the irregularities are isotropic or are not fairly elongated.  



1. 𝑧𝑧𝑚𝑚 → ∞ 
 
After integration over 𝜁𝜁  
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Instead of the traditional one 
 

𝐹𝐹𝜒𝜒,𝑆𝑆 𝜿𝜿, 𝑧𝑧 =
𝜋𝜋𝑘𝑘2

4 �𝑑𝑑𝑧𝑧′Φ𝜀𝜀 𝜿𝜿, 0, 𝑧𝑧′ 1 ∓ cos
𝜿𝜿2 𝑧𝑧 − 𝑧𝑧′

𝑘𝑘

𝑧𝑧

0

.                                                                      (3) 

5 

2. for small 𝜿𝜿  𝐹𝐹𝜒𝜒 𝜿𝜿, 𝑧𝑧  is negligibly small, and 
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The integration should be carried out in finite limits    𝑧𝑧𝑚𝑚 𝑧𝑧′ = 𝑧𝑧 − 2𝑧𝑧′ − 𝑧𝑧  
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Spectra of log-amplitude and phase after passing the ionospheric layer 
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On the left: one-dimensional cuts of 2-D spectra of log-amplitude (red), and phase (blue) obtained utilizing 
(2) and (4). The black dot curve is the classical phase spectrum without corrections. On the right: the large-
scale part of the phase spectra is plotted in linear scale 
 
parameters: 𝑙𝑙⊥=5 km, 𝑎𝑎=50, 𝑝𝑝=3.7, 𝑓𝑓=150 MHz. 



a=50  L0=5   sigmaN= 0.0005 
TEC=52 
 
Dependence on the Ψ 
 
Ψ=0°    S4=0.42 
Ψ=10°  S4=0.11 
Ψ=20°  S4=0.09 
Ψ=30°  S4=0.086 
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Spectra of amplitude and phase on the Earth. 
Dependence on the angle Ψ between ray path and magnetic field direction.  
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el=60°  L0=5    (ψ=0°) 
 
Dependence on anisotropy  
a=50  (S4= 0.42)  
a=40  (S4= 0.37) 
a=30  (S4= 0.32) 
a=20  (S4= 0.26) 
a=10  (S4= 0.18) 
a=1    (S4= 0.057) 
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Spectra of amplitude and phase on the Earth. 
Dependence on the anisotropy (aspect ratio a).  
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Experimentally measured VHF intensity fluctuations spectra  
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Experimentally measured VHF phase fluctuations spectra  
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Simulated VHF signal fluctuations spectra  

a=30° 
Ψ=30° 
Vd=500 m/c 
S4=0.2 
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Conclusions 

• The case of transionospheric propagation in the direction of magnetic field 
in fairly anisotropic fluctuating ionosphere has been considered aiming at 
the proper treatment of the anisotropy effects. 

• The Hybrid Scintillation Propagation Model has been modified incorporating 
the more general formulas obtained. 

• The results of VHF propagation simulations show that the spectra of phase 
and amplitude fluctuations deviate from the pure power law in their high 
frequency part. 

• This may be interpreted as a “spectral brake”, or as the “two-slope” power 
law with no corresponding break in the spectrum of the electron density 
fluctuations. 

• This effect is exclusively due to the diffraction in the volume. It cannot be 
obtained in frames of the phase screen and MPS techniques, as well as in 
the Markov parabolic equations approach. 
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