Algorithms for the mitigation of space weather

threats at low latitudes, contributing to the extension of EGNOS over Africa

B. Forte (1), F. Da Dalt (1), T. Panicciari (1), T. Talini Pinto Jayawardena (1), C. Mitchell (1), A. Zin (2), L. Marradi (2), R. Muscinelli (2), R. Fiordiponti (2), V. Sreeja (3), M. Aquino (3), F. Dovis (4), L. Alfonsi (5), C. Cesaroni (5), L. Spogli (5), G. De Franceschi (5), I. Häggström (6), C.-F. Enell (6), P. Chawdhry (7), P. Høeg (8), H.-H. von Benzon (8), M. Pozoga (9), T. Kos (10), J. Vukovic (10), E. Henley (11), and D. Jackson (11)

(1) University of Bath, UK, (2) Thales Alenia Space Italy, Roma and Milano, ITALY, (3) University of Nottingham, UK, (4) Politecnico di Torino, ITALY, (5) Istituto Nazionale di Geofisica e Vulcanologia, ITALY, (6) EISCAT Scientific Association, SWEDEN, (7) European Joint Research Centre, Institute for Security and Protection of Citizens, BELGIUM, (8) Technical University of Denmark - Space, DENMARK, (9) Space Research Centre, POLAND, (10) University of Zagreb, CROATIA, (11) Met Office, Exeter, UK.

Contact: b.forte@bath.ac.uk

http://misw.info/

The challenge

MITIGATION OF SPACE WEATHER THREATS TO GNSS SERVICES

WHY MISW?

- Space Weather affects many modern technologies that we take for granted
- MISW tackles research challenges associated with GNSS and Space Weather
- >>> Bring practical solutions to European Industry

USERS

- GNSS Users rely on positioning accuracy but this may not be adequate for all applications
- >> Safety critical applications also need integrity of the GNSS positioning

SBAS

- SBAS systems (EGNOS in Europe) gather information that allows some mitigation of Space Weather events
- However, SBAS systems are not yet able to work in the most challenging regions and as consequence Space Weather disturbances to the ionized upper atmosphere cause navigation errors that remain uncompensated

Ionospheric Threats

Illustration of global ionosphere at solar max. Colour contours show vertical TEC where 60 TECU are equivalent to delays on the GPS L1 signal of about 10 m vertical.

IONIZATION GRADIENTS

Ionization gradients (in particular over low latitude regions) are much more structured than over Europe with high TEC gradients

SCINTILLATION

- Propagation of radio signals through ionization gradients lead to scintillation (Fluctuation of signal phase and amplitude)
- Scintillation is a serious threat to GNSS as it can disrupt receivers operation and service entirely by means of C/No fading and loss of lock

MISW Solutions

EGNOS EXTENSION

- EGNOS extends from Scandinavia in the North to Africa to the South
- These regions experience strong gradients in delay and break up of signals from scintillation
- These issues represent a technology barrier to the expansion of EGNOS geographically

MISW OBJECTIVES

- Monitor and characterize iono effects at low, mid, high latitudes
- Develop algorithms against Space Weather vulnerabilities at Receiver level and at System level
- Enable extension of EGNOS to Africa
- Devise recommendations on best practices for GNSS services with reference to Space Weather

MISW Partners

PARTNERS

Under the lead of University of Bath the MISW partners include major european institutions and industry involved in GNSS and Space Weather study

STAKEHOLDERS

- Relevant entities regulating SBAS services
- Experts in Ionospheric studies
- 🛰 GNSS User Communities
- 🛰 GNSS Industry
- 🛰 GNSS Service Providers

