3D to 2D approximation-affect on propagation modeling, impact on scintillation indices

V. Fabbro ${ }^{1}$, L. Féral ${ }^{2}$, H. Galiegue ${ }^{3}$ and S. Rougerie ${ }^{4}$

${ }^{1}$ DEMR, ONERA, 2 avenue Edouard Belin, Toulouse, FRANCE.
${ }^{2}$ Laboratoire LAPLACE, GRE, Université Paul Sabatier, Toulouse, FRANCE.
${ }^{3}$ TELECOM-EMA, ENAC, 7 avenue Edouard Belin, Toulouse, FRANCE. .
${ }^{4}$ CNES, 18 avenue Edouard Belin, Toulouse, FRANCE. .

Dimensional reduction issues

Modeling of transionospheric propagation with numerical schemes:

Errors potentially induced by the dimensional reduction have to be quantitatively assessed from analytical derivations

3D to 2D approximation effect on propagation modeling, impact on scintillation indices

Content

- Propagation geometry and medium description
- 3D and 2D numerical schemes
- 3D and 2D analytical derivations
- Results in equatorial configuration
- Results in polar configuration
- Conclusions

3D to 2D approximation effect on propagation modeling, impact on scintillation indices

Content

- Propagation geometry and medium description
- 3D and 2D numerical schemes
- 3D and 2D analytical derivations
- Results in equatorial configuration
- Results in polar configuration
- Conclusions

Propagation geometry and medium description

Electron-density fluctuations are described by Shkarofsky [1968] spectrum:

$$
S_{\Delta N_{e}}\left(K_{x_{H}}, K_{y_{H}}, K_{z_{H}}\right)=A_{x} A_{y} A_{z} C_{s}\left(A_{x}^{2} K_{X_{H}}^{2}+A_{y}^{2} K_{y_{H}}^{2}+A_{z}^{2} K_{z_{H}}^{2}+K_{0}^{2}\right)^{-p / 2}
$$

Fig.1: Spectrum of electron-density fluctuations

Fig.2: Ellipsoidal ionospheric irregularity With anisotropy ratios $A_{X}=A_{Y}=1$ and A_{Z} elongated along the terrestrial magnetic field H_{0}

Propagation geometry and medium description

LOS coordinate system (u, v, s) used to solve the Helmholtz scalar equation

Fig.3: LOS coordinate system (u, v, s)

Fig.4: Geometry of the ionospheric turbulent Irregularities in the LOS coordinate system (u, v, s)

3D to 2D approximation effect on propagation modeling, impact on scintillation indices

Content

- Propagation geometry and medium description
- 3D and 2D numerical schemes
- 3D and 2D analytical derivations
- Results in equatorial configuration
- Results in polar configuration
- Conclusions

Helmholtz equation resolution:

$$
\nabla^{2} \underline{E}(\vec{r})+k_{o}^{2}[1+2 \Delta n(\vec{r}, t)] \underline{E}(\vec{r})=0
$$

Iterative Solution of PWE (Split-Step Fourier SSF) :

$$
\begin{aligned}
& \underline{E}(u, v, s+\delta s)=e_{\text {Phase Screen }}^{i k \sqrt{\phi(u, v)}} \underbrace{T F^{-1}\left\{e^{i \sqrt{k_{o}^{2}-K_{u}^{2}-K_{v}^{2}} \delta} T F[\underline{E}(u, v, s)]\right\}} \xrightarrow{ } \quad \xrightarrow{\text { Propagation in vacuum }} \\
& \phi(u, v)=\int_{s}^{s++\delta} \Delta n(u, v, \xi) d \xi=-\frac{r_{e} \lambda}{k_{o}} \int_{s}^{s+\infty} \Delta N_{e}(u, v, \xi) d \xi
\end{aligned}
$$

Propagation geometry and medium description

3D-PWE/2D-MPS

$$
S_{\phi}^{2 D}\left(K_{u}, K_{v}\right)=2 \pi\left(\frac{r_{e} \lambda}{k_{o}}\right)^{2} \delta s S_{\Delta N_{e}}^{3 D}\left(K_{u}, K_{v}, K_{s}=0\right)
$$

Fig.4: Geometry of the ionospheric turbulent Irregularities in the LOS coordinate system (u, v, s)

$$
S_{\Delta N_{e}}^{3 D}\left(K_{u}, K_{v}, K_{s}=0\right)=2 \pi\left(\frac{r_{e} \lambda}{k_{o}}\right)^{2} \delta s a_{X}^{3-p} A_{Y} A_{Z} C_{S}\left(A K_{u}^{2}+B K_{v}^{2}+2 C K_{u} K_{v}+\frac{K_{o s}^{2}}{a_{X}^{2}}\right)^{-p / 2}
$$

where

$$
\begin{aligned}
A & =\left(\sin \gamma \cos \alpha_{Z} \sin \psi+\cos \alpha_{Y} \cos \psi \cos \gamma\right)^{2}+A_{Y}^{2} \sin ^{2} \alpha_{Y} \cos ^{2} \psi+A_{Z}^{2} \sin ^{2} \gamma \sin ^{2} \alpha_{Z} \\
B & =\left(\cos \psi \sin \alpha_{Y} \cos \gamma+\sin \psi \sin \alpha_{Z} \sin \gamma\right)^{2}+A_{Y}^{2} \cos ^{2} \psi \cos ^{2} \alpha_{Y}+A_{Z}^{2} \sin ^{2} \gamma \cos ^{2} \alpha_{Z} \\
C & =-\left(\sin \gamma \cos \alpha_{Z} \sin \psi+\cos \alpha_{Y} \cos \psi \cos \gamma\right)\left(\cos \psi \sin \alpha_{Y} \cos \gamma+\sin \psi \sin \alpha_{Z} \sin \gamma\right) \\
& +A_{Y}^{2} \sin \alpha_{Y} \cos ^{2} \psi \cos \alpha_{Y}+A_{Z}^{2} \sin \alpha_{Z} \sin ^{2} \gamma \cos \alpha_{Z}
\end{aligned}
$$

Coefficient formulations different of [Rino, 1979] because derived in LOS geometry

PWE-MPS Scheme

2D-PWE/1D-MPS

Reduced computation time

3D to 2D approximation effect on propagation modeling, impact on scintillation indices

Content

- Propagation geometry and medium description
- 3D and 2D numerical schemes
- 3D and 2D analytical derivations
- Results in equatorial configuration
- Results in polar configuration
- Conclusions

Analytical derivations under weak scattering assumption

Analytical resolution of Helmholtz equation in stochastic medium:

$$
\nabla^{2} \underline{E}(\vec{r})+k_{o}^{2}[1+2 \Delta n(\vec{r}, t)] \underline{E}(\vec{r})=0
$$

Under weak scattering assumption [Rytov et al., 1989]:

$$
\begin{gathered}
E(\vec{r})=E_{0}(\vec{r}) e^{\Psi_{1}(\vec{r})} \\
\Psi_{1}^{3 D}(\vec{r})=-2 k_{0}^{2} \iiint d^{3} r G^{3 D}(\vec{R}, \vec{r}) \Delta n(\vec{r}) \frac{E_{0}(\vec{r})}{E_{0}(\vec{R})} \\
\Psi_{1}^{2 D}(\vec{r})=-2 k_{0}^{2} \iint d^{2} r G^{2 D}(\vec{R}, \vec{r}) \Delta n(\vec{r}) \frac{E_{0}(\vec{r})}{E_{0}(\vec{R})}
\end{gathered}
$$

variances (log-amplitude and phase) are computed in
LOS in 3D and 2D

Analytical derivations under weak scattering assumption

For plane waves, the classical 3D expressions for log-amplitude variances [Wheelon, 2004b] are now given in the LOS by:

$$
\left\langle\chi^{2}\right\rangle^{3 D}=\left(2 \pi \lambda^{2} r_{e}^{2} \Delta H \sec \vartheta\right) \int_{-\infty}^{+\infty} d K_{u} d K_{v} S_{\Delta N_{e}}^{3 D}\left(K_{u}, K_{v}, 0\right) F_{\chi}^{3 D}\left(K_{u}, K_{v}\right),
$$

in 2D [Fabbro and Féral, 2012]:

$$
\left\langle\chi^{2}\right\rangle^{2 D}=\left(2 \pi \lambda^{2} r_{e}^{2} \Delta H \sec \vartheta\right) \iint_{-\infty}^{+\infty} d K_{u} d K_{v} S_{\Delta N_{e}}^{3 D}\left(K_{w}, K_{v}, 0\right) F_{\chi}^{3 D}\left(K_{u}, 0\right),
$$