SUPPORTING PARTNERS

ASECNA, SANSA, CIVIL AVIATION UNIVERSITY OF CHINA, NOAA, ESA, FAA

The concept of grid point corrections

How to calculate corrections to ionopheric delays

Example of ionispheric grid points

Credit: RTCA

EGNOS monitoring stations - courtesy ESSP

Credit: ESSP

MISW Solutions: Ionospheric Scenarios

Rate of Change of TEC and Scintillation

23 June 2015 Trondheim (63.42 N, 10.41 E) 23 June 2015 Ny Alesund (78.93 N, 11.06 E)

Beacon Satellite Symposium 2016

20[°] E

10[°] E

Alfonsi et al, in preparation

Beacon Satellite Symposium 2016

20[°] E

10[°] E

An additional problem at low latitudes: scintillation

An additional problem: scintillation

Trieste, 27 June - 01 July 2016

Beacon Satellite Symposium 2016

An additional problem: scintillation

Beacon Satellite Symposium 2016

Scintillation: a night-time phenomenon

Forte et al, in preparation

Trieste, 27 June - 01 July 2016

0.02

36°₩

18⁰W

 0°

18°E

Probability of events >20dB SI for Consec 2mins - L1

54 d

30°N /

0.18

0.16

0.14

0.2

0.18

0.16

0.14

0.02

Beacon Satellite Symposium 2016

18°W

0⁰

18°E

36°₩

18°W

 0°

18°E

36°₩

Trieste, 27 June - 01 July 2016

Forte et al, in preparation

MISW Solutions: Understanding complexity and data requirement

1. Complexity

Reconstructed

Da Dalt et al, in preparation

Beacon Satellite Symposium 2016

2. Data coverage

MISW Solutions: Modelling EGNOS performance over Africa under given scenarios

Data from SAGAIE network - courtesy of French CNES

Ionisation gradients - July 2015

Beacon Satellite Symposium 2016

Ionisation gradients - October 2015

Beacon Satellite Symposium 2016

Data gaps introduced by ionospheric scintillation – July 2015

Data gaps introduced by ionospheric scintillation - October 2015

EGNOS availability - July 2015

EGNOS availability - July 2015

EGNOS availability - October 2015

Beacon Satellite Symposium 2016

EGNOS availability - October 2015

Comparison of different approaches for the grid point correction

Comparison of approaches: 23 July 2015

Comparison of approaches: 11 October 2015

Beacon Satellite Symposium 2016

MISW Solutions: Next-generation data-gap-free monitoring station

GISMO Prototype

Beacon Satellite Symposium 2016

Robust Carrier Tracking - Simulation Results

Semi-analytic simulator (Matlab)

GISM Time series

Tecniques comparisons

Semi-analytic Simulator - TASI Receiver Loops Tracking Model

Semi-analytic PLL and DLL combined model

- Simulations at different S4 conditions
 → assess phase and frequency accuracies, robustness vs CS
- Simulation at extreme S4 condition
 → assess robustness vs LoL

Simulation Results

Zin et al, in preparation

Carrier Phase Error, C/N0 = 40 dB-Hz, atan2 discr.

Cycle Slip Occurrences, C/N0 = 40 dB-Hz, atan2 discr.

Cycle Slip Occurrences, C/N0 = 40 dB-Hz, atan discr.

Beacon Satellite Symposium 2016

Simultator Results - Phase and Carrier Accuracy

Kalman filter results to have higher phase errors at lower scintillation, while in presence of strong scintillation it shows a great error reduction, in particular at high C/N₀ values
 The most evident advantage in the Kalman filter reduced frequency error, w.r.t. reference PLL → increasing LoL and frequency False Lock rejection

Zin et al, in preparation

Simultator Results - Robustness vs Cycle Slips

>> The figures highlight that for both atan and atan2:

- >> PLL performs slightly better in case of moderate scintillation,
- a great improvement of KF has been obtained in case of extreme scintillation.

Zin et al, in preparation

Simultator Results - Robustness vs Loss of Locks

Representation

- Mean: circled points represent average of the collected Times-to-First-LoL.
- Min-Max: vertical lines extend from minimum to maximum Time-to-First-LoL observed.
- The horizontal ticks give representation of the confidence interval

Results

- Benefits brought by KF more evident in atan case
- KF shows increasing robustness in extreme scintillation condition
- atan2 discriminator more robust than atan (no LoL at $S_4 = 0.5$)

Zin et al, in preparation

Additional tests (on-going): perturbations from real data

Beacon Satellite Symposium 2016

Trieste, 27 June - 01 July 2016

Updated GISMO Receiver Live Campaign

- Data recorded in May/June 2016 by updated GISMO RX show ionospheric scintillation activities
- Same scintillation level recorded in September/October 2015 which led to LoL
- No LoL observed for both carrier tracking strategies with new SW version

Conclusions

- Multi-constellation multi-frequency monitoring station
- All Kalman filter based PLL channels
- Intelligent Loss of Lock indicator
- Improved L2C tracking through L1CA-frequency aiding
- Improved acquisition time on GPS L5, Galileo E1BC and E5a
- Robustness in the presence of both low and high latitudes conditions
- On-going development of system algorithms

Thank you for the attention

Contact: b.forte@bath.ac.uk

http://misw.info/

Beacon Satellite Symposium 2016