$F_{\chi}^{3 D}\left(K_{u}, K_{v}\right)$ departs from 0 and crosses its asymptotic value 0.5 for the first time more rapidly than $F_{\chi}^{3 D}\left(K_{u}, 0\right)$.
it follows that $\left\langle\chi^{2}\right\rangle^{2 D}$ is expected to be lower than $\left\langle\chi^{2}\right\rangle^{3 D}$

Analytical derivations under weak scattering assumption

For plane waves, the classical 3D expressions for phase variances
[Wheelon, 2004b] are now given in the LOS by:

$$
\left\langle\varphi^{2}\right\rangle^{3 D}=\left(2 \pi \lambda^{2} r_{e}^{2} \Delta H \sec \vartheta\right) \int_{-\infty}^{+\infty} d K_{u} d K_{v} S_{\Delta N_{e}}^{3 D}\left(K_{u}, K_{v}, 0\right) F_{\varphi}^{3 D}\left(K_{u}, K_{v}\right)
$$

in 2D [Fabbro and Féral, 2012]:

$$
\left\langle\varphi^{2}\right\rangle^{2 D}=\left(2 \pi \lambda^{2} r_{e}^{2} \Delta H \sec \vartheta\right) \int_{-\infty}^{+\infty} \int_{u} d K_{u} d K_{v} S_{\Delta N_{e}}^{3 D}\left(K_{u}, K_{v}, 0\right) F_{\varphi}^{3 D}\left(K_{u}, 0\right)
$$

since $F_{\varphi}^{3 D}\left(K_{u}, K_{v}\right)=1-F_{\chi}^{3 D}\left(K_{u}, K_{v}\right)$,
the reduction 3D/2D might lead to an overestimation of the phase variances

Analytical derivations under weak scattering assumption

Analytical derivations:

in Fresnel regime and assuming that the thin-layer approximation $\Delta H \ll 2 H$ holds:

$$
\begin{aligned}
\mathfrak{R}_{\chi} & =\frac{\left\langle\chi^{2}\right\rangle^{3 D}}{\left\langle\chi^{2}\right\rangle^{2 D}} \\
& =\frac{\pi}{2^{p-2}} \frac{\Gamma(p-1)}{[\Gamma(p / 2-1 / 2)]^{2}}\left(\frac{A^{\prime}}{B^{\prime}}\right)^{(p-1) / 2}\left[1+\left(\frac{A^{\prime}}{B^{\prime}}-1\right) \sin ^{2} \varepsilon\right]^{1-p / 2}{ }_{2} F_{1}\left(p / 2,1 / 2 ; 1 ; 1-A^{\prime} / B^{\prime}\right) \\
\mathfrak{R}_{\varphi} & =\frac{\left\langle\varphi^{2}\right\rangle^{3 D}}{\left\langle\varphi^{2}\right\rangle^{2 D}}=\frac{\Phi-\mathfrak{R}_{\chi}}{\Phi-1}
\end{aligned}
$$

with

$$
\Phi=\frac{a_{X}^{p-2}}{(2 \sqrt{\pi})^{p-3}}\left(\frac{L_{o s}}{\sqrt{\lambda H \sec \vartheta}}\right)^{p-2} \frac{\Gamma(p-1) \Gamma(p / 4)}{\Gamma(3 / 2-p / 4)[\Gamma(p / 2-1 / 2)]^{2}}\left(\frac{A^{\prime} B^{\prime}}{B}\right)^{p / 2-1}
$$

3D to 2D approximation effect on propagation modeling, impact on scintillation indices

Content

- Propagation geometry and medium description
- 3D and 2D numerical schemes
- 3D and 2D analytical derivations
- Results in equatorial configuration
- Results in polar configuration
- Conclusions

Results in Equatorial configuration

2 equatorial configurations considered:

$$
A_{x}=1: A_{y}=3: A_{z}=10, y=90^{\circ}, \alpha_{z}=0^{\circ}, \psi=90^{\circ}
$$

Fig.5: Ionospheric irregularity in the LOS coordinate system (u, v, s) for the $1^{\text {st }}$ equatorial configuration

Results in Equatorial configuration

Equatorial configurations

Fig.7: Ratio of log-amplitude variances derived from 3D and 2D numerical simulations (+) and analytical (-) as a function of the plane of dimensional reduction defined by α_{z}
$A_{x}=1: A_{y}=3: A_{z}=10, y=90^{\circ}, \alpha_{z}=0^{\circ}, \psi=90^{\circ}$

Top View (uOv)
(LOS transverse plane)

Results in Equatorial configuration

Equatorial configurations

Fig.7: Ratio of log-amplitude variances derived from 3D and 2D numerical simulations (+) and analytical (-) as a function of the plane of dimensional reduction defined by α_{z}

Top View (uOv) (LOS transverse plane)

Results in Equatorial configuration

Equatorial configurations

Fig.7: Ratio of log-amplitude variances derived from 3D and 2D numerical simulations (+) and analytical (-) as a function of the plane of dimensional reduction defined by α_{z}

Top View (uOv) (LOS transverse plane)

Results in Equatorial configuration

Equatorial configurations

Fig.7: Ratio of log-amplitude variances derived from 3D and 2D numerical simulations (+) and analytical (-) as a function of the plane of dimensional reduction defined by α_{z}
$A_{x}=1: A_{y}=3: A_{z}=10, y=90^{\circ}, \alpha_{z}=0^{\circ}, \psi=90^{\circ}$

Top View (uOv) (LOS transverse plane)

Results in Equatorial configuration

Equatorial configurations

Fig.7: Ratio of log-amplitude variances derived from 3D and 2D numerical simulations (+) and analytical (-) as a function of the plane of dimensional reduction defined by α_{z}
$A_{x}=1: A_{y}=3: A_{z}=10 . \gamma=35^{\circ}, \alpha_{z}=0^{\circ}, \psi=15^{\circ}$

Top View (uOv) (LOS transverse plane)

Results in Equatorial configuration

Equatorial configurations

Fig.7: Ratio of log-amplitude variances derived from 3D and 2D numerical simulations (+) and analytical (-) as a function of the plane of dimensional reduction defined by α_{z}
$A_{x}=1: A_{y}=3: A_{z}=10 . \gamma=35^{\circ}, \alpha_{z}=0^{\circ}, \psi=15^{\circ}$

Top View (uOv) (LOS transverse plane)

Results in Equatorial configuration

Equatorial configurations

Fig.7: Ratio of log-amplitude variances derived from 3D and 2D numerical simulations (+) and analytical (-) as a function of the plane of dimensional reduction defined by α_{z}
$A_{x}=1: A_{y}=3: A_{z}=10 . \gamma=35^{\circ}, \alpha_{z}=0^{\circ}, \psi=15^{\circ}$

Top View (uOv) (LOS transverse plane)

Results in Equatorial configuration

Equatorial configurations

Fig.7: Ratio of log-amplitude variances derived from 3D and 2D numerical simulations (+) and analytical (-) as a function of the plane of dimensional reduction defined by α_{z}
$A_{x}=1: A_{y}=3: A_{z}=10 . \gamma=35^{\circ}, \alpha_{z}=0^{\circ}, \psi=15^{\circ}$

Top View (uOv) (LOS transverse plane)

Results in Equatorial configuration

Fig.8: Ratio of phase variances derived from 3D and 2D numerical simulations (+) and analytical (-) as a function of the plane of dimensional reduction defined by α_{z}

$$
A_{x}=1: A_{y}=3: A_{z}=10, y=90^{\circ}, \alpha_{z}=0^{\circ}, \psi=90^{\circ}
$$

Top View (uOv) (LOS transverse plane)

Results in Equatorial configuration

Equatorial configurations

Fig.8: Ratio of phase variances derived from 3D and 2D numerical simulations (+) and analytical (-) as a function of the plane of dimensional reduction defined by α_{z}
$A_{x}=1: A_{y}=3: A_{z}=10, y=90^{\circ}, \alpha_{z}=0^{\circ}, \psi=90^{\circ}$

Top View (uOv) (LOS transverse plane)

Results in Equatorial configuration

Equatorial configurations

Fig.8: Ratio of phase variances derived from 3D and 2D numerical simulations (+) and analytical (-) as a function of the plane of dimensional reduction defined by α_{z}
$A_{x}=1: A_{y}=3: A_{z}=10, y=90^{\circ}, \alpha_{z}=0^{\circ}, \psi=90^{\circ}$

Top View (uOv) (LOS transverse plane)

Results in Equatorial configuration

Equatorial configurations

Fig.8: Ratio of phase variances derived from 3D and 2D numerical simulations (+) and analytical (-) as a function of the plane of dimensional reduction defined by α_{z}
$A_{x}=1: A_{y}=3: A_{z}=10, y=90^{\circ}, \alpha_{z}=0^{\circ}, \psi=90^{\circ}$

Top View (uOv) (LOS transverse plane)

$$
A_{x}=1: A_{y}=3: A_{z}=10 . \gamma=35^{\circ}, \alpha_{z}=0^{\circ}, \psi=15^{\circ}
$$

Results in Equatorial configuration

Fig.8: Ratio of phase variances derived from 3D and 2D numerical simulations (+) and analytical (-) as a function of the plane of dimensional reduction defined by α_{z}

Top View (uOv) (LOS transverse plane)

$$
A_{x}=1: A_{y}=3: A_{z}=10 . \gamma=35^{\circ}, \alpha_{z}=0^{\circ}, \psi=15^{\circ}
$$

Results in Equatorial configuration

Equatorial configurations

Fig.8: Ratio of phase variances derived from 3D and 2D numerical simulations (+) and analytical (-) as a function of the plane of dimensional reduction defined by α_{z}

Top View (uOv) (LOS transverse plane)

$$
A_{x}=1: A_{y}=3: A_{z}=10 . \gamma=35^{\circ}, \alpha_{z}=0^{\circ}, \psi=15^{\circ}
$$

Results in Equatorial configuration

Fig.8: Ratio of phase variances derived from 3D and 2D numerical simulations (+) and analytical (-) as a function of the plane of dimensional reduction defined by α_{z}

Top View (uOv) (LOS transverse plane)

$$
A_{x}=1: A_{y}=3: A_{z}=10 . \gamma=35^{\circ}, \alpha_{z}=0^{\circ}, \psi=15^{\circ}
$$

Results in Equatorial configuration

Equatorial configurations

Fig.8: Ratio of phase variances derived from 3D and 2D numerical simulations (+) and analytical (-) as a function of the plane of dimensional reduction defined by α_{z}

Top View (uOv) (LOS transverse plane)

Results in Equatorial configuration

Whatever the configuration:

- 2D-PWE/1D-MPS numerical schemes underestimates 3D log-amplitude variances in proportions that depends on the plane of dimentional reduction (from 1 up to 87,2)
- 2D numerical schemes slightly overestimate 3D phase variances (from 0,96 up to 1)

If one accepts an error of 10% :

- For equatorial case, then 2D numerical schemes can be safely used for α_{z} less than $\mathbf{2 0}^{\circ}$
- For second equatorial configuration, the optimal plane of dimensional reduction around $\alpha_{z}=0$, introduces an error of 22%, i.e. well beyond the error margin arbitrarily fixed to 10 \%

3D to 2D approximation effect on propagation modeling, impact on scintillation indices

Content

- Propagation geometry and medium description
- 3D and 2D numerical schemes
- 3D and 2D analytical derivations
- Results in equatorial configuration
- Results in polar configuration
- Conclusions

Results in Polar configuration

2 polar configurations considered:

[Livingston et al., 1982], [Gola, 1992]
sheet-like ionospheric irregularities

$$
A_{x}=1: A_{y}=5: A_{z}=5, \gamma=20^{\circ}, \alpha_{z}=-40^{\circ}, \psi=15^{\circ}
$$

Fig.9: Ionospheric irregularity in the LOS coordinate system (u, v, s) for the $1^{\text {st }}$ polar configuration
field-aligned rods

$$
A_{x}=1: A_{y}=1: A_{z}=5, \gamma=5^{\circ}, \alpha_{z}=-40^{\circ}, \psi=0^{\circ}
$$

Fig.10: Ionospheric irregularity in the LOS coordinate system (u, v, s) for the $2^{\text {nd }}$ polar configuration

Results in Polar configuration

Polar configurations

Fig.11: Ratio of log-amplitude variances derived from 3D and 2D numerical simulations (+) and analytical (-) as a function of the plane of dimensional reduction defined by α_{z}

$$
A_{x}=1: A_{y}=5: A_{z}=5, \gamma=20^{\circ}, \alpha_{z}=-40^{\circ}, \psi=15^{\circ}
$$

Top View (uOv) (LOS transverse plane)

Results in Polar configuration

Polar configurations

Fig.11: Ratio of log-amplitude variances derived from 3D and 2D numerical simulations (+) and analytical (-) as a function of the plane of dimensional reduction defined by α_{z}
$A_{x}=1: A_{y}=5: A_{z}=5, \gamma=20^{\circ}, \alpha_{z}=-40^{\circ}, \psi=15^{\circ}$

Top View (uOv) (LOS transverse plane)

Results in Polar configuration

Polar configurations

Fig.11: Ratio of log-amplitude variances derived from 3D and 2D numerical simulations (+) and analytical (-) as a function of the plane of dimensional reduction defined by α_{z}
$A_{x}=1: A_{y}=5: A_{z}=5, \gamma=20^{\circ}, \alpha_{z}=-40^{\circ}, \psi=15^{\circ}$

Top View (uOv) (LOS transverse plane)

$$
A_{x}=1: A_{y}=5: A_{z}=5, y=20^{\circ}, \psi=15^{\circ}
$$

Results in Polar configuration

Polar configurations

Fig.11: Ratio of log-amplitude variances derived from 3D and 2D numerical simulations (+) and analytical (-) as a function of the plane of dimensional reduction defined by α_{z}
$A_{x}=1: A_{y}=5: A_{z}=5, \gamma=20^{\circ}, \alpha_{z}=-40^{\circ}, \psi=15^{\circ}$

Top View (uOv) (LOS transverse plane)
$A_{x}=1: A_{y}=5: A_{z}=5, \gamma=20^{\circ}, \psi=15^{\circ}$

Results in Polar configuration

Polar configurations

Fig.11: Ratio of log-amplitude variances derived from 3D and 2D numerical simulations (+) and analytical (-) as a function of the plane of dimensional reduction defined by α_{z}

Top View (uOv) (LOS transverse plane)

Results in Polar configuration

Polar configurations

Fig.11: Ratio of log-amplitude variances derived from 3D and 2D numerical simulations (+) and analytical (-) as a function of the plane of dimensional reduction defined by α_{z}

Top View (uOv) (LOS transverse plane)

Results in Polar configuration

Polar configurations

Fig.11: Ratio of log-amplitude variances derived from 3D and 2D numerical simulations (+) and analytical (-) as a function of the plane of dimensional reduction defined by α_{z}

Top View (uOv) (LOS transverse plane)

Results in Polar configuration

Polar configurations

Fig.11: Ratio of log-amplitude variances derived from 3D and 2D numerical simulations (+) and analytical (-) as a function of the plane of dimensional reduction defined by α_{z}

Top View (uOv) (LOS transverse plane)

Results in Polar configuration

Polar configurations
 numerical simulations $(+)$ and analytical (-) as a function of the plane of dimensional reduction defined by α_{z}

Conclusion

Study of dimensional reduction 3D to 2D has been performed from numerical (PWE-MPS) and analytical (Rytov) modeling

The results for typical polar and equatorial configurations have shown:
$\mathfrak{R}_{\chi}=\frac{\left\langle\chi^{2}\right\rangle^{3 D}}{\left\langle\chi^{2}\right\rangle^{2 D}} \geq 1$ DR leads to an underestimation of the scintillation effects in terms of log-amplitude variances
$\mathfrak{R}_{\varphi}=\frac{\left\langle\varphi^{2}\right\rangle^{3 \mathrm{D}}}{\left\langle\varphi^{2}\right\rangle^{2 \mathrm{D}}} \leq 1$ DR introduces a weak overestimation of the phase variances
From the analytical formulation, these observations can be generalized

For more details : « Validity of 2D electromagnetic approaches to predict Logamplitude and phase variances due to 3D ionospheric scintillation effects", Hélène Galiègue, Laurent Féral, Vincent Fabbro To be submitted very soon to JGR

ONERA

THE FRENCH AEROŚPACE LAB

Thank you for your attention

